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ON GIRARD’S “CANDIDATS DE REDUCTIBILITÉ”

Jean H. Gallier

Abstract: We attempt to elucidate the conditions required on Girard’s candi-

dates of reducibility (in French, “candidats de reductibilité”) in order to establish

certain properties of various typed lambda calculi, such as strong normalization

and Church-Rosser property. We present two generalizations of the candidates

of reducibility, an untyped version in the line of Tait and Mitchell, and a typed

version which is an adaptation of Girard’s original method. As an applica-

tion of this general result, we give two proofs of strong normalization for the

second-order polymorphic lambda calculus under �⌘-reduction (and thus under

�-reduction). We present two sets of conditions for the typed version of the

candidates. The first set consists of conditions similar to those used by Stenlund

(basically the typed version of Tait’s conditions), and the second set consists of

Girard’s original conditions. We also compare these conditions, and prove that

Girard’s conditions are stronger than Tait’s conditions. We give a new proof

of the Church-Rosser theorem for both �-reduction and �⌘-reduction, using the

modified version of Girard’s method. We also compare various proofs that have

appeared in the literature (see section 11). We conclude by sketching the exten-

sion of the above results to Girard’s higher-order polymorphic calculus F
!

, and

in appendix 1, to F
!

with product types.
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1 Introduction

In this article, we attempt to elucidate the conditions required on Girard’s candidates of

reducibility (in French, “candidats de reductibilité”) in order to establish certain properties

of various typed lambda calculi, such as strong normalization and Church-Rosser property.

We present two generalizations of the candidates of reducibility, an untyped version in the

line of Tait and Mitchell [37, 24], and a typed version which is an adaptation of Girard’s

original method [9, 10]. As an application of this general result, we give two proofs of

strong normalization for the second-order polymorphic lambda calculus under �⌘-reduction

(and thus under �-reduction). We present two sets of conditions for the typed version

of the candidates: a set of conditions similar to those used by Stenlund [35], (basically

the typed version of Tait’s conditions, Tait 1973 [37]), and Girard’s original conditions

(Girard [10], [11]). We also compare these conditions, and prove that Girard’s conditions

are stronger than Tait’s conditions. We give a new proof of the Church-Rosser theorem for

both �-reduction and �⌘-reduction, using the modified version of Girard’s method. We also

compare various proofs that have appeared in the literature (see section 11). We conclude by

sketching the extension of the above results to Girard’s higher-order polymorphic calculus

F
!

, and in appendix 1, to F
!

with product types.

It is worth noting that the generalized method of candidates plays an important role in

Breazu-Tannen and Gallier [4], where conservation results conjectured in Breazu-Tannen [3]

are proved about the combination of algebraic rewriting with �⌘-reduction in polymorphic

�-calculi.

Familiarity with the polymorphic typed lambda calculus is not assumed for reading

this article. This explains why we have included some rather lengthy introductory sections.

An expert should probably proceed directly to section 6. On the other hand, a certain

familiarity with the simply-typed lambda calculus will help. Good references on the lambda

calculus include Barendregt [1], Hindley and Seldin [15], Stenlund [35], Girard [11], and Huet

[16, 18]. An extensive discussion of the role and importance of type theory and an exposition

of related results are given in Scedrov [32]. Another excellent introduction to type systems

and their relevance to programming language theory appears in Mitchell [25].

2 Syntax of the Second-Order Polymorphic Lambda Calculus

Our presentation of the Girard/Reynolds second-order lambda calculus [9, 30, 11] is heavily

inspired by Breazu-Tannen and Coquand [2]. Let V be a countably infinite set of type

variables, X a countably infinite set of term variables (for short, variables), and B a set of

base types.
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Definition 2.1 The set T of second-order polymorphic type expressions (for short, types)

is defined inductively as follows:

t 2 T , whenever t 2 V,
� 2 T , whenever � 2 B,
(� ! ⌧) 2 T , whenever �, ⌧ 2 T , and

8t. � 2 T , whenever t 2 V and � 2 T .

In omitting parentheses, we follow the usual convention that! associates to the right,

that is, �1 ! �2 ! . . .�
n�1 ! �

n

abbreviates (�1 ! (�2 ! . . . (�
n�1 ! �

n

) . . .)). The

subset of T consisting of the type expressions built up inductively from B using only the

type constructor! is called the set of simple types. Obviously, simple types cannot contain

type variables or quantifiers.

Next, we define polymorphic raw terms. Let ⌃ be a set of constant symbols and

Type:⌃ ! T a function assigning a closed polymorphic type (i.e., a type expression con-

taining no free type variable) to every symbol in ⌃.

Definition 2.2 The set P⇤ of polymorphic lambda raw ⌃-terms (for short, polymorphic

raw terms) is defined inductively as follows:

c 2 P⇤, whenever c 2 ⌃,

x 2 P⇤, whenever x 2 X ,

(MN) 2 P⇤, whenever M,N 2 P⇤,

(�x:�. M) 2 P⇤, whenever x 2 X , � 2 T , and M 2 P⇤,

(M�) 2 P⇤, whenever � 2 T and M 2 P⇤,

(⇤t. M) 2 P⇤, whenever t 2 V and M 2 P⇤.

The set of free variables in M will be denoted as FV (M), and the set of free type

variables in M as FV(M). The set of bound variables in M will be denoted as BV (M),

and the set of bound type variables in M as BV(M). The same notation is also used to

denote the sets of free and bound variables in a type.

In omitting parentheses, we follow the usual convention that application associates to

the left, that is, M1M2 . . .Mn�1Mn

is an abbreviation for ((. . . (M1M2) . . .Mn�1)Mn

). The

subset of P⇤ consisting of all terms built up using only the first four clauses of definition

2.2 and only simple types is called the set of simply typed raw terms.

Every polymorphic raw term corresponds to an untyped lambda term obtained by

erasing the types. This technique will be useful in proving strong normalization for the

second-order polymorphic lambda calculus. Thus, we define untyped lambda terms and the

Erase function as follows.

Let ⌃ be a set of constant symbols.
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Definition 2.3 The set ⇤ of untyped lambda ⌃-terms (for short, lambda terms) is defined

inductively as follows:

c 2 ⇤, whenever c 2 ⌃,

x 2 ⇤, whenever x 2 X ,

(MN) 2 ⇤, whenever M,N 2 ⇤,

(�x. M) 2 ⇤, whenever x 2 X and M 2 ⇤.

The function Erase:P⇤! ⇤ is defined recursively as follows:

Erase(c) = c, whenever c 2 ⌃,

Erase(x) = x, whenever x 2 X ,

Erase(MN) = Erase(M)Erase(N),

Erase(�x:�. M) = �x. Erase(M),

Erase(M�) = Erase(M),

Erase(⇤t. M) = Erase(M).

Not all polymorphic raw terms are acceptable, only those that type-check. In order

to type-check a raw term, one needs to make assumptions about the types of the (term)

variables free in M . This can be done by introducing type assignments. Then, type-

checking a raw term is done using a proof system working on certain expressions called type

judgments. However, substitution plays a crucial role in specifying the inference rules of

this proof system, and so, we now focus our attention on substitutions.

3 Substitution and ↵-equivalence

We first define the notion of a substitution on polymorphic raw terms.

Definition 3.1 A substitution is a function ':X [ V ! P⇤ [ T such that, '(x) 6= x for

only finitely many x 2 X [ V, '(x) 2 P⇤ for all x 2 X , and '(t) 2 T for all t 2 V. The

finite set {x 2 X [V | '(x) 6= x} is called the domain of the substitution and is denoted by

dom('). If dom(') = {x1, . . . , xn

} and '(x
i

) = u
i

for every i, 1  i  n, the substitution

' is also denoted by [u1/x1, . . . , un

/x
n

].

Given any substitution ', any variable y 2 X [V, and any term u 2 P⇤[T , '[y := u]

denotes the substitution such that, for all z 2 X [ V,

'[y := u](z) =

⇢
u, if y = z;

'(z), if z 6= y.

We also denote '[x := x] as '�x

. The result of applying a substitution to a raw term or a

type is defined recursively as follows.
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Definition 3.2 Given any substitution ':X [ V ! P⇤ [ T , the function b':P⇤ [ T !
P⇤ [ T extending ' is defined recursively as follows:

b'(x) = '(x), x 2 X ,

b'(t) = '(t), t 2 V,
b'(f) = f, f 2 ⌃,

b'(�) = �, � 2 B,
b'(� ! ⌧) = b'(�)! b'(⌧), �, ⌧ 2 T ,

b'(8t. �) = 8t. d'�t

(�), � 2 T , t 2 V,
b'(PQ) = b'(P )b'(Q), P,Q 2 P⇤,

b'(M�) = b'(M)b'(�), M 2 P⇤,� 2 T ,

b'(�x:�. M) = �x: b'(�). d'�x

(M), M 2 P⇤,� 2 T , x 2 X ,

b'(⇤t. M) = ⇤t. d'�t

(M), M 2 P⇤, t 2 V.

Given a polymorphic raw term M or a type �, we also denote b'(M) as '(M)

and b'(�) as '(�). Also, if dom(') = {x1, . . . , xn

} ✓ X and ' = [M1/x1, . . . ,Mn

/x
n

],

then b'(M) is denoted as M [M1/x1, . . . ,Mn

/x
n

]. If dom(') = {t1, . . . , tn} ✓ V and

' = [�1/t1, . . . ,�n

/t
n

], then b'(M) is denoted as M [�1/t1, . . . ,�n

/t
n

] (If � is a type, then

b'(�) is denoted as �[�1/t1, . . . ,�n

/t
n

]).

A substitution of untyped lambda terms is defined as a function ':X ! ⇤ with finite

domain.

Definition 3.3 The extension b':⇤! ⇤ of a substitution ':X ! ⇤ is defined recursively

as follows:

b'(x) = '(x), x 2 X ,

b'(f) = f, f 2 ⌃,

b'(PQ) = b'(P )b'(Q), P,Q 2 ⇤,

b'(�x. M) = �x. d'�x

(M), M 2 ⇤, x 2 X .

The notational conventions used for substitutions on polymorphic raw terms are also

used for substitutions on untyped terms. In particular, if M is any untyped lambda term,

we also denote b'(M) as '(M).

We now have to face the painful task of dealing with ↵-conversion and variable capture

in substitutions. The motivation for ↵-conversion is that we want terms that only di↵er by

the names of their bound variables to have the same behavior (and meaning).
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Example 3.4 For example, we would like to consider the terms M1 = ⇤t1. �x1: t1. x1

and M2 = ⇤t2. �x2: t2. x2 to be equivalent. They both represent the “polymorphic identity

function”. This can be handled by defining an equivalence relation ⌘
↵

which relates terms

that di↵er only by renaming of their bound variables.

Definition 3.5 The relation �!
↵

of immediate ↵-reduction is defined by the following

proof system:

Axioms:

8t. � �!
↵

8v. �[v/t] for all v 2 V s.t. v /2 FV(�) [ BV(�)
�x:�. M �!

↵

�y:�. M [y/x] for all y 2 X s.t. y /2 FV (M) [BV (M)

⇤t. M �!
↵

⇤v. M [v/t] for all v 2 V s.t. v /2 FV(M) [ BV(M)

Inference Rules:

� �!
↵

⌧

(� ! �) �!
↵

(⌧ ! �)

� �!
↵

⌧

(� ! �) �!
↵

(� ! ⌧)

� �!
↵

⌧

8t. � �!
↵

8t. ⌧

M �!
↵

N

MQ �!
↵

NQ

M �!
↵

N

PM �!
↵

PN

M �!
↵

N

M� �!
↵

N�

� �!
↵

⌧

M� �!
↵

M⌧

M �!
↵

N

�x:�. M �!
↵

�x:�. N

� �!
↵

⌧

�x:�. M �!
↵

�x: ⌧. M

M �!
↵

N

⇤t. M �!
↵

⇤t. N

We define ↵-reduction as the reflexive and transitive closure
⇤�!

↵

of �!
↵

. Finally, we de-

fine ↵-conversion, also called ↵-equivalence, as the least equivalence relation ⌘
↵

containing

�!
↵

(⌘
↵

= (�!
↵

[ �!�1
↵

)⇤).1

We have the following lemma showing that ↵-equivalence is “congruential” with re-

spect to the term (and type) constructor operations.

1 Warning: �!↵ is not symmetric!
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Lemma 3.6 The following properties hold:

If M1 ⌘↵

M2 and N1 ⌘↵

N2, then M1N1 ⌘↵

M2N2.

If M1 ⌘↵

M2 and �1 ⌘↵

�2, then M1�1 ⌘↵

M2�2.

If M1 ⌘↵

M2 and �1 ⌘↵

�2, then �x:�1. M1 ⌘↵

�x:�2. M2.

If M1 ⌘↵

M2, then ⇤t. M1 ⌘↵

⇤t. M2.

Proof . Straightforward by induction.

Lemma 3.6 allows us to consider the term (and type) constructors as operating on

⌘
↵

-equivalence classes. Let us denote the equivalence class of a term M modulo ⌘
↵

as

[M ], and the equivalence class of a type � modulo ⌘
↵

as [�]. We extend application, type

application, abstraction, and type abstraction, to equivalence classes as follows:

[M1][M2] = [M1M2],

[M ][�] = [M�],

[�x: [�]. [M ]] = [�x:�. M ],

[⇤t. [M ]] = [⇤t. M ].

From now on, we will usually identify a term or a type with its ↵-equivalence class

and simply write M for [M ] and � for [�].

In view of the above, ↵-equivalence should also be extended to substitutions as well. By

this, we mean that we should expect that if M1 ⌘↵

M2 and N1 ⌘↵

N2, then M1[N1/x] ⌘↵

M2[N2/x]. However, this may not be true due to the problem of variable capture. As an

illustration, let M1 = �y:�. x, M2 = �w:�. x, and N1 = N2 = w. We have M1 ⌘↵

M2

and of course N1 ⌘↵

N2, but M1[N1/x] = (�y:�. x)[w/x] = �y:�. w and M2[N2/x] =

(�w:�. x)[w/x] = �w:�. w. However, �y:�. w and �w:�. w are not ↵-equivalent. What

went wrong is that when w was substituted for x in M2 = �w:�. x, it became bound in

the result �w:�. w. We say that w was captured . In order to fix this problem, we need

to only allow substitutions that do not cause variable capture. This can be achieved in

several ways. One solution is to redefine substitution so that bound variables involved in

variable capture are renamed. Essentially, ↵-conversion is incorporated into substitution.

We find this solution rather unclean, and instead, we will define when a term is safe for a

substitution, and use ↵-conversion to get around variable capture.

