
Project 2: Structure from Motion
CIS 580, Machine Perception, Spring 2015

Preliminary report due: 2015.04.27. 11:59AM
Final Due: 2015.05.06. 11:59AM

This project aims to reconstruct a 3D point cloud and camera poses of 6 images as shown in Figure 1.
Your task is to implement the full pipeline of structure from motion including two view reconstruc-
tion, triangulation, PnP, and bundle adjustment. For nonlinear optimization parts, you are free to
choose an optimizer such as built-in functions in MATLAB or Sparse Bundle Adjustment package
(http://users.ics.forth.gr/∼lourakis/sba/). Input images are taken by a GoPro Hero 3 camera (Black
Edition) and fisheye lens distortion is corrected. We also provide correspondences between all possible
pairs of images, i.e, Ii ↔ Ij for ∀i, j where Ii is the ith image. In Figure 1(b), 6 cameras and 1459
points are reconstructed in 3D.

(a) INPUT: Images

Side view Top view Oblique view
(b) OUTPUT: 3D reconstruction

Figure 1: (a) Given 6 images of space in front of Levine Hall, (b) reconstruct 3D point cloud and
camera poses.

Data repository: cis.upenn.edu/~cis580/Spring2015/Projects/proj2/SfMProjectData.zip
Submission: Until the preliminary report due, submit one page document to Canvas which includes
visualization of at least one step, e.g. visualization of matches after outlier rejection via RANSAC.
Until the final due, submit your complete code to turnin
Collaboration: It’s an individual or a pair project.

1

cis.upenn.edu/~cis580/Spring2015/Projects/proj2/SfMProjectData.zip

Data We provide 6 undistorted images, calibration data, and matching data. The image resolution
is 1280×960 and the intrinsic parameter, K, is specified in the calibration.txt file.

(Matching file name) The data are stored in 5 files—matching1.txt, matching2.txt, matching3.txt,
matching4.txt, and matching5.txt. matching3.txt contains matching between the third image and
the fourth, fifth, and sixth images, i.e., I3 ↔ I4, I3 ↔ I5, and I3 ↔ I6. Therefore, matching6.txt
does not exist because it is the matching by itself.

(Matching file format) Each matching file is formatted as follows for the ith matching file:

nFeatures: (the number of feature points of the ith image—each following row specifies matches
across images given a feature location in the ith image.)
Each row: (the number of matches for the jth feature) (R) (G) (B) (uij) (vij) (image id) (u)
(v) (image id) (u) (v) ...

An Example of matching1.txt

nFeatures: 2002
3 137 128 105 454.740000 392.370000 2 308.570000 500.320000 4 447.580000 479.360000
2 137 128 105 454.740000 392.370000 4 447.580000 479.360000

Algorithm The full pipeline of structure from motion is shown in Algorithm 1. You will program
this full pipeline guided by the functions described in following sections. This pseudocode does not
include data management, e.g., converting matches obtained from the data files to feature points.

Algorithm 1 Structure from Motion

1: for all possible pair of images do
2: [x1 x2] = GetInliersRANSAC(x1, x2); . Reject outlier correspondences.
3: end for
4: F = EstimateFundamentalMatrix(x1, x2); . Use the first two images.
5: E = EssentialMatrixFromFundamentalMatrix(F, K);

6: [Cset Rset] = ExtractCameraPose(E);

7: for i = 1 : 4 do
8: Xset{i} = LinearTriangulation(K, zeros(3,1), eye(3), Cset{i}, Rset{i}, x1,

x2);

9: end for
10: [C R] = DisambiguateCameraPose(Cset, Rset, Xset); . Check the cheirality condition.
11: X = NonlinearTriangulation(K, zeros(3,1), eye(3), C, R, x1, x2, X0));

12: Cset← {C}, Rset← {R}
13: for i = 3 : I do . Register camera and add 3D points for the rest of images
14: [Cnew Rnew] = PnPRANSAC(X, x, K); . Register the ith image.
15: [Cnew Rnew] = NonlinearPnP(X, x, K, Cnew, Rnew);

16: Cset ← Cset ∪ Cnew

17: Rset ← Rset ∪ Rnew

18: Xnew = LinearTriangulation(K, C0, R0, Cnew, Rnew, x1, x2);

19: Xnew = NonlinearTriangulation(K, C0, R0, Cnew, Rnew, x1, x2, X0); . Add 3D
points.

