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2.6 Affine Groups

We now take a quick look at the bijective affine maps.

Given an affine space E, the set of affine bijections
f : E → E is clearly a group, called the affine group of
E, and denoted as GA(E).

Recall that the group of bijective linear maps of the vector

space
−→
E is denoted as GL(

−→
E ). Then, the map f 7→

−→
f

defines a group homomorphism L: GA(E) → GL(
−→
E ).

The kernel of this map is the set of translations on E.

The subset of all linear maps of the form λ id−→
E

, where

λ ∈ R−{0}, is a subgroup of GL(
−→
E ), and is denoted as

R
∗id−→

E
.
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The subgroup DIL(E) = L−1(R∗id−→
E

) of GA(E) is par-
ticularly interesting. It turns out that it is the disjoint
union of the translations and of the dilatations of ratio
λ 6= 1.

The elements of DIL(E) are called affine dilatations (or
dilations).

Given any point a ∈ E, and any scalar λ ∈ R, a dilata-
tion (or central dilatation, or magnification, or ho-
mothety) of center a and ratio λ, is a map Ha,λ defined
such that

Ha,λ(x) = a + λax,

for every x ∈ E.

Observe that Ha,λ(a) = a, and when λ 6= 0 and x 6= a,
Ha,λ(x) is on the line defined by a and x, and is obtained
by “scaling” ax by λ. When λ = 1, Ha,1 is the identity.
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Note that
−−→
Ha,λ = λ id−→

E
. When λ 6= 0, it is clear that

Ha,λ is an affine bijection.

It is immediately verified that

Ha,λ ◦ Ha,µ = Ha,λµ.

We have the following useful result.

Lemma 2.6.1 Given any affine space E, for any affine

bijection f ∈ GA(E), if
−→
f = λ id−→

E
, for some λ ∈ R

∗

with λ 6= 1, then there is a unique point c ∈ E such
that f = Hc,λ.

Clearly, if
−→
f = id−→

E
, the affine map f is a translation.

Thus, the group of affine dilatations DIL(E) is the dis-
joint union of the translations and of the dilatations of
ratio λ 6= 0, 1. Affine dilatations can be given a purely
geometric characterization.
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2.7 Affine Geometry, a Glimpse

In this section, we state and prove three fundamental
results of affine geometry.

Roughly speaking, affine geometry is the study of proper-
ties invariant under affine bijections. We now prove one
of the oldest and most basic results of affine geometry,
the theorem of Thalés.

Lemma 2.7.1 Given any affine space E, if H1, H2, H3

are any three distinct parallel hyperplanes, and A and
B are any two lines not parallel to Hi, letting
ai = Hi∩A and bi = Hi∩B, then the following ratios
are equal:

a1a3

a1a2

=
b1b3

b1b2

= ρ.

Conversely, for any point d on the line A, if a1d

a1a2
= ρ,

then d = a3.

The diagram below illustrates the theorem of Thalés.



2.7. AFFINE GEOMETRY, A GLIMPSE 75

a3

a2

a1

b3

b2

b1

A B

H3

H2

H1

Figure 2.14: The theorem of Thalés
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Lemma 2.7.2 Given any affine space E, given any
two distinct points a, b ∈ E, for any affine dilatation
f different from the identity, if a′ = f (a), D = 〈a, b〉
is the line passing through a and b, and D′ is the line
parallel to D and passing through a′, the following are
equivalent:

(i) b′ = f (b);

(ii) If f is a translation, then b′ is the intersection of
D′ with the line parallel to 〈a, a′〉 passing through
b;

If f is a dilatation of center c, then b′ = D′ ∩ 〈c, b〉.

b
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D′

a a′
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b′

D′

a′

b

D

a

Figure 2.15: Affine Dilatations
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The first case is the parallelogram law, and the second
case follows easily from Thalés’ theorem.

We are now ready to prove two classical results of affine
geometry, Pappus’ theorem and Desargues’ theorem. Ac-
tually, these results are theorem of projective geometry,
and we are stating affine versions of these important re-
sults. There are stronger versions which are best proved
using projective geometry.

There is a converse to Pappus’ theorem, which yields a
fancier version of Pappus’ theorem, but it is easier to
prove it using projective geometry.



