
UNIFICATION PROCEDURES IN AUTOMATED
DEDUCTION METHODS BASED ON MATINGS:

A SURVEY

Jean Gallier

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104

Note: This research was conducted while the author
was on sabbatical at Digital PRL

March 4, 2013

This research was partially supported by ONR under Grant No. N00014-88-K-0593.

UNIFICATION PROCEDURES IN AUTOMATED
DEDUCTION METHODS BASED ON MATINGS:

A SURVEY

Jean Gallier

Abstract: Unification procedures arising in methods for automated theorem

proving based on matings are surveyed. We begin by reviewing some funda-

mentals of automated deduction, including the Skolem form and the Skolem-

Herbrand-Gödel theorem. Next, the method of matings for first-order languages

without equality due to Andrews and Bibel is presented. Standard unification

is described in terms of transformations on systems (following the approach of

Martelli and Montanari, anticipated by Herbrand). Some fast unification algo-

rithms are also sketched, in particular, a unification closure algorithm inspired

by Paterson and Wegman’s method. The method of matings is then extended

to languages with equality. This extention leads naturally to a generalization

of standard unification called rigid E-unification (due to Gallier, Narendran,

Plaisted, and Snyder). The main properties of rigid E-unification, decidability,

NP-completeness, and finiteness of complete sets, are discussed.

i

Unification Procedures In Automated
Deduction Methods Based on Matings: A Survey

Jean H. Gallier

Digital PRL, and

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

1 Introduction

Unification is a very general computational paradigm that plays an important role in many

different areas of symbolic computation. For example, unification plays a central role in

• Automated Deduction (First-order logic with or without equality, higher-order logic);

• Logic Programming (Prolog, λ-Prolog);

• Constraint-based Programming;

• Type Inferencing (ML, ML+, etc.);

• Knowledge-Base Systems, Feature structures; and

• Computational Linguistics (Unification grammars).

In this survey, we shall focus on unification problems arising in methods for automated

theorem proving based on matings. This covers at least the kind of unification arising in

resolution (Robinson [61], Plotkin [58]), matings (Andrews, Bibel [4, 11, 12, 13]), equational

matings (Gallier, Plaisted Narendran, Raatz, Snyder [28, 27]), and ET-proofs (Miller, Pfen-

ning [57, 51, 53]). Clearly, many other important parts of unification theory are left out,

and we apologize for this. In particular, we will not cover the classification theory of the

Siekmann school (for example, [62, 69, 15, 16]), the many unification procedures for spe-

cial theories (AC, etc., see Siekmann [62]), the combination of unification procedures (for

example, Yelick [71], Schmidt-Schauss [65], Boudet, Jouannaud, and Schmidt-Schauss [14])

order-sorted unification (for example, Meseguer, Goguen, and Smolka [50], and Isakowitz

[37]), semi-unification (see [41] for references), unification applied to type-inferencing (for

example, Milner [54], Kfoury, Tiuryn, and Urzyczyn, [40,42], and Remy [59, 60]), unifi-

cation in computational linguistics (for example, Shieber [63]), and unification in feature

structures (for example, Aı̈t-Kaci [2, 3]). Fortunately for the uninitiated reader, there are

Draft/March 4, 2013 1

2 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

other very good survey papers covering significant parts of the above topics: the survey by

Siekmann [62], the survey by Knight [43], and the survey by Kirchner and Jouannaud [38].

The most elementary and having the broadest coverage is probably Knight’s survey. Our

account has a narrower focus, but it also sketches some of the proof techniques, which is

usually missing from the other surveys. The topics that we will cover are:

• Standard unification;

• Rigid E-unification (E a finite set of first-order equations), a decidable form of E-

unification recently introduced in the framework of Andrews and Bibel’s method of

matings [4, 6, 11, 12, 13].

These unification problems will be tackled using the method of transformations on

term systems, already anticipated in Herbrand’s thesis [32] (1930), and revived very effec-

tively by Martelli and Montanari [49] for standard unification. In a nutshell, the method is

as follows:

A unification problem is gradually transformed into one whose solution is (almost)

obvious.

This approach is an instance of a very old method in mathematics, but a fairly recent

trend in computer science, namely, the specification of procedures and algorithms in terms

of inference rules. There are a number of significant advantages to this method. (1) A clean

separation of logic and control is achieved. (2) The correctness of the procedure obtained

this way is often easier to establish, and irrelevant implementation issues are avoided. (3)

The actual design of algorithms from the procedure specified by rules can be viewed as an

optimization process.

Another benefit of this approach to the design of algorithms is that one often gains

a deeper understanding of the problem being solved, and one understands more easily the

differences between algorithms solving a same problem. The effectiveness of this method

for tackling unification problems was first shown by Martelli and Montanari [49] (although,

as we said earlier, it was anticipated by Herbrand [32]). Similarly, Bachmair, Dershowitz,

Hsiang, and Plaisted [8, 7, 9, 10] showed how to describe and study Knuth-Bendix comple-

tion procedures [44] in terms of proof rules. Presented in terms of proof rules, completion

procedures are more transparent, and their correctness proofs are significantly simplified.

Many other examples of the effectiveness of the method of proof rules can be easily found

(for example, in type inference problems, and Gentzen-style automated deduction, see Gal-

lier [22] for the latter). Jouannaud and Kirchner [38] also emphasize the proof rules method,

and provide many more examples of its use.

Draft/March 4, 2013

1 Introduction 3

Although in this paper the perspective is to discuss unification in terms of transfor-

mations (proof rules), we should not forget about the history of unification theory, and the

major turning points.1 Undoubtedly, the invention of the resolution method and of the first

unification algorithm by Alan Robinson in the early sixties [61] (1965) marks the beginning

of a new era. In the post Robinson era, we encounter Plotkin’s seminal paper on building-

in equational theories [58] (1972), in which E-unification is introduced, and then Gérard

Huet’s thesis [35] (1976) (with Huet [34] as a precursor). Huet’s thesis (1976) makes a ma-

jor contribution to the theory of higher-order unification, in that it shows that a restricted

form of unification, preunification, is sufficient for most theorem-proving applications. The

first practical higher-order (pre)unification algorithm is defined and proved correct. Huet

also gives a quasi-linear unification algorithm for standard unification, and an algorithm

for unifying infinite rational trees. In the more recent past, in our perspective, we would

like to mention Martelli and Montanari’s paper showing the effectiveness of the method

of transformations [49] (1982), and Claude Kirchner’s thesis [39] in which the method of

transformations is systematically applied to E-unification. We also would like to mention

that most of the results on E-unification and higher-order unification discussed in this paper

originate from Wayne Snyder’s thesis [66] (1988). A more comprehensive presentation of

these results will appear in Snyder [68].

Unification theory is a very active field of research, and it is virtually impossible to

keep track of all the papers that have appeared on this subject. As evidence that unification

is a very active field of research, two special issues of the Journal of Symbolic Computation

are devoted to unification theory (Part I in Vol. 7(3 & 4), and Part II in Vol. 8(1 & 2), both

published in 1989). It is our hope that this paper will inspire other researchers to work in

this area.

The paper is organized as follows. Section 2 provides a review of background material

relevant to unification. The notion of Skolem form and the Skolem-Herbrand-Gödel theorem

are reviewed in Section 3. The method of matings for languages without equality is presented

in Section 4. Section 5 is devoted to a presentation of standard unification using the method

of transformations on terms systems. Fast unification methods are discussed in Section 6.

The method of equational matings, a generalization of matings to languages with equality, is

presented in Section 7. Section 8 is devoted to rigid E-unification, an extension of standard

unification arising in the framework of equational matings. We give an overview of results

of Gallier, Narendran, Plaisted, and Snyder [27], showing among other things that rigid

E-unification is decidable and NP-complete. Directions for further research are discussed

in section 9.

1 The following list is by no means exclusive, and only reflects the perspective on unification adopted
in this paper.

Draft/March 4, 2013

4 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

2 Algebraic Background

We begin with a brief review of algebraic background material. The purpose of this section

is to establish the notation and the terminology used throughout this paper. As much as

possible, we follow Huet [36] and Gallier [22].

Definition 2.1 Let −→⊆ A×A be a binary relation on a set A. The converse (or inverse)

of the relation −→ is the relation denoted as −→−1 or ←−, defined such that u ←− v iff

v −→ u. The symmetric closure of −→, denoted by ←→, is the relation −→ ∪ ←−.

The transitive closure, reflexive and transitive closure, and the reflexive, symmetric, and

transitive closure of −→ are denoted respectively by
+−→,

∗−→ , and
∗←→ .

Definition 2.2 A relation −→ on a set A is Noetherian or well founded iff there are

no infinite sequences 〈a0, . . . , an, an+1, . . .〉 of elements in A such that an −→ an+1 for all

n ≥ 0.

Definition 2.3 A preorder � on a set A is a binary relation � ⊆ A× A that is reflexive

and transitive. A partial order � on a set A is a preorder that is also antisymmetric. The

converse of a preorder (or partial order) � is denoted as �. A strict ordering (or strict

order) ≺ on a set A is a transitive and irreflexive relation. Given a preorder (or partial

order) � on a set A, the strict ordering ≺ associated with � is defined such that s ≺ t iff

s � t and t 6� s. Conversely, given a strict ordering ≺, the partial ordering � associated

with ≺ is defined such that s � t iff s ≺ t or s = t. The converse of a strict ordering ≺ is

denoted as �. Given a preorder (or partial order) �, we say that � is well founded iff � is

well founded.

Definition 2.4 Let −→ ⊆ A × A be a binary relation on a set A. We say that −→ is

locally confluent iff for all a, a1, a2 ∈ A, if a −→ a1 and a −→ a2, then there is some a3 ∈ A
such that a1

∗−→ a3 and a2
∗−→ a3. We say that −→ is confluent iff for all a, a1, a2 ∈ A, if

a
∗−→ a1 and a

∗−→ a2, then there is some a3 ∈ A such that a1
∗−→ a3 and a2

∗−→ a3. We

say that −→ is Church-Rosser iff for all a1, a2 ∈ A, if a1
∗←→ a2, then there is some a3 ∈ A

such that a1
∗−→ a3 and a2

∗−→ a3. We say that a ∈ A is irreducible iff there is no b ∈ A
such that a −→ b. It is well known (Huet [36]) that a Noetherian relation is confluent iff it

is locally confluent and that a relation is confluent iff it is Church-Rosser. A relation −→
is canonical iff it is Noetherian and confluent. Given a canonical relation −→, it is well

known that every a ∈ A reduces to a unique irreducible element a↓∈ A called the normal

form of a, and that a
∗←→ b iff a↓ = b↓ (Huet [36]).

Definition 2.5 Terms are built up inductively from a ranked alphabet (or signature) Σ of

Draft/March 4, 2013

2 Algebraic Background 5

constant and function symbols, and a countably infinite set X of variables. For simplicity

of exposition, we assume that Σ is a one-sorted ranked alphabet, i.e., that there is a rank

function r: Σ→ N assigning a rank (or arity) r(f) to every symbol f ∈ Σ (N denotes the

set of natural numbers). We let Σn = {f ∈ Σ | r(f) = n}. Symbols in Σ0 (of rank zero)

are called constants.

Definition 2.6 We let TΣ(X) denote the set of terms built up inductively from Σ and X .

Thus, TΣ(X) is the smallest set with the following properties:

• x ∈ TΣ(X), for every x ∈ X ;

• c ∈ TΣ(X), for every c ∈ Σ0;

• f(t1, . . . , tn) ∈ TΣ(X), for every f ∈ Σn and all t1, . . . , tn ∈ TΣ(X).

Given a term t ∈ TΣ(X), we let V ar(t) be the set of variables occurring in t. A term

t is a ground term iff V ar(t) = ∅.

It is well known that TΣ(X) is the term algebra freely generated by X , and this allows

us to define substitutions.

Definition 2.7 A substitution is a function ϕ:X → TΣ(X) such that ϕ(x) 6= x for only

finitely many x ∈ X . The set D(ϕ) = {x ∈ X | ϕ(x) 6= x} is the domain of ϕ, and the set

I(ϕ) =
⋃
x∈D(ϕ) V ar(ϕ(x)) is the set of variables introduced by ϕ.

A substitution ϕ:X → TΣ(X) with domain D(ϕ) = {x1, . . . , xn} and such that

ϕ(xi) = ti for i = 1, . . . , n, is denoted as [t1/x1, . . . , tn/xn]. Since TΣ(X) is freely gen-

erated by X , every substitution ϕ:X → TΣ(X) has a unique homomorphic extension

ϕ̂:TΣ(X) → TΣ(X). For every term t ∈ TΣ(X), we denote ϕ̂(t) as t[ϕ] or even as ϕ(t)

(with an intentional identification of ϕ and ϕ̂).

Definition 2.8 Given two substitutions ϕ and ψ, their composition denoted ϕ ;ψ is the

substitution defined such that ϕ ;ψ(x) = ψ̂(ϕ(x)) for all x ∈ X . Thus, note that ϕ ;ψ =

ϕ ◦ ψ̂, but not ϕ ◦ ψ, where ◦ denotes the composition of functions (written in diagram

order). A substitution ϕ is idempotent iff ϕ ;ϕ = ϕ. It is easily seen that a substitution

ϕ is idempotent iff I(ϕ) ∩D(ϕ) = ∅. A substitution ϕ is a renaming iff ϕ(x) is a variable

for every x ∈ D(ϕ), and ϕ is injective over its domain. Given a set V of variables and a

substitution ϕ, the restriction of ϕ to V is the substitution denoted ϕ|V defined such that,

ϕ|V (x) = ϕ(x) for all x ∈ V , and ϕ|V (x) = x for all x /∈ V .

There will be occasions where it is necessary to replace a subterm of a given term with

another term. We can make this operation precise by defining the concept of a tree address

originally due to Gorn.

Draft/March 4, 2013

6 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Definition 2.9 Given a term t ∈ TΣ(X), the set Tadd(t) of tree addresses in t is a set of

strings of positive natural numbers defined as follows (where ε denotes the null string):

• Tadd(x) = {ε}, for every x ∈ X ;

• Tadd(c) = {ε}, for every c ∈ Σ0;

• Tadd(f(t1, . . . , tn)) = {ε} ∪ {iw | w ∈ Tadd(ti), 1 ≤ i ≤ n}.

Definition 2.10 Given any β ∈ Tadd(t), the subtree rooted at β in t is denoted as t/β.

Given t1, t2 ∈ TΣ(X) and β ∈ Tadd(t1), the tree t1[β ← t2] obtained by replacing the

subtree rooted at β in t1 with t2 can be easily defined.

Definition 2.11 Let −→ be a binary relation −→ ⊆ TΣ(X)×TΣ(X). (i) The relation −→
is monotonic (or stable under the algebra structure) iff for every two terms s, t and every

function symbol f ∈ Σ, if s −→ t then f(. . . , s, . . .) −→ f(. . . , t, . . .).

(ii) The relation −→ is stable (under substitution) if s −→ t implies s[σ] −→ t[σ] for

every substitution σ.

Definition 2.12 A strict ordering ≺ has the subterm property iff s ≺ f(. . . , s, . . .) for

every term f(. . . , s, . . .). A simplification ordering ≺ is a strict ordering that is monotonic

and has the subterm property (since we are considering symbols having a fixed rank, the

deletion property is superfluous, as noted in Dershowitz [20]). A reduction ordering ≺ is

a strict ordering that is monotonic, stable (under substitution), and such that � is well

founded. With a slight abuse of language, we will also say that the converse � of a strict

ordering ≺ is a simplification ordering (or a reduction ordering). It is shown in Dershowitz

[20] that there are simplification orderings that are total on ground terms.

