Instructions. Submit your report and complete code to canvas. Note that this is an individual assignment.

This project aims to reconstruct a 3D point cloud and camera poses of 6 images as shown in Figure 1. Your task is to implement the full pipeline of structure from motion including two view reconstruction, triangulation, PnP, and bundle adjustment. For nonlinear optimization parts, you are free to choose an optimizer such as built-in functions in MATLAB or Sparse Bundle Adjustment package (http://users.ics.forth.gr/~lourakis/sba/). Input images are taken by a GoPro Hero 3 camera (Black Edition) and fisheye lens distortion is corrected. We also provide correspondences between all possible pairs of images, i.e., $I_i \leftrightarrow I_j$ for $\forall i, j$ where I_i is the i^{th} image. In Figure 1(b), 6 cameras and 1459 points are reconstructed in 3D.

![Images](image1.png)

(a) INPUT: Images

![Point Cloud](image2.png)

(b) OUTPUT: 3D reconstruction

Figure 1: (a) Given 6 images of space in front of Levine Hall, (b) reconstruct 3D point cloud and camera poses.
Data We provide two datasets, sample dataset and test dataset. The sample dataset is released at
the beginning and test dataset will be released after milestone 2 due. For example, the test dataset
contains 6 undistorted images, calibration data, and matching data. The image resolution is 1280×960
and the intrinsic parameter, K, is specified in the calibration.txt file.

(Matching file name) The data are stored in 5 files—matching1.txt, matching2.txt, matching3.txt,
matching4.txt, and matching5.txt. matching3.txt contains matching between the third image and
the fourth, fifth, and sixth images, i.e., I₃ ↔ I₄, I₃ ↔ I₅, and I₃ ↔ I₆. Therefore, matching6.txt
does not exist because it is the matching by itself.

(Matching file format) Each matching file is formatted as follows for the iᵗʰ matching file:
- nFeatures: (the number of feature points of the iᵗʰ image—each following row specifies matches
 across images given a feature location in the iᵗʰ image.)
- Each row: (the number of matches for the jᵗʰ feature) (R) (G) (B) (uᵢⱼ) (vᵢⱼ) (image id) (u)
 (v) (image id) (u) (v) ...

An Example of matching1.txt
nFeatures: 2002
3 137 128 105 454.740000 392.370000 2 308.570000 500.320000 4 447.580000 479.360000
2 137 128 105 454.740000 392.370000 4 447.580000 479.360000

Algorithm The full pipeline of structure from motion is shown in Algorithm 1. You will program
this full pipeline guided by the functions described in following sections. This pseudocode does not
include data management, e.g., converting matches obtained from the data files to feature points.

Algorithm 1 Structure from Motion
1: for all possible pair of images do
2: [x₁ x₂] = GetInliersRANSAC(x₁, x₂); ▷ Reject outlier correspondences.
3: end for
4: F = EstimateFundamentalMatrix(x₁, x₂); ▷ Use the first two images.
5: E = EssentialMatrixFromFundamentalMatrix(F, K);
6: [Cset Rset] = ExtractCameraPose(E);
7: for i = 1 : 4 do
8: Xset{i} = LinearTriangulation(K, zeros(3,1), eye(3), Cset{i}, Rset{i}, x₁, x₂);
9: end for
10: [C R] = DisambiguateCameraPose(Cset, Rset, Xset); ▷ Check the cheirality condition.
11: X = NonlinearTriangulation(K, zeros(3,1), eye(3), C, R, x₁, x₂, X₀));
12: Cset ← {C}, Rset ← {R}
13: for i = 3 : I do ▷ Register camera and add 3D points for the rest of images
14: [Cnew Rnew] = PnPRAmS(X, x, K);
15: [Cnew Rnew] = NonlinearPnP(X, x, K, Cnew, Rnew);
16: Cset ← Cset ∪ Cnew
17: Rset ← Rset ∪ Rnew
18: Xnew = LinearTriangulation(K, C₀, R₀, Cnew, Rnew, x₁, x₂);
19: Xnew = NonlinearTriangulation(K, C₀, R₀, Cnew, Rnew, x₁, x₂, X₀); ▷ Add 3D
 points.
20: X ← X ∪ Xnew
21: V = BuildVisibilityMatrix(traj); ▷ Get visibility matrix.
22: [Cset Rset X] = BundleAdjustment(Cset, Rset, X, K, traj, V); ▷ Bundle
 adjustment.
23: end for
1 Matching

