Fall, 2003 CIS 610

Advanced geometric methods

Homework 2

October 27, 2003; Due November 11, beginning of class
You may work in groups of 2 or 3 . Please, write up your solutions as clearly and concisely as possible. Be rigorous! You will have to present your solutions of the problems during a special problem session.
"A problems" are for practice only, and should not be turned in.
Problem A1. Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis for E. If X and Y are arbitrary $n \times n$ matrices, denoting as usual the j th column of X by X_{j}, and similarly for Y, show that

$$
X^{\top} Y=\left(X_{i} \cdot Y_{j}\right)_{1 \leq i, j \leq n}
$$

Use this to prove that

$$
A^{\top} A=A A^{\top}=I_{n}
$$

iff the column vectors $\left(A_{1}, \ldots, A_{n}\right)$ form an orthonormal basis. Show that the conditions $A A^{\top}=I_{n}, A^{\top} A=I_{n}$, and $A^{-1}=A^{\top}$ are equivalent.

Problem A2. Compute the real Fourier coefficients of the function $i d(x)=x$ over $[-\pi, \pi]$ and prove that

$$
x=2\left(\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\cdots\right) .
$$

What is the value of the Fourier series at $\pm \pi$? What is the value of the Fourier near $\pm \pi$? Do you find this surprising?

Problem A3. Prove Lemma 6.2.2 from my book.
"B problems" must be turned in.
Problem B1 (30 pts). (1) If an upper triangular $n \times n$ matrix R is invertible, prove that its inverse is also upper triangular.
(2) If an upper triangular matrix is orthogonal, prove that it must be a diagonal matrix.

If A is an invertible $n \times n$ matrix and if $A=Q_{1} R_{1}=Q_{2} R_{2}$, where R_{1} and R_{2} are upper triangular with positive diagonal entries and Q_{1}, Q_{2} are orthogonal, prove that $Q_{1}=Q_{2}$ and $R_{1}=R_{2}$.

Problem B2 (30 pts). Consider the Euclidean space \mathbb{E}^{n}, and let $O=(0, \ldots, 0)$. Given any $x \in \mathbb{E}^{n}, x \neq O$, let $H(x)$ be the affine hyperplane perpendicular to $O x$ and passing through the point x^{\prime} on the line $O x$ and such that $\mathbf{O x} \cdot \mathbf{O x}^{\prime}=1$. Equivalently, $H(x)$ is the affine hyperplane defined by

$$
H(x)=\left\{y \in \mathbb{E}^{n} \mid x \cdot y=1\right\} .
$$

We call $H(x)$ the polar or dual of x. Conversely, given any affine hyperplane H not passing through O, there is clearly a unique $x \in \mathbb{E}^{n}$ so that $H(x)=H$, and we call x the pole or dual of H.

Given a subset A of \mathbb{E}^{n}, let

$$
A^{*}=\left\{y \in \mathbb{E}^{n} \mid x \cdot y \leq 1, \forall x \in A\right\}
$$

We call A^{*} the polar or reciprocal of A.
(a) Check that A^{*} is the intersection of all the closed half-spaces containing O determined by the polar hyperplanes of points of A. Thus, conclude that A^{*} is convex.

Let $B^{n}(r)$ be the ball of radius $r>0$ and center O, i.e.,

$$
B^{n}(r)=\left\{x \in \mathbb{E}^{n} \mid\|x\| \leq r\right\}
$$

Show that $B^{n}(r)^{*}=B^{n}(1 / r)$.
Prove that the dual C^{*} of the cube $C=[-1,1]^{n}$ is the convex hull of the $2 n$ points $\left\{e_{i},-e_{i} \mid 1 \leq i \leq n\right\}$, where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, the $i t h$ vector in the standard basis. The dual of a cube is called a cross-polytope. Check that the cube C has 2^{n} vertices and $2 n$ faces, whereas its dual C^{*} has $2 n$ vertices and 2^{n} faces. Draw C^{*} for $n=3$.
(b) A convex polyhedron or convex body P is a bounded subset of \mathbb{E}^{n} with nonempty interior obtained as the intersection of a finite number of closed half-spaces. We will prove in class that a convex polyhedron P is the convex hull of a finite set of points with nonempty interior and conversely. We will also prove that the dual of a convex polyhedron containing O is a convex polyhedron. Observe that the duality exchanges vertices of P and the faces of P^{*}.