Given a substitution ':X [ V ! P⇤ [ T , we let FV (') =
S

x2dom(') FV ('(x)), and

FV(') =
S

x2dom(') FV('(x)).
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Definition 3.7 Given a substitution ':X [ V ! P⇤ [ T , given any term M or type �,

safe(',M) and safe(',�) are defined recursively as follows:

safe(', x) = true, x 2 X ,

safe(', t) = true, t 2 V,
safe(', f) = true, f 2 ⌃,

safe(',�) = true, � 2 B,
safe(',� ! ⌧) = safe(',�) and safe(', ⌧), �, ⌧ 2 T ,

safe(', 8t. �) = safe('�t

,�) and t /2 FV('), � 2 T , t 2 V,
safe(', PQ) = safe(', P ) and safe(', Q), P,Q 2 P⇤,

safe(',M�) = safe(',M) and safe(',�), M 2 P⇤,� 2 T ,

safe(',�x:�. M) = safe('�x

,�) and safe('�x

,M) and x /2 FV ('),

M 2 P⇤,� 2 T , x 2 X ,

safe(',⇤t. M) = safe('�t

,M) and t /2 FV('), M 2 P⇤, t 2 V.

When safe(',M) holds we say that M is safe for ', and when safe(',�) holds we

say that � is safe for '.

Given any substitution ' and any term M (or type �), it is immediately seen that

there is some term M 0 (or type �0) such that M ⌘
↵

M 0 (� ⌘
↵

�0) and M 0 is safe for ' (�0

is safe for '). From now on, it is assumed that terms and types are ↵-renamed before a

substitution is applied, so that the substitution is safe. It is natural to extend ↵-equivalence

to substitutions as follows.

Definition 3.8 Given any two substitutions ' and '0 such dom(') = dom('0), we write

' ⌘
↵

' i↵ '(x) ⌘
↵

'0(x) for every x 2 dom(').

We have the following lemma.

Lemma 3.9 For any two substitutions ' and '0, terms M , M 0, and types � and �0, if M ,

M 0, �, �0 are safe for ' and '0, ' ⌘
↵

'0, M ⌘
↵

M 0, and � ⌘
↵

�0, then '(M) ⌘
↵

'0(M 0),

and '(�) ⌘
↵

'0(�0).

Proof . A very tedious induction on terms with many cases corresponding to the definition

of ↵-equivalence.

Corollary 3.10 (i) If (�x:�1. M1)N1 ⌘↵

(�y:�2. M2)N2, M1 is safe for [N1/x], and M2

is safe for [N2/y], then M1[N1/x] ⌘↵

M2[N2/y]. (ii) If (⇤t. M1)⌧1 ⌘↵

(⇤v. M2)⌧2, M1 is

safe for [⌧1/t], and M2 is safe for [⌧2/v], then M1[⌧1/t] ⌘↵

M2[⌧2/v].
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We are now ready to present the proof system for type-checking raw terms.

4 Type Assignments and Type-Checking

First, we need the notion of a type assignment.

Definition 4.1 A type assignment is a partial function �:X ! T with a finite domain

denoted as dom(�). Thus, a type assignment � is a finite set of pairs {x1:�1, . . . , xn

:�
n

}
where the variables are pairwise distinct. Given a type assignment � and a pair hx,�i
where x 2 X and � 2 T , provided that x /2 dom(�), we write �, x:� for � [ {hx,�i}.

In order to determine whether a raw term type-checks, we attempt to construct a

proof of a typing judgment using the proof system described below.

Definition 4.2 A typing judgment of type � is an expression of the form � .M :�, where

� is a type assignment, M is a polymorphic raw term, and � is a type.

The proof system for deriving typing judgments is the following:

Axioms:

� . c:Type(c), c 2 ⌃ (constants)

� . x:�(x), x 2 dom(�) (variables)

Inference Rules:
� .M :� ! ⌧ � .N :�

� .MN : ⌧
(application)

�, x:� .M : ⌧

� . (�x:�. M):� ! ⌧
(abstraction)

� .M : 8t. �
� .M⌧ :�[⌧/t]

(type application)

where � is safe for the substitution [⌧/t]

� .M :�

� . (⇤t. M): 8t. �
(type abstraction)

where in this last rule, t /2 FV(�(x)) for every x 2 dom(�) \ FV (M).

If � .M :� is provable using the above proof system, we say that M type-checks with

type � under � and we write ` � .M :�. We say that the raw term M type-checks under
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� i↵ there exists some type � such that � .M :� is derivable. Finally, we say that the raw

term M type-checks (or is typable) i↵ there is some � and some � such that � . M :� is

derivable.

Note that the terms M1 and M2 of example 3.4 both type-check, since it is easily

shown that ` . ⇤t1. �x1: t1. x1: 8t1. (t1 ! t1) and ` . ⇤t2. �x2: t2. x2: 8t2. (t2 ! t2).

This example suggests that ↵-equivalence should be extended to typing judgments as

well. Indeed, . ⇤t1. �x1: t1. x1: 8t1. (t1 ! t1) and . ⇤t2. �x2: t2. x2: 8t3. (t3 ! t3) should be

considered equivalent. We extend ⌘
↵

to typing judgments as follows.

Definition 4.3 First, we define ↵-equivalence of type assignments. Given two type as-

signments � = {x1:�1, . . . , xn

:�
n

} and �0 = {x1:�0
1, . . . , xn

:�0
n

}, we write � ⌘
↵

�0 i↵

�
i

⌘
↵

�0
i

for all i, 1  i  n. Two type judgments �.M :� and �0 .M 0:�0 are ↵-equivalent

i↵ � ⌘
↵

�0, M ⌘
↵

M 0, and � ⌘
↵

�0.

Following Hindley and Seldin, we also add the following inference rules to the proof

system of definition 4.2.

� .M :� � ⌘
↵

�0

�0 .M :�
where � .M :� is an axiom (⌘0

↵

)

� .M :� � ⌘
↵

�0

� .M :�0 where � .M :� is an axiom (⌘00
↵

)

� .M :� M ⌘
↵

M 0

� .M 0:�
(⌘000

↵

)

It is obvious that ↵-equivalence of type-judgments is an equivalence relation. The

following lemma shows that it is legitimate to work with equivalence classes of terms and

types modulo ↵-equivalence.

Lemma 4.4 If two type judgments � .M :� and �0 .M 0:�0 are ↵-equivalent and there is

a proof ` � .M :�, then there is a proof ` �0 .M 0:�0 (in the extended system of definition

4.3).

Proof . A tedious induction on the depth of proof trees with many cases corresponding to

the definition of ↵-equivalence.

In view of lemma 3.6, lemma 3.9, and lemma 4.4, it is legitimate to identify terms

and types that are ↵-equivalent, and we will do so in the future. E↵ectively, we will be

working with ↵-equivalence classes. The same kind of treatment applies to the untyped

lambda calculus in an obvious fashion.
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The following lemma shows that the notion of substitution given by definition 3.2 is

type preserving when applied to terms that type-check.

Given a type assignment � = {x1:�1, . . . , xn

:�
n

} and a substitution ✓:V ! T , let

✓(�) = {x1: ✓(�1), . . . , xn

: ✓(�
n

)}.

Lemma 4.5 (i) For any term M and any substitution ':X ! P⇤ s.t. FV (M) ✓ dom('),

if M type-checks with proof ` �.M : ⌧ , and there is some � such that for every x 2 FV (M),

'(x) type-checks with some proof ` � . '(x):�(x) and M is safe for ', then '(M) type-

checks with some proof ` � . '(M): ⌧ . (ii) For any term M 2 P⇤ and any substitution

✓:V ! T , if M type-checks with proof ` � .M :� and �, M , and � are safe for ✓, then,

✓(M) type-checks with some proof ` ✓(�) . ✓(M): ✓(�).

Proof . Both proofs are tedious but not di�cult. They are left to the courageous readers.

Definition 4.6 Given any contexts �,�, a type-preserving substitution is a function ' :

dom(�) ! P⇤ such that, for every x 2 dom(�), ` � . '(x) : �(x). Such a substitution is

denoted as ' : �! �.

Another useful and tedious lemma shows that substitution of raw terms is preserved

under erasing.

Lemma 4.7 (i) For all raw M,N 2 P⇤, Erase(M [N/x]) = Erase(M)[Erase(N)/x]. (ii)

For every raw term M 2 P⇤ and type ⌧ 2 T , Erase(M [⌧/t]) = Erase(M).

Proof . The proof proceeds by cases and it is tedious but not di�cult.

We are finally ready to define the notion of reduction.

5 Reduction and Conversion

It is convenient to define reduction on raw terms, and verify that it is type-preserving when

applied to a term that type-checks. Actually, we will define reduction on ↵-equivalence

classes and use lemma 3.6 and corollary 3.10 to ensure that this definition makes sense.

Thus, in what follows, terms and types are identified with their ⌘
↵

-equivalence class. In

particular, if we consider an equivalence class of the form [(�x:�. M)N ], we can assume

that M has been ↵-renamed so that M is safe for the substitution [N/x], and similarly for

a class of the form [(⇤t. M)⌧ ].
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Definition 5.1 The relation �!
�

8 of immediate reduction is defined in terms of the four

relations �!
�

, �!
⌘

, �!
⌧�

, and �!
⌧⌘

, defined by the following proof system:

Axioms:

(�x:�. M)N �!
�

M [N/x], provided that M is safe for [N/x] (�)

�x:�. (Mx) �!
⌘

M, provided that x /2 FV (M) (⌘)

(⇤t. M)⌧ �!
⌧�

M [⌧/t], provided that M is safe for [⌧/t] (type �)

⇤t. (Mt) �!
⌧⌘

M, provided that t /2 FV(M) (type ⌘)

Inference Rules: For each kind of reduction �!
r

where r 2 {�, ⌘, ⌧�, ⌧⌘},

M �!
r

N

MQ �!
r

NQ

M �!
r

N

PM �!
r

PN
for all P,Q 2 P⇤ (congruence)

M �!
r

N

M� �!
r

N�
for all � 2 T (type congruence)

M �!
r

N

�x:�. M �!
r

�x:�. N
x 2 X ,� 2 T (⇠)

M �!
r

N

⇤t. M �!
r

⇤t. N
t 2 V (type ⇠)

We define �!
�

8 = �!
�

[ �!
⌘

[ �!
⌧�

[ �!
⌧⌘

, and reduction as the reflexive and

transitive closure
⇤�!

�

8 of �!
�

8 . We also define immediate conversion  !
�

8 such that

 !
�

8 = �!
�

8 [ �!�1
�

8 , and conversion as the reflexive and transitive closure
⇤ !

�

8 of

 !
�

8 .

The following lemma shows that reduction is type-preserving.

Lemma 5.2 Given any two raw terms M,N 2 P⇤, if M type-checks with proof ` �.M :�

and M �!
�

8 N , then N also type-checks with some proof ` � .N :�.

Proof . Again, the proof proceeds by cases and it is tedious but not di�cult.

It is evident that lemma 5.2 also holds for
⇤�!

�

8 .

Reduction and conversion can also be defined for the untyped lambda calculus. The

reduction relation
⇤�!

�

is defined by only retaining the � and ⌘ reduction axioms of

definition 5.1, and the inference rules not involving types. The notion of conversion
⇤ !

�

is defined from �!
�

in the usual way. It is easy to see that an analog of lemma 3.9 holds
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for untyped �-terms. When we need to distinguish between a �-reduction step and a �8-

reduction step, we add the name of the calculus as a subscript. For example, �!
�,�

is a

�-conversion step in the untyped lambda calculus �, whereas �!
�,�

8 is a �-conversion step

in the polymorphic lambda calculus �8.

We have the following lemma showing how a reduction step �!
�

8 is mapped to a

reduction step
⇤�!

�

by the Erase function.

Lemma 5.3 Let M,N 2 P⇤ be two raw terms. If M �!
�,�

8 N or M �!
⌘,�

8 N , then

Erase(M) �!
�,�

Erase(N) or Erase(M) �!
⌘,�

8 Erase(N) respectively. If M �!
⌧�,�

8

N or M �!
⌧⌘,�

8 N , then Erase(M) = Erase(N).

Proof . Another tedious but not di�cult proof using lemma 4.7.

Definition 5.4 Let �! ✓ A ⇥ A be a binary relation on a set A, and
⇤�! be the

reflexive and transitive closure of �!. An element a 2 A is strongly normalizing (with

respect to �!, for short SN) i↵ there are no infinite sequences ha0, a1, . . . , an, . . .i such that

a0 = a and a
n

�! a
n+1 for all n � 0. We say that �! is Noetherian i↵ every a 2 A is

strongly normalizing (with respect to �!). We say that �! is locally confluent i↵ for all

a, a1, a2 2 A, if a �! a1 and a �! a2, then there is some a3 2 A such that a1
⇤�! a3 and

a2
⇤�! a3. We say that �! is confluent i↵ for all a, a1, a2 2 A, if a

⇤�! a1 and a
⇤�! a2,

then there is some a3 2 A such that a1
⇤�! a3 and a2

⇤�! a3. Let  ! = �! [ �!�1.

We say that �! is Church-Rosser i↵ for all a1, a2 2 A, if a1
⇤ ! a2, then there is some

a3 2 A such that a1
⇤�! a3 and a2

⇤�! a3.

It is well known (Huet [17]) that a Noetherian relation is confluent i↵ it is locally

confluent and that a relation is confluent i↵ it is Church-Rosser. We say that a lambda

calculus X (X 2 {�,�8}) is Noetherian, locally confluent, or confluent i↵ the relation �!
X

associated with X has the corresponding property. We say that it is canonical i↵ it is

Noetherian and confluent.

Lemma 5.3 will be used to show that a polymorphic raw term is strongly normalizing

i↵ its type erasure Erase(M) is strongly normalizing.

Lemma 5.5 Let M,N 2 P⇤ be two raw terms. If M �!
⌧�,�

8 N or M �!
⌧⌘,�

8 N , then

N has one less type abstraction than M .

Proof . Immediate by the definitions.

We now have the important “erasing trick” lemma.
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Lemma 5.6 Let M 2 P⇤ be any raw term. If there is an infinite sequence of �!
�

8

reductions from M , then there is an infinite sequence of �!
�

reductions from Erase(M).

Proof . First, observe that any infinite sequence of �!
�

8 reductions from M must contain

a subsequence consisting of infinitely many �!
�,�

8 or �!
⌘,�

8 reductions, since otherwise

some term in this sequence would be the head of an infinite sequence of �!
⌧�,�

8 or �!
⌧⌘,�

8

reductions, contradicting lemma 5.5. But then, by lemma 5.3, the infinite sequence of

�!
�

8 reductions from M maps by Erase to an infinite sequence of �!
�

reductions from

Erase(M).

Thus, lemma 5.6 implies that a polymorphic raw term is strongly normalizing i↵ its

type erasure Erase(M) is strongly normalizing. In the next section, it will be shown that

if M is a raw term that type-checks, then Erase(M) is strongly normalizing, thus showing

that M itself is strongly normalizing.2 The following lemma will also be needed.