Definition 2.13 A set of rewrite rules is a binary relation R ⊆ TΣ(X)×TΣ(X) such that

V ar(r) ⊆ V ar(l) whenever 〈l, r〉 ∈ R. A rewrite rule 〈l, r〉 ∈ R is usually denoted as l→ r.

A rewrite rule s → t is a variant of a rewrite rule u → v ∈ R iff there is some renaming ρ

with domain V ar(u) ∪ V ar(v) such that s = u[ρ] and t = v[ρ].

Let R ⊆ TΣ(X)× TΣ(X) be a set of rewrite rules.

Definition 2.14 The relation −→R over TΣ(X) is defined as the smallest stable and

monotonic relation that contains R. This is the rewrite relation associated with R. This

relation is defined explicitly as follows: Given any two terms t1, t2 ∈ TΣ(X), then

t1 −→R t2

Draft/March 4, 2013

2 Algebraic Background 7

iff there is some variant l → r of some rule in R, some tree address β in t1, and some

substitution σ, such that

t1/β = l[σ], and t2 = t1[β ← r[σ]].

The concept of an equation is similar to that of a rewrite rule, but equations can be

used oriented forward or backward, and the restriction V ar(r) ⊆ V ar(l) is dropped.

Definition 2.15 A set of equations is a binary relation E ⊆ TΣ(X)×TΣ(X). An equation

〈l, r〉 ∈ E is usually denoted as l
.
= r, to emphasize the difference with a rewrite rule. An

equation s
.
= t is a variant of an equation u

.
= v ∈ E iff there is some renaming ρ with

domain V ar(u) ∪ V ar(v) such that s = u[ρ] and t = v[ρ].

Definition 2.16 The relation ←→E over TΣ(X) is defined as the smallest symmetric

relation containing E that is stable, and monotonic. This relation is defined explicitly as

follows: Given any two terms t1, t2 ∈ TΣ(X), then

t1 ←→E t2

iff there is some variant l
.
= r of some equation in E ∪E−1, some tree address β in t1, and

some substitution σ, such that

t1/β = l[σ], and t2 = t1[β ← r[σ]].

Note that an equation can be used oriented forward or backward, since E−1 consists

of all r
.
= l such that l

.
= r ∈ E.

Definition 2.17 The reflexive and transitive closure of −→R is denoted as
∗−→R , and

the reflexive and transitive closure of ←→E as
∗←→E . Sometimes,

∗←→E is denoted as

=E . It is easily seen that
∗←→E is an equivalence relation. In fact,

∗←→E is the smallest

congruence containing E that is stable under substitution, and
∗←→E = (−→E ∪ −→−1

E)∗.

It can be shown that E |= u
.
= v iff u

∗←→E v (a form of Birkhoff’s completeness theorem).

A set R of rewrite rules is called Noetherian, confluent, Church-Rosser, or canonical, iff the

relation −→R has the corresponding property.

Draft/March 4, 2013

8 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

3 The Skolem-Herbrand-Gödel Theorem

An automated deduction method is a procedure for checking whether an arbitrary formula is

provable. In this survey, we are restricting ourselves to first-order logic, for which, by Gödel’s

completeness theorem, we know that a formula is provable iff it is valid. Thus, the problem

is equivalent to designing a procedure for checking whether an arbitrary formula is valid.

This problem is also called the validity problem. The main difficulty in automated deduction

is to deal with the quantifiers. To be more precise, the difficulty is to design procedures that

handle the quantifiers efficiently. For a quantifier-free formula, also called a proposition,

it can be shown that the validity problem is decidable. For propositions without equality,

this is fairly easy to show, and there are a number of algorithmic methods for deciding

the validity problem: the truth-table method, the resolution method, the matings method,

Davis and Putnam’s method, etc. (see Gallier [22], or Manna [48]). For quantifier-free

formulae with equality, the validity problem is also decidable, but this is harder to prove.

Decidability can be established using the “congruence closure method”, and an algorithm

using congruence closure can be designed (Kozen [45,46], Nelson and Oppen [55], Downey,

Sethi, and Tarjan [21]). In the general case of quantifed formulae, Church [18] (1936) proved

that the validity problem is undecidable. A particularly simple proof of this important result

was later given by Floyd (see Manna [48], page 105-106).

Two important theorems help in dealing with quantifiers. The first theorem, essen-

tially due to Skolem, shows that the validity problem can be reduced to the validity problem

for formulae containing only one kind of quantifiers (say ∀). The second one, known as the

Skolem-Herbrand-Gödel theorem, shows that the validity of a quantified formula can be

reduced to the validity of a quantifier-free formula, modulo guessing some (ground) substi-

tutions. Without digressing excessively, we would like to warn the readers of a confusion

often made between two different important theorems, Herbrand’s theorem, and the Skolem-

Herbrand-Gödel theorem. The first theorem, Herbrand’s theorem [32] (1930), is about the

provability of first-order formulae, and its (meta)proof does not appeal to the semantics

of first-order logic at all. Furthermore, Herbrand’s theorem also yields some information

on the length of proofs. Historically, Herbrand’s theorem was proved in 1930, before the

Skolem-Herbrand-Gödel theorem (which, according to Peter Andrews, was apparently only

formulated in the early fifties by Quine). The second theorem, the Skolem-Herbrand-Gödel

theorem (see Andrews [4, 5] or Gallier [22]), is about unsatisfiability , a semantic notion,

and its (meta)proof can be presented essentially as a semantic argument (a certain model is

constructed). Furthermore, the Skolem-Herbrand-Gödel theorem does not yield any infor-

mation on the length of proofs. Basically, the Skolem-Herbrand-Gödel theorem combines

results of Skolem [64] (1928) and Gödel [30, 31] (1930), from his proof of the completeness

Draft/March 4, 2013

3 The Skolem-Herbrand-Gödel Theorem 9

theorem, but since it is definitely a “semantic version” of Herbrand’s theorem, it is appro-

priate to refer to it by the concatenation of the three names! Finally, the (meta)proof of

Herbrand’s theorem is significantly harder than the (meta)proof of the Skolem-Herbrand-

Gödel theorem, but it yields more information, namely, some complexity-theoretic informa-

tion about the length of proofs. For our purposes, the Skolem-Herbrand-Gödel theorem is

all we need.

What Skolem (essentially) showed is that given a quantified (first-order) formula A,

one can associate two formulae Avff and Asff with the following properties:

(1) The formula Avff contains only existensial quantifiers, and A is valid iff Avff is valid.

(2) The formula Asff contains only universal quantifiers, and A is satisfiable iff Asff is

satisfiable.

Following Goldfarb (see [32]), we call Avff the validity functional form of A. Intu-

itively speaking, it is obtained from A by “eliminating” universal quantifiers. Dually, we

call Asff the satisfiability functional form of A. Intuitively speaking, it is obtained from

A by “eliminating” existential quantifiers. Now, recall that we say that a formula A is

unsatisfiable iff it is not satisfied in any structure, and that A is valid iff ¬A is unsatisfiable.

Thus, (2) can be equivalently stated as A is unsatisfiable iff Asff is unsatisfiable.

Oddly, early researchers in the field of automated deduction have shown a preference

for Asff , the satisfiability functional form, often referred to as the Skolem form of A. This

is perhaps because the main property of Asff (A is satisfiable iff Asff is satisfiable) can be

intuitively justified by an appeal to the axiom of choice. The consequence of this bias is that

most automated deduction methods are traditionally presented as refutation methods. This

means that in order to show that A is valid, we attempt to show that ¬A is unsatisfiable,

that is, we try to show that the Skolem form (¬A)sff of ¬A, is unsatisfiable. We have an

unfortunate first step which consists in negating what we are trying to prove! We believe

that tradition is worth fighting when it is silly, and it would certainly make more sense to

present automated deduction methods, the resolution method in particular, in their positive

version, as proving methods, rather than as refutation (negative) methods. The drawback

of such a choice is that one has to constantly translate traditional refutation methods into

their positive form, in order to compare them with other (positive) proving methods. Con-

sequently, mostly for ease of comparison with other methods, we will follow the tradition,

not without some guilt feelings, and present our methods as refutation methods. Therefore,

we will be using the satisfiability functional form Asff , often called the Skolem form of A,

and use the version of the Skolem-Herbrand-Gödel theorem dealing with unsatisfiability,

rather than validity.

Draft/March 4, 2013

10 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Roughly, the Skolem-Herbrand-Gödel theorem asserts that a formula A is unsatisfiable

iff some conjunction of substitution instances of subformulae of the Skolem form of A is

unsatisfiable. The crucial idea is that the unsatisfiability of a quantified formula A is reduced

to the unsatisfiability of some quantifier-free formula (obtainable from A). The price of this

reduction is that one needs to “guess” some substitutions and which subformulae of A need

to be instantiated with these substitutions.

It is possible to define the Skolem form of an arbitrary formula and state a version

of the Skolem-Herbrand-Gödel theorem for arbitrary formulae. However, in the fully gen-

eral case, one needs to deal with negative and positive occurrences of subformulae, which

complicates matters and obscures the main point of the theorem. We can give a simpler

version of the Skolem-Herbrand-Gödel theorem for formulae in a special form, the negation

normal form (for short, nnf), where negation only applies to atomic formulae. Since every

formula is equivalent to another formula in nnf , there is no loss of generality. Furthermore,

contrary to other normal formal forms, such as prenex form, the nnf of a formula is linear

in the size of the original formula. The following example should give a crisper idea of what

we are talking about.

Example 3.1 Let A = ∃x∀y(P (y) ⊃ P (x)). In order to prove that A is valid, we will

attempt to prove that ¬A is unsatisfiable.

Step 1: Compute ¬A. We have

¬A = ∀x∃y(P (y) ∧ ¬P (x)).

Step 2: Compute the Skolem form ∀xB0 of ¬A. We have

∀xB0 = ∀x(P (f(x)) ∧ ¬P (x)).

Step 3: Find a conjunction of (ground) instances of B0 which is unsatisfiable. Observe

that

C = (P (f(a)) ∧ ¬P (a)) ∧ (P (f(f(a))) ∧ ¬P (f(a)))

is unsatisfiable.

One should note that no substitution σ makes σ(B0) = σ(P (f(x)) ∧ ¬P (x)) un-

satisfiable. A systematic way to find a conjunction of (ground) instances of B0 which is

unsatisfiable is to duplicate B0 and try again. After duplication (with renaming of the

second conjunct), we have

B1 = (P (f(x)) ∧ ¬P (x)) ∧ (P (f(y)) ∧ ¬P (y)).

Draft/March 4, 2013

3 The Skolem-Herbrand-Gödel Theorem 11

The key point is that unsatisfiability will be achieved if we can find mated pairs of literals,

that is, pairs of literals of opposite signs. In B1, the literals P (f(x)) and ¬P (y) form a

mated pair. If we apply the substitution [a/x, f(a)/y], we get P (f(a)) and ¬P (f(a)). What

happens is that P (f(x)) and P (y) are unified by the substitution [a/x, f(a)/y].

This is a general phenomenon, and it is at the heart of the method of matings of

Bibel and Andrews [4, 6, 11, 12, 13]. The crucial observation due to Andrews and Bibel

is that a quantifier-free formula (in nnf) is unsatisfiable iff certain sets of literals occurring

in A (called vertical paths) are unsatisfiable. Matings come up as a convenient method

for checking that vertical paths are unsatisfiable. Roughly speaking, a mating is a set of

pairs of literals of opposite signs (mated pairs) such that all these (unsigned) pairs are

globally unified by some substitution. The importance of matings stems from the fact that

a quantifier-free formula A has a mating iff there is a ground substitution θ such that θ(A)

is unsatisfiable. Thus, we see where unification comes into the picture, at least in the case of

formulae without equality. Things are more complicated when formulae contain equality. In

this case, we are naturally led to more general forms of unification, E-unification and rigid

E-unification. We now proceed with a more rigorous presentation of the concept of Skolem

form and of the Skolem-Herbrand-Gödel theorem. First, we recall the formal definition of

the negation normal form.

Definition 3.2 Formulae in negation normal form (for short, in nnf) are defined induc-

tively as follows. A formula A is in nnf iff either

(1) A is an atomic formula or the negation ¬B of an atomic formula, or

(2) A = (B ∨ C), where B and C are in nnf , or

(3) A = (B ∧ C), where B and C are in nnf , or

(4) A = ∀xB, where B is in nnf , or

(5) A = ∃xB, where B is in nnf .

Lemma 3.3 For every formula A, one can construct a formula B in nnf such that A ≡ B
is valid.

From now on, we will be dealing only with rectified formulae, that is, formulae in

which no variable occurs both free and bound, and distinct occurrences of quantifiers bound

distinct variables. It is easy to show that for every formula A, one can construct a rectified

formula B equivalent to A. We now give an algorithm to compute the Skolem form of a

formula in nnf . First, it is necessary to compute the universal scope of a subformula.

Draft/March 4, 2013

12 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Definition 3.4 Given a (rectified) formula A in nnf , the set US(A) of pairs 〈B,L〉 where

B is a subformula of A and L is a sequence of variables, is defined inductively as follows:

US0 = {〈A, 〈〉〉};
USk+1 = USk ∪ {〈C,L〉, 〈D,L〉 | 〈B,L〉 ∈ USk,

B is of the form (C ∧D) or (C ∨D)}
∪ {〈C,L〉 | 〈∃xC,L〉 ∈ USk}
∪ {〈C, 〈y1, . . . , ym, x〉〉 | 〈∀xC, 〈y1, . . . , ym〉〉 ∈ USk}.

For every subformula B of A, the sequence L of variables such that 〈B,L〉 belongs to

US(A) =
⋃
USk is the universal scope of B.

Example 3.5 Let

A = ∀x(P (a) ∨ ∃y(Q(y) ∧ ∀z(P (y, z) ∨ ∃uQ(x, u)))) ∨ ∃wQ(a,w).

Then,

〈∃y(Q(y) ∧ ∀z(P (y, z) ∨ ∃uQ(x, u))), 〈x〉〉,
〈∃uQ(x, u), 〈x, z〉〉, and

〈∃wQ(a,w), 〈〉〉

define the universal scope of the subformulae of A of the form ∃xB.

Definition 3.6 Given a rectified sentence2 A in nnf , the Skolem form (or Skolem normal

form) of A is defined recursively as follows. Let A′ be any subformula of A:

(i) If A′ is either an atomic formula B or the negation ¬B of an atomic formula B, then

SK(A′) = A′.

(ii) If A′ is of the form (B ∗ C), where ∗ ∈ {∨,∧}, then SK(A′) = (SK(B) ∗ SK(C)).

(iii) If A′ is of the form ∀xB, then SK(A′) = ∀xSK(B).

(iv) If A′ is of the form ∃xB, then if 〈y1, . . . , ym〉 is the universal scope of ∃xB (that is,

the sequence of variables such that 〈∃xB, 〈y1, . . . , ym〉〉 ∈ US(A)) then

(a) If m > 0, create a new Skolem function symbol fA′ of rank m and let SK(A′) =

SK(B[fA′(y1, . . . , ym)/x]).

(b) If m = 0, create a new Skolem constant fA′ and let SK(A′) = SK(B[fA′/x]).