What is the dual of an n-simplex?
(c) Consider in \mathbb{E}^{3} the polyhedron I defined as follows. If $\tau=(\sqrt{5}+1) / 2$, then the vertices of I are the twelve points

$$
(0, \pm \tau, \pm 1), \quad(\pm 1,0, \pm \tau), \quad(\pm \tau, \pm 1,0)
$$

This polyhedron is called an icosahedron. Check that the icosahedron has 20 faces. Draw an icosahedron (or better, make a cardboard model).

Prove that the dual D of the icosahedron is a convex polyhedron whose twenty vertices are

$$
(\pm 1, \pm 1, \pm 1), \quad(0, \pm 1 / \tau, \pm \tau), \quad(\pm \tau, 0, \pm 1 / \tau), \quad(\pm 1 / \tau, \pm \tau, 0)
$$

This polyhedron D is called a dodecahedron. Observe that it is "built up" on the cube $[-1,1]^{3}$. Can you explain how? Check that the dodecahedron has 12 faces. Draw a dodecahedron (or better, make a cardboard model).

Problem B3 (50 pts). (1) Review the modified Gram-Schmidt method. Recall that to compute Q_{k+1}^{\prime}, instead of projecting A_{k+1} onto Q_{1}, \ldots, Q_{k} in a single step, it is better to perform k projections. We compute $Q_{k+1}^{1}, Q_{k+1}^{2}, \ldots, Q_{k+1}^{k}$ as follows:

$$
\begin{aligned}
Q_{k+1}^{1} & =A_{k+1}-\left(A_{k+1} \cdot Q_{1}\right) Q_{1}, \\
Q_{k+1}^{i+1} & =Q_{k+1}^{i}-\left(Q_{k+1}^{i} \cdot Q_{i+1}\right) Q_{i+1},
\end{aligned}
$$

where $1 \leq i \leq k-1$.
Prove that $Q_{k+1}^{\prime}=Q_{k+1}^{k}$.
(2) Write two computer programs to compute the $Q R$-decomposition of an invertible matrix. The first one should use the standard Gram-Schmidt method, and the second one the modified Gram-Schmidt method. Run both on a number of matrices, up to dimension at least 10. Do you observe any difference in their performance in terms of numerical stability?

Run your programs on the Hilbert matrix $H_{n}=(1 /(i+j-1))_{1 \leq i, j \leq n}$. What happens?
Extra Credit. (20 points) Write a program to solve linear systems of equations $A x=b$, using your version of the $Q R$-decomposition program, where A is an $n \times n$ matrix.

Problem B4 (30 pts). Let $\varphi: E \times E \rightarrow \mathbb{R}$ be a bilinear form on a real vector space E of finite dimension n. Given any basis $\left(e_{1}, \ldots, e_{n}\right)$ of E, let $A=\left(\alpha_{i j}\right)$ be the matrix defined such that

$$
\alpha_{i j}=\varphi\left(e_{i}, e_{j}\right),
$$

$1 \leq i, j \leq n$. We call A the matrix of φ w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$.
(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of x and y w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$, prove that

$$
\varphi(x, y)=X^{\top} A Y
$$

(b) Recall that A is a symmetric matrix if $A=A^{\top}$. Prove that φ is symmetric if A is a symmetric matrix.
(c) If $\left(f_{1}, \ldots, f_{n}\right)$ is another basis of E and P is the change of basis matrix from $\left(e_{1}, \ldots, e_{n}\right)$ to $\left(f_{1}, \ldots, f_{n}\right)$, prove that the matrix of φ w.r.t. the basis $\left(f_{1}, \ldots, f_{n}\right)$ is

$$
P^{\top} A P
$$

The common rank of all matrices representing φ is called the rank of φ.
Problem B5 (80 pts). Let $\varphi: E \times E \rightarrow \mathbb{R}$ be a symmetric bilinear form on a real vector space E of finite dimension n. Two vectors x and y are said to be conjugate w.r.t. φ if $\varphi(x, y)=0$. The main purpose of this problem is to prove that there is a basis of vectors that are pairwise conjugate w.r.t. φ.
(a) Prove that if $\varphi(x, x)=0$ for all $x \in E$, then φ is identically null on E.