In this section, you will refine matches provided by the matching data files by rejecting outlier matches based on fundamental matrix.

1.1 Fundamental Matrix Estimation

Goal Given $N \geq 8$ correspondences between two images, $x_1 \leftrightarrow x_2$, implement the following function that linearly estimates a fundamental matrix, F, such that $x_2^T F x_1 = 0$:

$$F = \text{EstimateFundamentalMatrix}(x_1, x_2)$$

INPUT x_1 and x_2: $N \times 2$ matrices whose row represents a correspondence.

OUTPUT F: 3×3 matrix with rank 2.

The fundamental matrix can be estimated by solving linear least squares ($Ax = 0$). Because of noise on correspondences, the estimated fundamental matrix can be rank 3. The last singular value of the estimated fundamental matrix must be set to zero to enforce the rank 2 constraint.

1.2 Match Outlier Rejection via RANSAC

Goal Given N correspondences between two images ($N \geq 8$), $x_1 \leftrightarrow x_2$, implement the following function that estimates inlier correspondences using fundamental matrix based RANSAC:

$$[y_1 \ y_2 \ \text{idx}] = \text{GetInliersRANSAC}(x_1, x_2)$$

INPUT x_1 and x_2: $N \times 2$ matrices whose row represents a correspondence.

OUTPUT y_1 and y_2: $N_i \times 2$ matrices whose row represents an inlier correspondence where N_i is the number of inliers.

OUTPUT idx: $N \times 1$ vector that indicates ID of inlier y_1.

A pseudo code the RANSAC is shown in Algorithm 2.

Algorithm 2 GetInliersRANSAC

1: $n \leftarrow 0$
2: for $i = 1 : M$
3: Choose 8 correspondences, \hat{x}_1 and \hat{x}_2, randomly
4: $F = \text{EstimateFundamentalMatrix}(\hat{x}_1, \hat{x}_2)$
5: $S \leftarrow \emptyset$
6: for $j = 1 : N$
7: if $|x_{1j}^T F x_{1j}| < \epsilon$
8: $S \leftarrow S \cup \{j\}$
9: end if
10: end for
11: if $n < |S|$ then
12: $n \leftarrow |S|$,
13: $S_{in} \leftarrow S$
14: end if
15: end for
2 Relative Camera Pose Estimation

In this section, you will initialize relative camera pose between the first and second images using an essential matrix, i.e., \((\mathbf{0}, \mathbf{I}_{3\times3})\) and \((\mathbf{C}, \mathbf{R})\).

2.1 Essential Matrix Estimation

Goal Given \(\mathbf{F}\), estimate \(\mathbf{E} = \mathbf{K}^T\mathbf{F}\mathbf{K}\):

\[
\mathbf{E} = \text{EssentialMatrixFromFundamentalMatrix}(\mathbf{F}, \mathbf{K})
\]

(INPUT) \(\mathbf{K}\): 3\times3 camera intrinsic parameter

(INPUT) \(\mathbf{F}\): fundamental matrix

(OUTPUT) \(\mathbf{E}\): 3\times3 essential matrix with singular values \((1,1,0)\).