20: X ← X ∪ Xnew

21: V = BuildVisibilityMatrix(traj); . Get visibility matrix.
22: [Cset Rset X] = BundleAdjustment(Cset, Rset, X, K, traj, V); . Bundle

adjustment.
23: end for

2

1 Matching

In this section, you will refine matches provided by the matching data files by rejecting outlier matches
based on fundamental matrix.

1.1 Fundamental Matrix Estimation

Goal Given N ≥ 8 correspondences between two images, x1 ↔ x2, implement the following function
that linearly estimates a fundamental matrix, F, such that xT

2Fx1 = 0:

F = EstimateFundamentalMatrix(x1, x2)

(INPUT) x1 and x2: N×2 matrices whose row represents a correspondence.

(OUTPUT) F: 3×3 matrix with rank 2.

The fundamental matrix can be estimated by solving linear least squares (Ax = 0). Because of noise
on correspondences, the estimated fundamental matrix can be rank 3. The last singular value of the
estimated fundamental matrix must be set to zero to enforce the rank 2 constraint.

1.2 Match Outlier Rejection via RANSAC

Goal Given N correspondences between two images (N ≥ 8), x1 ↔ x2, implement the following
function that estimates inlier correspondences using fundamental matrix based RANSAC:

[y1 y2 idx] = GetInliersRANSAC(x1, x2)

(INPUT) x1 and x2: N×2 matrices whose row represents a correspondence.

(OUTPUT) y1 and y2: Ni×2 matrices whose row represents an inlier correspondence where Ni

is the number of inliers.

(OUTPUT) idx: N×1 vector that indicates ID of inlier y1.

A pseudo code the RANSAC is shown in Algorithm 2.

Algorithm 2 GetInliersRANSAC

1: n← 0
2: for i = 1 : M do
3: Choose 8 correspondences, x̂1 and x̂2, randomly
4: F = EstimateFundamentalMatrix(x̂1, x̂2)

5: S ← ∅
6: for j = 1 : N do
7: if |xT

2jFx1j | < ε then
8: S ← S ∪ {j}
9: end if

10: end for
11: if n < |S| then
12: n← |S|
13: Sin ← S
14: end if
15: end for

3

2 Relative Camera Pose Estimation

In this section, you will initialize relative camera pose between the first and second images using an
essential matrix, i.e., (0, I3×3) and (C,R).

2.1 Essential Matrix Estimation

Goal Given F, estimate E = KTFK:

E = EssentialMatrixFromFundamentalMatrix(F, K)

(INPUT) K: 3×3 camera intrinsic parameter

(INPUT) F: fundamental matrix

(OUTPUT) E: 3×3 essential matrix with singular values (1,1,0).

An essential matrix can be extracted from a fundamental matrix given camera intrinsic parameter, K.
Due to noise in the intrinsic parameters, the singular values of the essential matrix are not necessarily
(1,1,0). The essential matrix can be corrected by reconstructing it with (1,1,0) singular values, i.e.,

E = U

 1 0 0
0 1 0
0 0 0

VT.

2.2 Camera Pose Extraction

Goal Given E, enumerate four camera pose configurations, (C1,R1), (C2,R2), (C3,R3), and (C4,R4)
where C ∈ R3 is the camera center and R ∈ SO(3) is the rotation matrix, i.e., P = KR

[
I3×3 −C

]
:

[Cset Rset] = ExtractCameraPose(E)

(INPUT) E: essential matrix

(OUTPUT) Cset and Rset: four configurations of camera centers and rotations, i.e., Cset{i}=Ci

and Rset{i}=Ri.

There are four camera pose configurations given an essential matrix. Let E = UDVT and W = 0 −1 0
1 0 0
0 0 1

. The four configurations are enumerated below:

1. C1 = U(:, 3) and R1 = UWVT

2. C2 = −U(:, 3) and R2 = UWVT

3. C3 = U(:, 3) and R3 = UWTVT

4. C4 = −U(:, 3) and R4 = UWTVT.

Note that the determinant of a rotation matrix is one. If det(R) = −1, the camera pose must be
corrected, i.e., C← −C and R← −R.

4

3 Triangulation

In this section, you will triangulate 3D points given two camera poses followed by nonlinear opti-
mization. This triangulation also allows you to disambiguate four camera pose configuration obtained
from the essential matrix.