Observe that since the sentence A is rectified, all subformulae A′ of the form ∃xB are

distinct, and since the Skolem symbols are indexed by the subformulae A′, they are also

distinct.

2 Recall that a sentence is a formula without any free variables, and it is also called a closed formula.

Draft/March 4, 2013

3 The Skolem-Herbrand-Gödel Theorem 13

Example 3.7 Let

A = ∀x(P (a) ∨ ∃y(Q(y) ∧ ∀z(P (y, z) ∨ ∃uQ(x, u)))) ∨ ∃wQ(a,w).

SK(∃wQ(a,w)) = Q(a, c),

SK(∃uQ(x, u)) = Q(x, f(x, z)),

SK(∃y(Q(y) ∧ ∀z(P (y, z) ∨ ∃uQ(x, u)))) =

(Q(g(x)) ∧ ∀z(P (g(x), z) ∨Q(x, f(x, z)))), and

SK(A) = ∀x(P (a) ∨ (Q(g(x)) ∧ ∀z(P (g(x), z) ∨Q(x, f(x, z))))) ∨Q(a, c).

The main property of Skolem forms is given in the following lemma.

Lemma 3.8 Let L be a first-order language with or without equality. Let A be a rectified

L-sentence in nnf , and let B be its Skolem normal form. The sentence A is satisfiable iff

its Skolem form B is satisfiable.

Proof . Let C be any subformula of A. We show that the following properties hold:

(a) For every structure A such that all function, predicate, and constant symbols in the

Skolem form SK(C) of C receive an interpretation, for every assignment s, if A |= SK(C)[s]

then A |= C[s].

(b) For every structure A such that exactly all function, predicate, and constant

symbols in C receive an interpretation, for every assignment s (with range A), if A |= C[s]

then there is an expansion B of A such that B |= SK(C)[s].

The proof is by induction on the size of subformulae of A. Details can be found in

Gallier [22].

Warning : In general, a formula A and its Skolem form SK(A) are not equivalent.

For example, ∃xP (x) and P (a) are not equivalent.

The Skolem-Herbrand-Gödel theorem can be stated in a very concise form if we in-

troduce the notion of a compound instance due to Andrews. Recall that a literal is either

an atomic formula or the negation of an atomic formula.

Definition 3.9 Let A be a rectified sentence in nnf and let B its Skolem form. The set

of compound instances (for short, c-instances) of B is defined inductively as follows:

(i) If B is a literal, then B is its only c-instance;

(ii) If B is of the form (C ∗D), where ∗ ∈ {∨,∧}, for any c-instance H of C and c-instance

K of D, then (H ∗K) is a c-instance of B;

(iii) If B is of the form ∀xC, for any k closed terms t1,. . . ,tk, if Hi is a c-instance of C[ti/x]

for i = 1, . . . , k, then H1 ∧ . . . ∧Hk is a c-instance of B.

Draft/March 4, 2013

14 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Example 3.10 Let

B = ∀x(P (x) ∨ ∀yQ(y, f(x))) ∧ (¬P (a) ∧ (¬Q(a, f(a)) ∨ ¬Q(b, f(a)))).

Then,

(P (a) ∨ (Q(a, f(a)) ∧Q(b, f(a)))) ∧ (¬P (a) ∧ (¬Q(a, f(a)) ∨ ¬Q(b, f(a))))

is a c-instance of B.

Note that c-instances are quantifier free. We are now ready to state a version of the

Skolem-Herbrand-Gödel theorem due to Andrews [4] (1981), but first, a minor technicality

has to be taken care of. If the first-order language under consideration does not have any

constants, the theorem fails. For example, the formula ∀x∀y(P (x)∧¬P (y)) is unsatisfiable,

but if the language has no constants, we cannot find a ground substitution instance of

P (x) ∧ ¬P (y) that is unsatisfiable. To avoid this problem, we will assume that if any

first-order language L does not have constants, the special constant # is added to it.

Theorem 3.11 Let L be a first-order language with or without equality. Given any rectified

sentence A in nnf , if B is the Skolem form of A, then A is unsatisfiable if and only if some

compound instance C of B is unsatisfiable.

Remark : There is an algorithm for deciding whether a c-instance is unsatisfiable if

equality is absent, but in case equality is present, such an algorithm is much less trivial.

Such an algorithm based on congruence closure exists.

In view of lemma 3.8, if we are interested in deciding unsatisfiability, we can restrict

our attention to universal sentences (that is, sentences containing only universal quantifiers).

Then, theorem 3.11 can be sated as follows:

Corollary 3.12 Given a universal sentence A in nnf , A is unsatisfiable if and only if

some compound instance C of A is unsatisfiable.

Lemma 3.12 is the theoretical basis of many refutation procedures, in particular the

resolution method, and the method of matings. In the next section, we look at the method

of matings, as presented by Andrews [4]. The same method was also investigated by Bibel

[11, 12, 13] under the name of “connection method”, and in fact, probably predates the

method of matings.

Draft/March 4, 2013

4 The Method of Matings 15

4 The Method of Matings

If one wants to write a procedure based on lemma 3.12, the first problem to solve is to find

a way of generating compound instances nicely. Andrews proposed a convenient notion, the

notion of amplification [4].

Definition 4.1 Given a universal formula A, C is obtained from B by quantifier duplica-

tion iff C results from B by replacing some subformula ∀xM of B by (∀xM ∧ ∀xM).

If C1 ⇒ C2, . . ., Cn−1 ⇒ Cn, with B = C1, C = Cn, and Ci+1 is obtained from Ci by

quantifier duplication, 1 ≤ i < n, then C is obtained from B by some sequence of quantifier

duplications.

If A ⇒∗ B by some sequence of quantifier duplications, C is a rectified sentence

equivalent to B, and D obtained from C by deleting the quantifiers in C, then D is an

amplification of A.

The following lemma shows that every compound instance arises from some amplifi-

cation.

Lemma 4.2 Let L be a first-order language with or without equality. Given a universal

sentence A in nnf , C is a c-instance of A iff there is some amplification D of A and some

(ground) substitution θ such that C = θ(D).

Form theorem 3.11 and lemma 4.2, we have the following variant of the Skolem-

Herbrand-Gödel theorem.

Theorem 4.3 Let L be a first-order language with or without equality. Given a universal

sentence A in nnf , A is unsatisfiable iff there is some amplification D of A and some

(ground) substitution σ such that σ(D) is unsatisfiable.

The next step towards automated deduction is to find a method for deciding whether,

given a quantifier-free formulaD, there is some susbtitution σ such that σ(D) is undecidable.

We first solve this problem for the case of first-order languages without equality. We

present the method of vertical paths, a variant of the disjunctive normal form.

Definition 4.4 Let A be a quantifier-free formula in nnf . The set vp(A) of vertical paths

in A is the set of sets of literals defined inductively as follows:

If A is a literal, then vp(A) = {{A}};

If A = (B ∧ C), then vp(A) = {π1 ∪ π2 | π1 ∈ vp(B), π2 ∈ vp(C)};

Draft/March 4, 2013

16 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

If A = (B ∨ C), then vp(A) = vp(B) ∪ vp(C).

The fundamental property of vertical paths in given in the following lemma.

Lemma 4.5 Let L be a first-order language with or without equality. Given a quantifier-

free formula A in nnf , A is unsatisfiable iff every vertical path in A is unsatisfiable.

Let us now look more closely at vertical paths, and see what it means for a vertical path

to be unsatisfiable. This is where the assumption that equality does not occur simplifies

matters drastically. Given a literal L, if L = A where A is a positive atom, then ¬L = ¬A,

else if L = ¬A where A is a positive atom, then ¬L = A. We say that L and ¬L are

complementary .

• For languages without equality, a vertical path {L1, . . . , Lm} is unsatisfiable iff two

of the literals Li, Lj are complementary, that is, Li = ¬Lj .

• If the formula A is of the form σ(D), this means that there are literals σ(Li) and

¬σ(Lj) such that

σ(Li) = σ(Lj).

A substitution such that σ(Li) = σ(Lj) is called a unifier of Li and Lj . Thus, we see

that looking for an automated deduction procedure based on the Skolem-Herbrand-Gödel

theorem leads to unification. It also leads to matings, which are convenient for checking

that vertical paths are unsatisfiable.

Definition 4.6 Given a quantifier-free formula A in nnf , a mating for A is a pair M =

〈MS, σ〉, where

(1) MS is a set of pairs of literals of opposite sign (in A), and

(2) σ is a substitution such that, for every pair (L,¬L′) ∈MS,

σ(L) = σ(L′).

A mating is p-acceptable iff every vertical path π ∈ vp(A) contains some mated pair

(L,¬L′) ∈MS.

The following lemma is the bridge between theorem 4.3 and lemma 4.5.

Lemma 4.7 Given a quantifier-free formula A in nnf , the following properties hold:

(1) Given a substitution θ, if θ(A) is unsatisfiable, then there is a p-acceptable mating M
for A.

Draft/March 4, 2013

4 The Method of Matings 17

(2) If M is a p-acceptable mating for A with associated substitution σM, then σM(A) is

unsatisfiable.

The completeness and soundness for the method of matings is an immediate conse-

quence of theorem 4.3, lemma 4.5, and lemma 4.7.

Theorem 4.8 Given a universal sentence A in nnf , A is unsatisfiable iff some amplifica-

tion D of A has a p-acceptable mating.

Let us work out an example in detail to illustrate theorem 4.8.

Example 4.9 (Due to Andrews [4]) Let A be the formula

∃x∀y(Px ≡ Py) ⊃ (∃xPx ≡ ∀yPy).

We want to prove that A is valid. First, we negate A and eliminate ≡ and ⊃:

∃x∀y[(¬Px ∨ Py) ∧ (¬Py ∨ Px)] ∧ [(∃xPx ∧ ∃y¬Py) ∨ (∀yPy ∧ ∀x¬Px)]

Next, we skolemize:

∀y[(¬Pc ∨ Py) ∧ (¬Py ∨ Pc)] ∧ [(Pd ∧ ¬Pe) ∨ (∀zPz ∧ ∀x¬Px)]

Next, we amplify (duplicate quantifiers):

∀y[(¬Pc ∨ Py) ∧ (¬Py ∨ Pc)] ∧ ∀y[(¬Pc ∨ Py) ∧ (¬Py ∨ Pc)]
∧[(Pd ∧ ¬Pe) ∨ (∀zPz ∧ ∀x¬Px)]

Rectify variables:

∀y[(¬Pc ∨ Py) ∧ (¬Py ∨ Pc)] ∧ ∀w[(¬Pc ∨ Pw) ∧ (¬Pw ∨ Pc)]
∧[(Pd ∧ ¬Pe) ∨ (∀zPz ∧ ∀x¬Px)]

Delete Quantifiers:

[(¬Pc ∨ Py) ∧ (¬Py ∨ Pc)] ∧ [(¬Pc ∨ Pw) ∧ (¬Pw ∨ Pc)]
∧[(Pd ∧ ¬Pe) ∨ (Pz ∧ ∀x¬Px)]

Vertical paths displayed in “matrix form”:

¬Pc ∨ Py

¬Py ∨ Pc

¬Pc ∨ Pw

¬Pw ∨ Pc[
Pd

¬Pe

]
∨

[
Pz

¬Px

]

Draft/March 4, 2013

18 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

There are 32 vertical paths.

The substitution θ = [d/x, d/y, c/z, e/w] “mates” all the vertical paths:

¬Pc ∨ Pd

¬Pd ∨ Pc

¬Pc ∨ Pe

¬Pe ∨ Pc[
Pd

¬Pe

]
∨

[
Pc

¬Pd

]

A p-acceptable mating is given below:

{〈¬Pc, Pz〉, 〈¬Py, Pd〉, 〈¬Pc, Pc〉, 〈Py,¬Px〉, 〈¬Pe, Pw〉}

The substitution θ unifies (in fact, in an mgu) of the set of pairs:

{〈Pc, Pz〉, 〈Py, Pd〉, 〈Pc, Pc〉, 〈Py, Px〉, 〈Pe, Pw〉}

A naive procedure implementing the method of matings is given below.

Definition 4.10 (A Procedure for Finding Matings)

Let A0 be a universal sentence in nnf . The formula A0 evolves in steps called quantifier

duplication steps.

Let A be the evolving formula

Let Â be obtained from A by deleting the quantifiers (an amplification of A0).

Initially, A := A0.

1. : Construct vp(Â), the set of sets of literals called vertical paths.

2. : Find whether there is a substitution σ such that for every vertical path π ∈ vp(Â),

σ(π) is unsatisfiable. If step 2 succeeds, go to step 4. Otherwise, go to step 3.

3. : Choose some universal subformula ∀xB of A, and replace it by (∀xB ∧∀xB). Then,

rectify variables in this new formula, obtaining A′. Let A := A′ (quantifier duplication

step). Go back to step 1.

4. : Stop, A0 is unsatisfiable (and so are Â and A).

If A0 is unsatisfiable, this procedure stops when it succeeds in finding some substitution

closing all vertical paths in step 2. For languages without equality, we can use unification

to check whether a set of pairs can be mated.

Draft/March 4, 2013

4 The Method of Matings 19

We now briefly discuss some optimizations of the naive procedure. To trim the search

space, we can use a connection graph (Kowalski). Given a mating M for A, literals M

and ¬N are potential mates w.r.t. M iff some vertical path contains both M and ¬N
and σM(M) and σM(N) are unifiable (i.e., there is a substitution such that θ(σM(M)) =

θ(σM(N))). The connection graph for A and M has the literals of A as nodes, and there

is an edge from M to ¬N iff M and ¬N are potential mates w.r.t. M. When building a

mating, we can choose a pair of potential mates and add it to the current mating.

The way of eliminating ≡ can have a great influence on the number of vertical paths.

A ≡ B can be transformed to

(¬A ∨B) ∧ (A ∨ ¬B), or (A ∧B) ∨ (¬A ∧ ¬B).

Example 4.11 (revisited) Let A be the formula

∃x∀y(Px ≡ Py) ⊃ (∃xPx ≡ ∀yPy).

Negate and eliminate ≡ and ⊃:

∃x∀y[(Px ∧ Py) ∨ (¬Px ∧ ¬Py)] ∧ [(∃xPx ∧ ∃y¬Py) ∨ (∀yPy ∧ ∀x¬Px)]

Skolemize:

∀y[(Pc ∧ Py) ∨ (¬Pc ∧ ¬Py)] ∧ [(Pd ∧ ¬Pe) ∨ (∀zPz ∧ ∀x¬Px)]

Duplicate quantifier and rectify:

∀y[(Pc ∧ Py) ∨ (¬Pc ∧ ¬Py)] ∧ ∀w[(Pc ∧ Pw) ∨ (¬Pc ∧ ¬Pw)]

∧[(Pd ∧ ¬Pe) ∨ (∀zPz ∧ ∀x¬Px)]

Delete quantifiers, and display in matrix form:

[
Pc

Py

]
∨

[
¬Pc
¬Py

]
[
Pc

Pw

]
∨

[
¬Pc
¬Pw

]
[
Pd

¬Pe

]
∨

[
Pz

¬Px

]

There are 8 vertical paths instead of 32.

Draft/March 4, 2013

20 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

We now briefly discuss some ways of reducing the number of vertical paths. Observe

that

M =
[
(L1 ∧ P1) ∨ . . . ∨ (Ln ∧ Pn)

]
∧
[
(¬L′1 ∧ . . . ∧ ¬L′n ∧Q) ∨R

]
is equivalent to

N =
[
(L1 ∧ P1) ∨ . . . ∨ (Ln ∧ Pn)

]
∧R,

when Li = L′i.

