
Fall, 2003 CIS 610

Advanced geometric methods

Homework 2

October 27, 2003; Due November 11, beginning of class

You may work in groups of 2 or 3. Please, write up your solutions as clearly and concisely
as possible. Be rigorous! You will have to present your solutions of the problems during a
special problem session.

“A problems” are for practice only, and should not be turned in.

Problem A1. Let (e1, . . . , en) be an orthonormal basis for E. If X and Y are arbitrary
n×n matrices, denoting as usual the jth column of X by Xj, and similarly for Y , show that

X>Y = (Xi · Yj)1≤i,j≤n.

Use this to prove that
A>A = AA> = In

iff the column vectors (A1, . . . , An) form an orthonormal basis. Show that the conditions
AA> = In, A>A = In, and A−1 = A> are equivalent.

Problem A2. Compute the real Fourier coefficients of the function id(x) = x over [−π, π]
and prove that

x = 2

(
sin x

1
− sin 2x

2
+

sin 3x

3
− · · ·

)
.

What is the value of the Fourier series at ±π? What is the value of the Fourier near ±π?
Do you find this surprising?

Problem A3. Prove Lemma 6.2.2 from my book.

“B problems” must be turned in.

Problem B1 (30 pts). (1) If an upper triangular n× n matrix R is invertible, prove that
its inverse is also upper triangular.

(2) If an upper triangular matrix is orthogonal, prove that it must be a diagonal matrix.

If A is an invertible n× n matrix and if A = Q1R1 = Q2R2, where R1 and R2 are upper
triangular with positive diagonal entries and Q1, Q2 are orthogonal, prove that Q1 = Q2 and
R1 = R2.
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Problem B2 (30 pts). Consider the Euclidean space En, and let O = (0, . . . , 0). Given
any x ∈ En, x 6= O, let H(x) be the affine hyperplane perpendicular to Ox and passing
through the point x′ on the line Ox and such that Ox·Ox′ =1. Equivalently, H(x) is the
affine hyperplane defined by

H(x) = {y ∈ En | x · y = 1}.

We call H(x) the polar or dual of x. Conversely, given any affine hyperplane H not passing
through O, there is clearly a unique x ∈ En so that H(x) = H, and we call x the pole or
dual of H.

Given a subset A of En, let

A∗ = {y ∈ En | x · y ≤ 1, ∀x ∈ A}.

We call A∗ the polar or reciprocal of A.

(a) Check that A∗ is the intersection of all the closed half-spaces containing O determined
by the polar hyperplanes of points of A. Thus, conclude that A∗ is convex.

Let Bn(r) be the ball of radius r > 0 and center O, i.e.,

Bn(r) = {x ∈ En | ‖x‖ ≤ r}.

Show that Bn(r)∗ = Bn(1/r).

Prove that the dual C∗ of the cube C = [−1, 1]n is the convex hull of the 2n points
{ei,−ei | 1 ≤ i ≤ n}, where ei = (0, . . . , 0, 1, 0, . . . , 0), the ith vector in the standard basis.
The dual of a cube is called a cross-polytope. Check that the cube C has 2n vertices and 2n
faces, whereas its dual C∗ has 2n vertices and 2n faces. Draw C∗ for n = 3.

(b) A convex polyhedron or convex body P is a bounded subset of En with nonempty
interior obtained as the intersection of a finite number of closed half–spaces. We will prove
in class that a convex polyhedron P is the convex hull of a finite set of points with nonempty
interior and conversely. We will also prove that the dual of a convex polyhedron containing
O is a convex polyhedron. Observe that the duality exchanges vertices of P and the faces of
P ∗.

What is the dual of an n-simplex?

(c) Consider in E3 the polyhedron I defined as follows. If τ = (
√

5 + 1)/2, then the
vertices of I are the twelve points

(0, ±τ, ±1), (±1, 0, ±τ), (±τ, ±1, 0).