Lemma 5.7 Let M1,M2, N1, N2 2 ⇤ be untyped lambda terms. If M1
⇤�!

�

M2 and

N1
⇤�!

�

N2, then M1[N1/x]
⇤�!

�

M2[N2/x].

Proof . We use two inductions, one on the structure of M1, and the other on the length of

reduction sequences. The details are quite tedious.

6 An Untyped Version of The Candidates of Reducibility

Originally, the “candidats de reductibilité” were defined by Girard as sets of typed (poly-

morphic) lambda terms with certain closure properties (Girard 1970 [9], Girard 1972 [10]).

Soon after Girard, Tait observed that Girard’s brilliant device could be simplified if the

candidates are defined as certain sets of untyped lambda terms, and if a certain “erasing

trick” is used (Tait 1973 [37]).3 Roughly thirteen years after Tait, Mitchell independently

noticed that an untyped version of the candidates is more flexible to work with, and he gave

his own version generalizing Tait’s version (Mitchell 1986 [24]).

Before we proceed with the technical details, we will attempt to reveal some of the

intuitions underlying the proof. We believe that this is best accomplished by first restricting

our attention to the simply typed lambda calculus. The problem is to show that every simply

typed term that type-checks is strongly normalizing.

2 It is interesting to note that Tait [37] used an erasing trick in his proof, but the definition of his
erasing function is di↵erent from the one given here.

3 Interestingly, the erasing trick was known to Girard himself, since it appears in his thesis, Girard
1972 [10]. However, he did not make use of it in his proof of strong normalization.
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A natural way of attacking the problem is to attempt a proof by induction on the

size of terms. The base case of a (typed) variable or a (typed) constant works out nicely,

since no reduction applies. The case of a lambda abstraction M = �x:�. N also works fine,

because if any reduction applies to M , then it must in fact apply to N , and N has strictly

smaller size than M , so the induction hypothesis applies. Di�culties arise in case of an

application of the form (�x:�. M)N . The induction hypothesis applies to both �x:�. M

and N , but there is another possibility of reduction, namely (�x:�.M)N �!
�

M [N/x], and

unfortunately, M [N/x] is not necessarily strictly smaller than (�x:�. M)N . Tait’s clever

solution for overcoming this problem (Tait [36]) is essentially to strengthen the induction

hypothesis. He does so by defining by induction on types the class of “computable” (or

“reducible”) terms. Let us denote the set of simply typed terms of type � (that type-check)

as ST
�

, and the subset of all SN terms in ST
�

as SN
�

. For every simple type �, the set [[�]]

is a subset of ST
�

defined as follows:

(1) [[�]] = SN
�

, for every base type �;

(2) [[(� ! ⌧)]] = {M 2 ST(�!⌧) | 8N 2 [[�]], MN 2 [[⌧ ]]}.

One can then prove by induction on types that

[[�]] ✓ SN
�

, (a)

that is, all terms in [[�]] are SN. In order to finish the proof, it is su�cient to show that

ST
�

✓ [[�]], (b)

since (a) and (b) together prove that ST
�

= SN
�

.

The way to prove (b) is to proceed by induction on the size of terms. Note that

the problematic case of an application MN (where M 2 ST
�!⌧

) is now easy: by the

induction hypothesis, M 2 [[(� ! ⌧)]] and N 2 [[�]], and by the definition of [[(� ! ⌧)]], we

have MN 2 [[⌧ ]]. This time, the di�cult case is to prove that for every term of the form

�x:�. M , where M 2 ST
⌧

, �x:�. M 2 [[(� ! ⌧)]]. We need to show that for every N 2 [[�]],

(�x:�. M)N 2 [[⌧ ]]. Since (�x:�. M)N �!
�

M [N/x], if we could show that M [N/x] 2 [[⌧ ]]

and that whenever M [N/x] 2 [[⌧ ]], then (�x:�. M)N 2 [[⌧ ]], we would be able to conclude.

This can be done, but it is necessary to strengthen the induction hypothesis. Roughly,

the idea is show that for every term M 2 ST
�

, for every substitution ' assigning to each

variable of type ⌧ in M some term in [[⌧ ]], then '(M) 2 [[�]]. Then, we have our result by

choosing ' to be the identity substitution.

Now, it turns out that the sets of the form [[�]] have certain closure properties (proper-

ties (S1), (S2) of definition 6.9) that make the various induction steps go through. Girard’s
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achievement was to generalize Tait’s method (sketched above) to the polymorphic lambda

calculus. This generalization requires a major leap forward, because in trying to extend the

definition of the sets [[�]] to the polymorphic types, one faces two (related) problems:

(1) What to assign to the type variables;

(2) What to assign to a type of the form 8t. �.

Girard’s solution is the invention of the candidates of reducibility. Girard defines a

family C of sets of typed terms satisfying certain closure conditions akin to conditions (S1),

(S2) mentioned above. One of these conditions is that each set in C is a set of strongly

normalizing terms. The other conditions amount to inductive conditions. The sets in C are

called candidates of reducibility . Then, the solution is to assign arbitrary candidates to the

type variables. More specifically, the sets [[�]] are parameterized by an assignment ⌘ of sets

from C to the type variable (actually, things are a bit more complicated, because in Girard,

the candidates are typed). Thus, these sets are of the form [[�]]⌘, where ⌘ is an assignment

of candidates to the typed variables. The set assigned to a type of the form 8t. � is

[[8t. �]]⌘ =
\

C2C
[[�]]⌘[t := C],

where ⌘[t := C] is like the assignment ⌘, except that t is now assigned the candidate C

(again, in Girard’s setting, things are more complicated due to the types, and what we are

describing holds for the untyped version of the candidates).

Now comes Girard’s trick: Because the sets in the family C (the candidates) satisfy

some well chosen conditions, for every assignment ⌘, each set [[�]]⌘ also belongs to C! This is
remarkable, because [[8t.�]]⌘ is defined in terms of all the candidates in C, and consequently

it is defined in terms of itself. This is a splendid instance of impredicativity. Another

important fact is that for every type �, the set of (polymorphic) strongly normalizing terms

of type � that type-check is a candidate of reducibility (i.e., belongs to C).

The main lines of Girard’s proof of strong normalization are as follows.

(1) Define the family C of candidates of reducibility so that they consist of sets of strongly

normalizing terms;

(2) Define the sets [[�]]⌘;

(3) Prove “Girard’s trick”, that is, prove that [[�]]⌘ 2 C for every type � and assignment

⌘;

(4) Prove that the set of (polymorphic) strongly normalizing terms of type � is a candidate

of reducibility (for every type �);
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(5) Prove that for every (polymorphic) term M of type � that type-checks, M 2 [[�]]⌘, for

every assignment ⌘.

By choosing the assignment ⌘ so that it assigns to the type variables the sets of terms

that are strongly normalizing, we obtain the desired result: every term that type-checks is

strongly normalizing.

It should be noted that in order to prove (5), one needs a substantially strengthened

induction hypothesis (see lemma 6.8).

We will now prove strong normalization using an untyped version of the candidates

of reducibility, following Mitchell and Tait. We go one step further and define a kind of

abstract version of the candidates of reducibility. This way, it is easier to pinpoint the

ingredients that are crucial to proofs using this concept. We first describe what we referred

to as “Girard’s trick”.

Definition 6.1 Given two sets S and T of (untyped) lambda terms, we let [S ! T ] be

the set of (untyped) lambda terms defined as follows:

[S ! T ] = {M 2 ⇤ | 8N 2 S, MN 2 T}.

We refer to the operation ! on sets of lambda terms defined above as the function space

constructor .

Definition 6.2 Let C be a nonempty family of sets of (untyped) lambda terms having the

following properties:

(1) Every C 2 C is nonempty.

(2) C is closed under the function space constructor.

(3) Given any C-indexed family (A
C

)
C2C of sets in C, then

T
C2C AC

2 C.

A family satisfying the above conditions is called a T -closed family .4

We shall prove shortly that such families exist.

Let C be a T -closed family. Given any assignment ⌘:B[V ! C of sets in C to the type

variables and the base types, we can associate certain sets of lambda terms to the types

inductively as explained below. In the following definition, given any set C 2 C and any

type variable t, ⌘[t := C] denotes the assignment such that, for all v 2 V,

⌘[t := C](v) =

⇢
C, if v = t;

⌘(v), if v 6= t.

4 In all rigor, we also have to assume that every C 2 C is closed under ↵-equivalence.
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Definition 6.3 Given any assignment ⌘:B [ V ! C, for every type �, the set [[�]]⌘ is

defined as follows:

[[t]]⌘ = ⌘(t), whenever t 2 B [ V,

[[(� ! ⌧)]]⌘ = [[[�]]⌘ ! [[⌧ ]]⌘] (where! is the function space contructor defined earlier);

[[8t. �]]⌘ =
T

C2C [[�]]⌘[t := C].

The following technical lemma will be useful later.

Lemma 6.4 Given any two assignments ⌘1:B [ V ! C and ⌘2:B [ V ! C, for every type

�, if ⌘1 and ⌘2 agree on FV(�) and B, then [[�]]⌘1 = [[�]]⌘2.

Proof . Easy induction on the structure of types.

The next result constitutes the essence of “Girard’s trick”.

Lemma 6.5 (Girard) If C is a T -closed family, for every assignment ⌘:B [ V ! C, for
every type �, then [[�]]⌘ 2 C.

Proof . The lemma is proved by induction on the structure of types. The case of a type

variable or a base type t is obvious since by the definition [[t]]⌘ = ⌘(t).

For a type (� ! ⌧), by the induction hypothesis we have [[�]]⌘ 2 C and [[⌧ ]]⌘ 2 C, and
by condition (2) of T -closed families, we also have [[[�]]⌘ ! [[⌧ ]]⌘] 2 C.

For a type 8t. �, by the induction hypothesis, for every assignment µ:B [ V ! C,
[[�]]µ 2 C. Thus, for every C 2 C we also have [[�]]⌘[t := C] 2 C, since ⌘[t := C] is an

assignment. By condition (3) of T -closed families, we have
T

C2C [[�]]⌘[t := C] 2 C.

The following technical lemma will be needed later.

Lemma 6.6 Given any two types �, ⌧ , for every assignment ⌘:B [ V ! C, if � is safe for

[⌧/t] then [[�[⌧/t]]]⌘ = [[�]]⌘[t := [[⌧ ]]⌘].

Proof . Straightforward induction on the structure of �.

In order to use lemma 6.5 in proving properties of polymorphic lambda calculi, we

need to define T -closed families satisfying some additional properties.

Definition 6.7 We say that a family C of sets of untyped lambda terms is a family of

candidates of reducibility i↵ it is T -closed and satisfies the conditions listed below.5 For

every set C 2 C:

5 Again, we also have to assume that every C 2 C is closed under ↵-equivalence.
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R1. For every variable x 2 X , x 2 C.

For every constant f 2 ⌃, f 2 C.

R2. For all M,N 2
S

C, if M [N/x] 2 C, then (�x. M)N 2 C.

The conditions of definition 6.7 are su�cient to prove the following crucial lemma.

Lemma 6.8 (Girard, Tait, Mitchell) Let C be a family of candidates of reducibility. For

every proof ` � .M :� of some polymorphic raw term M 2 P⇤ that type-checks, for every

assignment ⌘:B[V ! C, for every substitution ':FV (M)! ⇤, if '(x) 2 [[�(x)]]⌘ for every

x 2 FV (M), then '(Erase(M)) 2 [[�]]⌘.

Proof . It proceeds by induction on the depth of the proof tree for � .M :�. The base case

where x 2 X is trivial since it is assumed that '(x) 2 [[�(x)]]⌘, and in ` � . x:�, we have

� = �(x). The case of a constant f 2 ⌃ is equally obvious since '(f) = f , by lemma 6.5,

[[Type(f)]]⌘ 2 C, and by (R1), we have f 2 C for every C 2 C. There are four cases for the

inference rules.

Case 1.
� .M :� ! ⌧ � .N :�

� .MN : ⌧
(application)

By the induction hypothesis, we have '(Erase(M)) 2 [[� ! ⌧ ]]⌘ and '(Erase(N)) 2
[[�]]⌘. By the definition of [[� ! ⌧ ]]⌘, we have '(Erase(M))'(Erase(N)) 2 [[⌧ ]]⌘. But

'(Erase(M))'(Erase(N)) = '(Erase(MN)), and so '(Erase(MN)) 2 [[⌧ ]]⌘.

Case 2.
�, x:� .M : ⌧

� . �x:�. M :� ! ⌧
(abstraction)

Let k + 1 be the depth of the proof tree ` � . �x:�. M :� ! ⌧ . We have FV (�x:�. M) =

FV (M)� {x}. Let ⌘ be any assignment, let ' be any substitution with domain FV (M)�
{x}, let N be any term in [[�]]⌘ = [[(�, x:�)(x)]]⌘, and assume that '(y) 2 [[�(y)]]⌘ for every

y 2 FV (M)�{x}. Now, we can always choose a representative in the ⌘
↵

-class of [�x:�.M ]

so that �x:�. M is safe for ' and FV (N) is disjoint from BV (M). Then, we form the

substitution '[x := N ] with domain FV (M), and observe that M is safe for '[x := N ] and

that '[x := N ](y) 2 [[(�, x:�)(y)]]⌘ for every y 2 FV (M). Since the induction hypothesis

holds for every proof of depth  k and for every assignment ⌘ satisfying the conditions

of the lemma, we have '[x := N ](Erase(M)) 2 [[⌧ ]]⌘. By lemma 6.5, [[�]]⌘ 2 C, and

since x 2 [[�]]⌘ by (R1), by choosing N = x, we have '(Erase(M)) 2 [[⌧ ]]⌘. But since

�x:�. M is safe for ', we have x /2 FV ('(y)) for every y 2 dom('), and therefore '[x :=
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N ](Erase(M)) = '(Erase(M))[N/x].6 Thus, '(Erase(M))[N/x] 2 [[⌧ ]]⌘. Since N 2 [[�]]⌘

and '(Erase(M)) 2 [[⌧ ]]⌘, by lemma 6.5, we have N 2
S

C and '(Erase(M)) 2
S

C. Thus,
we can apply (R2) to '(Erase(M))[N/x] 2 [[⌧ ]]⌘, and we have (�x.'(Erase(M)))N 2 [[⌧ ]]⌘.

It is easily verified that �x.'(Erase(M)) = '(Erase(�x:�.M)) (using the fact that �x:�.M

is safe for '). Since '(Erase(�x:�.M))N 2 [[⌧ ]]⌘ holds for every N 2 [[�]]⌘, by the definition

of [[� ! ⌧ ]]⌘, we have '(Erase(�x:�. M)) 2 [[� ! ⌧ ]]⌘.7

Case 3.
� .M : 8t. �

� .M⌧ :�[⌧/t]
(type application)

By the induction hypothesis, '(Erase(M)) 2 [[8t. �]]⌘. Since [[8t. �]]⌘ =
T

C2C [[�]]⌘[t := C],

we have '(Erase(M)) 2 [[�]]⌘[t := C] for every C 2 C. Since by lemma 6.5, [[⌧ ]]⌘ 2 C,
by setting C = [[⌧ ]]⌘, we have '(Erase(M)) 2 [[�]]⌘[t := [[⌧ ]]⌘]. However, by lemma 6.6,

[[�[⌧/t]]]⌘ = [[�]]⌘[t := [[⌧ ]]⌘], and so '(Erase(M⌧)) = '(Erase(M)) 2 [[�[⌧/t]]]⌘.