If A is a sentence containing M and A∗ is the result of substituting N for M in A,

[
L1

P1

]
∨ . . . ∨

[
Ln
Pn

]

¬L1

...

¬Ln
Q

 ∨ R

occurs in A, and

[
L1

P1

]
∨ . . . ∨

[
Ln
Pn

]

R

occurs in A∗.

If M is a mating for A such that each pair 〈Li,¬L′i〉 or 〈L′i,¬Li〉 is in M, there is a

mating M∗ associated with σM(A∗).

Another kind of simplification due to Prawitz is as follows: (L∨Q)∧(¬L∨R) simplifies

to (L∧R)∨(¬L∧Q). Also, we can try to use symmetries in matings to minimize the search

space. For more details, the reader is referred to Andrews [4].

5 Standard Unification

We saw in the previous section how (standard) unification arises naturally in the context

of the method of matings. Historically, unification was brought to the fore as a seminal

component of automated deduction systems by Robinson in 1964, and has been studied

by numerous researchers since that time. In this section we present an abstract view of

unification as a set of non-deterministic rules for transforming a unification problem into

Draft/March 4, 2013

5 Standard Unification 21

an explicit representation of its solution, if such exists. This elegant approach is due to

Martelli and Montanari [49], but was in fact implicit in Herbrand’s thesis (1930).3 For a

very good historical account and technical details on standard unification, the reader is

referred to Knight’s survey article [43], Jouannaud and Kirchner’s survey article [38], and

Lassez, Maher, and Marriot [47].

It is natural to define a unification problem as a set {〈u1, v1〉, . . . , 〈un, vn〉} of ordered

pairs of terms. This is fine, but it turns out that it is more convenient to allow repetitions of

pairs 〈ui, vi〉, and to allow 〈ui, vi〉 to be unordered. Thus, we adopt the following definition

of a unification problem.

Definition 5.1 A term pair or just a pair is a multiset of two terms, denoted, by 〈u, v〉.
A term system (or system) is a (finite) multiset of term pairs. In denoting term systems,

we will often drop the curly brackets and simply write 〈u1, v1〉, . . . , 〈un, vn〉.

The reason why multisets are more convenient than sets is that they lead to a simpler

statement of the transformations. This shows up in two ways. Firstly, since multiset union

is not idempotent (contrary to set union), when we write S∪{〈u, v〉}, we mean the multiset

consisting of all pairs in S distinct from 〈u, v〉, and of the m + 1 pairs 〈u, v〉, where m is

the number of occurrences of 〈u, v〉 in S. Thus, in a transformation S ∪ {〈u, v〉} =⇒ S ∪R,

where S and R are multisets of (unordered pairs) and 〈u, v〉 does not belong to R, there are

fewer occurrences of the pair 〈u, v〉 on the right-hand side of the transformations than there

are on the left-hand side. If S,R were interpreted as sets, and ∪ as set union, we would have

to stipulate that 〈u, v〉 does not belong to S, or explicitly remove it from S on the right-

hand side. Secondly, if pairs 〈u, v〉 are considered ordered, then a special transformation

switching pairs 〈u, x〉 to 〈x, u〉 is needed when x is a variable but u is not. If we treat

〈u, v〉 as unordered, such a transformation is unnecessary. We can now state the (standard)

unification problem:

Definition 5.2 Given a term system S = 〈u1, v1〉, . . . , 〈un, vn〉, the (standard) unification

problem is to find some (all) substitution(s) σ s.t. ui[σ] = vi[σ] for every i, 1 ≤ i ≤ n.

We let U(S) denote the set of all unifiers of S.

Example 5.3 The substitution σ = [a/x, a/y] is a unifier of the pair

〈f(x, g(a, y)), f(x, g(y, x))〉.

In fact, σ is the only unifier of this pair.

3 It is remarkable that in his thesis, Herbrand gave all the steps of a (nondeterministic) unification
algorithm based on transformations on systems of equations. These transformations are given at the
end of the section on property A, page 148 of Herbrand [32].

Draft/March 4, 2013

22 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Example 5.4 For every term t, the substitution σ = [a/x, a/y, t/z] is a unifier of the

pair 〈f(z, g(a, y)), f(z, g(y, x))〉.

Observe that in example 5.4, there is an infinite number of unifiers. This leads us to

the following question.

Question: How do we compare unifiers?

Answer: Define a preorder ≤ on substitutions.

Definition 5.5 Let V be a set of variables. We write σ = θ[V] iff σ(x) = θ(x) for all

x ∈ V , and we write σ ≤ θ[V] (σ is more general than θ over V) iff there exists a substitution

η such that θ = σ ; η[V].

The intuitive idea behind these definitions is that σ is more general than θ (over V)

when each θ(x) can be obtained from σ(x) by instantiating some of the variables occurring

in σ(x). The reason for relativizing the definition of ≤ to a set V of variables is technical.

For one thing, some of the results are incorrect if V is left out. Also, in theorem proving

applications, it is often desirable to compare substitutions with respect to a “protected set”

of variables V . A crucial concept in unification theory is that of a most general unifier .

Definition 5.6 Given a term system S and a finite set V of “protected” variables, a

substitution σ is a most general unifier for S away from V (or mgu away from V) iff:

(i) D(σ) ⊆ V ar(S) and I(σ) ∩ (V ∪D(σ)) = ∅;

(ii) σ is a unifier of S, i.e. σ ∈ U(S);

(iii) For every unifier θ of S, σ ≤ θ[V ar(S)].

Note that condition (i) implies that σ is idempotent. When V is not significant, we

just call σ an mgu. A number of questions now arise naturally.

Some Questions:

• 1. Is ≤ well-founded?

• 2. Given S, can we decide whether S is unifiable?

• 3. Given S, if S is unifiable, is there a mgu?

The answer to all questions is YES.

That ≤ is well-founded is shown in Huet [35]. The decidability of standard unification

is implicit in Herbrand’s thesis [32] (1930), and it is also settled by Robinson [61] (1965),

who gives the first algorithm to find mgu’s.

Draft/March 4, 2013

5 Standard Unification 23

We will now show that questions (1)-(3) have a positive answer. A key point is the

similarity between solving a unification problem and solving a system of linear equations:

u1 = v1

...

un = vn

and

x1 = a1 1x1 + · · ·+ a1nxn
...

xm = am 1x1 + · · ·+ amnxn.

However, there are some major differences.

• In unification, we cannot assume that the algebraic structure is a field.

• The ui may not be variables.

• We may have ui = vj for i 6= j.

Nevertheless, the basic idea of variable elimination (as in Gaussian elimination) ap-

plies. If ui is a variable that does not occur in vi, we can substitute vi for ui in the rest of

the system, and preserve the set of solutions:

u1[vi/ui] = v1[vi/ui]

...

ui = vi
...

un[vi/ui] = vn[vi/ui].

This leads to the idea of the method of transformations on term systems:

Attempt to transform S into a system S′ which is obviously solved.

One of the critical issues is to decide what we mean by a solved system. Quite

obviously, a solved system is one that should represent a unifying substitution. Since we

are dealing with multisets of unordered pairs, we have to be a little careful in formalizing

this idea.

Draft/March 4, 2013

24 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Definition 5.7 A term pair 〈u, v〉 is in solved form in a system S iff either u or v is a

variable, say x, and this variable x does not occur anywhere else in S; in particular, if x = u

then x 6∈ V ar(v) (and similarly if x = v then x 6∈ V ar(u)). The variable x is called a solved

variable. A system is in solved form if all its pairs are in solved form; a variable is unsolved

if it occurs in S but is not solved.

Note that a solved form system is always a set of solved pairs. Also, note that in a

solved pair 〈u, v〉, it is possible that both u and v are variables, and in this case, it may be

that only one of the two is solved in S, or that both are solved in S. Thus, ignoring the

order in term pairs, a system is solved iff it is of the form

S = 〈x1, v1〉, . . . , 〈xn, vn〉,

where x1, . . . , xn are distinct variables, and xi /∈ V ar(vj) for all i, j, 1 ≤ i, j ≤ n. A

system in solved form defines essentially a unique substitution as shown in the definition

below.

Definition 5.8 Given a system S in solved form, we define the substitution σS as follows:

if S = 〈x1, v1〉, . . . , 〈xn, vn〉, then σS = [v1/x1, . . . , vn/xn].

Actually, the above definition is ambiguous, and this is the one place where we might

regret our definition of a term system where pairs 〈u, v〉 are unordered. Let us explain

where the difficulty lies. There is no problem with a solved pair 〈u, v〉 in which only one

of u, v, say u, is a solved variable, because then the substitution component must be [v/u].

But when both u and v are solved variables, we can use [u/v] or [v/u] interchangeably as

a substitution component. Thus, σS is not uniquely defined. However, note for any two σ′S
and σ′′S obtained from S, there is a renaming permutation ρ such that σ′S = σ′′S ; ρ (where ρ

is determined by the pairs 〈u, v〉 where both u and v are solved in S). Thus, σS is uniquely

defined, modulo some inessential renaming permutation. The important fact is that σS is

an idempotent mgu of S, as we now show.

Lemma 5.9 Let S = 〈x1, t1〉, . . . , 〈xn, tn〉 be in solved form, where the x1, . . . , xn are solved

variables. If σ = [t1/x1, . . . , tn/xn], then σ is an idempotent mgu of S. Furthermore, for

any unifier θ of S, we have θ = σ; θ.

Proof . We simply observe that for any θ, θ(xi) = θ(ti) = θ(σ(xi)) for 1 ≤ i ≤ n, and

θ(x) = θ(σ(x)) otherwise. Clearly σ is an mgu, and since D(σ)∩ I(σ) = ∅ by the definition

of solved forms, it is idempotent.

The next question is to find sets of transformations for solving unification problems.

The following properties of such a set T of transformations are desirable:

Draft/March 4, 2013

5 Standard Unification 25

1. (Soundness) Whenever S
∗

=⇒T S′, then U(S′) ⊆ U(S).

2. (Completeness) For any unifier θ of S, there is some solved S′ s.t. S
∗

=⇒T S′, and

σS′ ≤E θ[V ar(S)].

When T satisfies (1) and (2), we say that T is a complete set of transformations. We also

want the transformations to be as deterministic as possible, to reduce the search space. The

set of transformations given in the next definition is a variant of the Herbrand–Martelli–

Montanari transformations.

Definition 5.10 (The Set of Transformations ST) Let S be any term system (possibly

empty), and u, v two terms. The set T consists of the following transformations:

{〈u, u〉} ∪ S =⇒ S (triv)

{〈f(u1, . . . , uk), f(v1, . . . , vk)〉} ∪ S =⇒ {〈u1, v1〉, . . . , 〈uk, vk〉} ∪ S (dec)

{〈x, v〉} ∪ S =⇒ {〈x, v〉} ∪ S[v/x], (vel)

where x is a variable s.t. 〈x, v〉 is not solved in {〈x, v〉} ∪ S, and x /∈ V ar(v).

It should be noted that in transformation (vel), one should not relax the condition

“〈x, v〉 is not solved” to “x is not solved”. If this were allowed, one could eliminate the

variable x even when v is also a solved variable, and this could have the effect that v could

then become unsolved again, leading to an infinite (cyclic) sequence of transformations.

The set ST is a complete set of transformations for standard unification. The basic

idea of the transformations is to transform the original problem into a solved form which

represents its own solution.

Example 5.11

〈f(x, g(a, y)), f(x, g(y, x))〉
=⇒dec 〈x, x〉, 〈g(a, y), g(y, x)〉
=⇒triv 〈g(a, y), g(y, x)〉
=⇒dec 〈a, y〉, 〈y, x〉
=⇒vel 〈a, y〉, 〈a, x〉 .

The reader can immediately verify that the substitution [a/y, a/x] is a unifier of the

original system (in fact, it is an mgu). The sense in which these transformations preserve

the logically invariant properties of a unification problem is shown in the next lemma.

Draft/March 4, 2013

26 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Lemma 5.12 Let the set of all standard unifiers of a system S be denoted by U(S). If

S =⇒ S′ using any transformation from ST , then U(S) = U(S′).

Proof . The only difficulty concerns (vel). Suppose {〈x, v〉} ∪S =⇒vel {〈x, v〉} ∪σ(S) with

σ = [v/x]. For any substitution θ, if θ(x) = θ(v), then θ = σ; θ, since σ; θ differs from θ

only at x, but θ(x) = θ(v) = σ; θ(x). Thus,

θ ∈ U({〈x, v〉} ∪ S)

iff θ(x) = θ(v) and θ ∈ U(S)

iff θ(x) = θ(v) and σ; θ ∈ U(S)

iff θ(x) = θ(v) and θ ∈ U(σ(S))

iff θ ∈ U({〈x, v〉} ∪ σ(S)).

The point here is that the most important feature of a unification problem—its set

of solutions—is preserved under these transformations, and hence we are justified in our

method of attempting to transform such problems into a trivial (solved) form in which the

existence of an mgu is evident.

We may now show the soundness and completeness of these transformations following

[49].

Theorem 5.13 (Soundness) If S
∗

=⇒ S′ with S′ in solved form, then σS′ ∈ U(S).

Proof . Using the previous lemma and a trivial induction on the length of transformation

sequences, we see that U(S) = U(S′), and so clearly σS′ ∈ U(S).

Theorem 5.14 (Completeness) Every sequence of transformations

S = S0 =⇒ S1 =⇒ S2 =⇒ . . .

must eventually terminate. Furthermore, S is unifiable iff every system S′ derivable from

S is in solved form, and for every θ ∈ U(S), σS′ ≤ θ.

Proof . We first show that every transformation sequence terminates. For any system S, let

us define a complexity measure µ(S) = 〈n,m〉, where n is the number of unsolved variables

in the system, and m is the sum of the sizes of all the terms in the system. Then the

lexicographic ordering on 〈n,m〉 is well-founded, and each transformation produces a new

system with a measure strictly smaller under this ordering: (triv) and (dec) must decrease

m and can not increase n, and (vel) must decrease n.

Draft/March 4, 2013

6 Fast (Standard) Unification 27

Therefore the relation =⇒ is well-founded, and every transformation sequence must

end in some system to which no transformation applies. Suppose a given sequence ends in

a system S′. Now θ ∈ U(S) implies by lemma 5.12 that θ ∈ U(S′), and so S′ can contain

no pairs of the form 〈f(t1, . . . , tn), g(t′1, . . . , t
′
m)〉 or of the form 〈x, t〉 with x ∈ V ar(t).

But since no transformation applies, all pairs in S′ must be in solved form. Finally, since

θ ∈ U(S′), by lemma 5.9 we must have σS′ ≤ θ.

Putting these two theorems together, we have that the set ST can always find an mgu

for a unifiable system of terms; as remarked in [49], this abstract formulation can be used

to model many different unification algorithms, by simply specifying data structures and a

control strategy.