78 CHAPTER 2. BASICS OF AFFINE GEOMETRY

Lemma 2.7.3 Given any affine plane E, given any
two distinct lines D and D′, for any distinct points
a, b, c on D, and a′, b′, c′ on D′, if a, b, c, a′, b′, c′ are
distinct from the intersection of D and D′ (if D and
D′ intersect) and if the lines 〈a, b′〉 and 〈a′, b〉 are par-
allel, and the lines 〈b, c′〉 and 〈b′, c〉 are parallel, then
the lines 〈a, c′〉 and 〈a′, c〉 are parallel.

a

c′

b

b′

c

a′

D

D′

Figure 2.16: Pappus’ theorem (affine version)

We now prove an affine version of Desargues’ theorem.
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Lemma 2.7.4 Given any affine space E, given any
two triangles (a, b, c) and (a′, b′, c′), where a, b, c, a′, b′, c′

are all distinct, if 〈a, b〉 and 〈a′, b′〉 are parallel and
〈b, c〉 and 〈b′, c′〉 are parallel, then 〈a, c〉 and 〈a′, c′〉
are parallel iff the lines 〈a, a′〉, 〈b, b′〉, and 〈c, c′〉, are
either parallel or concurrent (i.e., intersect in a com-
mon point).

d

a

b

c

a′

b′

c′

Figure 2.17: Desargues’ theorem (affine version)

There is a fancier version of Desargues’ theorem, but it is
easier to prove it using projective geometry.
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Desargues’ theorem yields a geometric characterization of
the affine dilatations. An affine dilatation f on an affine
space E is a bijection that maps every line D to a line
f (D) parallel to D.
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2.8 Affine Hyperplanes

In section 2.3, we observed that the set L of solutions of
an equation

ax + by = c

is an affine subspace of A
2 of dimension 1, in fact a line

(provided that a and b are not both null).

It would be equally easy to show that the set P of solu-
tions of an equation

ax + by + cz = d

is an affine subspace of A
3 of dimension 2, in fact a plane

(provided that a, b, c are not all null).

More generally, the set H of solutions of an equation

λ1x1 + · · · + λmxm = µ

is an affine subspace of A
m, and if λ1, . . . , λm are not all

null, it turns out that it is a subspace of dimension m−1
called a hyperplane .
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We can interpret the equation

λ1x1 + · · · + λmxm = µ

in terms of the map f : Rm → R defined such that

f (x1, . . . , xm) = λ1x1 + · · · + λmxm − µ

for all (x1, . . . , xm) ∈ R
m.

It is immediately verified that this map is affine, and the
set H of solutions of the equation

λ1x1 + · · · + λmxm = µ

is the null set, or kernel, of the affine map f : Am → R,
in the sense that

H = f−1(0) = {x ∈ A
m | f (x) = 0},

where x = (x1, . . . , xm).

Thus, it is interesting to consider affine forms , which are
just affine maps f : E → R from an affine space to R.
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Unlike linear forms f ∗, for which Ker f ∗ is never empty
(since it always contains the vector 0), it is possible that
f−1(0) = ∅, for an affine form f .

Recall the characterization of hyperplanes in terms of lin-
ear forms.

Given a vector space E over a field K, a linear map
f : E → K is called a linear form . The set of all lin-
ear forms f : E → K is a vector space called the dual
space of E, and denoted as E∗.

Hyperplanes are precisely the Kernels of nonnull linear
forms.
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Lemma 2.8.1 Let E be a vector space. The following
properties hold:

(a) Given any nonnull linear form f ∈ E∗, its kernel
H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull)
linear form f ∈ E∗ such that H = Ker f .

(c) Given any hyperplane H in E and any (nonnull)
linear form f ∈ E∗ such that H = Ker f , for every
linear form g ∈ E∗, H = Ker g iff g = λf for some
λ 6= 0 in K.

Going back to an affine space E, given an affine map
f : E → R, we also denote f−1(0) as Ker f , and we call
it the kernel of f . Recall that an (affine) hyperplane is
an affine subspace of codimension 1.

Affine hyperplanes are precisely the Kernels of noncon-
stant affine forms.
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Lemma 2.8.2 Let E be an affine space. The follow-
ing properties hold:

(a) Given any nonconstant affine form f : E → R, its
kernel H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a nonconstant
affine form f : E → R such that H = Ker f . For
any other affine form g: E → R such that
H = Ker g, there is some λ ∈ R such that g = λf

(with λ 6= 0).