An essential matrix can be extracted from a fundamental matrix given camera intrinsic parameter, \(\mathbf{K}\). Due to noise in the intrinsic parameters, the singular values of the essential matrix are not necessarily \((1,1,0)\). The essential matrix can be corrected by reconstructing it with \((1,1,0)\) singular values, i.e.,

\[
\mathbf{E} = \mathbf{U} \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} \mathbf{V}^T.
\]

2.2 Camera Pose Extraction

Goal Given \(\mathbf{E}\), enumerate four camera pose configurations, \((\mathbf{C}_1, \mathbf{R}_1)\), \((\mathbf{C}_2, \mathbf{R}_2)\), \((\mathbf{C}_3, \mathbf{R}_3)\), and \((\mathbf{C}_4, \mathbf{R}_4)\) where \(\mathbf{C} \in \mathbb{R}^3\) is the camera center and \(\mathbf{R} \in \text{SO}(3)\) is the rotation matrix, i.e., \(\mathbf{P} = \mathbf{KR} \begin{bmatrix} \mathbf{I}_{3\times3} & -\mathbf{C} \end{bmatrix}\):

\[
[\mathbf{Cset} \ \mathbf{Rset}] = \text{ExtractCameraPose}(\mathbf{E})
\]

(INPUT) \(\mathbf{E}\): essential matrix

(OUTPUT) \(\mathbf{Cset}\) and \(\mathbf{Rset}\): four configurations of camera centers and rotations, i.e., \(\mathbf{Cset}\{i\} = \mathbf{C}_i\) and \(\mathbf{Rset}\{i\} = \mathbf{R}_i\).

There are four camera pose configurations given an essential matrix. Let \(\mathbf{E} = \mathbf{UDV}^T\) and \(\mathbf{W} = \begin{bmatrix} 0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \end{bmatrix}\). The four configurations are enumerated below:

1. \(\mathbf{C}_1 = \mathbf{U}(;\,3)\) and \(\mathbf{R}_1 = \mathbf{UWV}^T\)
2. \(\mathbf{C}_2 = -\mathbf{U}(;\,3)\) and \(\mathbf{R}_2 = \mathbf{UWV}^T\)
3. \(\mathbf{C}_3 = \mathbf{U}(;\,3)\) and \(\mathbf{R}_3 = \mathbf{UW}^TV^T\)
4. \(\mathbf{C}_4 = -\mathbf{U}(;\,3)\) and \(\mathbf{R}_4 = \mathbf{UW}^TV^T\).

Note that the determinant of a rotation matrix is one. If \(\det(\mathbf{R}) = -1\), the camera pose must be corrected, i.e., \(\mathbf{C} \leftarrow -\mathbf{C}\) and \(\mathbf{R} \leftarrow -\mathbf{R}\).
3 Triangulation

In this section, you will triangulate 3D points given two camera poses followed by nonlinear optimization. This triangulation also allows you to disambiguate four camera pose configuration obtained from the essential matrix.

3.1 Linear Triangulation

Goal Given two camera poses, \((C_1, R_1)\) and \((C_2, R_2)\), and correspondences \(x_1 \leftrightarrow x_2\), triangulate 3D points using linear least squares:

\[
X = \text{LinearTriangulation}(K, C_1, R_1, C_2, R_2, x_1, x_2)
\]

(INPUT) \(C_1\) and \(R_1\): the first camera pose

(INPUT) \(C_2\) and \(R_2\): the second camera pose

(INPUT) \(x_1\) and \(x_2\): two \(N \times 2\) matrices whose row represents correspondence between the first and second images where \(N\) is the number of correspondences.

(OUTPUT) \(X\): \(N \times 3\) matrix whose row represents 3D triangulated point.

3.2 Camera Pose Disambiguation

Goal Given four camera pose configuration and their triangulated points, find the unique camera pose by checking the *cheirality* condition—the reconstructed points must be in front of the cameras:

\[
[C \ R \ X_0] = \text{DisambiguateCameraPose}(Cset, Rset, Xset)
\]

(INPUT) \(Cset\) and \(Rset\): four configurations of camera centers and rotations

(INPUT) \(Xset\): four sets of triangulated points from four camera pose configurations

(OUTPUT) \(C\) and \(R\): the correct camera pose

(OUTPUT) \(X_0\): the 3D triangulated points from the correct camera pose

The sign of the \(Z\) element in the camera coordinate system indicates the location of the 3D point with respect to the camera, i.e., a 3D point \(X\) is in front of a camera if \((C, R)\) if \(r_3(X - C) > 0\) where \(r_3\) is the third row of \(R\). Not all triangulated points satisfy this condition due to the presence of correspondence noise. The best camera configuration, \((C, R, X)\) is the one that produces the maximum number of points satisfying the cheirality condition.