Case 4.
� .M :�

� . ⇤t. M : 8t. �
(type abstraction)

where in this rule, t /2 FV(�(x)) for every x 2 dom(�) \ FV (M).

Let k + 1 be the depth of the proof tree for � . ⇤t. M : 8t. �. Since t /2 FV(�(x)) for

every x 2 dom(�) \ FV (M), by lemma 6.4, we have [[�(x)]]⌘ = [[�(x)]]⌘[t := C] for every

C 2 C. Since the induction hypothesis holds for every proof tree of depth  k, for every ⌘,

and for every ' satisfying the conditions of the lemma, it holds for every C 2 C when applied

to the proof tree ` � .M :�, to every ⌘[t := C], and to every ' such that '(x) 2 [[�(x)]]⌘

for every x 2 FV (M).8 Thus, '(Erase(M)) 2 [[�]]⌘[t := C] for every C 2 C, that is,

'(Erase(⇤t. M)) = '(Erase(M)) 2 [[8t. �]]⌘, since [[8t. �]]⌘ =
T

C2C [[�]]⌘[t := C].

Remark : It should be observed that lemma 6.8 still holds if condition (R2) of definition

6.7 is changed to:

R20. For all M,N 2 ⇤, if M [N/x] 2 C, then (�x. M)N 2 C.

6 This subtle point seems to have been overlooked in all proofs that we have read, including Girard’s
original proof(s). The problem is that '[x := N ](Erase(M)) = '(Erase(M))[N/x] may be false if
x appears in '(y) for some y 2 dom(')!

7 Observe that this step of the proof is possible because we can apply the induction hypothesis to
every substitution of the form '[x := N ] where N is any term in [[�]]⌘. This is why we need the
universal quantification on the substitution ' in the statement of the lemma. Without it, the proof
would not go through.

8 Observe that this step of the proof is possible because we can apply the induction hypothesis to
every assignment of the form ⌘[t := C] where C is any set in C. This is why we need the universal
quantification on the assignment ⌘ in the statement of the lemma. Without it, the proof would not
go through.
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The di↵erence between (R2) and (R20) is that in (R2)M and N belong to
S

C, whereas
in (R20), M and N are arbitrary terms. Our motivation for using (R2) is that one can take

advantage of the fact that M,N 2
S

C in establishing (R2).

By choosing ' to be the identity, lemma 6.8 implies that Erase(M) 2 [[�]]⌘ for every

term that type-checks. Thus, in order to prove properties of terms of the form Erase(M)

where M type-checks, one needs to know how to generate families of candidates of reducibil-

ity satisfying some given properties. For this, it appears that it is necessary to strengthen

conditions (R1) and (R2). Girard provided su�cient conditions (Girard [9], Girard [10]).

Here, we give some slightly more general conditions adapted from Mitchell ([24]) and Tait

([37]).

Definition 6.9 Let S be a nonempty set of (untyped) lambda terms. We say that S is

closed i↵ whenever Mx 2 S where x 2 X , then M 2 S. A subset C ✓ S is saturated i↵ the

following conditions hold:9

S1. For every variable x 2 X , for all n � 0 and all N1, . . . , Nn

2 S, xN1 . . . Nn

2 C.

For every constant f 2 ⌃, for all n � 0 and all N1, . . . , Nn

2 S, fN1 . . . Nn

2 C.

S2. For all M,N 2 S, for all n � 0 and all N1, . . . , Nn

2 S, if M [N/x]N1 . . . Nn

2 C, then

(�x. M)NN1 . . . Nn

2 C.

The following result shows the significance of saturated subsets of a closed set of

lambda terms.

Lemma 6.10 (Girard, Tait, Mitchell) Let S be a nonempty closed set of (untyped) lambda

terms, let C be the family of all saturated subsets of S, and assume that S 2 C (i.e. S is a

saturated subset of itself). Then C is a family of candidates of reducibility.

Proof . Since S 2 C, C is nonempty. Clearly, by condition (S1) of saturated sets in the case

n = 0, each saturated set is nonempty. Let C and D be any two saturated subsets of S.

Recall that [C ! D] = {M | 8N 2 C, MN 2 D}. We need to show that [C ! D] is a

saturated subset of S.

For every M 2 [C ! D], by (S1), since there is some variable x 2 C, Mx 2 D, and

since S is closed, we have M 2 S. Thus [C ! D] is a subset of S.

Since D is saturated, by (S1) for every variable x 2 X and for all m � 0 and all

N1, . . . , Nm

, N 2 S, we have xN1 . . . Nm

N 2 D. Since this holds for every N 2 C, we have

9 We also have to assume that every saturated subset of S is closed under ↵-equivalence.



6 An Untyped Version of The Candidates of Reducibility 21

xN1 . . . Nn

2 [C ! D].10 The second case of (S1) for a constant in ⌃ is similar. Thus, (S1)

holds for [C ! D].

For every N 2 S, all m � 0, all N1, . . . , Nm

2 S, assume that M [N/x]N1 . . . Nm

2
[C ! D]. This means that for every P 2 C, M [N/x]N1 . . . Nm

P 2 D. Since D is saturated,

by (S2), (�x. M)NN1 . . . Nm

P 2 D, and since this is true for every P 2 C, we have

(�x. M)NN1 . . . Nm

2 [C ! D].11 This shows that (S2) holds for [C ! D].

Finally, it is clear that properties (S1) and (S2) of saturated subsets of S are closed

under arbitrary intersections, and so for any C-indexed family (A
C

)
C2C of saturated subsets

of S,
T

C2C AC

is also a saturated subset of S.

Remark . Besides implying (R1) and (R2) respectively, conditions (S1) and (S2) ensure

that [C ! D] also satisfies (S1) and (S2) if C and D do. It should be noted that if we are

interested in the version of the candidates in which condition (R20) is used, then lemma

6.10 holds if the clause M,N,N1, . . . , Nn

2 S in condition (S2) of definition 6.9 is changed

to N 2 S, M,N1, . . . , Nn

2 ⇤, obtaining the condition (S20). Conditions (S1) and (S20) are

essentially Mitchell’s conditions [24].

It is interesting to note that the reason why lemma 6.10 holds is that (S1) and (S2)

have certain “right-invariant” properties.

Definition 6.11 Define a predicate � on ⇤ to be right-invariant i↵ for every M,N 2 ⇤, if

�(M) then �(MN). Let S� = {M 2 ⇤ | �(M)}. A binary relation ⇢ on ⇤ is right-invariant

i↵ for every M1,M2, N 2 ⇤, if ⇢(M1,M2) then ⇢(M1N,M2N). A set C ✓ ⇤ is closed under

⇢ i↵ for every M,N 2 ⇤, if M 2 C and ⇢(M,N), then N 2 C.

Lemma 6.12 If S� ✓ C for every set in a family C and � is right-invariant, then S�

is also a subset of every set of the form [C ! D] with C,D 2 C, and a subset of every

intersection
T

C2C AC

.

Proof . Let M be any term in ⇤. We have to show that if �(M) holds then M 2 [C ! D].

Since � is right-invariant, for every N 2 C we have �(MN). Since S� ✓ D, we have

MN 2 D. This shows that M 2 [C ! D]. Obviously, S� is also a subset of every

intersection
T

C2C AC

.

Lemma 6.13 If ⇢ is right-invariant and every set in a family C is closed under ⇢, then

every set of the form [C ! D] with C,D 2 C is closed under ⇢ and every intersectionT
C2C AC

is closed under ⇢.

10 Note how we have used the fact that (S1) holds for all n � 0, and applied (S1) with n = m + 1 for
any arbitrary m. The proof would not go through if (S1) was assumed only for n = 0.

11 Again, note how we have used the fact that (S2) holds for all n � 0.
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Proof . If M1 2 [C ! D], M2 2 ⇤ and ⇢(M1,M2), by right-invariance ⇢(M1N,M2N) for

every N 2 C. Since M1N 2 D and D is closed under ⇢, we have M2N 2 D. But this shows

that M2 2 [C ! D], i.e., [C ! D] is closed under ⇢. It is obvious that every intersectionT
C2C AC

is closed under ⇢.

Lemma 6.12 can be applied to � defined such that for every M 2 ⇤, �(M) i↵ 9u 2
X[⌃, 9N1, . . . , Nm

2 ⇤, M = uN1 . . . Nm

. In this case � corresponds to (S1). Lemma 6.13

can be applied to ⇢ defined such that ⇢(M1,M2) i↵ 9M,N 2 ⇤, 9N1, . . . , Nm

2 ⇤, M1 =

M [N/x]N1 . . . Nm

, and M2 = (�x. M)NN1 . . . Nm

. In this case ⇢ corresponds to (S2).

Thus, it seems that the way to obtain the conditions (Si) from the conditions (Ri) is

to make the (Ri) right-invariant. Indeed, this is the way to handle other type constructors,

such as products and existential types. We have the following lemma generalizing lemma

6.10.

Lemma 6.14 Let S be a nonempty closed set of (untyped) lambda terms, let F� be a

family of right-invariant predicates on ⇤, and F
⇢

a family of right-invariant binary relations

on ⇤. Let C be the family of all subsets C of S such that:

(1) S� ✓ C, for every � 2 F�;

(2) C is closed under ⇢, for every ⇢ 2 F
⇢

.

Then C is closed under the function space constructor and under intersections of the

form
T

C2C AC

.

Proof . Similar to lemma 6.10, using lemma 6.12 and lemma 6.13.

After this short digression, we state the fundamental result about the method of

candidates.

Theorem 6.15 (Girard, Tait, Mitchell) Let S be a nonempty closed set of (untyped)

lambda terms, let C be the family of all saturated subsets of S, and assume that S 2 C
(i.e. S is a saturated subset of itself). For every polymorphic raw term M 2 P⇤, if M

type-checks, then Erase(M) 2 S.

Proof . By lemma 6.10, C is a family of candidates of reducibility. We now apply lemma 6.8

to any assignment (for example, the constant assignment with value S) and to the identity

substitution, which is legitimate since by (S1), every variable belongs to every saturated

set.12

12 Actually, given any term M , we may need to perform some ↵-renaming on M to get an M

0 such that
M

0 is safe for the identity substitution. Lemma 6.8 then yields the fact that Erase(M 0) 2 S. But S

is closed under ⌘↵, and so Erase(M) 2 S.
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Thus, in order to apply theorem 6.15, one needs to have useful examples of closed sets

S that are saturated. This is the purpose of the next lemma.

Lemma 6.16 (Girard, Tait, Mitchell) (i) The set SN
�

of (untyped) lambda terms that

are strongly normalizing under �-reduction is a closed saturated set. (ii) The set SN
�⌘

of (untyped) lambda terms that are strongly normalizing under �⌘-reduction is a closed

saturated set. (iii) The set of lambda terms M such that confluence holds under �-reduction

from M and all of its subterms is a closed saturated set. (iv) The set of lambda terms M

such that confluence holds under �⌘-reduction from M and all of its subterms is a closed

saturated set.

Proof . (i)-(ii) Verifying closure is easy: if Mx is SN, then M must be SN, since other-

wise an infinite reduction sequence from M would yield an infinite reduction from Mx.

Verifying (S1) is also straightforward, since the existence of an infinite reduction sequence

from uN1 . . . Nm

implies that there is some infinite reduction sequence from some N
i

, con-

tradicting the assumption that each N
i

is SN. Verifying (S2) is a little harder. We prove

that if N is SN and there is an infinite reduction sequence from (�x. M)NN1 . . . Nm

, then

there is an infinite reduction sequence from M [N/x]N1 . . . Nm

.13 The proof is slightly more

complicated in the case of �⌘-reduction than it is in the case of �-reduction alone, because

of possible head ⌘-reductions.

Consider any infinite reduction sequence from (�x. M)NN1 . . . Nm

. There are three

di↵erent possible patterns:

(1) every term in this sequence is of the form (�x. M 0)N 0N 0
1 . . . N

0
m

, where M
⇤�!

�

M 0,

N
⇤�!

�

N 0, and N
i

⇤�!
�

N 0
i

for i = 1, . . . ,m, or

(2) there is a step (�x. M 0)N 0N 0
1 . . . N

0
m

�!
�

M 0[N 0/x]N 0
1 . . . N

0
m

in this sequence, for

some M 0, N 0, N 0
1, . . . , N

0
m

, such that M
⇤�!

�

M 0, N
⇤�!

�

N 0, and N
i

⇤�!
�

N 0
i

for

i = 1, . . . ,m, or

(3) M
⇤�!

�

M 0
1x, and there is a step

(�x. (M 0
1x))N

0N 0
1 . . . N

0
m

�!
⌘

M 0
1N

0N 0
1 . . . N

0
m

,

for some N 0, N 0
1, . . . , N

0
m

, such that N
⇤�!

�

N 0, and N
i

⇤�!
�

N 0
i

, for i = 1, . . . ,m.

In case (1), it is clear that the given infinite reduction sequence defines uniquely

some independent finite or infinite reduction sequences originating from each of M , N ,

N1, . . . , Nm

. Since N is assumed to be SN, one of the sequences originating from M ,

13 This proof is inspired by Tait [37].
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N1, . . . , Nm

must be infinite, and by lemma 5.7, we obtain an infinite reduction sequence

from M [N/x]N1 . . . Nm

.

In case (2), there are some terms M 0, N 0, N 0
1, . . . , N

0
m

, such that M
⇤�!

�

M 0,

N
⇤�!

�

N 0, and N
i

⇤�!
�

N 0
i

for i = 1, . . . ,m, and M 0[N 0/x]N 0
1 . . . N

0
m

is the head of

some infinite reduction sequence ⇡. Using lemma 5.7, we can form the reduction sequence

(�x. M)NN1 . . . Nm

�!
�

M [N/x]N1 . . . Nm

⇤�!
�

M 0[N 0/x]N 0
1 . . . N

0
m

,

which can be extended to an infinite reduction sequence using ⇡.

In case (3), since M
⇤�!