(c) Given any hyperplane H in E and any (noncon-
stant) affine form f : E → R such that H = Ker f ,
every hyperplane H ′ parallel to H is defined by a
nonconstant affine form g such that
g(a) = f (a) − λ, for all a ∈ E, for some λ ∈ R.
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2.9 Intersection of Affine Spaces

In this section, we take a closer look at the intersection
of affine subspaces.

First, we need a result of linear algebra.

Lemma 2.9.1 Given a vector space E and any two
subspaces M and N , we have the Grassmann relation:

dim(M) + dim(N) = dim(M + N) + dim (M ∩ N).

We now prove a simple lemma about the intersection of
affine subspaces.
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Lemma 2.9.2 Given any affine space E, for any two
nonempty affine subspaces M and N , the following
facts hold:

(1) M ∩ N 6= ∅ iff ab ∈
−→
M +

−→
N for some a ∈ M and

some b ∈ N .

(2) M∩N consists of a single point iff ab ∈
−→
M+

−→
N for

some a ∈ M and some b ∈ N , and
−→
M ∩

−→
N = {0}.

(3) If S is the least affine subspace containing M and

N , then
−→
S =

−→
M +

−→
N + Kab (the vector space

−→
E

is defined over the field K).

Remarks : (1) The proof of Lemma 2.9.2 shows that if

M ∩ N 6= ∅ then ab ∈
−→
M +

−→
N for all a ∈ M and all

b ∈ N .

(2) Lemma 2.9.2 (2) implies that for any two nonempty

affine subspaces M and N , if
−→
E =

−→
M ⊕

−→
N , then M ∩N

consists of a single point.
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Lemma 2.9.3 Given an affine space E and any two
nonempty affine subspaces M and N , if S is the least
affine subspace containing M and N , then the follow-
ing properties hold:

(1) If M ∩ N = ∅, then

dim(M) + dim(N) < dim(E) + dim(
−→
M +

−→
N ),

and

dim(S) = dim(M) + dim(N) + 1 − dim(
−→
M ∩

−→
N ).

(2) If M ∩ N 6= ∅, then

dim(S) = dim(M) + dim(N) − dim(M ∩ N).



Chapter 3

Properties of Convex Sets: A Glimpse

3.1 Convex Sets

Convex sets play a very important role in geometry. In
this chapter, we state some of the “classics” of convex
affine geometry: Carathéodory’s theorem, Radon’s theo-
rem, and Helly’s theorem.

These theorems share the property that they are easy to
state, but they are deep, and their proof, although rather
short, requires a lot of creativity.

Given an affine space E, recall that a subset V of E is
convex if for any two points a, b ∈ V , we have c ∈ V for
every point c = (1 − λ)a + λb, with 0 ≤ λ ≤ 1 (λ ∈ R).

89
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The notation [a, b] is often used to denote the line segment
between a and b, that is,

[a, b] = {c ∈ E | c = (1 − λ)a + λb, 0 ≤ λ ≤ 1},

and thus, a set V is convex if [a, b] ⊆ V for any two
points a, b ∈ V (a = b is allowed).

The empty set is trivially convex, every one-point set {a}
is convex, and the entire affine space E is of course convex.



3.1. CONVEX SETS 91

It is obvious that the intersection of any family (finite or
infinite) of convex sets is convex.

Then, given any (nonempty) subset S of E, there is a
smallest convex set containing S denoted as C(S) (or
conv(S)) and called the convex hull of S (namely, the
intersection of all convex sets containing S).

Lemma 3.1.1 Given an affine space 〈E,
−→
E , +〉, for

any family (ai)i∈I of points in E, the set V of convex
combinations

∑
i∈I λiai (where

∑
i∈I λi = 1 and

λi ≥ 0) is the convex hull of (ai)i∈I.

In view of lemma 3.1.1, it is obvious that any affine sub-
space of E is convex.
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Convex sets also arise in terms of hyperplanes. Given
a hyperplane H , if f : E → R is any nonconstant affine
form defining H (i.e., H = Ker f ), we can define the two
subsets

H+(f ) = {a ∈ E | f (a) ≥ 0},

H−(f ) = {a ∈ E | f (a) ≤ 0},

called (closed) half spaces associated with f .

Observe that if λ > 0, then H+(λf ) = H+(f ), but if
λ < 0, then H+(λf ) = H−(f ), and similarly for H−(λf ).