The first published unification algorithm due to Robinson ([61]) can run in exponential

time. Since Robinson’s seminal discovery, several polynomial-time algorithms for standard

unification have been given, including one by Robinson himself. Among them, we single out

a quasi-linear algorithm due to Huet [35] (1976), a linear-time algorithm due to Paterson and

Wegman [56] (1978), and quasi-linear and linear algorithms due to Martelli and Montanari

[49] (1982). For an excellent account of standard unification, the reader is referred to

Knight’s survey article [43], and to Jouannaud and Kirchner’s survey article [38]. Martelli

and Montanari’s important contribution ([49]), perhaps even more than their algorithm

itself,4 is to have demonstrated with perfect clarity that the method of transformations

is remarkably well suited for tackling unification problems. In some sense, Martelli and

Montanari revived Herbrand’s approach, which led to new important work by Kirchner and

others. In the next section, we sketch some versions of fast unification algorithms.

6 Fast (Standard) Unification

If one looks closely at the set of transformations ST , one realizes that the complexity of

unification algorithms is related to explicit variable elimination. Thus, a main concern in

designing fast unification algorithms is to avoid explicit variable elimination. We first give

the intuition behind a fast unification algorithm due to Martelli and Montanari [49].

Starting from a system S, suppose we only apply decomposition and deletion of trivial

rules If no failure takes place and there are still pairs left, we must reach a system S′ such

that every pair is of the form 〈x, v〉, where x is a variable.

We can group all pairs sharing some common element to form equivalence classes.

4 Their algorithm is not so different from Paterson and Wegman’s algorithm.

Draft/March 4, 2013

28 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Thus, S′ can be viewed as a partition, where every class is of the form

{x1, . . . , xk, t1, . . . , tm},

where x1, . . . , xk are variables (k > 0) and t1, . . . , tm are nonvariable terms (m ≥ 0).

Clearly, S′ is unifiable only if for every class, all nonvariable terms have the same root

symbol. The other basic idea is to analyze dependencies among variables (analogy

with solving systems of linear equations).

A precedence relation on classes can be defined as follows:

C < C ′ iff C ′ contains some variable x that occurs in some nonvariable term t in C.

Intuitively, the class of C needs the value of the variable x. The following is easily

shown.

Lemma 6.1 If <+ is reflexive, then S′ is not unifiable.

From now on, we are dealing with sets of the form

{x1, . . . , xk, t1, . . . , tm},

that Martelli and Montanari call multiequations, and write in the form

{x1, . . . , xk} := {t1, . . . , tm}.

Since eliminating duplicate terms may be costly, they allow both sides to be multisets. If

<+ is acyclic (irreflexive), roughly speaking, Martelli and Montanari do the following:

Pick some class {x1, . . . , xk, t1, . . . , tm} where m > 0 and the ti are not constants.

Since all the ti have the same root symbol, say f , form the new system in which the above

class is replaced by the sets

{x1, . . . , xk, f(y1, . . . , yn)}, {y1, t1/1, . . . , tm/1}, . . . , {yn, t1/n, . . . , tm/n}.

Again, group blocks together to form a partition, and check for acyclicity of the new

<+. Continue this process until failure, or no new classes are formed. If the last <+

obtained is acyclic, we can form a mgu in triangular form, by using any total ordering of

the classes extending <+. Formally, a triangular form is defined as follows.

Draft/March 4, 2013

6 Fast (Standard) Unification 29

Definition 6.2 Given an idempotent substitution σ (i.e., D(σ) ∩ I(σ) = ∅) with domain

D(σ) = {x1, . . . , xk}, a triangular form for σ is a finite set T of pairs 〈x, t〉 where x ∈ D(σ)

and t is a term, such that this set T can be sorted (possibly in more than one way) into a

sequence 〈〈x1, t1〉, . . . , 〈xk, tk〉〉 satisfying the following properties: for every i, 1 ≤ i ≤ k,

(1) {x1, . . . , xi} ∩ V ar(ti) = ∅, and

(2) σ = [t1/x1] ; . . . ; [tk/xk].

The set of variables {x1, . . . , xk} is called the domain of T . Note that in particular

xi /∈ V ar(ti) for every i, 1 ≤ i ≤ k, but variables in the set {xi+1, . . . , xk} may occur in

t1, . . . , ti. It is easily seen that σ is an (idempotent) mgu of the term system T .

Example 6.3 Consider the substitution σ = [f(f(x3, x3), f(x3, x3))/x1, f(x3, x3)/x2].

The system T = {〈x1, f(x2, x2)〉, 〈x2, f(x3, x3)〉} is a triangular form of σ since it can

be ordered as 〈〈x1, f(x2, x2)〉, 〈x2, f(x3, x3)〉〉 and σ = [f(x2, x2)/x1] ; [f(x3, x3)/x2].

It turns out that we have computed a certain relation on terms, a unification closure.

We now define this concept, due to Paterson and Wegman [56] (1978), and give a fast

algorithm based on it.

Definition 6.4 Let Σ be a finite ranked alphabet (signature). Consider a finite graph G

whose nodes are labeled with symbols in Σ or variables in X . Let Λ : V → Σ ∪ X be the

labeling function.

If Λ(u) is a constant or a variable, then u is a terminal node; If Λ(u) is a function

symbol of rank k, then u has k immediate successors u[1], . . . , u[k].

An equivalence relation R on a graph G is a unification closure iff, for every pair (u, v)

of nodes in V 2, whenever uRv then:

(1) Either Λ(u) = Λ(v), or one of Λ(u), Λ(v) is a variable;

(2) If Λ(u) = Λ(v) and r(Λ(u)) = n, then for every i, 1 ≤ i ≤ n, u[i]Rv[i].

Graphically, if u and v are two nodes labeled with the same symbol f of rank n, if

u[1], . . . , u[n] are the successors of u and v[1], . . . , v[n] are the successors of v,

u . v .

u[1] u[n] v[1] v[n]

if u and v are equivalent then u[i] and v[i] are equivalent for all i, 1 ≤ i ≤ n. We have a

kind of forward closure. The following lemma is easily shown.

Draft/March 4, 2013

30 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Lemma 6.5 There is an algorithm which, given any arbitrary relation R0 on a finite graph

G, decides whether the smallest unification closure containing a relation R0 on G exists,

and if so computes it.

In order to test whether a system S = {〈u1, v1〉, . . . , 〈um, vm〉} is unifiable, we can

compute the unification closure of the relation S on the graph GS constructed as follows:

(i) The set set of nodes of GS is the set of all subterms of terms in S.

(ii) Every subterm that is either a constant or a variable is a terminal node labeled with

that symbol.

(iii) For every subterm of the form fs1 . . . sk, the label is f , and there is an edge from

fs1 . . . sk to si, for each i, 1 ≤ i ≤ k.

Let R be the least unification closure containing the relation S on the graph GS , if it

exits. A new graph GS/R can be constructed as follows:

(i) The nodes of GS/R are the equivalence classes of R.

(ii) There is an edge from a class C to a class C ′ iff there is an edge in GS from some

node s in class C to some node t in class C ′.

The following lemma is essentially due to Paterson and Wegman [56] (1978).

Lemma 6.6 The system S is unifiable iff the unification closure R exists and the graph

GS/R is acyclic.

When S is unifiable, let 〈C1, . . . , Cn〉 be the sequence of all equivalence classes con-

taining some variable, ordered such that, if there is a path from Ci to Cj , then i < j.

For each i, 1 ≤ i ≤ n, if Ci contains some nonvariable term, let ti be any such term,

else let ti be any variable in Ci.

Let

σi = [ti/z1, . . . , ti/zk],

where {z1, . . . , zk} is the set of variables in Ci, and let

σ = σ1 ; . . . ;σn.

Then σ is a most general unifier of S. The substitution σ has a triangular representation.

Draft/March 4, 2013

6 Fast (Standard) Unification 31

Example 6.7 Consider the pair

〈f(f(x2, x2), f(x3, x3)), f(x1, x2)〉.

The nontrivial classes of the unification closure containing variables are

{x1, f(x2, x2)}, {x2, f(x3, x3)}.

The first class precedes the second. A triangular form of the mgu σ is

σ = [f(x2, x2)/x1] ; [f(x3, x3)/x2].

Note that

σ = [f(f(x3, x3), f(x3, x3))/x1, f(x3, x3)/x2].

We now give a simple fast algorithm, assuming for simplicity that every symbol in Σ

is either a constant or binary. This algorithm is basically Ravi Sethi’s algorithm, in [1].

procedure unif(u, v : node; var R : partition; var flag : bool);

var s, t : node; flag1, f lag2 : bool;

begin

flag1 := false; flag2 := false;

s := find(R, u); t := find(R, v);

if s = t then

flag := true

else

if nonvar(u) and nonvar(v) and root(u) = root(v) then

union(R, s, t);

unif(left(u), left(v), R, flag1);

unif(right(u), right(v), R, flag2);

flag := flag1 and flag2

else

if var(u) or var(v) then

union(R, s, t);

flag := true

else

flag := false

endif

endif

Draft/March 4, 2013

32 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

endif;

if flag and acyclic(R) then

printsubst(R)

else

failure(R)

endif

end

Using Tarjan’s fast version of union and find, the algorithm runs in time O(nα(n)),

where α(n) is a sort of inverse of Ackermann’s function that grows extremely slowly.

We conclude this section with some comments on Paterson and Wegman’s fast algo-

rithm [56] (1978). Paterson and Wegman’s algorithm is a unification closure algorithm, and

it uses the concept of a “root class”. A root class is an equivalence class of nodes containing

only terms corresponding to nodes of the DAG that have no parents. It is immediately seen

that if a system S is unifiable, then every class that is mimimal in the ordering defined such

that C < C ′ iff there is a path from C to C ′ in the DAG, is a root class.

Paterson and Wegman’s algorithm processes root classes first. A root class has the

property that no further nodes can be added to it as the result of computing a unification

closure, because propagation proceeds from parent to children. Thus, once a root class has

been processed, it can be deleted.

It should be noted that Paterson and Wegman’s original algorithm contains bugs. The

bugs were reported and fixed by De Champeaux [19]. One of the bugs is a trivial typo.

The other bug is more subtle. In the Paterson-Wegman’s algorithm, the equivalence of two

elements is represented by the existence of a special (undirected) edge between these two

elements (not to be confused with the edges of the DAG). The problem is that multiple

edges can be created by the algorithm, but this is not taken into account by the algorithm.

We now come back to the method of matings in the general case of languages with

equality.

7 Equational Matings

In this section, we show that the method of matings for languages without equality pre-

sented in section 4 can be generalized to languages with equality. This generalization will

lead us to a decidable form of unification extending standard unification and called rigid

E-unification. The generalized method of matings was first presented in Gallier, Raatz, and

Snyder [23] (1987), where it was conjectured that rigid E-unification is decidable. Several

Draft/March 4, 2013

7 Equational Matings 33

months later, Gallier, Narendran, Plaisted, and Snyder proved that rigid E-unification is

NP-complete and that finite complete sets of rigid E-unifiers always exist. These results

were announced (without complete proofs) at LICS’88 [25]. Full details and proofs appear

in Gallier, Narendran, Plaisted, and Snyder [27]. A detailed presentation of the method of

equational matings is given in [23, 26], or [28].

First, it is important to note that lemma 3.8, theorem 3.11, theorem 4.3, and lemma

4.5, also hold for languages with equality. The main difference with the case of languages

without equality, is that the criterion for checking whether a vertical path is unsatisfiable

is more complicated, and involves some equality reasoning.

A criterion for the unsatisfiability of a conjunction of literals based on the concept of

congruence closure is known. In order to explain this criterion, it is convenient to represent

every atomic formula as an equation. This can be done by adding to our language (which

already contains the special sort bool) the constant > of sort bool , interpreted as true. Then,

every atomic formula Pt1 . . . tn of sort bool can be expressed as the equation (Pt1 . . . tn
.
= >).

Hence, we can assume that all atomic formulae are equations. The notations Pt1 . . . tn and

(Pt1 . . . tn
.
= >) will be used interchangeably for atomic formulae of sort bool.

Given a vertical path π, we can arrange the literals in π by grouping positive and

negative literals together, to form a conjunction Cπ of the form

(s1
.
= t1) ∧ . . . ∧ (sm

.
= tm) ∧ ¬(s′1

.
= t′1) ∧ . . . ∧ ¬(s′n

.
= t′n).

The congruence closure method defined below enables us to decide whether conjunctions of

the above form are satisfiable or not.

Definition 7.1 (Congruence closure) Let TERMS(π) be the set of all subterms of terms

in π. Construct the labeled directed graph Gπ as follows:

• The set of Nodes of Gπ is TERMS(π).

• The node f(t1, . . . , tn) is labeled with f .

• For each node f(t1, . . . , tn), there is an edge from f(t1, . . . , tn) to each ti.

A relation ' on the set of nodes of Gπ is G-congruential iff, for any two nodes

f(s1, . . . , sn) and f(t1, . . . , tn), if si ' ti, 1 ≤ i ≤ n, then f(s1, . . . , sn) ' f(t1, . . . , tn).

Given a vertical path

π = {(s1
.
= t1), . . . , (sm

.
= tm),¬(s′1

.
= t′1), . . . ,¬(s′n

.
= t′n)},

let E = {(s1
.
= t1), . . . , (sm

.
= tm)}. The following results can be shown (see Kozen [45],

Nelson and Oppen [55], or Gallier [22]).

Draft/March 4, 2013

34 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Lemma 7.2 There is a smallest G-congruential equivalence relation on Gπ containing E.

It is called the congruence closure of E, and it is denoted as
∗∼=E.

Lemma 7.3 A vertical path π is unsatisfiable iff s′j
∗∼=E t′j for some j, 1 ≤ j ≤ n.

The congruence closure
∗∼=E can be computed in polynomial time (Kozen [45,46], Nel-

son and Oppen [55], Downey, Sethi, and Tarjan [21]).

Now, recall that theorem 4.3 states that a universal sentence A in nnf is unsatisfiable

iff there is some amplification D of A and some (ground) substitution σ such that σ(D) is

unsatisfiable. Since σ(D) is quantifier-free, by lemma 4.5, σ(D) is unsatifiable iff all vertical

paths in σ(D) are unsatisfiable. In view of lemma 7.3, we can now give the criterion stating

that vertical paths in σ(D) are unsatisfiable:

Given any π = {(s1
.
= t1), . . . , (sm

.
= tm),¬(s′1

.
= t′1), . . . ,¬(s′n

.
= t′n)} in vp(D),5

there is some i (1 ≤ i ≤ n), such that {σ(s1
.
= t1), . . . , σ(sm

.
= tm),¬σ(s′i

.
= t′i)} is

unsatisfiable.

Since the set {σ(s1
.
= t1), . . . , σ(sm

.
= tm),¬σ(s′i

.
= t′i)} consists of quantifier-free

formulae, it is unsatisfiable iff σ(s′i
.
= t′i) is provable from {σ(s1

.
= t1), . . . , σ(sm

.
= tm)},

treated as a set of ground equations. By lemma 7.3, this is equivalent to saying that

σ(s′i) and σ(t′i) are congruent modulo the congruence closure associated with the set

of equations {σ(s1
.
= t1), . . . , σ(sm

.
= tm)}.

The definition of an equational mating is motivated by the above observation. It is

designed so that we have a criterion expressed in terms of vertical paths for testing whether

given a quantifier-free formula D, there is some substitution σ such that σ(D) is unsatisfiable

(see lemma 7.5).