�

M 0
1x, using lemma 5.7, we have a reduction

(�x. M)NN1 . . . Nm

�!
�

M [N/x]N1 . . . Nm

⇤�!
�

M 0
1[N/x]N 0N 0

1 . . . N
0
m

.

However, because in (3) we have an ⌘-reduction step, x /2 FV (M 0
1), and so M 0

1[N/x] = M 0
1.

Thus, M 0
1[N/x]N 0N 0

1 . . . N
0
m

= M 0
1N

0N 0
1 . . . N

0
m

. Since there is an infinite reduction from

M 0
1N

0N 0
1 . . . N

0
m

, we have an infinite reduction from M [N/x]N1 . . . Nm

.

(iii)-(iv) The proof will be given in section 7 for the typed case.

We can apply theorem 6.15 to the set SN
�⌘

, which, by lemma 6.16, is closed and

saturated, and we obtain the following corollary to theorem 6.15.

Lemma 6.17 For every polymorphic raw term M , if M type-checks then Erase(M) is

strongly normalizable under �⌘-reduction.

Using lemma 5.6, we have:

Lemma 6.18 Every polymorphic raw term M that type-checks is strongly normalizable

under �⌘-reduction.

Applying theorem 6.15 to the set of terms M such that confluence holds (under �-

reduction or �⌘-reduction) from M and all of its subterms, which, by lemma 6.16, is closed

and saturated, we have:

Lemma 6.19 (Mitchell) The reduction relation �!
�

(�⌘-reduction) is confluent on terms

of the form Erase(M), where M type-checks. The result also holds for �-reduction.

Unfortunately, we have not been unable to show that lemma 6.19 implies that �!
�

8

is confluent on polymorphic terms that type-check. However, this result can be established

using a typed version of the candidates of reducibility.
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7 A Typed Version of The Candidates of Reducibility

We now describe a typed version of the “candidats de reductibilité”, as originally defined

by Girard (Girard 1970 [9], Girard 1972 [10]). We will present two sets of conditions for the

typed candidates. The first set consists of conditions similar to those used by Stenlund [35],

(basically the typed version of Tait’s conditions, Tait 1973 [37]), and the second set consists

of Girard’s original conditions (Girard [10], [11]). We also compare these conditions, and

prove that Girard’s conditions are stronger than Tait’s conditions.

Rather than using explicitly typed polymorphic terms as in Girard [10], we work with

provable typing judgments.

Definition 7.1 For every type �, let PT
�

be the set of all provable typing judgments of

type � (the provable typing judgments of the form � .M :� for arbitrary � and M).

In order to reduce the amount of notation, if S is a set of provable typing judgments

of type �, rather than writing � .M :� 2 S, we will write � .M 2 S.

Given any two types �, ⌧ 2 T and any two sets S ✓ PT
�

and T ✓ PT
⌧

, we let

[S ! T ] be the subset of PT
�!⌧

defined as follows:

[S ! T ] = {� .M 2 PT
�!⌧

| 8�0 .N, if � ✓ �0 and �0 .N 2 S, then �0 .MN 2 T}.

We also refer to the operation ! on sets of provable typing judgments defined above as the

function space constructor .

Definition 7.2 Let C = (C
�

)
�2T be a T -indexed family where each C

�

is a nonempty set

of subsets of PT
�

, and the following properties hold:

(1) For every � 2 T , every C 2 C
�

is a nonempty subset of PT
�

.

(2) For every �, ⌧ 2 T , for every C 2 C
�

and every D 2 C
⌧

, we have [C ! D] 2 C
�!⌧

.

(3) For every 8t. �, ⌧ 2 T , for every family (A
⌧,C

)
⌧2T ,C2C⌧ , where each set A

⌧,C

is in

C
�[⌧/t], we have

{� .M 2 PT 8t. � | 8⌧ 2 T , � .M⌧ 2
\

C2C⌧

A
⌧,C

} 2 C8t. �.

A family satisfying the above conditions is called a T -closed family .
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Definition 7.3 Let C be a T -closed family. A pair h✓, ⌘i where ✓:V ! T is a type

substitution and ⌘:B [ V !
S

C is a candidate assignment i↵ ⌘(t) 2 C
✓(t) for every t 2 V

and ⌘(�) 2 C
�

for every � 2 B.

We can associate certain sets of provable typing judgments to the types inductively

as explained below.

Definition 7.4 Given any candidate assignment h✓, ⌘i, for every type �, the set [[�]]✓⌘ is

a subset of PT
✓(�) defined as follows:

[[t]]✓⌘ = ⌘(t), whenever t 2 B [ V,
[[(� ! ⌧)]]✓⌘ = [[[�]]✓⌘ ! [[⌧ ]]✓⌘],

[[8t. �]]✓⌘ = {� .M 2 PT
✓(8t. �) | 8⌧ 2 T ,

� .M⌧ 2
\

C2C⌧

[[�]]✓[t := ⌧ ]⌘[t := C]}.

Strictly speaking, [[�]]✓⌘ is defined for the ⌘
↵

-class [�] of �. Thus, it can be assumed

that � is safe for ✓. For a type 8t. �, this implies that t /2 FV(✓(v)) for every v 2 dom(✓),

and consequently that ✓[t := ⌧ ](�) = ✓(�)[⌧/t]. This shows that the sets of terms involved

in the intersection are indeed of the right type ✓(�)[⌧/t].

The following technical lemma will be useful later.

Lemma 7.5 Given any two candidate assignments h✓1, ⌘1i and h✓2, ⌘2i, for every type �,

if ✓1, ✓2 agree on FV(�), and ⌘1, ⌘2 agree on FV(�) and B, then [[�]]✓1⌘1 = [[�]]✓2⌘2.

Proof . Easy induction on the structure of types.

We now have a typed version of “Girard’s trick”.

Lemma 7.6 (Girard) If C is a T -closed family, for every candidate assignment h✓, ⌘i, for
every type �, then [[�]]✓⌘ 2 C

✓(�).

Proof . The lemma is proved by induction on the structure of types. The proof is similar

to the proof of lemma 6.5. The only case worth mentioning is the case of a universal

type. Given a type 8t. � and a candidate assignment h✓, ⌘i, using ↵-renaming, it can be

assumed that 8t. � is safe for ✓. By the induction hypothesis, [[�]]✓⌘ 2 C
✓(�). Thus, for

every ⌧ 2 T and for every C 2 C
✓[t:=⌧ ](�), we also have [[�]]✓[t := ⌧ ]⌘[t := C] 2 C

✓[t:=⌧ ](�).

However, ✓[t := ⌧ ](�) = ✓(�)[⌧/t] as we observed earlier since 8t. � is safe for ✓. Thus,

[[�]]✓[t := ⌧ ]⌘[t := C] 2 C
✓(�)[⌧/t], and we conclude by condition (3) of T -closed families.

The following technical lemma will be needed later.
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Lemma 7.7 Given any two types �, ⌧ , for every candidate assignment h✓, ⌘i,

[[�[⌧/t]]]✓⌘ = [[�]]✓[t := ✓(⌧)]⌘[t := [[⌧ ]]✓⌘].

Proof . Straightforward induction on the structure of �.

In order to use lemma 7.6 in proving properties of polymorphic lambda calculi, we

need to define T -closed families satisfying some additional properties.

Definition 7.8 We say that a T -indexed family C is a family of sets of candidates of

reducibility i↵ it is T -closed and satisfies the conditions listed below:14

R0. Whenever � .M 2 C and � ✓ �0, then �0 .M 2 C.

R1. For every � 2 T , for every set C 2 C
�

, � . x 2 C, for every x:� 2 �,

For every � = Type(f), for every set C 2 C
�

, � . f 2 C, for every f 2 ⌃.

R2. (i) For all �, ⌧ 2 T , for every C 2 C
⌧

, for all �,�0, if

� .M 2
[

C
⌧

,

�0 .N 2
[

C
�

, and

�0 .M [N/x] 2 C, then

�0 . (�x:�. M)N 2 C.

(ii) For all �, ⌧ 2 T , for every C 2 C
�[⌧/t], if

� .M 2
[

C
�

and

� .M [⌧/t] 2 C, then

� . (⇤t. M)⌧ 2 C.

As in the untyped case, (R0), (R1), and (R2), are all we need to prove the following

fundamental result.

Lemma 7.9 (Girard) Let C = (C
�

)
�2T be a T -indexed family of sets of candidates of

reducibility. For every � . M 2 PT
�

, for every candidate assignment h✓, ⌘i, for every

substitution ':� ! �, if ✓(�) . '(x) 2 [[�(x)]]✓⌘ for x 2 FV (M), then ✓(�) . '(✓(M)) 2
[[�]]✓⌘.

Proof . It is similar to the proof of lemma 6.8 and proceeds by induction on the depth of

the proof tree for � .M :�. The only cases worth considering are type abstraction and type

14 Again, we also have to assume that every C 2 C is closed under ↵-equivalence.
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application, the other two being essentially unchanged, except that (R0) is needed in the

case of �-abstraction.

Case 3.
� .M : 8t. �

� .M⌧ :�[⌧/t]
(type application)

First, by suitable ↵-renaming, it can be assumed that M⌧ is safe for ' and ✓, and that 8t.�
is safe for ✓. By the induction hypothesis, ✓(�) . '(✓(M)) 2 [[8t. �]]✓⌘. By the definition of

[[8t. �]]✓⌘, we have

✓(�) . '(✓(M))� 2 [[�]]✓[t := �]⌘[t := C],

for every � 2 T and C 2 C
�

. Since 8t.� is safe for ✓, as observed before, we have ✓(�)[�/t] =

✓[t := �](�). Since by lemma 7.6, [[⌧ ]]✓⌘ 2 C
✓(⌧), by setting � = ✓(⌧) and C = [[⌧ ]]✓⌘, we have

✓(�) . '(✓(M))✓(⌧) 2 [[�]]✓[t := ✓(⌧)]⌘[t := [[⌧ ]]✓⌘].

Since 8t.� is safe for ✓ and ' and ✓ have disjoint domains, we have '(✓(M))✓(⌧) = '(✓(M⌧))

and ✓(�)[✓(⌧)/t] = ✓(�[⌧/t]), and so

✓(�) . '(✓(M⌧)) 2 [[�]]✓[t := ✓(⌧)]⌘[t := [[⌧ ]]✓⌘].

However, by lemma 7.7, [[�[⌧/t]]]✓⌘ = [[�]]✓[t := ✓(⌧)]⌘[t := [[⌧ ]]✓⌘], and so

✓(�) . '(✓(M⌧)) 2 [[�[⌧/t]]]✓⌘.

Case 4.
� .M :�

� . ⇤t. M : 8t. �
(type abstraction)

where in this rule, t /2 FV(�(x)) for every x 2 dom(�) \ FV (M).

Let k + 1 be the depth of the proof tree for � . ⇤t. M : 8t. �. Since t /2 FV(�(x)) for
every x 2 dom(�) \ FV (M), by lemma 7.5, we have [[�(x)]]✓⌘ = [[�(x)]]✓[t := ⌧ ]⌘[t := C],

for every ⌧ 2 T and every C 2 C
⌧

. By the induction hypothesis,

✓(�) . '(✓[t := ⌧ ](M)) 2 [[�]]✓[t := ⌧ ]⌘[t := C],

for every ⌧ 2 T and every C 2 C
⌧

. By suitable ↵-renaming, it can be assumed that

⇤t. M is safe for ' and ✓, that 8t. � is safe for ✓, and that t /2 FV(�(x)) for every

x 2 dom(�). Then, ✓[t := ⌧ ](�) = ✓(�), and as observed before, ✓[t := ⌧ ](M) = ✓(M)[⌧/t],

✓[t := ⌧ ](�) = ✓(�)[⌧/t], and since ' and ✓[t := ⌧ ] have disjoint domains, we have

✓(�) . '(✓(M))[⌧/t] 2 [[�]]✓[t := ⌧ ]⌘[t := C],
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for every ⌧ 2 T and every C 2 C
⌧

. In particular, since t 2 T , by choosing ⌧ = t, we

have ✓(�) . '(✓(M)) 2 [[�]]✓⌘[t := C]. Since by lemma 7.6, [[�]]✓⌘[t := C] 2 C
✓(�), we have

'(✓(M)) 2
S

C
✓(�). Thus, by (R2)(ii), we have

✓(�) . (⇤t. '(✓(M)))⌧ 2 [[�]]✓[t := ⌧ ]⌘[t := C],

that is

✓(�) . '(✓(⇤t. M))⌧ 2 [[�]]✓[t := ⌧ ]⌘[t := C],

for every ⌧ 2 T and every C 2 C
⌧

. By definition 7.4, this means that

✓(�) . '(✓(⇤t. M)) 2 [[8t. �]]✓⌘.

Remark : As in the remark just after lemma 6.8, it should be observed that lemma 7.9

still holds if condition (R2) of definition 7.8 is relaxed so that in (R2)(i),
S

C
⌧

is replaced

by PT
⌧

,
S
C
�

by PT
�

, and in (R2)(ii),
S

C
�

is replaced by PT
�

. The relaxed conditions

will be called (R20)(i) and and (R20)(ii).

In order to prove that families of sets of candidates of reducibility exist, one needs

conditions stronger that (R1) and (R2). First, we give conditions adapted from Tait and

Mitchell.

8 Families of Sets of Saturated Sets

The definition of the saturated sets given in the untyped case (definition 6.9) is adapted as

follows.

Definition 8.1 Let S = (S
�

)
�2T be a T -indexed family such that each S

�

is a nonempty

subset of PT
�

. We say that S is closed i↵ for all �, ⌧ 2 T , for every x 2 X , if�.M 2 PT
�!⌧

and �, x:� .Mx 2 S
⌧

, then � .M 2 S
�!⌧

, and for every t 2 V, if � .M 2 PT 8t. � and

� .Mt 2 S
�

, then � .M 2 S8t. �. The family Sat(S) = (Sat(S)
�

)
�2T of sets of saturated

subsets of S is defined such that for every � 2 T , Sat(S)
�

consists of those subsets C ✓ S
�

such that the following conditions hold:15

S0. Whenever � .M 2 C and � ✓ �0, then �0 .M 2 C.