Otherwise, we can assume that there is some vector $x \in E$ such that $\varphi(x, x) \neq 0$. Use induction to prove that there is a basis of vectors that are pairwise conjugate w.r.t. φ.

For the induction step, proceed as follows. Let $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be a basis of E, with $\varphi\left(e_{1}, e_{1}\right) \neq 0$. Prove that there are scalars $\lambda_{2}, \ldots, \lambda_{n}$ such that each of the vectors

$$
v_{i}=e_{i}+\lambda_{i} e_{1}
$$

is conjugate to e_{1} w.r.t. φ, where $2 \leq i \leq n$, and that $\left(e_{1}, v_{2}, \ldots, v_{n}\right)$ is a basis.
(b) Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of vectors that are pairwise conjugate w.r.t. φ, and assume that they are ordered such that

$$
\varphi\left(e_{i}, e_{i}\right)= \begin{cases}\theta_{i} \neq 0 & \text { if } 1 \leq i \leq r \\ 0 & \text { if } r+1 \leq i \leq n,\end{cases}
$$

where r is the rank of φ. Show that the matrix of φ w.r.t. $\left(e_{1}, \ldots, e_{n}\right)$ is a diagonal matrix, and that

$$
\varphi(x, y)=\sum_{i=1}^{r} \theta_{i} x_{i} y_{i}
$$

where $x=\sum_{i=1}^{n} x_{i} e_{i}$ and $y=\sum_{i=1}^{n} y_{i} e_{i}$.
Prove that for every symmetric matrix A, there is an invertible matrix P such that

$$
P^{\top} A P=D,
$$

where D is a diagonal matrix.
(c) Prove that there is an integer $p, 0 \leq p \leq r$ (where r is the rank of φ), such that $\varphi\left(u_{i}, u_{i}\right)>0$ for exactly p vectors of every basis $\left(u_{1}, \ldots, u_{n}\right)$ of vectors that are pairwise conjugate w.r.t. φ (Sylvester's inertia theorem).

Proceed as follows. Assume that in the basis $\left(u_{1}, \ldots, u_{n}\right)$, for any $x \in E$, we have

$$
\varphi(x, x)=\alpha_{1} x_{1}^{2}+\cdots+\alpha_{p} x_{p}^{2}-\alpha_{p+1} x_{p+1}^{2}-\cdots-\alpha_{r} x_{r}^{2},
$$

where $x=\sum_{i=1}^{n} x_{i} u_{i}$, and that in the basis $\left(v_{1}, \ldots, v_{n}\right)$, for any $x \in E$, we have

$$
\varphi(x, x)=\beta_{1} y_{1}^{2}+\cdots+\beta_{q} y_{q}^{2}-\beta_{q+1} y_{q+1}^{2}-\cdots-\beta_{r} y_{r}^{2},
$$

where $x=\sum_{i=1}^{n} y_{i} v_{i}$, with $\alpha_{i}>0, \beta_{i}>0,1 \leq i \leq r$.
Assume that $p>q$ and derive a contradiction. First, consider x in the subspace F spanned by

$$
\left(u_{1}, \ldots, u_{p}, u_{r+1}, \ldots, u_{n}\right),
$$

and observe that $\varphi(x, x) \geq 0$ if $x \neq 0$. Next, consider x in the subspace G spanned by

$$
\left(v_{q+1}, \ldots, v_{r}\right),
$$

and observe that $\varphi(x, x)<0$ if $x \neq 0$. Prove that $F \cap G$ is nontrivial (i.e., contains some nonnull vector), and derive a contradiction. This implies that $p \leq q$. Finish the proof.

