Edge Detection
and Multiple Scales
Edge detection
Smoothing an edge with a Gaussian
... and taking derivative and magnitude maximum
Ridge (or Box) Detection
Build a system that detects edges and features independent from scale (size)

Let us look at an “unconventional edge”: \[
\cos \omega_0 x \rightarrow g'_\sigma(x)
\]
Build a system that detects edges and features independent from scale (size)
Response is maximum when filter scale σ matches incoming scale (ω_0).
Look at edge detection as template matching

Which size of “edge template” matches the original edge?
Edge detection output for different σ’s:

As σ increases the peaks at the edges weaken!!

$\omega_0 e^{-\omega_0^2 \sigma^2 / 2}$
Why we need a scale normalization of the filter!

Assume a scaled version of the original signal (twice as wide for $s=2$), then calculate the convolution with Gaussian:

$$I'(x) = I\left(\frac{x}{s}\right)$$

$$(I' \star g_{s\sigma})(x) = (I \star g_{\sigma})\left(\frac{x}{s}\right)$$

Scaling by s and convolving with scaled Gaussian is the same as applying a Gaussian and then scaling by s!!!
But this is not true for the 1st derivative!

\[(I' \star g'_{s\sigma})(x) \neq \frac{1}{s} (I \star g'_{\sigma})\left(\frac{x}{s}\right)\]
No matter what the scale of the feature, edge detector (1st Gaussian derivative) response should be the same when the filter matches the feature scale.
Can we find (select) the intrinsic image scale?

Yes, by taking the maximum over scale!