15 We also have to assume that every saturated subset of S is closed under ↵-equivalence.
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S1. For every type � 2 T , for every C 2 Sat(S)
�

, for all n � 0, for allN1, . . . , Nn

2 T [P⇤,

for every u 2 X [ ⌃, if

� . uN1 . . . Nn

2 PT
�

, and

� .N
i

2 S
⇠i for some ⇠

i

whenever N
i

is a term (1  i  n), then

� . uN1 . . . Nn

2 C.

S2. (i) For all �, ⌧ 2 T , for every C 2 Sat(S)
⌧

, for all n � 0, for all N1, . . . , Nn

2 T [P⇤,

for all �,�0, if

� .M 2 S
⇠

for some ⇠,

�0 .M [N/x]N1 . . . Nn

2 C,

�0 .N 2 S
�

, and

�0 .N
i

2 S
⇠i for some ⇠

i

whenever N
i

is a term (1  i  n), then

�0 . (�x:�. M)NN1 . . . Nn

2 C.

(ii) For all �, ⌧ 2 T , for every C 2 Sat(S)
�

, for all n � 0, for all N1, . . . , Nn

2 T [P⇤,

if

� .M [⌧/t]N1 . . . Nn

2 C,

� .M 2 S
⇠

for some ⇠, and

� .N
i

2 S
⇠i for some ⇠

i

whenever N
i

is a term (1  i  n), then

� . (⇤t. M)⌧N1 . . . Nn

2 C.

We have the following typed version of lemma 6.10.

Lemma 8.2 (Girard, Tait, Mitchell) Let S = (S
�

)
�2T be a closed family where each S

�

is a nonempty subset of PT
�

, let C be the T -indexed family of sets of saturated subsets of

S, and assume that S
�

2 C
�

for every � 2 T (i.e. S
�

is a saturated subset of itself). Then

C is a family of sets of candidates of reducibility.

Proof . It is similar to the proof of lemma 6.10. One point worth mentioning is the necessity

of allowingN1 . . . Nn

to be terms or types, in order to prove closure condition (3) of definition

7.2.

We now consider the conditions used by Girard in [10] and [11], and their relationship

to Tait and Mitchell’s conditions.
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9 Families of Sets of Girard Sets

Girard’s conditions basically assert that complete induction holds for certain simple terms

w.r.t. �!
�

8 .

Definition 9.1 A simple term is a term that is not an abstraction. Thus, a term M

is simple i↵ it is either a variable x, a constant f 2 ⌃, an application MN , or a type

application M⌧ .

The idea behind this definition is that for a simple term M , for every term N , if

MN �!
�

8 Q, then either M �!
�

8 M 0 and Q = M 0N , or N �!
�

8 N 0 and Q = MN 0.

Definition 9.2 Let S = (S
�

)
�2T be a T -indexed family such that each S

�

is a nonempty

subset of PT
�

. A subset C of S
�

is a Girard set of type � i↵ the following conditions hold:16

CR0. Whenever � .M 2 C and � ✓ �0, then �0 .M 2 C.

CR1. If � .M 2 C, then M is SN w.r.t �!
�

8 ;

CR2. If � .M 2 C and M �!
�

8 N , then � .N 2 C;

CR3. For every simple term �.M 2 PT
�

, if �.N 2 C for every N such that M �!
�

8 N ,

then � .M 2 C.

Note that (CR3) implies that all simple irreducible terms are in C. We shall prove a

lemma analogous to lemma 8.2 for families of sets of Girard subsets, but first, we establish

a precise connection between Girard sets and saturated sets. We prove that conditions

(CR1), (CR2) and (CR3) imply conditions (S1) and (S2).

Lemma 9.3 Let S = (S
�

)
�2T be a family where each S

�

is a Girard subset of PT
�

.

Every Girard subset of S is a saturated set, i.e., satisfies conditions (S1), (S2).

Proof . We first make the following observation. For every term M , it is clear that there are

only finitely many terms N such that M �!
�

8 N . Thus, for every SN term M , by König’s

lemma, the tree of reduction sequences from M is finite. Thus, for every SN term M , the

depth of the reduction tree from M is well defined, and we denote it as �(M).

We now prove (S1). For every u 2 X [ ⌃, assume that

� . uN1 . . . Nn

2 PT
�

, and

� .N
i

2 S
⇠i for some ⇠

i

whenever N
i

is a term (1  i  n).

16 We also have to assume that every Girard subset of S is closed under ↵-equivalence.
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We prove by complete induction on � = �(N1)+ . . .+ �(N
n

) that �.uN1 . . . Nn

2 C. Since

uN1 . . . Nn

is a simple term, we can do this by using (CR3).

The base case � = 0 holds, since then uN1 . . . Nn

is simple and irreducible. For the

induction step, note that uN1 . . . Nn

�!
�

8 Q implies that Q = uN1 . . . N
0
i

. . . N
n

, where

N
i

�!
�

8 N 0
i

. Also, ifN
i

�!
�

8 N 0
i

, by (CR2) we have�.N 0
i

2 S
⇠i , and since �(N 0

i

) < �(N
i

),

the induction hypothesis implies that � .uN1 . . . N
0
i

. . . N
n

2 C. Using (CR3), we conclude

that � . uN1 . . . Nn

2 C.

We also prove (S2). Assume that for some �,�0,

� .M 2 S
⇠

for some ⇠,

�0 .M [N/x]N1 . . . Nn

2 C,

�0 .N 2 S
�

, and

�0 .N
i

2 S
⇠i for some ⇠

i

whenever N
i

is a term (1  i  n).

We want to prove that �0 . (�x:�. M)NN1 . . . Nn

2 C. Since (�x:�. M)NN1 . . . Nn

is

a simple term, we can do this by using (CR3). Since the terms M,N,N1, . . . , Nn

are

SN, we prove by complete induction on � = �(M) + �(N) + �(N1) + . . . + �(N
n

) that if

�0 .M [N/x]N1 . . . Nn

2 C then �0 . (�x:�. M)NN1 . . . Nn

2 C.

The base case � = 0 holds by (CR3), since then the only possible reduction is

(�x:�. M)NN1 . . . Nn

�!
�

8 Q where Q = M [N/x]N1 . . . Nn

, but �0 . Q 2 C by hypoth-

esis. Otherwise, we just prove that �0 . Q 2 C whenever (�x:�. M)NN1 . . . Nn

�!
�

8 Q.

If Q = M [N/x]N1 . . . Nn

, then we know that �0 . M [N/x]N1 . . . Nn

2 C, by the hy-

pothesis. Otherwise, either Q = (�x:�. M 0)NN1 . . . Nn

where M �!
�

8 M 0, or Q =

(�x:�. M)N 0N1 . . . Nn

where N �!
�

8 N 0, or Q = (�x:�. M)NN1 . . . N
0
i

. . . N
n

where

N
i

�!
�

8 N 0
i

, or Q = M 0NN1 . . . Nn

where M = M 0x and where x /2 FV (M 0).

In the last case, note that Q = M 0NN1 . . . Nn

= (M 0x)[N/x]N1 . . . Nn

since x /2
FV (M 0), and since M = M 0x, we have �0 .M [N/x]N1 . . . Nn

2 C, by the hypothesis.

In the other cases, by (CR2), we have � .M 0 2 S
⇠

, �0 .N 0 2 S
�

, and �0 .N 0
i

2 S
⇠i .

Using (CR2) (and a simple induction on the number of reduction steps when N �!
�

8 N 0),

since �0 .M [N/x]N1 . . . Nn

2 C, we also have �0 .M 0[N/x]N1 . . . Nn

2 C when M �!
�

8

M 0, �0 .M [N 0/x]N1 . . . Nn

2 C when N �!
�

8 N 0, and �0 .M [N/x]N1 . . . N
0
i

. . . N
n

2 C

when N
i

�!
�

8 N 0
i

(Note that this step of the proof seems to have been overlooked in other

published proofs, as pointed out to us by Pierre Louis Curien and Roberto Di Cosmo).

Since �(M 0) < �(M), �(N 0) < �(N), and �(N 0
i

) < �(N
i

), the induction hypothesis

implies that �0 . (�x:�. M 0)NN1 . . . Nn

2 C, �0 . (�x:�. M)N 0N1 . . . Nn

2 C, and �0 .
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(�x:�.M)NN1 . . . N
0
i

. . . N
n

2 C. Using (CR3), it follows that �0 . (�x:�.M)NN1 . . . Nn

2
C.

The case where

� .M [⌧/t]N1 . . . Nn

2 C,

� .M 2 S
⇠

for some ⇠, and

� .N
i

2 S
⇠i for some ⇠

i

whenever N
i

is a term (1  i  n)

is handled similarly. We show that if � .M [⌧/t]N1 . . . Nn

2 C, then � .Q 2 C whenever

� . (⇤t. M)⌧N1 . . . Nn

�!
�

8 Q.

We now prove the analogous to lemma 8.2 for Girard sets.

Lemma 9.4 Let S = (S
�

)
�2T be a closed family where each S

�

is a nonempty subset of

PT
�

, let C be the T -indexed family of sets of Girard subsets of S, and assume that S
�

2 C
�

for every � 2 T (i.e. S
�

is a Girard subset of itself). Then C is a family of candidates of

reducibility.

Proof . We need to check that C satisfies the conditions of definition 7.8. By lemma 9.3, the

sets in each C
�

satisfy conditions (S1) and (S2), which obviously imply (R1) and (R2). It

remains to show that C is T -closed. We need to prove properties (1), (2), (3), of definition

7.2. This is done by induction on types.

Property (1) is an immediate consequence of (S1). We will verify condition (2), leaving

(3) as an exercise.

Let C and D be any two Girard sets. We need to show that [C ! D] is a Girard set.

Assume that the type of the terms in [C ! D] is � ! ⌧ .

For every �.M 2 [C ! D], since �, x:�.x 2 C by (S1), by the definition of [C ! D],

we have �, x:� .Mx 2 D, and since S is closed, we have � .M 2 S
�!⌧

. Thus, [C ! D]

is a subset of S
�!⌧

. Since x is obviously SN, �, x:� . Mx 2 D, and (CR1) holds for D

because it is a Girard set, it follows that M is SN. Thus, [C ! D] satisfies (CR1).

Assume that M �!
�

8 M 0, where � .M 2 [C ! D]. For every �0 such that � ✓ �0

and �0 .N 2 C, we have �0 .MN 2 D and MN �!
�

8 M 0N . By (CR2) applied to D, we

have �0 .M 0N 2 D. Thus, by the definition of [C ! D], we have � .M 0 2 [C ! D].

It remains to verify (CR3). Let � .M be any simple term of type �, and assume that

� . Q 2 [C ! D] whenever M �!
�

8 Q. We want to prove that � . M 2 [C ! D]. By

the definition of [C ! D], this will be the case if we can show that for every �0 such that

� ✓ �0 and �0 .N 2 C, then �0 .MN 2 D.



34 ON GIRARD’S “CANDIDATS DE REDUCTIBILITÉ”

We prove by complete induction on �(N) that �0 . MN 2 D. Since MN is simple,

we can do this by using (CR3). Because M is simple, observe that MN �!
�

8 U implies

that either

(a) U = M 0N and M �!
�

8 M 0, or

(b) U = MN 0 and N �!
�

8 N 0.

In case (a), since we have assumed that � .Q 2 [C ! D] whenever M �!
�

8 Q, we

have � .M 0 2 [C ! D], and thus �0 .M 0N 2 D since �0 .N 2 C.

In case (b), since �0 . N 2 C and N �!
�

8 N 0, by (CR2) applied to C we have

�0 . N 0 2 C, we also have �(N 0) < �(N), and by the induction hypothesis, this yields

�0 .MN 0 2 D. We can conclude that �0 .MN 2 D by application of (CR3) to D. Hence,

we have shown that [C ! D] also satisfies (CR3), and consequently it is a Girard set.

Having shown that both closed families of saturated sets and closed families of Girard

sets yield families of sets of candidates of reducibility, we can prove the typed version of

Girard’s fundamental theorem.

10 Girard’s Fundamental Theorem

The fundamental theorem holds for both saturated and Girard sets.

Theorem 10.1 (Girard) Let S = (S
�

)
�2T be a closed family where each S

�

is a nonempty

subset of PT
�

. Let C be either the T -indexed family of sets of saturated subsets of S, or

the family of Girard subsets of S, and assume that S
�

2 C
�

for every � 2 T . For every

� .M 2 PT
�

, we have � .M 2 S
�

.

Proof . By lemma 8.2 or lemma 9.4, C is a family of sets of candidates of reducibility. We

now apply lemma 7.9 to any assignment (for example, the assignment with value ⌘(t) = S
t

),

the identity type substitution, and the identity term substitution, which is legitimate since

by (S1), every variable belongs to every saturated set.17

Remark : As in the untyped case, if we are interested in the version of the candi-

dates using conditions (R20)(i) and (R20)(ii), then lemma 8.2 holds if conditions (S2)(i)

and (S2)(ii) of definition 8.1 are relaxed in the obvious way (for example, S
⇠

is replaced by

PT
⇠

).

The next lemma is a typed version of lemma 6.16 and gives interesting examples of

closed families of Girard sets and saturated sets.

17 Actually, some ↵-renaming may have to be performed on M and � so that they are both safe for the
type and term identity substitution.
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Lemma 10.2 (Girard, Tait, Mitchell) (i) The T -indexed family SN
�

such that for every

� 2 T , SN
�,�

is the set of provable typing judgments � . M :� such that M is strongly

normalizing under �-reduction, is a closed family of Girard and saturated sets. (ii) The

T -indexed family SN
�⌘

such that for every � 2 T , SN
�⌘,�

is the set of provable typing

judgments � . M :� such that M is strongly normalizing under �⌘-reduction, is a closed

family of Girard and saturated sets. (iii) The T -indexed family consisting for every � 2 T
of the set of provable typing judgments � . M :� such that confluence under �-reduction

holds from M and all of its subterms, is a closed family of Girard and saturated sets. (iv)

The T -indexed family consisting for every � 2 T of the set of provable typing judgments

� .M :� such that confluence under �⌘-reduction holds from M and all of its subterms, is

a closed family of Girard and saturated sets.

Proof . (i)-(ii) The verification that SN
�

and SN
�⌘

are closed families of Girard sets is

obvious. The verification that they are closed families of saturated sets is essentially identical

to the proof of lemma 6.16. Verifying (S2)(ii) in the case of type abstraction is similar to

the other case (S2)(i) but a bit simpler, since types cannot be �⌘-reduced.

(iii)-(iv) The verification that these sets are Girard sets is similar to the verification

that they are saturated sets and is omitted. The verification that they are saturated sets is

done in appendix 2.

One should note that because the conditions for being a Girard set are stronger than

the conditions for being a saturated set, it is trivial to show that SN
�⌘

is a closed family of

Girard sets, whereas, showing that it is a closed family of saturated sets requires more work

(namely, part of lemma 6.16). Applying theorem 10.1 to the set SN
�⌘

, which, by lemma

9.4 is a closed family of Girard sets (or by lemma 8.2, a closed family of saturated sets), we

obtain the following corollary to theorem 10.1.

Lemma 10.3 Every term M that type-checks is strongly normalizing under �⌘-reduction.

Interestingly, using parts (iii)-(iv) of lemma 10.2, we obtain a new proof of the fact

that �!
�

8 is confluent on terms that type-check. Girard (Girard [10]) proved this result

(for �-reduction) using an adaptation of Tait and Matin Löf’s proof of confluence for the

untyped lambda calculus.