Definition 7.4 Let A be a quantifier-free formula in nnf. An equational mating M for

A is a pair 〈MS, σ〉, where MS is a set of sets of literals called mated sets and σ is a

substitution, such that, each mated set is a subset of some vertical path π ∈ vp(A) and is

of the form

{(s1
.
= t1), . . . , (sm

.
= tm),¬(s

.
= t)} ⊆ π,

where m ≥ 0,6 and, for every mated set {(s1
.
= t1), . . . , (sm

.
= tm),¬(s

.
= t)} ∈ MS, the

set of literals {σ(s1
.
= t1), . . . , σ(sm

.
= tm),¬σ(s

.
= t)} is unsatisfiable. The substitution

associated with the mating M is also denoted as σM. We also commit a slight abuse of

language (and notation) and say that a mated set belongs to M.

5 Warning: π ∈ vp(D), not π ∈ vp(σ(D)).
6 The case m = 0 is indeed possible when σ(s) = σ(t), i.e., when σ is a unifier of s and t.

Draft/March 4, 2013

7 Equational Matings 35

An equational mating M is a refutation mating iff σM(A) is unsatisfiable.

An equational mating M is path acceptable7 (for short, p-acceptable), iff, for every

path π ∈ vp(A), there is some mated set {(s1
.
= t1), . . . , (sm

.
= tm),¬(s

.
= t)} ∈ M, such

that

{(s1
.
= t1), . . . , (sm

.
= tm),¬(s

.
= t)} ⊆ π.

A number of remarks are in order:

(1) Given the substitution σ, the mating condition can be tested using the congruence

closure method. The difficulty is to decide whether or not the substitution σ exists.

(2) Given a family MS of mated sets, let ~E = (ES)S∈MS be the family of sets of equations

of the form ES = {(s1
.
= t1), . . . , (sm

.
= tm)} and S = {〈s, t〉 | S ∈ MS} the set of

pairs where ES and 〈s, t〉 are associated with the mated sets S = {(s1
.
= t1), . . . , (sm

.
=

tm),¬(s
.
= t)} ∈ MS. Observe that M = 〈MS, σ〉 is a mating iff σ is a solution of

the following problem:

Problem 1: Given ~E = {Ei | 1 ≤ i ≤ n} a family of n finite sets of equations and

S = {〈ui, vi〉 | 1 ≤ i ≤ n} a set of n pairs of terms, is there a substitution θ such that,

treating each set θ(Ei) as a set of ground equations (i.e. holding the variables in θ(Ei)

“rigid”), θ(ui) and θ(vi) are provably equal from θ(Ei) for i = 1, . . . , n?

Equivalently, is there a substitution θ such that θ(ui) and θ(vi) can be shown congruent

from θ(Ei) by the congruence closure method for i = 1, . . . , n?

Problem 1 is a unification problem more general than standard unification. A substi-

tution θ solving the above problem is called a rigid ~E-unifier of S, and a pair 〈 ~E, S〉
such that S has some rigid ~E-unifier is called an equational premating . This key ob-

servation is used in searching for the substitutions associated with matings. They are

the rigid ~E-unifiers of S.

The following lemma is a straightforward generalization of a lemma 4.7 to languages

with equality.

Lemma 7.5 Given a quantifier-free formula A in nnf, the following properties hold:

(1) Given a substitution θ, if θ(A) is unsatisfiable, then there is a p-acceptable equational

mating M for A.

(2) A p-acceptable equational mating M for A is a refutation mating for A, i.e. σM(A)

is unsatisfiable.

7 A path acceptable mating is also called a spanning mating by Miller [52].

Draft/March 4, 2013

36 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Corollary 7.6 Given a quantifier-free formula A in nnf, there is a substitution θ such

that θ(A) is unsatisfiable iff there is a p-acceptable equational mating M for A.

As in section 4, the completeness and soundness for the method of equational matings

is an immediate consequence of theorem 4.3, lemma 4.5, and lemma 7.5.

Theorem 7.7 Given a universal sentence A in nnf , A is unsatisfiable iff some amplifica-

tion D of A has a p-acceptable equational mating.

Let us give some examples illustrating the use of theorem 7.7. From this point on, for

the sake of brevity, we will use interchangeably the terms equational mating and mating.

Example 7.8 Consider the following Horn formula A, where x, y, z denote variables:

(a
.
= b) ∧

((f3x
.
= x) ∨ ¬(fx

.
= fb)) ∧

(Qa ∨ ¬(f3a
.
= a)) ∧

((f5y
.
= y) ∨ ¬Qy) ∧
(Ra ∨ ¬(fa

.
= a) ∨ ¬Pfa) ∧

¬Rfz ∧
Pa

There are 24 vertical paths in A. Let θ = [a/x, a/y, a/z]. The substitution θ closes all the

paths in θ(A), which is easy to see for the 21 vertical paths containing the sets of literals

{(f3a
.
= a),¬(f3a

.
= a)}, {Qa,¬Qa}, and {(a .

= b),¬(fa
.
= fb)}. A p-acceptable mating

for A is given by θ and the following set of 6 sets of literals:

{{(f3x
.
= x),¬(f3a

.
= a)},

{Qa,¬Qy},
{(a .

= b),¬(fx
.
= fb)},

{(f5y
.
= y), (f3x

.
= x), Ra,¬Rfz},

{(f5y
.
= y), (f3x

.
= x),¬(fa

.
= a)},

{(f5y
.
= y), (f3x

.
= x), Pa,¬Pfa}}.

The above set is a mating because (fa
.
= a) is equationally provable from (f3a

.
= a) and

(f5a
.
= a). Indeed, (f3a

.
= a) implies (f4a

.
= fa), which implies (f5a

.
= f2a), which,

by transitivity, implies (f2a
.
= a). In turn, (f2a

.
= a) implies (f3a

.
= fa), and by one

more application of transitivity, this implies (fa
.
= a). According to lemma 7.5, θ(A) is

unsatisfiable.

Draft/March 4, 2013

7 Equational Matings 37

Example 7.9 Let A be the following (equational) sentence:

∀x∀y∀z(∗(x, ∗(y, z)) .
= ∗(∗(x, y), z))) ∧ (1)

∀u(∗(u, 1)
.
= u) ∧ (2)

∀v(∗(1, v)
.
= v) ∧ (3)

∀w(∗(w,w)
.
= 1) ∧ (4)

¬(∗(a, b) .
= ∗(b, a)). (5)

The first three equations are the axioms for monoids (a binary operation ∗ which is asso-

ciative and has an identity element 1), the fourth equation asserts that the square of every

element is the identity, and the fifth asserts the negation of the commutativity of ∗ (A is

the result of a Skolemization). The unsatisfiability of A asserts that any monoid such that

the square of every element is the identity is commutative.

Consider the following amplification D of A in the left column and the set MS con-

sisting of one set of literals in the right column:

D = (∗(u1, 1)
.
= u1) MS = {{(∗(u1, 1)

.
= u1),

∧ (∗(w1, w1)
.
= 1) (∗(w1, w1)

.
= 1),

∧ (∗(x1, ∗(y1, z1))
.
= ∗(∗(x1, y1), z1))) (∗(x1, ∗(y1, z1))

.
= ∗(∗(x1, y1), z1))),

∧ (∗(x2, ∗(y2, z2))
.
= ∗(∗(x2, y2), z2))) (∗(x2, ∗(y2, z2))

.
= ∗(∗(x2, y2), z2))),

∧ (∗(w2, w2)
.
= 1) (∗(w2, w2)

.
= 1),

∧ (∗(1, v1)
.
= v1) (∗(1, v1)

.
= v1),

∧ (∗(x3, ∗(y3, z3))
.
= ∗(∗(x3, y3), z3))) (∗(x3, ∗(y3, z3))

.
= ∗(∗(x3, y3), z3))),

∧ (∗(x4, ∗(y4, z4))
.
= ∗(∗(x4, y4), z4))) (∗(x4, ∗(y4, z4))

.
= ∗(∗(x4, y4), z4))),

∧ (∗(w3, w3)
.
= 1) (∗(w3, w3)

.
= 1),

∧ ¬(∗(a, b) .
= ∗(b, a)). ¬(∗(a, b) .

= ∗(b, a))}}.

Let θ be the substitution

[a/u1, (a ∗ b)/w1, a/x1, (a ∗ b)/y1, (a ∗ b)/z1,

a/x2, a/y2, b/z2, a/w2, b/v1,

b/x3, (a ∗ b)/y3, b/z3, a/x4, b/y4, b/z4, b/w3].

We claim that 〈MS, θ〉 is a mating for D. For simplicity of notation let us adopt infix

notation, and denote ∗(s, t) as s ∗ t. Then, we have:

a ∗ b = {a ∗ 1} ∗ b by (2)

= {a ∗ [(a ∗ b) ∗ (a ∗ b)]} ∗ b by (4)

Draft/March 4, 2013

38 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

= {[a ∗ (a ∗ b)] ∗ (a ∗ b)} ∗ b by (1)

= {[(a ∗ a) ∗ b] ∗ (a ∗ b)} ∗ b by (1)

= {[1 ∗ b] ∗ (a ∗ b)} ∗ b by (4)

= {b ∗ (a ∗ b)} ∗ b by (3)

= b ∗ {(a ∗ b) ∗ b} by (1)

= b ∗ {a ∗ (b ∗ b)} by (1)

= b ∗ {a ∗ 1} by (4)

= b ∗ a, by (2)

which shows that 〈MS, θ〉 is a p-acceptable equational mating for D (there is a single vertical

path in D).

8 Rigid E-Unification

In the second remark following definition 7.4, it was noted that a new form of unification,

“rigid E-unification”, arises naturally in extending Andrews and Bibel’s theorem proving

method of matings [4, 6, 11, 12, 13], to first-order languages with equality. What was noted

in this remark, is thatM = 〈MS, σ〉 is a mating iff σ is a solution of the following problem:

Problem 1: Given ~E = {Ei | 1 ≤ i ≤ n} a family of n finite sets of equations and

S = {〈ui, vi〉 | 1 ≤ i ≤ n} a set of n pairs of terms, is there a substitution θ such that,

treating each set θ(Ei) as a set of ground equations (i.e. holding the variables in θ(Ei)

“rigid”), θ(ui) and θ(vi) are provably equal from θ(Ei) for i = 1, . . . , n?

Equivalently, is there a substitution θ such that θ(ui) and θ(vi) can be shown congruent

from θ(Ei) by the congruence closure method for i = 1, . . . , n?

Actually, it turns out that problem 1 reduces to the following simpler problem:

Problem 2: Given a finite set E = {u1
.
= v1, . . . , un

.
= vn} of equations and a pair

〈u, v〉 of terms, is there a substitution θ such that, treating θ(E) as a set of ground

equations, θ(u)
∗←→θ(E) θ(v), that is, θ(u) and θ(v) are congruent modulo θ(E) by

congruence closure (Kozen [45], Nelson and Oppen [55])?

The substitution θ is called a rigid E-unifier of u and v.

Example 8.1 Let E = {fa .
= a, ggx

.
= fa}, and 〈u, v〉 = 〈gggx, x〉. Then, the substitu-

tion θ = [ga/x] is a rigid E-unifier of u and v. Indeed, θ(E) = {fa .
= a, ggga

.
= fa}, and

Draft/March 4, 2013

8 Rigid E-Unification 39

θ(gggx) and θ(x) are congruent modulo θ(E), since

θ(gggx) = gggga −→ gfa using ggga
.
= fa

−→ ga = θ(x) using fa
.
= a.

Note that θ is not the only rigid E-unifier of u and v. For example, [gfa/x] or more generally

[gfna/x] is a rigid E-unifier of u and v. However, θ is more general than all of these rigid

E-unifiers (in a sense to be made precise later).

The importance of rigid E-unification stems from the fact that it is decidable, and

in fact NP-complete, see Gallier, Narendran, Plaisted, and Snyder [27]. Remarkably, it

can also be shown that there is always a finite set of most general rigid E-unifiers called a

complete set of rigid E-unifiers [27].

It is interesting to observe that the notion of rigid E-unification arises by bounding

the resources, in this case, the number of available instances of equations in E. In order to

understand more clearly the concept of rigid E-unification, let us recall what (unrestricted)

E-unification is. We are given a set of equations E = {u1
.
= v1, . . . , un

.
= vn}, and (for

simplicity) a pair of terms 〈u, v〉. The problem is to decide whether is there a substitution

θ s.t. θ(u)
∗←→E θ(v).

Note that there is no bound on the number of instances of equations in E that can

be used in the proof that θ(u)
∗←→E θ(v). Going back to definition 2.16, we observe that

θ(u)
∗←→E θ(v) iff is there a multiset of equations (from E){(

u′1
.
= v′1
n1

)
, . . . ,

(
u′m

.
= v′m
nm

)}
and m sets of substitutions {σj,1, . . . , σj,nj

}, s.t., letting

E′ = {σj,k(u′j
.
= v′j) | 1 ≤ j ≤ m, 1 ≤ k ≤ nj},

we have θ(u)
∗←→E′ θ(v), considering E′ as ground. Basically, the restriction imposed

by rigid E-unification is that n1 = . . . = nm = 1, i.e., at most a single instance of each

equation in E can be used. In fact, these instances θ(u1
.
= v1), . . . , θ(un

.
= vn) must arise

from the substitution θ itself. Also, once these instances have been created, the remaining

variables (if any) are considered rigid, that is, treated as constants, so that it is not possible

to instantiate these instances. Thus, rigid E-unification and Girard’s linear logic [29] share

the same spirit. Since the resources are bounded, it is not too surprising that rigid E-

unification is decidable, but it is not obvious at all that the problem is in NP. The special

case of rigid E-unification where E is a set of ground equations has been investigated by

Draft/March 4, 2013

40 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Kozen who has shown that this problem is NP-complete (Kozen, [45,46]). Thus, rigid

E-unification is NP-hard. We also showed that it is in NP, hence NP-complete.

Our plan for the rest of this section is to define precisely what complete sets of rigid

E-unifiers are, and to sketch the decision procedure. The definitions of a rigid E-unifier, the

preorder ≤E , and complete sets of rigid E-unifiers, will parallel those given for E-unification,

but equations are considered as ground in equational proofs. It will be convenient to write

u
∗∼=E v to express that u

∗←→E v, treating the equations in E as ground equations.

Definition 8.2 Let E = {(s1
.
= t1), . . . , (sm

.
= tm)} be a finite set of equations, and

let V ar(E) =
⋃

(s
.
=t)∈E V ar(s

.
= t) denote the set of variables occurring in E.8 Given a

substitution θ, we let θ(E) = {θ(si
.
= ti) | si

.
= ti ∈ E, θ(si) 6= θ(ti)}. Given any two terms

u and v,9 a substitution θ is a rigid unifier of u and v modulo E (for short, a rigid E-unifier

of u and v) iff

θ(u)
∗∼=θ(E) θ(v), that is, θ(u) and θ(v) are congruent modulo the set θ(E) considered

as a set of ground equations.

The following example should help grasping the notion of rigid E-unification. The

problem is to show that if x · x = 1 in a monoid, then the monoid is commutative.

Example 8.3

E = {u1 · 1
.
= u1

w1 · w1
.
= 1

x1 · (y1 · z1)
.
= (x1 · y1) · z1

x2 · (y2 · z2)
.
= (x2 · y2) · z2

w2 · w2
.
= 1

1 · v1
.
= v1

x3 · (y3 · z3)
.
= (x3 · y3) · z3

x4 · (y4 · z4)
.
= (x4 · y4) · z4

w3 · w3
.
= 1}.

〈u, v〉 = 〈a · b, b · a〉.