However, the set {H+(f ), H−(f )} only depends on the
hyperplane H , and the choice of a specific f defining H

amounts to the choice of one of the two half-spaces.

For this reason, we will also say that H+(f ) and H−(f )
are the (closed) half spaces associated with H .
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Clearly,

H+(f ) ∪ H−(f ) = E and H+(f ) ∩ H−(f ) = H.

It is immediately verified that H+(f ) and H−(f ) are con-
vex.

Bounded convex sets arising as the intersection of a finite
family of half-spaces associated with hyperplanes play a
major role in convex geometry and topology (they are
called convex polytopes).

It is natural to wonder whether lemma 3.1.1 can be sharp-
ened in two directions:

(1) is it possible have a fixed bound on the number of
points involved in the convex combinations?

(2) Is it necessary to consider convex combinations of all
points, or is it possible to only consider a subset with
special properties?
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The answer is yes in both cases. In case 1, assuming that
the affine space E has dimension m, Carathéodory’s the-
orem asserts that it is enough to consider convex combi-
nations of m + 1 points.

In case 2, the theorem of Krein and Milman asserts that
a convex set which is also compact is the convex hull of
its extremal points (see Berger [?] or Lang [?]).

First, we will prove Carathéodory’s theorem. The follow-
ing technical (and dull!) lemma plays a crucial role in the
proof.

Lemma 3.1.2 Given an affine space 〈E,
−→
E , +〉, let

(ai)i∈I be a family of points in E. The family (ai)i∈I

is affinely dependent iff there is a family (λi)i∈I such
that λj 6= 0 for some j ∈ I,

∑
i∈I λi = 0, and∑

i∈I λixai = 0 for every x ∈ E.
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Theorem 3.1.3 Given any affine space E of dimen-
sion m, for any (nonempty) family S = (ai)i∈L in E,
the convex hull C(S) of S is equal to the set of convex
combinations of families of m + 1 points of S.

Proof . By lemma 3.1.1,

C(S) = {
∑

i∈I

λiai | ai ∈ S,
∑

i∈I

λi = 1, λi ≥ 0,

I ⊆ L, I finite}.

We would like to prove that

C(S) = {
∑

i∈I

λiai | ai ∈ S,
∑

i∈I

λi = 1, λi ≥ 0,

I ⊆ L, |I| = m + 1}.

We proceed by contradiction. If the theorem is false, there
is some point b ∈ C(S) such that b can be expressed as
a convex combination b =

∑
i∈I λiai, where I ⊆ L is a

finite set of cardinality |I| = q with q ≥ m + 2, and b

cannot be expressed as any convex combination
b =

∑
j∈J µjaj of strictly less than q points in S

(with |J | < q).
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We shall prove that b can be written as a convex com-
bination of q − 1 of the ai. Since E has dimension m

and q ≥ m + 2, the points a1, . . . , aq must be affinely
dependent, and we use lemma 3.1.2.

If S is a finite (of infinite) set of points in the affine plane
A

2, theorem 3.1.3 confirms our intuition that C(S) is the
union of triangles (including interior points) whose ver-
tices belong to S.

Similarly, the convex hull of a set S of points in A
3 is

the union of tetrahedra (including interior points) whose
vertices belong to S.

We get the feeling that triangulations play a crucial role,
which is of course true!

We conlude this short section by stating two other classics
of convex geometry. We begin with Radon’s theorem .
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Theorem 3.1.4 Given any affine space E of dimen-
sion m, for every subset X of E, if X has at least
m + 2 points, then there is a partition of X into two
nonempty disjoint subsets X1 and X2 such that the
convex hulls of X1 and X2 have a nonempty intersec-
tion.

Finally, we state a version of Helly’s theorem .

Theorem 3.1.5 Given any affine space E of dimen-
sion m, for every family {K1, . . . , Kn} of n convex
subsets of E, if n ≥ m+2 and the intersection

⋂
i∈I Ki

of any m + 1 of the Ki is nonempty (where I ⊆
{1, . . . , n}, |I| = m + 1), then

⋂n
i=1 Ki is nonempty.

An amusing corollary of Helly’s theorem is the following
result. Consider n ≥ 4 parallel line segments in the affine
plane A

2. If every three of these line segments meet a
line, then all of these line segments meet a common line.