This polyhedron is called an icosahedron. Check that the icosahedron has 20 faces. Draw
an icosahedron (or better, make a cardboard model).
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Prove that the dual D of the icosahedron is a convex polyhedron whose twenty vertices
are

(±1, ±1, ±1), (0, ±1/τ, ±τ), (±τ, 0, ±1/τ), (±1/τ, ±τ, 0).

This polyhedronD is called a dodecahedron. Observe that it is “built up” on the cube [−1, 1]3.
Can you explain how? Check that the dodecahedron has 12 faces. Draw a dodecahedron (or
better, make a cardboard model).

Problem B3 (50 pts). (1) Review the modified Gram–Schmidt method. Recall that to
compute Q′

k+1, instead of projecting Ak+1 onto Q1, . . . , Qk in a single step, it is better to
perform k projections. We compute Q1

k+1, Q
2
k+1, . . ., Q

k
k+1 as follows:

Q1
k+1 = Ak+1 − (Ak+1 ·Q1)Q1,

Qi+1
k+1 = Qi

k+1 − (Qi
k+1 ·Qi+1)Qi+1,

where 1 ≤ i ≤ k − 1.
Prove that Q′

k+1 = Qk
k+1.

(2) Write two computer programs to compute the QR-decomposition of an invertible
matrix. The first one should use the standard Gram–Schmidt method, and the second one
the modified Gram–Schmidt method. Run both on a number of matrices, up to dimension at
least 10. Do you observe any difference in their performance in terms of numerical stability?

Run your programs on the Hilbert matrix Hn = (1/(i+ j − 1))1≤i,j≤n. What happens?

Extra Credit. (20 points) Write a program to solve linear systems of equations Ax = b,
using your version of the QR-decomposition program, where A is an n× n matrix.

Problem B4 (30 pts). Let ϕ:E × E → R be a bilinear form on a real vector space E of
finite dimension n. Given any basis (e1, . . . , en) of E, let A = (αi j) be the matrix defined
such that

αi j = ϕ(ei, ej),

1 ≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . , en).

(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (e1, . . . , en), prove that

ϕ(x, y) = X>AY.

(b) Recall that A is a symmetric matrix if A = A>. Prove that ϕ is symmetric if A is a
symmetric matrix.

(c) If (f1, . . . , fn) is another basis of E and P is the change of basis matrix from (e1, . . . , en)
to (f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis (f1, . . . , fn) is

P>AP.
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The common rank of all matrices representing ϕ is called the rank of ϕ.

Problem B5 (80 pts). Let ϕ:E × E → R be a symmetric bilinear form on a real vector
space E of finite dimension n. Two vectors x and y are said to be conjugate w.r.t. ϕ if
ϕ(x, y) = 0. The main purpose of this problem is to prove that there is a basis of vectors
that are pairwise conjugate w.r.t. ϕ.

(a) Prove that if ϕ(x, x) = 0 for all x ∈ E, then ϕ is identically null on E.

Otherwise, we can assume that there is some vector x ∈ E such that ϕ(x, x) 6= 0. Use
induction to prove that there is a basis of vectors that are pairwise conjugate w.r.t. ϕ.

For the induction step, proceed as follows. Let (e1, e2, . . . , en) be a basis of E, with
ϕ(e1, e1) 6= 0. Prove that there are scalars λ2, . . . , λn such that each of the vectors

vi = ei + λie1

is conjugate to e1 w.r.t. ϕ, where 2 ≤ i ≤ n, and that (e1, v2, . . . , vn) is a basis.