Lemma 10.4 Confluence holds under �⌘-reduction for terms M that type-check. Con-

fluence also holds under �-reduction for terms that type-check.

It is interesting to note that Lemma 10.4 fails for raw terms. The following example

shows what goes wrong.
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Consider the term M = �x:�.(�y: ⌧.y)x where � 6= ⌧ . Clearly, M does not type-check,

and we have two reductions

�x:�. (�y: ⌧. y)x �!
�

�x:�. x and �x:�. (�y: ⌧. y)x �!
⌘

�y: ⌧. y,

and there is no way to achieve confluence since � 6= ⌧ . Thus, �!
�

8 is not confluent on all

raw terms, only those that type-check.

However, the polymorphic lambda calculus �8 is Church-Rosser and strongly normaliz-

ing on terms that type-check. What is interesting about this new proof of the Church-Rosser

property is that it makes an essential use of the type structure. This observation was made

by Statman in the context of logical relations [34] (for the simply typed lambda calculus).

11 A Comparison of Proofs

The purpose of this section is to compare various proofs that have appeared in the literature.

These proofs are considered in chronological order.

1. Girard’s proof(s) (1970, 1972).

The method of candidates of reducibility was invented by Girard in order to settle

entirely proof theoretically a famous open problem in proof theory known as Takeuti’s

conjecture. Girard’s “tour de force”, settling positively Takeuti’s conjecture for higher-

order intuitionistic logic by purely proof theoretic means, is first accomplished in Girard [9].

Takeuti’s conjecture is the generalization of Gentzen’s cut elimination theorem to (classical)

higher-order logic (for details on Takeuti’s conjecture, the reader should consult Girard [12]).

Girard’s proof of Takeuti’s conjecture (in [9]) consists in exploiting the “formulae as types”

analogy, first observed by Curry and Howard. Roughly speaking, a proof (in a Prawitz-style

deduction system) is coded as a certain kind of lambda term, and the formula occurring as

the conclusion of the proof is considered to be the type of the term. What is remarkable

about this correspondence proof – lambda term, formula – type, is that the process of

normalizing a proof (eliminating certain redundancies having to do with an introduction

rule followed by an elimination rule for the same logical connective) corresponds to �-

reduction applied to the term representing the proof. Thus, if one succeeds in defining a

typed lambda calculus in which terms represent proofs in a natural deduction system, and

�-conversion corresponds to proof normalization, if in addition one is able to prove strong

normalization for this typed lambda calculus, then one has shown strong normalization for

proofs in the natural deduction system.

Girard’s achievement was to define a typed lambda calculus, system F, which corre-

sponds to second-order propositional intuitionistic logic, and to prove strong normalization
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for system F. In order to prove strong normalization, Girard invented the method of can-

didates of reducibility. Girard also used the method of candidates of reducibility to prove

Takeuti’s conjecture for higher-order intuitionistic logic.

System F is actually more general than the calculus that we have presented, since it

includes product types and existentially quantified types. In [9], candidates of reducibility

are sets of typed terms satisfying certain conditions technically rather di↵erent from con-

ditions (R1) and (R2) given in definition 7.8. We will not list these conditions here, but

instead present the conditions given in Girard’s thesis [10] and his class notes [11] later in

this section.

Reading [9] is quite challenging, because a lot of extremely original material is pre-

sented in a short space, and also because the notations used are not the most illuminating.

Nevertheless, the method of the candidates emerges very clearly and with great power.

In his thesis [10], Girard extends system F to a typed lambda calculus named F
!

.

The system F
!

encodes proofs in higher-order intuitionistic logic, whereas system F only

encodes the second-order fragment of this logic. The system F
!

also includes product types,

existential types, and even disjunctive types. The method of candidates of reducibility is

extended to F
!

, and strong normalization is shown, as well as the Church-Rosser theorem

(by the method of Tait and Martin Löf). Much more is done in the thesis, but we are pri-

marily focusing on the method of candidates of reducibility. A simpler (and more readable)

version of this proof for system F is given in Girard [11].

Both in [10] and [11], Girard uses a typed version of the candidates satisfying some

interesting conditions. Girard defines a simple term as a term that is not an abstraction.

Thus, a term M is simple i↵ it is either a variable x, an application MN , or a type

application M⌧ . A candidate of reducibility of type � is a set C of terms of type � such

that:

CR1. If M 2 C, then M is SN;

CR2. If M 2 C and M �!
�

8 N , then N 2 C;

CR3. If M is a simple term and if N 2 C for every N such that M �!
�

8 N , then M 2 C.

Note that (CR3) implies that all variables of type � are in C (what we call (R1)

in definition 7.8). Girard defines what he calls reducibility with parameters, as we do in

definition 7.4, except that he uses a notation that we find a little confusing. Given a type �,

if FV(�) = {t1, . . . , tn} is the set of free type variables in �, instead of our type substitution

✓:V ! T he uses a sequence U = hU1, . . . , Un

i of types, and instead of our assignment

⌘:V !
S

C, he uses a sequence C = hC1, . . . , Cn

i of candidates, each C
i

being of type
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U
i

. Then, what we denote as [[�]]✓⌘ is denoted by Girard as RED(�[C1/t1, . . . , Cn

/t
n

]).

RED(�[C1/t1, . . . , Cn

/t
n

]) is a certain set of terms of type ✓(�), in Girard’s notation of

type �[U1/t1, . . . , Un

/t
n

].

One of the problems that we have with this notation is that it is di�cult to distinguish

between actual substitution, as in �[U1/t1, . . . , Un

/t
n

], and assigning candidates to the type

variables, as in RED(�[C1/t1, . . . , Cn

/t
n

]). The notation RED(�[C1/t1, . . . , Cn

/t
n

]) is also

slightly ambiguous since it does not refer to the type substitution [U1/t1, . . . , Un

/t
n

], which

is nevertheless indispensable to know where to pick the C
i

’s from. We prefer the notation

[[�]]✓⌘.

It is interesting to note that the intriguing condition (CR2) is needed to show that

(CR3) holds for sets of the form [C ! D], and to show that Girard’s conditions are stronger

than conditions (S1) and (S2). Also, Girard does not need (S2) (from definition 8.1) in his

proof of lemma 7.9, because he uses (CR1), (CR2), (CR3) and the fact that if a term

M is SN, then there is an upper bound on the length of reduction sequences from M , as

discussed in section 9. In e↵ect, Girard uses (CR1), (CR2), (CR3) as a substitute for what

we call (R2) in definition 7.8, in his proof of lemma 7.9. As we showed in section 9, Girard’s

conditions are stronger than conditions (S1) and (S2). We also remark that formulating

lemma 7.9 in Girard’s notation is rather cumbersome.

2. Stenlund’s version (1972).

In [35], Stenlund presents a version of the proof of strong normalization for second-

order intuitionistic logic using the method of candidates of reducibility (the theory of

species). His proof is basically a typed version of Tait’s proof discussed next. Stenlund

eliminates condition (i) on page 247 of Tait [37] because it is redundant, and uses essen-

tially our (S1) and (S2) of definition 7.8. The sets [[�]]✓⌘ are defined basically as we do in

definition 7.4. Stenlund’s notation is easier to follow that Tait (and Girard), but lemma 7.7

is also not mentioned. The fact that in conditions (S1) and (S2), the expressions N1, . . . , Nn

must be allowed to be types as well as terms seems to have been overlooked. Nevertheless,

this proof is fairly readable.

3. Tait’s version (1973).

In [37], Tait proves a realizability result analogous to our lemma 6.8 for second-order

intuitionistic logic (what he calls the theory of species) using the method of candidates of

reducibility. As a consequence, Tait obtains a version of the proof of strong normalization

for second-order intuitionistic logic (this is slightly more general than strong normalization

for second-order propositional intuitionistic logic, which corresponds to system F). Tait

takes advantage of the erasing trick, and he defines the candidates as sets of untyped



11 A Comparison of Proofs 39

lambda terms. Actually, Tait’s erasing function is not quite the one we use, because Tait

uses conditions slightly di↵erent from our (S1), (S2) of definition 6.7. Tait assume that

the untyped lambda calculus has a special constant K. Let SN denote the set of untyped

lambda terms that are strongly normalizable. Then, a candidate of reducibility C is defined

as a subset of SN satisfying the following properties:

(i) If M 2 C and M �!
�

N , then N 2 C;

(ii) For all n � 0 and all M,N1, . . . , Nn

2 ⇤, for every N 2 SN , if M [N/x]N1 . . . Nn

2 C,

then (�x. M)NN1 . . . Nn

2 C.

(iii) For all n � 0 and all N1, . . . , Nn

2 SN , KN1 . . . Nn

2 C.

Condition (i) is Girard’s (CR2), (ii) is basically our (S2), and (iii) is basically our

(S1). Tait then proves Girard’s trick (lemma 6.5) and lemma 6.8. He concludes by using

the erasing trick that if M type-checks, then it is SN. As we see it, condition (i) is never

used anywhere and appears to be redundant.

There are other technical di↵erences with Girard’s proof. First, Tait expands the

language of types by adding a base type C for every candidate of reducibility C in C. Then,
Tait defines [[�]] for all closed types over this extended language. There is no need for

an explicit assignment ⌘, since the new base types correspond to candidates in C. The

definition of [[8t. �]] is worth noting:

[[8t. �]] = {M 2 ⇤ | 8C 2 C, MK 2 [[�[C/t]]]},

where K is the special constant added to the untyped lambda calculus. Tait uses the

following erasing function:

Erase0(c) = c, whenever c 2 ⌃,

Erase0(x) = x, whenever x 2 X ,

Erase0(MN) = Erase0(M)Erase0(N),

Erase0(�x:�. M) = �x. Erase0(M),

Erase0(M�) = Erase0(M)K,

Erase0(⇤t. M) = �t. Erase0(M).

The di↵erence between this erase function and ours is that we have Erase(⇤t. M) =

Erase(M), that is, the type abstraction is deleted, and we have Erase(M�) = Erase(M),

whereas Tait uses the special constant K. Finally, in order to formulate and prove lemma

6.8, even though Tait was able to get away from using an explicit type assignment ⌘, he

is now forced to consider such assignments in the form of substitutions, which, in our

opinion, is rather confusing. Given a raw term M that type-checks with proof � .M :�, if
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FV(M) = {t1, . . . , tn}, Tait considers substitutions [T1/t1, . . . , Tn

/t
n

] of closed types for the

free type variables inM , and formsM0 = M [T1/t1, . . . , Tn

/t
n

] and �0 = �[T1/t1, . . . , Tn

/t
n

].

In e↵ect, the substitution [T1/t1, . . . , Tn

/t
n

] plays the role of our assignment ⌘.18 Tait then

proceeds basically as we do.

It should be noted that Tait does not actually justify the validity of the use of his

erasing trick, and our lemma 6.6 is hidden in (2) on page 248 (however, Girard does prove

explicitly a lemma analogous to our lemma 7.7). We also believe that case (3) in the proof

of 4.2 on page 250 is erroneous, but it can be fixed easily (along the line of our proof).

4. Fortune, Leivant, O’Donnell’s version (1983).

This version of the proof [8] can be considered as a typed version of Tait’s proof for

system F. Although it is not stated explicitly that the candidates are typed, this is the

case since the conditions (G1), (G2), (G2’), (G3) on page 174 of [8] involve types and type

abstraction. These conditions are basically our conditions (S1), (S2) of definition 8.1. As

in Tait [37], the language of types is expanded by adding a base type C for every candidate

of reducibility C in C. The sets [[�]] are only defined for closed types over this extended

language (As far as we can see, definition 6.3.2 has no provision for assigning anything to

the type variables). The definition of [[8t. �]] is almost as in Tait:

[[8t. �]] = {M 2 P⇤ | 8C 2 C, MC 2 [[�[C/t]]]}.

However, we believe that there is a subtle problem with this clause of definition 6.3.2

(page 174) which invalidates the subsequent results. The problem is that in clause (S4) of

definition 6.3.2, the sets {M 2 P⇤ | 8C 2 C, MC 2 [[�[C/t]]]} are always empty, since

the constants C do not belong to the original language, but yet the grounds (definition

6.3.1, page 173-174) are defined over the original language. Tait’s argument does not su↵er

from this problem because [[8t. �]] is a set of (untyped) terms over the original language

({M 2 ⇤ | 8C 2 C, MK 2 [[�[C/t]]]}). Unfortunately, in Fortune, Leivant, O’Donnell,

since [[8t. �]] = ;, the subsequent lemmas are invalidated. Another minor problem arises

from definition 6.4.1. Given a term M that type-checks, a type instance of M is a term

M 0 obtained by substituting in M base types for the free type variables. This substitution

essentially plays the role of our ⌘. An instance of M is a substitution instance '(M 0)

of M 0, where ' is a substitution of terms for the free variables (similar to our '). But

then, according to these definitions, it is not true that every term M is an instance of

itself, because M 0 cannot contain any type variables. In particular, if M contains free type

variables, since M 0 does not, '(M 0) will never be equal to M for any term substitution '.

18 It would be su�cient to consider substitutions of constants corresponding to the candidates.
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Thus, as is, theorem 6.4.2 only holds for terms with no free type variables (but it is also

false, due to the problem with definition 6.3.2). It seems di�cult to fix the problem with

definition 6.3.2 other than by using Girard’s original definition of [[8t. �]]. Indeed, “easy”

attempts to fix definition 6.3.2 seem to spoil the proof of lemma 6.3.1.

The next three versions are actually sketches of proofs, and they do not go through

the various induction steps (and there are quite a few!).

5. Mitchell’s version (1986).

In [24], Mitchell sketches a proof of strong normalization for system F, in which he

introduces the erasing function Erase of definition 2.3, and an untyped version of the

candidates of reducibility. Mitchell also introduces conditions (S1), (S2’) (essentially our

definition 6.9) and makes the clever observation that the range of applicability of the method

can be broadened by relativizing the definition of saturated sets to a closed set S which is

not necessarily SN (the set of lambda terms that are strongly normalizing). The definition

of [[�]]⌘ given in definition 6.3 comes from lemma 4 of [24], and definition 6.9 is basically

a reformulation of Mitchell’s conditions. Mitchell states theorem 6.15, but does not state

explicitly lemma 6.8, nor lemma 6.6.19 Although lacking proofs, this paper is quite readable.

6. Huet’s version (1987).

In [18], Huet sketches a proof of strong normalization for system F, using an untyped

version of the candidates and the erasing trick, but using a special constant in condition (S1),

as in Tait [37]. This proof was found by Coquand and Huet independently of Mitchell.20

In our opinion, the role of the assignment ⌘ should be made more explicit in the definition

of [[�]]⌘, and lemma 6.8 should be stated. Lemma 6.6 is not mentioned.