3.3 Nonlinear Triangulation

Goal Given two camera poses and linearly triangulated points, \(X\), refine the locations of the 3D points that minimizes reprojection error:

\[
X = \text{NonlinearTriangulation}(K, C_1, R_1, C_2, R_2, x_1, x_2, X_0)
\]

(INPUT) \(C_1\) and \(R_1\): the first camera pose

(INPUT) \(C_2\) and \(R_2\): the second camera pose

(INPUT) \(x_1\) and \(x_2\): two \(N \times 2\) matrices whose row represents correspondence between the first and second images where \(N\) is the number of correspondences.

(INPUT and OUTPUT) \(X\): \(N \times 3\) matrix whose row represents 3D triangulated point.
The linear triangulation minimizes algebraic error. Reprojection error that is geometrically meaningful error is computed by measuring error between measurement and projected 3D point:

$$\text{minimize} \quad \sum_{j=\{1,2\}} \left(u^j - \frac{P_1^T \tilde{X}}{P_3^T \tilde{X}} \right)^2 + \left(v^j - \frac{P_2^T \tilde{X}}{P_3^T \tilde{X}} \right)^2,$$

where \(j \) is the index of each camera, \(\tilde{X} \) is the homogeneous representation of \(X \). \(P_i^T \) is each row of camera projection matrix, \(P \). This minimization is highly nonlinear because of the divisions. The initial guess of the solution, \(X_0 \), estimated via the linear triangulation is needed to minimize the cost function. This minimization can be solved using a nonlinear optimization toolbox such as \texttt{fminunc} or \texttt{lsqnonlin} in MATLAB.

4 Perspective-\(n \)-Point

In this section, you will register a new image given 3D-2D correspondences, i.e., \(X \leftrightarrow x \) followed by nonlinear optimization.

4.1 Linear Camera Pose Estimation

Goal Given 2D-3D correspondences, \(X \leftrightarrow x \), and the intrinsic parameter, \(K \), estimate a camera pose using linear least squares:

\[
[C \ R] = \text{LinearPnP}(X, x, K)
\]

(INPUT) \(X \) and \(x \): \(N \times 3 \) and \(N \times 2 \) matrices whose row represents correspondences between 3D and 2D points, respectively.

(INPUT) \(K \): intrinsic parameter

(OUTPUT) \(C \) and \(R \): camera pose (\(C, R \)).

2D points can be normalized by the intrinsic parameter to isolate camera parameters, (\(C, R \)), i.e., \(K^{-1}x \). A linear least squares system that relates the 3D and 2D points can be solved for (\(t, R \)) where \(t = -R^T C \). Since the linear least square solve does not enforce orthogonality of the rotation matrix, \(R \in SO(3) \), the rotation matrix must be corrected by \(R \leftarrow UV^T \) where \(R = UDV^T \). If the corrected rotation has -1 determined, \(R \leftarrow -R \). This linear PnP requires at least 6 correspondences.

4.2 PnP RANSAC

Goal Given \(N \geq 6 \) 3D-2D correspondences, \(X \leftrightarrow x \), implement the following function that estimates camera pose (\(C, R \)) via RANSAC:

\[
[C \ R] = \text{PnPTRANSAC}(X, x, K)
\]

(INPUT) \(X \) and \(x \): \(N \times 3 \) and \(N \times 2 \) matrices whose row represents correspondences between 3D and 2D points, respectively.

(INPUT) \(K \): intrinsic parameter

(OUTPUT) \(C \) and \(R \): camera pose (\(C, R \)).