3.1 Linear Triangulation

Goal Given two camera poses, (C1,R1) and (C2,R2), and correspondences x1 ↔ x2, triangulate 3D
points using linear least squares:

X = LinearTriangulation(K, C1, R1, C2, R2, x1, x2)

(INPUT) C1 and R1: the first camera pose

(INPUT) C2 and R2: the second camera pose

(INPUT) x1 and x2: two N ×2 matrices whose row represents correspondence between the first
and second images where N is the number of correspondences.

(OUTPUT) X: N × 3 matrix whose row represents 3D triangulated point.

3.2 Camera Pose Disambiguation

Goal Given four camera pose configuration and their triangulated points, find the unique camera
pose by checking the cheirality condition—the reconstructed points must be in front of the cameras:

[C R X0] = DisambiguateCameraPose(Cset, Rset, Xset)

(INPUT) Cset and Rset: four configurations of camera centers and rotations

(INPUT) Xset: four sets of triangulated points from four camera pose configurations

(OUTPUT) C and R: the correct camera pose

(OUTPUT) X0: the 3D triangulated points from the correct camera pose

The sign of the Z element in the camera coordinate system indicates the location of the 3D point
with respect to the camera, i.e., a 3D point X is in front of a camera if (C,R) if r3(X − C) > 0
where r3 is the third row of R. Not all triangulated points satisfy this condition due to the presence
of correspondence noise. The best camera configuration, (C,R,X) is the one that produces the
maximum number of points satisfying the cheirality condition.

3.3 Nonlinear Triangulation

Goal Given two camera poses and linearly triangulated points, X, refine the locations of the 3D
points that minimizes reprojection error:

X = NonlinearTriangulation(K, C1, R1, C2, R2, x1, x2, X0)

(INPUT) C1 and R1: the first camera pose

(INPUT) C2 and R2: the second camera pose

(INPUT) x1 and x2: two N ×2 matrices whose row represents correspondence between the first
and second images where N is the number of correspondences.

(INPUT and OUTPUT) X: N × 3 matrix whose row represents 3D triangulated point.

5

The linear triangulation minimizes algebraic error. Reprojection error that is geometrically meaningful
error is computed by measuring error between measurement and projected 3D point:

minimize
X

∑
j={1,2}

(
uj − PjT

1 X̃

PjT
3 X̃

)2

+

(
vj − PjT

2 X̃

PjT
3 X̃

)2

,

where j is the index of each camera, X̃ is the homogeneous representation of X. PT
i is each row of

camera projection matrix, P. This minimization is highly nonlinear because of the divisions. The
initial guess of the solution, X0, estimated via the linear triangulation is needed to minimize the cost
function. This minimization can be solved using a nonlinear optimization toolbox such as fminunc or
lsqnonlin in MATLAB.

4 Perspective-n-Point

In this section, you will register a new image given 3D-2D correspondences, i.e., X ↔ x followed by
nonlinear optimization.

4.1 Linear Camera Pose Estimation

Goal Given 2D-3D correspondences, X↔ x, and the intrinsic parameter, K, estimate a camera pose
using linear least squares:

[C R] = LinearPnP(X, x, K)

(INPUT) X and x: N × 3 and N × 2 matrices whose row represents correspondences between
3D and 2D points, respectively.

(INPUT) K: intrinsic parameter

(OUTPUT) C and R: camera pose (C,R).

2D points can be normalized by the intrinsic parameter to isolate camera parameters, (C,R), i.e.,
K−1x. A linear least squares system that relates the 3D and 2D points can be solved for (t,R) where
t = −RTC. Since the linear least square solve does not enforce orthogonality of the rotation matrix,
R ∈ SO(3), the rotation matrix must be corrected by R← UVT where R = UDVT. If the corrected
rotation has -1 determined, R← −R. This linear PnP requires at least 6 correspondences.

4.2 PnP RANSAC

Goal Given N ≥ 6 3D-2D correspondences, X↔ x, implement the following function that estimates
camera pose (C,R) via RANSAC:

[C R] = PnPRANSAC(X, x, K)

(INPUT) X and x: N × 3 and N × 2 matrices whose row represents correspondences between
3D and 2D points, respectively.

(INPUT) K: intrinsic parameter

(OUTPUT) C and R: camera pose (C,R).

A pseudo code the RANSAC is shown in Algorithm 3.

6

Algorithm 3 PnPRANSAC

1: n← 0
2: for i = 1 : M do
3: Choose 6 correspondences, X̂ and x̂, randomly
4: [C R] = LinearPnP(X̂, x̂, K)

5: S ← ∅
6: for j = 1 : N do

7: e =
(
u− PT

1X̃

PT
3X̃

)2
+
(
v − PT

2X̃

PT
3X̃

)2
. Measure reprojection error.