8 It is possible that equations have variables in common.

9 It is possible that u and v have variables in common with the equations in E.

Draft/March 4, 2013

8 Rigid E-Unification 41

The reader can verify that θ below is a rigid E-unifier:

θ = [a/u1, a/x1, a/x2, a/y2, a/w2, a/x4,

b/z2, b/v1, b/x3, b/z3, b/y4, b/z4, b/w3,

a · b/w1, a · b/y1, a · b/z1, a · b/y3].

Definition 8.4 Let E be a (finite) set of equations, and W a (finite) set of variables. For

any two substitutions σ and θ, σ =E θ[W] iff σ(x)
∗∼=E θ(x) for every x ∈ W . The relation

vE is defined as follows. For any two substitutions σ and θ, σ vE θ[W] iff σ =θ(E) θ[W].

The set W is omitted when W = X (where X is the set of variables), and similarly E is

omitted when E = ∅.

Intuitively speaking, σ vE θ iff σ can be generated from θ using the equations in θ(E).

Clearly, vE is reflexive. However, it is not symmetric as shown by the following example.

Example 8.5 Let E = {fx .
= x}, σ = [fa/x] and θ = [a/x]. Then θ(E) = {fa .

= a} and

σ(x) = fa
∗∼=θ(E) a = θ(x), and so σ vE θ. On the other hand σ(E) = {ffa .

= fa}, but a

and fa are not congruent from {ffa .
= fa}. Thus θ vE σ does not hold.

It is not difficult to show that vE is also transitive. We also need an extension of vE
defined as follows.

Definition 8.6 Let E be a (finite) set of equations, and W a (finite) set of variables.

The relation ≤E is defined as follows: for any two substitutions σ and θ, σ ≤E θ[W] iff

σ ; η vE θ[W] for some substitution η (that is, σ ; η =θ(E) θ[W] for some η).

Intuitively speaking, σ ≤E θ iff σ is more general than some substitution that can be

generated from θ using θ(E). Clearly, ≤E is reflexive. The transitivity of ≤E is also shown

easily. When σ ≤E θ[W], we say that σ is (rigid) more general than θ over W . It can

be shown that if σ is a rigid E-unifier of u and v and σ ≤E θ, then θ is a rigid E-unifier

of u and v. The converse is false. Finally, the crucial concept of a complete set of rigid

E-unifiers can be defined.

Definition 8.7 Given a (finite) set E of equations, for any two terms u and v, letting

V = V ar(u)∪V ar(v)∪V ar(E), a set U of substitutions is a complete set of rigid E-unifiers

for u and v iff: For every σ ∈ U ,

(i) D(σ) ⊆ V and D(σ) ∩ I(σ) = ∅ (idempotence),

(ii) σ is a rigid E-unifier of u and v,

Draft/March 4, 2013

42 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

(iii) For every rigid E-unifier θ of u and v, there is some σ ∈ U , such that, σ ≤E θ[V].

Suppose we want to find a rigid E-unifier θ of u and v. There is an algorithm using

transformations for finding rigid E-unifiers. Roughly, the idea is to use a form of unfailing

completion procedure (Knuth and Bendix [44], Huet [36], Bachmair [8], Bachmair, Der-

showitz, and Plaisted [9], Bachmair, Dershowitz, and Hsiang [10]). In order to clarify the

differences between our method and unfailing completion, especially for readers unfamil-

iar with this method, we briefly describe the use of unfailing completion as a refutation

procedure. For more details, the reader is referred to Bachmair [8].

Let E be a set of equations, and � a reduction ordering total on ground terms. The

central concept is that of E being ground Church-Rosser w.r.t. �. The crucial observation

is that every ground instance σ(l)
.
= σ(r) of an equation l

.
= r ∈ E is orientable w.r.t. �,

since � is total on ground terms. Let E� be the set of all instances σ(l)
.
= σ(r) of equations

l
.
= r ∈ E∪E−1 with σ(l) � σ(r) (the set of orientable instances). We say that E is ground

Church-Rosser w.r.t. � iff for every two ground terms u, v, if u
∗←→E v, then there is some

ground term w such that u
∗−→E� w and w

∗←−E� v. Such a proof is called a rewrite proof .

An unfailing completion procedure attempts to produce a set E∞ equivalent to E and

such that E∞ is ground Church-Rosser w.r.t. �. In other words, every ground equation

provable from E has a rewrite proof in E∞. The main mechanism involved is the compu-

tation of critical pairs. Given two equations l1
.
= r1 and l2

.
= r2 where l2 is unifiable with a

subterm l1/β of l1 which is not a variable, the pair 〈σ(l1[β ← r2]), σ(r1)〉 where σ is a mgu

of l1/β and l2 is a critical pair .

If we wish to use an unfailing completion procedure as a refutation procedure, we add

two new constants T and F and a new binary function symbol eq to our language. In order

to prove that E |= u
.
= v for a ground equation u

.
= v, we apply the unfailing completion

procedure to the set E ∪ {eq(u, v)
.
= F, eq(z, z)

.
= T}, where z is a new variable. It can

be shown that E |= u
.
= v iff the unfailing completion procedure generates the equation

F
.
= T . Basically, given any proof of F

.
= T , the unfailing completion procedure extends E

until a rewrite proof is obtained. It can be shown that unfailing completion is a complete

refutation procedure, but of course, it is not a decision procedure. It should also be noted

that when unfailing completion is used as a refutation procedure, E∞ is actually never

generated. It is generated “by need”, until F
.
= T turns up.

We now come back to our situation. Without loss of generality, it can be assumed that

we have a rigid E-unifier θ of T and F such that θ(E) is ground. In this case, equations

in θ(E) are orientable instances. The crucial new idea is that in trying to obtain a rewrite

proof of F
.
= T , we still compute critical pairs, but we never rename variables. If l2

is equal to l1/β, then we get a critical pair essentially by simplification. Otherwise, some

Draft/March 4, 2013

8 Rigid E-Unification 43

variable in l1 or in l2 gets bound to a term not containing this variable. Thus the total

number of variables in E keeps decreasing. Therefore, after a polynomial number of steps

(in fact, the number of variables in E) we must stop or fail. So we get membership in NP.

Oversimplifying a bit, we can say that our method is a form of lazy unfailing completion

with no renaming of variables.

However, there are some significant departures from traditional Knuth-Bendix com-

pletion procedures, and this is for two reasons. The first reason is that we must ensure

termination of the method. The second is that we want to show that the problem is in NP,

and this forces us to be much more concerned about efficiency.

Our method can be described in terms of a single transformation on triples of the form

〈S, E ,O〉, where S is a unifiable set of pairs, E is a set of equations, and O is something that

will be needed for technical reasons and can be ignored for the present. Starting with an

initial triple 〈S0, E0,O0〉 initialized using E and u, v (except for O that must be guessed),

if the number of variables in E is m, one considers sequences of transformations

〈S0, E0,O0〉 ⇒+ 〈Sk, Ek,Ok〉

consisting of at most k ≤ m steps. It will be shown that u and v have some rigid E-unifier

iff there is some sequence of steps as above such that the special equation F
.
= T is in Ek

and Sk is unifiable. Then, the most general unifier of Sk is a rigid E-unifier of u and v.

Roughly speaking, Ek+1 is obtained by overlapping equations in Ek (forming critical

pairs), as in unfailing Knuth-Bendix completion procedures, except that no renaming of

variables takes place. In order to show that the number of steps can be bounded by m, it is

necessary to show that some measure decreases every time an overlap occurs, and there are

two difficulties. First, the overlap of two equations may involve the identity substitution

when some equation simplifies another one. In this case, the number of variables does not

decrease, and no other obvious measure decreases. Second, it is more difficult to handle

overlap at variable occurrences than it is in the traditional case, because we are not allowed

to form new instances of equations.

The first difficulty can be handled by using a special procedure for reducing a set

of (ground) equations. Such a procedure is presented in Gallier et al. [24] and runs in

polynomial time (see also [67]). Actually, one also needs a total simplification ordering

≺ on ground terms, and a way of orienting equations containing variables, which is the

purpose of the mysterious component O. The second difficulty is overcome by noticing that

one only needs to consider ground substitutions, that the ordering ≺ (on ground terms) can

be extended to ground substitutions, and that given any rigid E-unifier θ of u and v, there

Draft/March 4, 2013

44 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

is always a least rigid E-unifier σ (w.r.t ≺) that is equivalent to θ (in a sense to be made

precise).

Other complications arise in proving that the method is in NP, in particular, we found

it necessary to represent most general unifiers (mgu’s) by their triangular form as in Martelli

and Montanari [49]. This concept has already been defined in definition 6.2.

The triangular form T = {〈x1, t1〉, . . . , 〈xk, tk〉} of a substitution σ also defines a

substitution, namely σT = [t1/x1, . . . , tk/xk]. This substitution is usually different from σ

and not idempotent as can be seen from example 6.3. However, this substitution plays a

crucial role in our decision procedure because of the following property.

Lemma 8.8 Given a triangular form T = {〈x1, t1〉, . . . , 〈xk, tk〉} for a substitution σ and

the associated substitution σT = [t1/x1, . . . , tk/xk], for every unifier θ of T , θ = σT ; θ.

An other important observation about σT is that even though it is usually not idem-

potent, at least one variable in {x1, . . . , xk} does not belong to I(σT) (otherwise, condition

(1) of the triangular form fails). We will assume that a procedure TU is available, which,

given any unifiable term system S, returns a triangular form for an idempotent mgu of

S, denoted by TU(S). When S consists of a single pair 〈u, v〉, TU(S) is also denoted by

TU(u, v).

One of the major components of the decision procedure for rigid E-unification is a

procedure for creating a reduced set of rewrite rules equivalent to a given (finite) set of

ground equations. Given a set R of rewrite rules, we say that R is rigid reduced iff

(1) No lefthand side of any rewrite rule l → r ∈ R is reducible by any rewrite rule in

R− {l→ r} treated as a ground rule;

(2) No righthand side of any rewrite rule l→ r ∈ R is reducible by any rewrite rule in R

treated as a ground rule.

A procedure for creating a rigid reduced set of rewrite rules equivalent to a given

(finite) set of rewrite rules was first presented in Gallier et al. [24] and runs in polynomial

time. However, due to the possibility that variables may occur in the equations, we have

to make some changes to this procedure. Roughly speaking, given a “guess” O (a preorder

which we call an order assignment) of the ordering among all subterms of the terms in a set

of equations E, we can run the reduction procedure R on E and O to produce a reduced

rewrite system R(E,O) equivalent to E, and whose orientation is dictated by the preorder

O. The precise definition of an order assignment O is too involved to be reproduced here,

but this is not essential anyway. All we need to know is that we have an algorithm R such

that, given a set E of equations and an order-assignment O, a rigid-reduced set of rewrite

Draft/March 4, 2013

8 Rigid E-Unification 45

rules R(E,O) is returned, the rules in R(E,O) being oriented by O. We are now ready to

define a procedure for finding rigid E-unifiers.

This method uses the reduction procedure just discussed, and a single transformation

on certain systems defined next. First, the following definition is needed.

Definition 8.9 Given a set E of equations and some equation l
.
= r, the set of equations

obtained from E by deleting l
.
= r and r

.
= l from E is denoted by (E−{l .= r})†. Formally,

we let (E − {l .= r})† = {u .
= v | u .

= v ∈ E, u .
= v 6= l

.
= r, and u

.
= v 6= r

.
= l}.

Definition 8.10 Let ≺ be a total simplification ordering on ground terms. We shall be

considering finite sets of equations of the form E = EΣ ∪ {eq(u, v)
.
= F, eq(z, z)

.
= T},10

where EΣ is a set of equations over TΣ(X), and u, v ∈ TΣ(X). We define a transformation

on systems of the form 〈S, E ,O〉, where S is a term system, E a set of equations as above,

and O an order assignment:

〈S0, E0, O0〉 ⇒ 〈S1, E1, O1〉,

where l1
.
= r1, l2

.
= r2 ∈ E0 ∪ E−1

0 , either l1/β is not a variable or the equation l2
.
= r2 is

degenerate,11 l1/β 6= l2, TU(l1/β, l2) represents an mgu of l1/β and l2 in triangular form,12

σ = [t1/x1, . . . , tp/xp] where TU(l1/β, l2) = {〈x1, t1〉, . . . , 〈xp, tp〉},

E ′1 = σ((E0 − {l1
.
= r1})† ∪ {l1[β ← r2]

.
= r1}),

O1 is an order assignment on E ′1 compatible with O0, S1 = S0 ∪ TU(l1/β, l2), and E1 =

R(E ′1,O1).

Observe that σ(l1[β ← r2]
.
= r1) looks like a critical pair of equations in E0 ∪ E−1

0 ,

but it is not.This is because a critical pair is formed by applying the mgu of l1/β and l2
to l1[β ← r2]

.
= r1, but [t1/x1, . . . , tp/xp] is usually not a mgu of l1/β and l2. It is the

composition [t1/x1] ; . . . ; [tp/xp] that is a mgu of l1/β and l2. The reason for not applying

the mgu is that by repeated applications of this step, exponential size terms could be formed,

and it would not be clear that the decision procedure is in NP. We have chosen an approach

of “lazy” (or delayed) unification. Also note that we use the rigid reduced system R(E ′1,O1)

rather than E ′1, and so, a transformation step is defined only if R does not fail. The method

for finding E-unifiers is then is the following.

10 eq, T , F are some new symbols not occurring in E, u, v.
11 An equation x

.
= v is degenerate if x is a variable and x /∈ V ar(v).

12 Note that we are requiring that l1/β and l2 have a nontrivial unifier. The triangular form of mgus
is important for the NP-completeness of this method.

Draft/March 4, 2013

46 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

Definition 8.11 (Method) Let Eu,v = E ∪ {eq(u, v)
.
= F, eq(z, z)

.
= T}, O0 an order

assignment on Eu,v, S0 = ∅, E0 = R(Eu,v,O0), m the total number of variables in E0, and

V = V ar(E) ∪ V ar(u, v). For any sequence

〈S0, E0,O0〉 ⇒+ 〈Sk, Ek,Ok〉

consisting of at most m transformation steps, if Sk is unifiable and k ≤ m is the first integer

in the sequence such that F
.
= T ∈ Ek, return the substitution θSk |V , where θSk is the mgu

of Sk (over TΣ(X)).

Example 8.12 Let E be the set of equations E = {fa .
= a, ggx

.
= fa}, and 〈u, v〉 =

〈gggx, x〉. We have

Eu,v = {fa .
= a, ggx

.
= fa, eq(gggx, x)

.
= F, eq(z, z)

.
= T}.

The congruence closure Π of Eu,v has three nontrivial classes {a, fa, ggx}, {eq(gggx, x), F},
and {eq(z, z), T}. Let O0 be the order assignment on Eu,v such that

T ≺O0 eq(gggx, x),

F ≺O0
eq(z, z),

a ≺O0 fa ≺O0 ggx,

the least elements of classes being ordered in the order of listing of the classes. We have

S0 = ∅, and the reduced system E0 = R(Eu,v,O0) is

E0 = {fa .
= a, ggx

.
= a, eq(ga, x)

.
= F, eq(z, z)

.
= T}.