A pseudo code the RANSAC is shown in Algorithm 3.
Algorithm 3 PnP-RANSAC

1: \(n \leftarrow 0 \)
2: for \(i = 1 : M \) do
3: Choose 6 correspondences, \(\hat{X} \) and \(\hat{x} \), randomly
4: \([C \ R] = \text{LinearPnP}(\hat{X}, \hat{x}, K) \)
5: \(S \leftarrow \emptyset \)
6: for \(j = 1 : N \) do
7: \(e = \left(u - \frac{P^T_1 \hat{X}_j}{P^T_3 \hat{X}_j} \right)^2 + \left(v - \frac{P^T_2 \hat{X}_j}{P^T_3 \hat{X}_j} \right)^2 \) \(\triangleright \) Measure reprojection error.
8: if \(e < \epsilon_r \) then
9: \(S \leftarrow S \cup \{ j \} \)
10: end if
11: end for
12: if \(n < |S| \) then
13: \(n \leftarrow |S| \)
14: \(S_{\text{in}} \leftarrow S \)
15: end if
16: end for

4.3 Nonlinear PnP

Goal Given 3D-2D correspondences, \(X \leftrightarrow x \), and linearly estimated camera pose, \((C, R)\), refine the camera pose that minimizes reprojection error:

\[[C \ R] = \text{NonlinearPnP}(X, x, K, C, R) \]

(INPUT) \(x \) and \(x \): \(N \times 3 \) and \(N \times 2 \) matrices whose row represents correspondences between 3D and 2D points, respectively.

(INPUT) \(K \): intrinsic parameter

(INPUT and OUTPUT) \(C \) and \(R \): camera pose \((C, R)\).

The linear PnP minimizes algebraic error. Reprojection error that is geometrically meaningful error is computed by measuring error between measurement and projected 3D point:

\[
\min_{C,R} \sum_{j=1}^{J} \left(\left(u_j - \frac{P^T_1 \hat{X}_j}{P^T_3 \hat{X}_j} \right)^2 + \left(v_j - \frac{P^T_2 \hat{X}_j}{P^T_3 \hat{X}_j} \right)^2 \right),
\]

where \(\hat{X} \) is the homogeneous representation of \(X \). \(P^T_i \) is each row of camera projection matrix, \(P \) which is computed by \(KR \left[I_{3 \times 3} \quad -C \right] \). A compact representation of the rotation matrix using quaternion is a better choice to enforce orthogonality of the rotation matrix, \(R = R(q) \) where \(q \) is four dimensional quaternion, i.e.,

\[
\min_{C,q} \sum_{j=1}^{J} \left(\left(u_j - \frac{P^T_1 \hat{X}_j}{P^T_3 \hat{X}_j} \right)^2 + \left(v_j - \frac{P^T_2 \hat{X}_j}{P^T_3 \hat{X}_j} \right)^2 \right),
\]

This minimization is highly nonlinear because of the divisions and quaternion parameterization. The initial guess of the solution, \((C_0, R_0)\), estimated via the linear PnP is needed to minimize the cost function. This minimization can be solved using a nonlinear optimization toolbox such as \texttt{fminunc} or \texttt{lsqnonlin} in MATLAB.
5 Bundle Adjustment

In this section, you will refine all camera poses and 3D points together initialized by previous reconstruction by minimizing reprojection error.

5.1 Visibility Matrix

Goal The relationship between a camera and point, construct a $I \times J$ binary matrix, V where V_{ij} is one if the jth point is visible from the ith camera and zero otherwise:

\[V = \text{BuildVisibilityMatrix(traj)} \]

5.2 Bundle Adjustment

Goal Given initialized camera poses and 3D points, refine them by minimizing reprojection error:

\[[C_{\text{set}}, R_{\text{set}}, X_{\text{set}}] = \text{BundleAdjustment}(C_{\text{set}}, R_{\text{set}}, X, K, \text{traj}, V) \]

(INPUT) X: reconstructed 3D points.