(b) Let (e1, . . . , en) be a basis of vectors that are pairwise conjugate w.r.t. ϕ, and assume
that they are ordered such that

ϕ(ei, ei) =

{
θi 6= 0 if 1 ≤ i ≤ r,
0 if r + 1 ≤ i ≤ n,

where r is the rank of ϕ. Show that the matrix of ϕ w.r.t. (e1, . . . , en) is a diagonal matrix,
and that

ϕ(x, y) =
r∑

i=1

θixiyi,

where x =
∑n

i=1 xiei and y =
∑n

i=1 yiei.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

P>AP = D,

where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ), such that
ϕ(ui, ui) > 0 for exactly p vectors of every basis (u1, . . . , un) of vectors that are pairwise
conjugate w.r.t. ϕ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1, . . . , un), for any x ∈ E, we have

ϕ(x, x) = α1x
2
1 + · · ·+ αpx

2
p − αp+1x

2
p+1 − · · · − αrx

2
r,

where x =
∑n

i=1 xiui, and that in the basis (v1, . . . , vn), for any x ∈ E, we have

ϕ(x, x) = β1y
2
1 + · · ·+ βqy

2
q − βq+1y

2
q+1 − · · · − βry

2
r ,
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where x =
∑n

i=1 yivi, with αi > 0, βi > 0, 1 ≤ i ≤ r.

Assume that p > q and derive a contradiction. First, consider x in the subspace F
spanned by

(u1, . . . , up, ur+1, . . . , un),

and observe that ϕ(x, x) ≥ 0 if x 6= 0. Next, consider x in the subspace G spanned by

(vq+1, . . . , vr),

and observe that ϕ(x, x) < 0 if x 6= 0. Prove that F ∩ G is nontrivial (i.e., contains some
nonnull vector), and derive a contradiction. This implies that p ≤ q. Finish the proof.

The pair (p, r − p) is called the signature of ϕ.

(d) A symmetric bilinear form ϕ is definite if for every x ∈ E, if ϕ(x, x) = 0, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n, 0) or (0, n). In
other words, a symmetric definite bilinear form has rank n and is either positive or negative.

(e) The kernel of a symmetric bilinear form ϕ is the subspace consisting of the vectors that
are conjugate to all vectors in E. We say that a symmetric bilinear form ϕ is nondegenerate
if its kernel is trivial (i.e., equal to {0}).

Prove that a symmetric bilinear form ϕ is nondegenerate iff its rank is n, the dimension
of E. Is a definite symmetric bilinear form ϕ nondegenerate? What about the converse?

Prove that if ϕ is nondegenerate, then there is a basis of vectors that are pairwise conju-
gate w.r.t. ϕ and such that ϕ is represented by the matrix(

Ip 0
0 −Iq

)
where (p, q) is the signature of ϕ.

(f) Given a nondegenerate symmetric bilinear form ϕ on E, prove that for every linear
map f :E → E, there is a unique linear map f ∗:E → E such that

ϕ(f(u), v) = ϕ(u, f∗(v)),

for all u, v ∈ E. The map f ∗ is called the adjoint of f (w.r.t. to ϕ). Given any basis
(u1, . . . , un), if Ω is the matrix representing ϕ and A is the matrix representing f , prove that
f ∗ is represented by Ω−1A>Ω.

Prove that Lemma 6.2.4 of my book also holds, i.e., the map [:E → E∗ is a canonical
isomorphism.

A linear map f :E → E is an isometry w.r.t. ϕ if

ϕ(f(x), f(y)) = ϕ(x, y)
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for all x, y ∈ E. Prove that a linear map f is an isometry w.r.t. ϕ iff

f ∗ ◦ f = f ◦ f ∗ = id.

Prove that the set of isometries w.r.t. ϕ is a group. This group is denoted by O(ϕ), and its
subgroup consisting of isometries having determinant +1 by SO(ϕ). Given any basis of E,
if Ω is the matrix representing ϕ and A is the matrix representing f , prove that f ∈ O(ϕ)
iff

A>ΩA = Ω.