The pair $(p, r-p)$ is called the signature of φ.
(d) A symmetric bilinear form φ is definite if for every $x \in E$, if $\varphi(x, x)=0$, then $x=0$.

Prove that a symmetric bilinear form is definite iff its signature is either $(n, 0)$ or $(0, n)$. In other words, a symmetric definite bilinear form has rank n and is either positive or negative.
(e) The kernel of a symmetric bilinear form φ is the subspace consisting of the vectors that are conjugate to all vectors in E. We say that a symmetric bilinear form φ is nondegenerate if its kernel is trivial (i.e., equal to $\{0\}$).

Prove that a symmetric bilinear form φ is nondegenerate iff its rank is n, the dimension of E. Is a definite symmetric bilinear form φ nondegenerate? What about the converse?

Prove that if φ is nondegenerate, then there is a basis of vectors that are pairwise conjugate w.r.t. φ and such that φ is represented by the matrix

$$
\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right)
$$

where (p, q) is the signature of φ.
(f) Given a nondegenerate symmetric bilinear form φ on E, prove that for every linear map $f: E \rightarrow E$, there is a unique linear map $f^{*}: E \rightarrow E$ such that

$$
\varphi(f(u), v)=\varphi\left(u, f^{*}(v)\right)
$$

for all $u, v \in E$. The map f^{*} is called the adjoint of f (w.r.t. to φ). Given any basis $\left(u_{1}, \ldots, u_{n}\right)$, if Ω is the matrix representing φ and A is the matrix representing f, prove that f^{*} is represented by $\Omega^{-1} A^{\top} \Omega$.

Prove that Lemma 6.2 .4 of my book also holds, i.e., the map $b: E \rightarrow E^{*}$ is a canonical isomorphism.

A linear map $f: E \rightarrow E$ is an isometry w.r.t. φ if

$$
\varphi(f(x), f(y))=\varphi(x, y)
$$

for all $x, y \in E$. Prove that a linear map f is an isometry w.r.t. φ iff

$$
f^{*} \circ f=f \circ f^{*}=\mathrm{id} .
$$

Prove that the set of isometries w.r.t. φ is a group. This group is denoted by $\mathbf{O}(\varphi)$, and its subgroup consisting of isometries having determinant +1 by $\mathbf{S O}(\varphi)$. Given any basis of E, if Ω is the matrix representing φ and A is the matrix representing f, prove that $f \in \mathbf{O}(\varphi)$ iff

$$
A^{\top} \Omega A=\Omega
$$

Given another nondegenerate symmetric bilinear form ψ on E, we say that φ and ψ are equivalent if there is a bijective linear map $h: E \rightarrow E$ such that

$$
\psi(x, y)=\varphi(h(x), h(y))
$$

for all $x, y \in E$. Prove that the groups of isometries $\mathbf{O}(\varphi)$ and $\mathbf{O}(\psi)$ are isomomorphic (use the map $f \mapsto h \circ f \circ h^{-1}$ from $\mathbf{O}(\psi)$ to $\left.\mathbf{O}(\varphi)\right)$.

If φ is a nondegenerate symmetric bilinear form of signature (p, q), prove that the group $\mathbf{O}(\varphi)$ is isomorphic to the group of $n \times n$ matrices A such that

$$
A^{\top}\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right) A=\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right) .
$$

Remark: In view of question (f), the groups $\mathbf{O}(\varphi)$ and $\mathbf{S O}(\varphi)$ are also denoted by $\mathbf{O}(p, q)$ and $\mathbf{S O}(p, q)$ when φ has signature (p, q). They are Lie groups. In particular, the group $\mathbf{S O}(3,1)$, known as the Lorentz group, plays an important role in the theory of special relativity.