Note that there is an overlap between eq(ga, x)
.
= F and eq(z, z)

.
= T at address ε in

eq(ga, x), and we obtain the triangular system {〈x, ga〉, 〈z, ga〉} and the new equation F
.
=

T . Thus, we have

〈S0, E0,O0〉 ⇒ 〈S1, E1,O1〉,

where S1 = {〈x, ga〉, 〈z, ga〉}

E ′1 = {fa .
= a, ggga

.
= a, eq(ga, ga)

.
= F, F

.
= T},

and O1 is the restriction of O0 to the subterms in E ′1. After reducing E ′1, we have

E1 = {fa .
= a, ggga

.
= a, eq(ga, ga)

.
= T, F

.
= T}.

Since F
.
= T ∈ E1 and S1 is unifiable, the restriction [ga/x] of the mgu [ga/x, ga/z] of S1

to V ar(E) ∪ V ar(u, v) = {x} is a rigid E-unifier of gggx and x.

The following major results are proved in Gallier, Narendran, Plaisted, and Snyder

[27].

Draft/March 4, 2013

9 Conclusion and Directions For Further Research 47

Theorem 8.13 The procedure given by definition 8.11 is a decision procedure for rigid

E-unification. Furthermore, it belongs to NP.

The soundness and completeness of the method are subsumed by the following result.

Theorem 8.14 Let E be a set of equations over TΣ(X), u, v two terms in TΣ(X), m the

number of variables in E ∪ {u, v}, and V = V ar(E)∪ V ar(u, v). There is a finite complete

set of rigid E-unifiers for u and v given by the set

{θSk |V | 〈S0, E0,O0〉 ⇒+ 〈Sk, Ek,Ok〉, k ≤ m},

for any order assignment O0 on Eu,v, with S0 = ∅, E0 = R(Eu,v,O0), and where Sk is

unifiable, F
.
= T ∈ Ek, F

.
= T /∈ Ei for all i, 0 ≤ i < k, and θSk is the mgu of Sk over

TΣ(X).

Thus, we note another major difference between general E-unification and rigid E-

unification. In rigid E-unification, there is always a finite complete set of (rigid) E-unifiers.

The above results have been improved by Isakowitz [37] and by Choi and Gallier [17].

Isakowitz has shown that order assignments can be dispensed with if a different reduction

procedure is used. Isakowitz also studied the extension of rigid E-unification to order-

sorted logic, and proved results analogous to those presented here for some subclasses of

equations. Choi and Gallier have obtained a more direct proof of the NP-completeness of

rigid E-unification that also avoids order assignments. This new proof is more algebraic

and uses some key ideas from Kozen [45].

9 Conclusion and Directions For Further Research

We surveyed two methods for automated theorem proving, the method of matings for

languages without equality, and the method of equational matings, for languages with

equality. We also surveyed various unification procedures associated with theorem proving

methods based on matings. These include standard unification and rigid E-unification.

The crucial property of these unification methods is that they are decidable. However,

their complexity is very different: standard unificatin can be performed in linear-time, but

rigid E-unification is NP-complete.

An area of research that remains wide open is the study of efficient implementations

of equational matings and rigid E-unification. This is a difficult problem, since rigid E-

unification is NP-complete, and one needs to isolate interesting special classes of formulae for

which tractable algorithms can be found. On a more theoretical level, it would be interesting

Draft/March 4, 2013

48 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

to study the generalization of linear logic including equations. We conjecture that this will

lead naturally to rigid E-unification. Finally, investigating whether the method of matings

can be generalized either to order-sorted logic or to higher-order logic, remains to be done.

10 References

[1] Aho, A., Sethi, R., and Ullman, J. Compilers, Principles, Techniques, and Tools,

Addison Wesley (1986).

[2] Aı̈t-Kaci, H. A lattice theoretic approach to computation based on a calculus of par-

tially ordered type structures, Ph.D. thesis. Department of Computer and Information

Science, University of Pensylvania, PA (1984).

[3] Aı̈t-Kaci, H. An algebraic semantics approach to the effective resolution of type equa-

tions. Theoretical Computer Science 45, pp. 293-351 (1986).

[4] Andrews, P. Theorem Proving via General Matings. J.ACM 28(2), 193-214, 1981.

[5] Andrews, P. An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof. Academic Press, New York, 1986.

[6] Andrews, P.B., D. Miller, E. Cohen, F. Pfenning, “Automating Higher-Order Logic,”

Contemporary Mathematics 29, 169-192, 1984.

[7] Bachmair, L., Proof Methods for Equational Theories, Ph.D thesis, University of

Illinois, Urbana Champaign, Illinois (1987).

[8] Bachmair, L., Canonical Equational Proofs, Research Notes in Theoretical Computer

Science, Wiley and Sons, 1989.

[9] Bachmair, L., Dershowitz, N., and Plaisted, D., “Completion without Failure,” Res-

olution of Equations in Algebraic Structures, Vol. 2, Aı̈t-Kaci and Nivat, editors,

Academic Press, 1-30 (1989).

[10] Bachmair, L., Dershowitz, N., and Hsiang, J., “Orderings for Equational Proofs,” In

Proc. Symp. Logic in Computer Science, Boston, Mass. (1986) 346-357.

[11] Bibel, W. Tautology Testing With a Generalized Matrix Reduction Method, TCS 8,

pp. 31-44, 1979.

[12] Bibel, W. On Matrices With Connections, J.ACM 28, pp. 633-645, 1981.

[13] Bibel, W. Automated Theorem Proving. Friedr. Vieweg & Sohn, Braunschweig,

1982.

Draft/March 4, 2013

10 References 49

[14] Boudet, A., Jouannaud, J.-P., and Schmidt-Schauss, M. Unification in Boolean Rings

and Abelian Groups. Journal of Symbolic Computation 8(5), pp. 449-478 (1989).

[15] Bürckert, H., Herold, A., and Schmidt-Schauss, M. On equational theories, unifica-

tion, and (un)decidability. Special issue on Unification, Part II, Journal of Symbolic

Computation 8(1 & 2), 3-50 (1989).

[16] Bürckert, H., Matching–A Special Case of Unification? Journal of Symbolic Compu-

tation 8(5), pp. 523-536 (1989).

[17] Choi, J., and Gallier, J.H. A simple algebraic proof of the NP-completeness of rigid

E-unification, in preparation (1990).

[18] Church, A., “A note on the Entscheidungsproblem”, JSL 1 (1936) 40-41, corrections,

101-102.

[19] De Champeaux, D., “About the Paterson-Wegman linear unification,” Journal of

Computer and System Sciences, 32(1) (1986) 79-90.

[20] Dershowitz, N,. “Termination of Rewriting,” Journal of Symbolic Computation 3

(1987) 69-116.

[21] Downey, Peter J., Sethi, Ravi, and Tarjan, Endre R. “Variations on the Common

Subexpressions Problem.” J.ACM 27(4), 758-771, 1980.

[22] Gallier, J.H. Logic for Computer Science: Foundations of Automatic Theorem Prov-

ing, Harper and Row, New York (1986).

[23] Gallier, J.H., Raatz, S., and Snyder, W., “Theorem Proving using Rigid E-Unification:

Equational Matings,” LICS’87, Ithaca, New York (1987) 338-346.

[24] Gallier, J.H., Narendran, P., Plaisted, D., Raatz, S., and Snyder, W., “Finding canon-

ical rewriting systems equivalent to a finite set of ground equations in polynomial

time,” submitted to J.ACM (1987).

[25] Gallier, J.H., Narendran, P., Plaisted, D., and Snyder, W., “Rigid E-unification is

NP-complete,” LICS’88, Edinburgh, Scotland, July 5-8, 1988, 218-227.

[26] Gallier, J.H., Raatz, S, and Snyder, W. Rigid E-Unification and its Applications to

Equational Matings. Resolution of Equations in Algebraic Structures, Vol. 1, Aı̈t-

Kaci and Nivat, editors, Academic Press, 151-216 (1989).

[27] Gallier, J.H., Narendran, P., Plaisted, D., and Snyder, W. Rigid E-Unification: NP-

completeness and Applications to Theorem Proving. Special issue of Information and

Computation 87(1/2), 129-195 (1990).

Draft/March 4, 2013

50 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

[28] Gallier, J.H., Narendran, P., Raatz, S., and Snyder, W. Theorem Proving Using

Equational Matings and Rigid E-Unification. To appear in J.ACM, pp. 62 (1990).

[29] Girard, J.Y., “Linear Logic,” Theoretical Computer Science 50:1 (1987) 1-102.

[30] Gödel, Kurt. Die Vollstandigkeit der Axiome des Logischen Funktionenkalküls,

Monatsh. Math. Phys. 37, 349-360 (1930), translated in Gödel [31], 44-123 (1986).

[31] Gödel, Kurt. Collected Works, Vol. I, Publications 1929-1936, Edited by S. Feferman,

J. Dawson, S. Kleene, G. Moore, R. Solovay, and J. van Heijenoort, Oxford University

Press (1986).

[32] Herbrand, J., “Sur la Théorie de la Démonstration,” in Logical Writings, W.D. Gold-

farb, ed., Harvard University Press (1971).

[33] Hindley, J., and Seldin, J., Introduction to Combinators and Lambda Calculus, Cam-

bridge University Press (1986).

[34] Huet, G. Constrained Resolution: A Complete Method for Higher-Order Logic, Ph.D.

thesis, Case Western Reserve University (1972).

[35] Huet, G., Résolution d’Equations dans les Langages d’Ordre 1, 2, . . . , ω, Thèse d’Etat,

Université de Paris VII (1976).

[36] Huet, G., “Confluent Reductions: Abstract Properties and Applications to Term

Rewriting Systems,” JACM 27:4 (1980) 797-821.

[37] Isakowitz, T. Theorem Proving Methods For Order-Sorted Logic, Ph.D. thesis. De-

partment of Computer and Information Science, University of Pensylvania (1989).

[38] Jouannaud, J.-P., and Kirchner, C. Solving Equations in Abstract Algebras: A Rule-

Based Survey of Unification. Technical Report, University of Paris Sud (1989).

[39] Kirchner, C., Méthodes et Outils de Conception Systematique d’Algorithmes

d’Unification dans les Theories Equationnelles, Thèse d’Etat, Université de Nancy I

(1985).

[40] Kfoury, A.J., J. Tiuryn, and P. Urzyczyn, ”An analysis of ML typability”, submitted

(a section of this paper will appear in the proceedings of CAAP 1990 under the title

”ML typability is DEXPTIME-complete”).

[41] Kfoury, A.J., J. Tiuryn, and P. Urzyczyn, ”The undecidability of the semi-unification

problem”, Proceedings of STOC (1990).

[42] Kfoury, A.J., and J. Tiuryn, “Type Reconstruction in Finite-Rank Fragments of the

Polymorphic Lambda Calculus,” LICS’90, Philadelpha, PA.

Draft/March 4, 2013

10 References 51

[43] Knight. K. “A Multidisciplinary Survey,” ACM Computing Surveys, Vol. 21, No. 1,

pp. 93-124 (1989).

[44] Knuth, D.E. and Bendix, P.B., “Simple Word Problems in Univeral Algebras,” in

Computational Problems in Abstract Algebra, Leech, J., ed., Pergamon Press (1970).

[45] Kozen, D., “Complexity of Finitely Presented Algebras,” Technical Report TR 76-294,

Department of Computer Science, Cornell University, Ithaca, New York (1976).

[46] Kozen, D., “Positive First-Order Logic is NP-Complete,” IBM Journal of Research

and Development, 25:4 (1981) 327-332.

[47] Lassez, J.-L., Maher, M., and Marriot, K. Unification Revisited. Foundations of

Deductive Databases and Logic Programming, J. Minker, editor, Morgan-Kaufman,

pp. 587-625 (1988).

[48] Manna, Zohar. Mathematical Theory of Computation. McGraw-Hill (1974).

[49] Martelli, A., Montanari, U., “An Efficient Unification Algorithm,” ACM Transactions

on Programming Languages and Systems, 4:2 (1982) 258-282.

[50] Meseguer, J., Goguen, J. A., and Smolka, G. Order-Sorted Unification. Journal of

Symbolic Computation 8(4), pp. 383-413 (1989).

[51] Miller, D., Proofs in Higher-Order Logic, Ph.D. thesis, Carnegie-Mellon University,

1983.

[52] Miller, D. A. Expansion Trees and Their Conversion to Natural Deduction Proofs.

In 7th International Conference on Automated Deduction, Napa, CA, edited by R.E.

Shostak, L.N.C.S, No. 170, New York: Springer Verlag, 1984.

[53] Miller, D. A compact Representation of Proofs. Studia Logica 4/87, pp. 347-370

(1987).

[54] Milner, R. A theory of type polymorphism in programming. J. Comput. Sys. Sci.

17, pp. 348-375 (1978).

[55] Nelson G. and Oppen, D. C. Fast Decision Procedures Based on Congruence Closure.

J. ACM 27(2), 356-364, 1980.

[56] Paterson, M.S., Wegman, M.N., “Linear Unification,” Journal of Computer and Sys-

tem Sciences, 16 (1978) 158-167.

[57] Pfenning, F., Proof Transformations in Higher-Order Logic, Ph.D. thesis, Department

of Mathematics, Carnegie Mellon University, Pittsburgh, Pa. (1987).

[58] Plotkin, G., “Building in Equational Theories,” Machine Intelligence 7 (1972) 73-90.

Draft/March 4, 2013

52 Unification Procedures In Automated Deduction Methods Based on Matings: A Survey

[59] Rémy, Didier, “Algèbres Touffues. Application au typage polymorphique des objects

enregistrements dans les languages fonctionnels.” Thèse, Université Paris VII, 1990.

[60] Rémy, Didier, “Records and variants as a natural extension in ML,” Sixteenth ACM

Annual Symposium on Principles of Programming Languages, Austin Texas, 1989.

[61] Robinson, J.A., “A Machine Oriented Logic Based on the Resolution Principle,”

JACM 12 (1965) 23-41.

[62] Siekmann, J. H. Unification Theory, Special Issue on Unification, Part I, Journal of

Symbolic Computation 7(3 & 4), pp. 207-274 (1989).

[63] Shieber, S. An Introduction to Unification-Based Approaches to Grammar. CSLI

Lecture Notes Series, Center for the study of Language and Information, Stanford,

CA (1986).

[64] Skolem, Thoralf. Über die Mathematische Logik, Norsk matematisk tidsskrift 10,

125-142 (1928). translated in van Heijenoort [70], 508-524 (1967).

[65] Schmidt-Schauss, M. Unification in a Combination of Arbitrary Disjoint Equational

Theories. Special issue on Unification, Part II, Journal of Symbolic Computation 8(1

& 2), 51-99 (1989).

[66] Snyder, W. Complete Sets of Transformations for General Unification, Ph.D. thesis.

Department of Computer and Information Science, University of Pensylvania, PA

(1988).

[67] Snyder, W., “Efficient Ground Completion: A Fast Algorithm for Generating Reduced

Ground Rewriting Systems from a Set of Ground Equations,” RTA’89, Chapel Hill,

NC (journal version submitted for publication).

[68] Snyder, W. The Theory of General Unification. Birkhauser Boston, Inc. (in prepara-

tion).

[69] Szabo, P. Unifikationstheorie erster Ordnung, Ph.D. thesis, Universität Karlsruhe

(1982).

[70] van Heijenoort, Jean (editor). From Frege to Gödel. A Source Book in Mathematical

Logic, 1879-1931, Harvard University Press (1967).

[71] Yelick, K. Unification in combinations of collapse-free regular theories. Journal of

Symbolic Computation 3(1 & 2), pp. 153-182 (1987).

Draft/March 4, 2013