8: if e < εr then
9: S ← S ∪ {j}

10: end if
11: end for
12: if n < |S| then
13: n← |S|
14: Sin ← S
15: end if
16: end for

4.3 Nonlinear PnP

Goal Given 3D-2D correspondences, X ↔ x, and linearly estimated camera pose, (C,R), refine the
camera pose that minimizes reprojection error:

[C R] = NonlinearPnP(X, x, K, C, R)

(INPUT) X and x: N × 3 and N × 2 matrices whose row represents correspondences between
3D and 2D points, respectively.

(INPUT) K: intrinsic parameter

(INPUT and OUTPUT) C and R: camera pose (C,R).

The linear PnP minimizes algebraic error. Reprojection error that is geometrically meaningful error
is computed by measuring error between measurement and projected 3D point:

minimize
C,R

J∑
j=1

(uj − PT
1X̃j

PT
3X̃j

)2

+

(
vj −

PT
2X̃j

PT
3X̃j

)2
 ,

where X̃ is the homogeneous representation of X. PT
i is each row of camera projection matrix, P

which is computed by KR
[
I3×3 −C

]
. A compact representation of the rotation matrix using

quaternion is a better choice to enforce orthogonality of the rotation matrix, R = R(q) where q is
four dimensional quaternion, i.e.,

minimize
C,q

J∑
j=1

(uj − PT
1X̃j

PT
3X̃j

)2

+

(
vj −

PT
2X̃j

PT
3X̃j

)2
 , .

This minimization is highly nonlinear because of the divisions and quaternion parameterization. The
initial guess of the solution, (C0, R0), estimated via the linear PnP is needed to minimize the cost
function. This minimization can be solved using a nonlinear optimization toolbox such as fminunc or
lsqnonlin in MATLAB.

7

5 Bundle Adjustment

In this section, you will refine all camera poses and 3D points together initialized by previous recon-
struction by minimizing reprojection error.

5.1 Visibility Matrix

Goal The relationship between a camera and point, construct a I × J binary matrix, V where Vij is
one if the jth point is visible from the ith camera and zero otherwise:

V = BuildVisibilityMatrix(traj)

5.2 Bundle Adjustment

Goal Given initialized camera poses and 3D points, refine them by minimizing reprojection error:

[Cset Rset Xset] = BundleAdjustment(Cset, Rset, X, K, traj, V)

(INPUT) X: reconstructed 3D points.

(INPUT) K: intrinsic parameter

(INPUT) traj: a set of 2D trajectories

(INPUT) V: visibility matrix

(INPUT and OUTPUT) C and R: camera pose (C,R).

The bundle adjustment refines camera poses and 3D points simultaneously by minimizing the following
reprojection error over {Ci}Ii=1, {qi}Ii=1, and {Xj}Jj=1:

minimize
{Ci,qi}Ii=1,{X}Jj=1

I∑
i=1

J∑
j=1

Vij

(uij − PT
i1X̃j

PT
i3X̃j

)2

+

(
vij −

PT
i2X̃j

PT
i3X̃j

)2
 .

This minimization can be solved using a nonlinear optimization toolbox such as fminunc and lsqnonlin

in MATLAB but will be extremely slow due to a number of parameters. The Sparse Bundle Ad-
justment toolbox (http://users.ics.forth.gr/∼lourakis/sba/) is designed to solve such optimization by
exploiting sparsity of visibility matrix, V. Note that a small number of entries in V are one because a
3D point is visible from a small subset of images. Using the sparse bundle adjustment package is not
trivial but it is much faster than MATLAB built-in optimizers. If you are going to use the package,
please follow the instructions:

1. Download the package from the website and compile the mex function in the matlab folder (See
README.txt).

2. Refer to SBA example/sba wrapper.m in our data folder that shows an example of using the
package. You need to modify the code to set up camera poses and 3D points.

3. Fill SBA exmple/projection.m function that reprojects a 3D point to an image.

6 Putting All Things Together

Write a program that run the full pipeline of structure from motion based on Algorithm 1 and compare
your result with an off-the-shelf structure from motion software, VisualSfM (http://ccwu.me/vsfm/).