Problem B6 (50 pts). (a) Let C be a circle of radius R and center O, and let P be any point in the Euclidean plane \mathbb{E}^{2}. Consider the lines Δ through P that intersect the circle C, generally in two points A and B. Prove that for all such lines,

$$
\mathbf{P A} \cdot \mathbf{P B}=\|\mathbf{P O}\|^{2}-R^{2} .
$$

Hint. If P is not on C, let B^{\prime} be the antipodal of B (i.e., $\mathbf{O B}^{\prime}=-\mathbf{O B}$). Then $\mathbf{A B} \cdot \mathbf{A B}^{\prime}=0$ and

$$
\mathrm{PA} \cdot \mathbf{P B}=\mathrm{PB}^{\prime} \cdot \mathbf{P B}=(\mathrm{PO}-\mathrm{OB}) \cdot(\mathrm{PO}+\mathrm{OB})=\|\mathrm{PO}\|^{2}-R^{2} .
$$

The quantity $\|\mathbf{P O}\|^{2}-R^{2}$ is called the power of P w.r.t. C, and it is denoted by $\mathcal{P}(P, C)$. Show that if Δ is tangent to C, then $A=B$ and

$$
\|\mathbf{P A}\|^{2}=\|\mathbf{P O}\|^{2}-R^{2}
$$

Show that P is inside C iff $\mathcal{P}(P, C)<0$, on C iff $\mathcal{P}(P, C)=0$, outside C if $\mathcal{P}(P, C)>0$.

If the equation of C is

$$
x^{2}+y^{2}-2 a x-2 b y+c=0,
$$

prove that the power of $P=(x, y)$ w.r.t. C is given by

$$
\mathcal{P}(P, C)=x^{2}+y^{2}-2 a x-2 b y+c .
$$

(b) Given two nonconcentric circles C and C^{\prime}, show that the set of points having equal power w.r.t. C and C^{\prime} is a line orthogonal to the line through the centers of C and C^{\prime}. If the equations of C and C^{\prime} are

$$
x^{2}+y^{2}-2 a x-2 b y+c=0 \quad \text { and } \quad x^{2}+y^{2}-2 a^{\prime} x-2 b^{\prime} y+c^{\prime}=0
$$

show that the equation of this line is

$$
2\left(a-a^{\prime}\right) x+2\left(b-b^{\prime}\right) y+c^{\prime}-c=0 .
$$

This line is called the radical axis of C and C^{\prime}.
(c) Given three distinct nonconcentric circles C, C^{\prime}, and $C^{\prime \prime}$, prove that either the three pairwise radical axes of these circles are parallel or that they intersect in a single point ω that has equal power w.r.t. C, C^{\prime}, and $C^{\prime \prime}$. In the first case, the centers of C, C^{\prime}, and $C^{\prime \prime}$ are collinear. In the second case, if the power of ω is positive, prove that ω is the center of a circle Γ orthogonal to C, C^{\prime}, and $C^{\prime \prime}$, and if the power of ω is negative, ω is inside C, C^{\prime}, and $C^{\prime \prime}$.
(d) Given any $k \in \mathbb{R}$ with $k \neq 0$ and any point a, recall that an inversion of pole a and power k is a map $h:\left(\mathbb{E}^{n}-\{a\}\right) \rightarrow \mathbb{E}^{n}$ defined such that for every $x \in \mathbb{E}^{n}-\{a\}$,

$$
h(x)=a+k \frac{\mathbf{a x}}{\|\mathbf{a x}\|^{2}}
$$

For example, when $n=2$, chosing any orthonormal frame with origin a, h is defined by the map

$$
(x, y) \mapsto\left(\frac{k x}{x^{2}+y^{2}}, \frac{k y}{x^{2}+y^{2}}\right)
$$

When the centers of C, C^{\prime} and $C^{\prime \prime}$ are not collinear and the power of ω is positive, prove that by a suitable inversion, C, C^{\prime} and $C^{\prime \prime}$ are mapped to three circles whose centers are collinear.

Prove that if three distinct nonconcentric circles C, C^{\prime}, and $C^{\prime \prime}$ have collinear centers, then there are at most eight circles simultaneously tangent to C, C^{\prime}, and $C^{\prime \prime}$, and at most two for those exterior to C, C^{\prime}, and $C^{\prime \prime}$.
(e) Prove that an inversion in \mathbb{E}^{3} maps a sphere to a sphere or to a plane. Prove that inversions preserve tangency and orthogonality of planes and spheres.

TOTAL: 270 points.