(INPUT) K: intrinsic parameter

(INPUT) traj: a set of 2D trajectories

(INPUT) V: visibility matrix

(INPUT and OUTPUT) C and R: camera pose (C, R).

The bundle adjustment refines camera poses and 3D points simultaneously by minimizing the following reprojection error over $\{C_i\}_{i=1}^I$, $\{q_i\}_{i=1}^I$, and $\{X_j\}_{j=1}^J$:

\[
\minimize_{\{C_i, q_i\}_{i=1}^I, \{X_j\}_{j=1}^J} \sum_{i=1}^I \sum_{j=1}^J V_{ij} \left(\left(u_{ij} - \frac{P_{i1}^T \tilde{X}_j}{P_{i3}^T \tilde{X}_j} \right)^2 + \left(v_{ij} - \frac{P_{i2}^T \tilde{X}_j}{P_{i3}^T \tilde{X}_j} \right)^2 \right).
\]

This minimization can be solved using a nonlinear optimization toolbox such as `fminunc` and `lsqnonlin` in MATLAB but will be extremely slow due to a number of parameters. The Sparse Bundle Adjustment toolbox (http://users.ics.forth.gr/~lourakis/sba/) is designed to solve such optimization by exploiting sparsity of visibility matrix, V. Note that a small number of entries in V are one because a 3D point is visible from a small subset of images. Using the sparse bundle adjustment package is not trivial but it is much faster than MATLAB built-in optimizers. If you are going to use the package, please follow the instructions:

1. Download the package from the website and compile the mex function in the matlab folder (See README.txt).
2. Refer to `SBA_example/sba_wrapper.m` in our data folder that shows an example of using the package. You need to modify the code to set up camera poses and 3D points.
3. Fill `SBA_example/projection.m` function that reprojects a 3D point to an image.

5.3 Compute Jacobian Using Quaternion

Goal Optimize the camera pose and 3D points using Jacobian Matrix.

\[[C_{\text{set}}, R_{\text{set}}, X_{\text{set}}] = \text{BundleAdjustmentWithJacobian}(C_{\text{set}}, R_{\text{set}}, X, K, \text{traj}, V) \]

(INPUT) X: reconstructed 3D points.

(INPUT) K: intrinsic parameter

(INPUT) traj: a set of 2D trajectories
(INPUT) \(V \): visibility matrix
(INPUT and OUTPUT) \(\mathbf{C} \) and \(\mathbf{R} \): camera pose \((\mathbf{C}, \mathbf{R})\).

Previous section optimize the camera pose and 3D points without using a Jacobian function. However, if you specify the Jacobian for the reprojection error function, the efficiency will be significantly improved. Both \texttt{lsqnonlin} and \texttt{sba} support the Jacobian function. You need to implement your own function and used it. To compute the derivative of rotation, you need to use quaternion.

6 Putting All Things Together

Write a program that run the full pipeline of structure from motion based on Algorithm 1 and compare your result with an off-the-shelf structure from motion software, \texttt{VisualSfM} (http://ccwu.me/vsfm/).

7 Submission

7.1 Milestone 1

Finish the part 1 and part 2, write a report contain the following things:

- Visualization of feature matching after outlier rejection.
- Visualization of epipolar lines.

7.2 Milestone 2

Finish the part 3 and part 4, write a report contain the following things:

- Visualization of camera relative pose after disambiguation.
- Visualization of triangulation points.
- Visualization of Linear PnP, RANSAC PnP and Nonlinear PnP, using the triangulation points from two cameras to register the third one.