8

7 FAQs

Q. Where does X0 come from? Looking at pg.2, Algorithm 1, line 11, in project2, it’s not clear what
X0 is in the method NonlinearTriangulation(K, zeros(3,1), eye(3), C, R, x1, x2, X0);

A. It’s an initial estimate of X0 from your linear triangulation.

Q. I have a question about the matching data. I can’t find matching between (image1 and image5),
(image1 and image6). They are suppose to be in the matching1.txt, however I can’t find any point in
the matching1.txt which shows matching to the image5 or image6. The same problem also occurs in
matching2.txt. I can’t find matching between (image2 and image5), (image2 and image6).
A. It is okay to have no matches between 1 and 5 or 6 as long as there is other image that can link
them together for instance, image 3.

Q. In the non linear triangulation formula provided in the assignment,
1. is P matrix the same as K[R t] ?
2. Are we supposed to use P of camera 1 or P of camera 2? or both?
3. Are we supposed to minimize error of all 3D points at once or we can iterate through the points

minimizing error one by one?
A. 1. P = KR[I3x3 − C].

2. Both; you’ll compute the reprojection errors for each camera separately then add them together
so that each point has a reprojection error from camera 1 + reprojection error from camera 2.

3. You need to iterate through the points minimizing error one by one.

Q. In 4.1 Linear Camera Pose Estimation, I want to make sure whether t = −RTC or t = −RC
Because in slide 11 page 10, it said t = −RC, but the description of this project said t = −RTC And
since P = KR[I3x3 − C], I thought t = −RC makes more sense to me.
A. You are right. t = −RC. The definition can be different depending on the books.

Q. Where is the world origin? Is there a single image whose camera pose is declared as the world
origin as well?
A. Yes. Usually set any one camera coordinates as the world coordinates. In this project, it’s the
first camera.

Q. linearPnP - I am confused about the outputs for this section. We use SVD to obtain a P from
which you can extract R and C. I believe I understand that the R from this SVD is not necessarily
orthogonal and one must perform SVD again to force orthogonality, but I am confused on whether
we return the C OR t where t = −RC where R is the orthogonality-enforced R and C is from our
original computation of P. Is this correct or am I misunderstanding?
A. You are right. If you extract R from P after multiplying inv(K), R is not necessarily orthogonal
because of noise. You can run SVD on R to refine it and then you can extract C with the refined R.
This is not ideal but it will give you a good initialization for your nonlinear PnP.

Q. BuildVisibilityMatrix - what is traj? How is it structured?
A. It’s a collection of the set of 2D points which are projections of the same 3D points. So, if there
are N 3D points (size(X, 1) = N), the traj can be traj = cell(N, 1) and traj{i} = (projected 2d
points of Xi on each images). Can be more elaborated.

9

Q. What is the good number of iterations in RANSAC?
A. M is the number of iterations. In theory, you would like to try M which is fairly high.

In practice, you can use a large number such as 500-1000.
You can validate the iteration number by checking the number of inliers, i.e., the number of inliers

must be majority of your set.

Q. What’s the meaning of r3(X − C) > 0 and [0 0 1]X ≥ 0?
A. The reconstructed point must be in front of your two cameras. Therefore, the two equations must
hold for each X, i.e., X3 > 0 (first camera) and r3(X − C) > 0 (second camera).

Q. How do we decide which 4 potential (R,C) to pick? Just count on how many points have met the
inequality and pick the most?
A. Yes. Count the number of points that satisfy the cheirality condition. Also please visualize your
camera and points in 3D to check whether your reconstruction makes sense.

Q. NonlinearTriangulation Conceptual Problem - What is the point of using X as the parameter we
optimize over for this?

I would have thought that we are trying to optimize the poses of the second camera to match it’s
transformation from the first camera through the 3D points. But that’s not what optimizing over X
does.
A. In NonlinearTriangulation, the goal is to ”refine” 3D points X given camera poses, measurements
(x1 and x2), and initial guess of X (obtained from linear triangulation). Since it’s non-linear opti-
mization, we need initial X.

10

	Matching
	Fundamental Matrix Estimation
	Match Outlier Rejection via RANSAC

	Relative Camera Pose Estimation
	Essential Matrix Estimation
	Camera Pose Extraction

	Triangulation
	Linear Triangulation
	Camera Pose Disambiguation
	Nonlinear Triangulation

	Perspective-n-Point
	Linear Camera Pose Estimation
	PnP RANSAC
	Nonlinear PnP

	Bundle Adjustment
	Visibility Matrix
	Bundle Adjustment

	Putting All Things Together
	FAQs