Given another nondegenerate symmetric bilinear form ψ on E, we say that ϕ and ψ are
equivalent if there is a bijective linear map h:E → E such that

ψ(x, y) = ϕ(h(x), h(y)),

for all x, y ∈ E. Prove that the groups of isometries O(ϕ) and O(ψ) are isomomorphic (use
the map f 7→ h ◦ f ◦ h−1 from O(ψ) to O(ϕ)).

If ϕ is a nondegenerate symmetric bilinear form of signature (p, q), prove that the group
O(ϕ) is isomorphic to the group of n× n matrices A such that

A>
(
Ip 0
0 −Iq

)
A =

(
Ip 0
0 −Iq

)
.

Remark: In view of question (f), the groups O(ϕ) and SO(ϕ) are also denoted by O(p, q)
and SO(p, q) when ϕ has signature (p, q). They are Lie groups. In particular, the group
SO(3, 1), known as the Lorentz group, plays an important role in the theory of special
relativity.

Problem B6 (50 pts). (a) Let C be a circle of radius R and center O, and let P be any
point in the Euclidean plane E2. Consider the lines ∆ through P that intersect the circle C,
generally in two points A and B. Prove that for all such lines,

PA ·PB = ‖PO‖2 −R2.

Hint . If P is not on C, let B′ be the antipodal of B (i.e., OB′ = −OB). Then AB ·AB′ = 0
and

PA ·PB = PB′ ·PB = (PO−OB) · (PO + OB) = ‖PO‖2 −R2.

The quantity ‖PO‖2−R2 is called the power of P w.r.t. C, and it is denoted by P(P,C).
Show that if ∆ is tangent to C, then A = B and

‖PA‖2 = ‖PO‖2 −R2.

Show that P is inside C iff P(P,C) < 0, on C iff P(P,C) = 0, outside C if P(P,C) > 0.
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If the equation of C is
x2 + y2 − 2ax− 2by + c = 0,

prove that the power of P = (x, y) w.r.t. C is given by

P(P,C) = x2 + y2 − 2ax− 2by + c.

(b) Given two nonconcentric circles C and C ′, show that the set of points having equal
power w.r.t. C and C ′ is a line orthogonal to the line through the centers of C and C ′. If
the equations of C and C ′ are

x2 + y2 − 2ax− 2by + c = 0 and x2 + y2 − 2a′x− 2b′y + c′ = 0,

show that the equation of this line is

2(a− a′)x+ 2(b− b′)y + c′ − c = 0.

This line is called the radical axis of C and C ′.
(c) Given three distinct nonconcentric circles C, C ′, and C ′′, prove that either the three

pairwise radical axes of these circles are parallel or that they intersect in a single point ω
that has equal power w.r.t. C, C ′, and C ′′. In the first case, the centers of C, C ′, and C ′′

are collinear. In the second case, if the power of ω is positive, prove that ω is the center of
a circle Γ orthogonal to C, C ′, and C ′′, and if the power of ω is negative, ω is inside C, C ′,
and C ′′.

(d) Given any k ∈ R with k 6= 0 and any point a, recall that an inversion of pole a and
power k is a map h: (En − {a}) → En defined such that for every x ∈ En − {a},

h(x) = a+ k
ax

‖ax‖2
.

For example, when n = 2, chosing any orthonormal frame with origin a, h is defined by the
map

(x, y) 7→
(

kx

x2 + y2
,

ky

x2 + y2

)
.

When the centers of C, C ′ and C ′′ are not collinear and the power of ω is positive, prove
that by a suitable inversion, C, C ′ and C ′′ are mapped to three circles whose centers are
collinear.

Prove that if three distinct nonconcentric circles C, C ′, and C ′′ have collinear centers,
then there are at most eight circles simultaneously tangent to C, C ′, and C ′′, and at most
two for those exterior to C, C ′, and C ′′.

(e) Prove that an inversion in E3 maps a sphere to a sphere or to a plane. Prove that
inversions preserve tangency and orthogonality of planes and spheres.

TOTAL: 270 points.
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