7.3 Milestone 3

Finish the part 5 and part 6, submit your complete code and write a report contain the following things:

- Visualization of the all camera pose and 3D points.
- Total time used for Bundle Adjustment with/without using Jacobin.
FAQs

Q. Where does X0 come from? Looking at pg.2, Algorithm 1, line 11, in project2, it’s not clear what X0 is in the method `NonlinearTriangulation(K, zeros(3,1), eye(3), C, R, x1, x2, X0);`

A. It’s an initial estimate of X0 from your linear triangulation.

Q. I have a question about the matching data. I can’t find matching between (image1 and image5), (image1 and image6). They are suppose to be in the matching1.txt, however I can’t find any point in the matching1.txt which shows matching to the image5 or image6. The same problem also occurs in matching2.txt. I can’t find matching between (image2 and image5), (image2 and image6).

A. It is okay to have no matches between 1 and 5 or 6 as long as there is other image that can link them together for instance, image 3.

Q. In the non linear triangulation formula provided in the assignment,
 1. is P matrix the same as $K[R t]$?
 2. Are we supposed to use P of camera 1 or P of camera 2? or both?
 3. Are we supposed to minimize error of all 3D points at once or we can iterate through the points minimizing error one by one?

 2. Both; you’ll compute the reprojection errors for each camera separately then add them together so that each point has a reprojection error from camera 1 + reprojection error from camera 2.
 3. You need to iterate through the points minimizing error one by one.

Q. In 4.1 Linear Camera Pose Estimation, I want to make sure whether $t = -R^TC$ or $t = -RC$ Because in slide 11 page 10, it said $t = -RC$, but the description of this project said $t = -R^TC$ And since $P = KR[I_{3x3} - C]$, I thought $t = -RC$ makes more sense to me.

A. You are right. $t = -RC$. The definition can be different depending on the books.

Q. Where is the world origin? Is there a single image whose camera pose is declared as the world origin as well?

A. Yes. Usually set any one camera coordinates as the world coordinates. In this project, it’s the first camera.

Q. linearPnP - I am confused about the outputs for this section. We use SVD to obtain a P from which you can extract R and C. I believe I understand that the R from this SVD is not necessarily orthogonal and one must perform SVD again to force orthogonality, but I am confused on whether we return the C OR t where $t = -RC$
where R is the orthogonality-enforced R and C is from our original computation of P. Is this correct or am I misunderstanding?

A. You are right. If you extract R from P after multiplying $\text{inv}(K)$, R is not necessarily orthogonal because of noise. You can run SVD on R to refine it and then you can extract C with the refined R. This is not ideal but it will give you a good initialization for your nonlinear PnP.

Q. BuildVisibilityMatrix - what is traj? How is it structured?

A. It’s a collection of the set of 2D points which are projections of the same 3D points. So, if there are N 3D points ($\text{size}(X, 1) = N$), the traj can be $\text{traj} = \text{cell}(N, 1)$ and $\text{traj}{i} =$ (projected 2d points of X_i on each images). Can be more elaborated.

Q. What is the good number of iterations in RANSAC?

A. M is the number of iterations. In theory, you would like to try M which is fairly high.

In practice, you can use a large number such as 500-1000.

You can validate the iteration number by checking the number of inliers, i.e., the number of inliers must be majority of your set.

Q. What’s the meaning of $r_3(X - C) > 0$ and $[0 \ 0 \ 1]X \geq 0$?

A. The reconstructed point must be in front of your two cameras. Therefore, the two equations must hold for each X, i.e., $X_3 > 0$ (first camera) and $r_3(X - C) > 0$ (second camera).

Q. How do we decide which 4 potential (R,C) to pick? Just count on how many points have met the inequality and pick the most?

A. Yes. Count the number of points that satisfy the cheirality condition. Also please visualize your camera and points in 3D to check whether your reconstruction makes sense.

Q. NonlinearTriangulation Conceptual Problem - What is the point of using X as the parameter we optimize over for this?

I would have thought that we are trying to optimize the poses of the second camera to match it’s transformation from the first camera through the 3D points. But that’s not what optimizing over X does.

A. In NonlinearTriangulation, the goal is to ”refine” 3D points X given camera poses, measurements (x_1 and x_2), and initial guess of X (obtained from linear triangulation). Since it’s non-linear optimization, we need initial X.

11