7. Scedrov’s versions (1987, 1988).

In Scedrov [31], a very elegant and simple proof of normalization for �8 is presented.

This proof is obtained by noticing two interesting facts. The first fact is that if one is

simply interested in normalization (as opposed to strong normalization), then one can drop

condition (S2) in the definition of the saturated sets, and instead require closure under

�-conversion. Then, one can prove a version of lemma 6.8 stating that for every term M

that type-checks, Erase(M) is normalizable. The second fact already noted by Girard in

his thesis ([10]), is that if Erase(M)
⇤�!

�

Q, then there is some term P 2 P⇤ such that

Erase(P ) = Q and M
⇤�!

�

8 P . These two facts together yield normalization for all terms

that type-check.

19 However, Val Breazu-Tannen is in possession of some notes by Mitchell in which such a lemma is
stated.

20 Private communication from Thierry Coquand.
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In [32], Scedrov gives an informal exposition of the proof of strong normalization for

�8. His version is basically an expanded version of Mitchell’s sketch, using the erasing trick.

In our opinion, the role of the assignment ⌘ should be made more explicit in the definition

of [[�]]⌘, and lemma 3.1 from [32] (our lemma 6.8) should be stated more clearly.

8. Related Proofs.

Other proofs of normalization or strong normalization for various natural deduction

systems based on Girard’s method have been published. Since they are not specifically

about polymorphic lambda calculi, we will simply list them without further comments.

Prawitz [29] proves strong normalization for classical first-order logic (natural deduction),

and intuitionistic second-order logic (natural deduction). It interesting to observe that the

notion of strong validity introduced in section 3.2 of Appendix A, and in section B.2 of

Appendix B of [29], is essentially equivalent to the definition of the sets [[�]]⌘. Martin-Löf

proves normalization results for various proof systems, including the Theory of Intuitionistic

Iterated Inductive Definitions, Second-Order Intuitionistic Logic, and Intuitionistic Simple

Type Theory [21, 22, 23]. The result in [23] is significantly strengthened in Girard [10]. We

should also mention that Leivant [20] has given an interesting semantic generalization of

Girard’s technique. This allows him to prove various properties of terms in �8, including

normalization, strong normalization, and solvability. Finally, in the case of the simply-typed

lambda calculus, a radically di↵erent proof of strong normalization has been given by de

Vrijer [40].

12 Syntax of the Higher-Order Polymorphic Lambda Calculus F!

In this section, we extend �8 to the system F
!

, by allowing type variables to have higher-

order types. The system F
!

was first defined by Girard [10]. Our presentation is inspired

by Pfenning [27].

In �8, all type variables implicitly have the same base type. By allowing type variables

to have higher-order types, we obtain a richer class of types and terms. In order to avoid

confusions, we will say that a type is of a certain kind , rather than saying that a type is

of a certain type. There is a distinguished kind that we will denote by ?, which, in the

formula–as–type analogy of Curry and Howard, corresponds to the type of truth values.

Some authors also denote this special kind as Type, which, to us, seems an unfortunate

choice. Church and Andrews denote this kind as o. In the formula–as–type analogy, the

types of kind ? correspond to formulae, and terms have types of kind ?, since in this analogy,

terms correspond to proofs.

Let BK be a set of base kinds containing the special kind ?.
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Definition 12.1 The set K of kinds is defined inductively as follows:

K 2 K, whenever K 2 BK, and

(K1 ! K2) 2 K, whenever K1,K2 2 K.

In omitting parentheses, we follow the usual convention that! associates to the right,

that is, K1 ! K2 ! . . .K
n�1 ! K

n

abbreviates (K1 ! (K2 ! . . . (K
n�1 ! K

n

) . . .)). It

should be noted that in Girard [10], kinds are called orders.

Let V be a countably infinite set of type variables, and let T C be a set of type con-

structors. It is assumed that every set of type constructors contains the special symbols )
and ⇧

K

for every K 2 K. The type constructors are assigned kinds by a kind signature.

Definition 12.2 A kind signature is a function ⌅: T C ! K assigning a kind to every type

constructor in T C, and such that ⌅()) = ?! (?! ?), and ⌅(⇧
K

) = (K ! ?)! ?.

The type constructor ) is the function type constructor, which, in the formula–as–

type analogy, corresponds to logical implication (�), and ⇧
K

constructs types of polymor-

phic functions. The idea behind the type constructor ⇧
K

is due to Church who used it as a

constant to serve as a universal quantifier (with lambda abstraction, see below). First-order

function and predicate symbols can be handled by viewing a many-sorted function symbol

f of rank n as a type constructor of kind K1 ! . . . ! K
n

! K
n+1, where K

i

2 BK and

K
i

6= ? (1  i  n+1), and a many-sorted predicate symbol of rank n as a type constructor

of kind K1 ! . . .! K
n

! ?, where where K
i

2 BK and K
i

6= ? (1  i  n).

We now define raw types. Raw types do not necessarily “kind-check”, and this will

be taken care of by “kinding rules”.

Definition 12.3 The set T of raw type expressions (for short, raw types) is defined in-

ductively as follows:

t 2 T , whenever t 2 V,
� 2 T , whenever � 2 T C,
(�t:K. �) 2 T , whenever t 2 V, � 2 T , and K 2 K, and

(�⌧) 2 T , whenever �, ⌧ 2 T .

Since ) and ⇧
K

belong to T C, by the last clause, (() �)⌧) and (⇧
K

�) are raw

types for all �, ⌧ 2 T , and all K 2 K. For simplicity of notation, (() �)⌧) is denoted as

(� ) ⌧), and (⇧
K

�) as ⇧
K

�. In omitting parentheses, we follow the usual convention that

application associates to the left. The subset of T consisting of the raw types of kind ? is

the set of types that can actually be the types of terms. A raw type of the form ⇧
K

(�t:K.�)

will also be denoted as 8t:K. �. It should be noted that in Girard [10], types are called

operators.
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Next, we define the polymorphic raw terms. Let X be a countably infinite set of term

variables (for short, variables), and let ⌃ be a set of constant symbols. The constants are

assigned types by a type signature.

Definition 12.4 A type signature is a function ⇥:⌃! T assigning a closed type (a type

with no free type variables) to every symbol in ⌃. A further restriction will be imposed

later, namely that ⇥(f) is of kind ? for every f 2 ⌃.

Definition 12.5 The set P⇤ of polymorphic lambda raw ⌃-terms (for short, raw terms)

is defined inductively as follows:

c 2 P⇤, whenever c 2 ⌃,

x 2 P⇤, whenever x 2 X ,

(MN) 2 P⇤, whenever M,N 2 P⇤,

(�x:�. M) 2 P⇤, whenever x 2 X , � 2 T , and M 2 P⇤,

(M�) 2 P⇤, whenever � 2 T and M 2 P⇤,

(⇤t:K.M) 2 P⇤, whenever t 2 V, K 2 K, and M 2 P⇤.

The set of free variables in M will be denoted as FV (M), and the set of free type

variables in M as FV(M). The set of bound variables in M will be denoted as BV (M),

and the set of bound type variables in M as BV(M). The same notation is also used to

denote the sets of free and bound variables in a type.

In omitting parentheses, we follow the usual convention that application associates to

the left, that is, M1M2 . . .Mn�1Mn

is an abbreviation for ((. . . (M1M2) . . .Mn�1)Mn

).

Not all types are acceptable, only those that kind-check. Similarly, not all polymorphic

raw terms are acceptable, only those that type-check. In order to kind-check a raw type

and to type-check a raw term, one needs to make assumptions about the kinds and the

types of the free variables. This can be done by introducing contexts. Then, kind-typing

a raw type, or type-checking a raw term is done using a proof system working on certain

expressions called judgments. However, substitution plays a crucial role in specifying the

inference rules of this proof system, and so, we now focus our attention on substitutions.

13 Substitution and ↵-equivalence

We first define the notion of a substitution on raw types and raw terms.

Definition 13.1 A substitution is a function ':X [ V ! P⇤[ T such that, '(x) 6= x for

only finitely many x 2 X [ V, '(x) 2 P⇤ for all x 2 X , and '(t) 2 T for all t 2 V. The
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finite set {x 2 X [V | '(x) 6= x} is called the domain of the substitution and is denoted by

dom('). If dom(') = {x1, . . . , xn

} and '(x
i

) = u
i

for every i, 1  i  n, the substitution

' is also denoted by [u1/x1, . . . , un

/x
n

].

Given any substitution ', any variable y 2 X [V, and any term u 2 P⇤[T , '[y := u]

denotes the substitution such that, for all z 2 X [ V,

'[y := u](z) =

⇢
u, if y = z;

'(z), if z 6= y.

We also denote '[x := x] as '�x

. The result of applying a substitution to a raw term or a

type is defined recursively as follows.

Definition 13.2 Given any substitution ':X [ V ! P⇤ [ T , the function b':P⇤ [ T !
P⇤ [ T extending ' is defined recursively as follows:

b'(x) = '(x), x 2 X ,

b'(t) = '(t), t 2 V,
b'(f) = f, f 2 ⌃,

b'(�) = �, � 2 T C,
b'(�t:K. �) = �t:K. d'�t

(�), � 2 T ,K 2 K, t 2 V,
b'(�⌧) = b'(�)b'(⌧), �, ⌧ 2 T ,

b'(PQ) = b'(P )b'(Q), P,Q 2 P⇤,

b'(M�) = b'(M)b'(�), M 2 P⇤,� 2 T ,

b'(�x:�. M) = �x: b'(�). d'�x

(M), M 2 P⇤,� 2 T , x 2 X ,

b'(⇤t:K.M) = ⇤t:K. d'�t

(M), M 2 P⇤,K 2 K, t 2 V.

Given a polymorphic raw term M or a type �, we also denote b'(M) as '(M)

and b'(�) as '(�). Also, if dom(') = {x1, . . . , xn

} ✓ X and ' = [M1/x1, . . . ,Mn

/x
n

],

then b'(M) is denoted as M [M1/x1, . . . ,Mn

/x
n

]. If dom(') = {t1, . . . , tn} ✓ V and

' = [�1/t1, . . . ,�n

/t
n

], then b'(M) is denoted as M [�1/t1, . . . ,�n

/t
n

] (If � is a type, then

b'(�) is denoted as �[�1/t1, . . . ,�n

/t
n

]).

As for �8, we have to deal with ↵-conversion and variable capture in substitutions.

Example 13.3 We would like to consider the terms M1 = ⇤t1: ?. �x1: t1. x1 and M2 =

⇤t2: ?.�x2: t2.x2 to be equivalent. They both represent the “polymorphic identity function.”

This can be handled by defining an equivalence relation ⌘
↵

that relates terms that di↵er

only by renaming of their bound variables.
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Definition 13.4 The relation �!
↵

of immediate ↵-reduction is defined by the following

proof system:

Axioms:

�t:K. � �!
↵

�v:K. �[v/t] for all v 2 V s.t. v /2 FV(�) [ BV(�)
�x:�. M �!

↵

�y:�. M [y/x] for all y 2 X s.t. y /2 FV (M) [BV (M)

⇤t:K.M �!
↵

⇤v:K.M [v/t] for all v 2 V s.t. v /2 FV(M) [ BV(M)

Inference Rules:
� �!

↵

⌧

�⇢ �!
↵

⌧⇢

� �!
↵

⌧

⇢� �!
↵

⇢⌧

� �!
↵

⌧

(� ) �) �!
↵

(⌧ ) �)

� �!
↵

⌧

(� ) �) �!
↵

(� ) ⌧)

� �!
↵

⌧

⇧
K

� �!
↵

⇧
K

⌧

� �!
↵

⌧

�t:K. � �!
↵

�t:K. ⌧

M �!
↵

N

MQ �!
↵

NQ

M �!
↵

N

PM �!
↵

PN

M �!
↵

N

M� �!
↵

N�

� �!
↵

⌧

M� �!
↵

M⌧

M �!
↵

N

�x:�. M �!
↵

�x:�. N

� �!
↵

⌧

�x:�. M �!
↵

�x: ⌧. M

M �!
↵

N

⇤t:K.M �!
↵

⇤t:K. N

We define ↵-reduction as the reflexive and transitive closure
⇤�!

↵

of �!
↵

. Finally, we de-

fine ↵-conversion, also called ↵-equivalence, as the least equivalence relation ⌘
↵

containing

�!
↵

(⌘
↵

= (�!
↵

[ �!�1
↵

)⇤).21

The following lemma shows that ↵-equivalence is “congruential” with respect to the

term (and type) constructor operations.

21 Warning: �!↵ is not symmetric!
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Lemma 13.5 The following properties hold:

If �1 ⌘↵

⌧1 and �2 ⌘↵

⌧2, then �1�2 ⌘↵

⌧1⌧2.

If �1 ⌘↵

�2, then �t:K. �1 ⌘↵

�t:K. �2.

If M1 ⌘↵

M2 and N1 ⌘↵

N2, then M1N1 ⌘↵

M2N2.

If M1 ⌘↵

M2 and �1 ⌘↵

�2, then M1�1 ⌘↵

M2�2.

If M1 ⌘↵

M2 and �1 ⌘↵

�2, then �x:�1. M1 ⌘↵

�x:�2. M2.

If M1 ⌘↵

M2, then ⇤t:K.M1 ⌘↵

⇤t:K.M2.

Proof . Straightforward by induction.

The above lemma allows us to consider the term (and type) constructors as operating

on ⌘
↵

-equivalence classes. Let us denote the equivalence class of a term M modulo ⌘
↵

as

[M ], and the equivalence class of a type � modulo ⌘
↵

as [�]. We extend application, type

application, abstraction, and type abstraction, to equivalence classes as follows:

[�1][�2] = [�1�2],

[�t:K. [�]] = [�t:K. �],

[M1][M2] = [M1M2],

[M ][�] = [M�],

[�x: [�]. [M ]] = [�x:�. M ],

[⇤t:K. [M ]] = [⇤t:K.M ].

From now on, we will usually identify a term or a type with its ↵-equivalence class

and simply write M for [M ] and � for [�].

Given a substitution ':X [ V ! P⇤ [ T , we let FV (') =
S

x2dom(') FV ('(x)), and

FV(') =
S

x2dom(') FV('(x)).

Definition 13.6 Given a substitution ':X [ V ! P⇤ [ T , given any term M or type �,

safe(',M) and safe(',�) are defined recursively as follows:

safe(', x) = true, x 2 X ,

safe(', t) = true, t 2 V,
safe(', f) = true, f 2 ⌃,

safe(',�) = true, � 2 T C,
safe(',�t:K. �) = safe('�t

,�) and t /2 FV('), � 2 T ,K 2 K, t 2 V,
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safe(',�⌧) = safe(',�) and safe(', ⌧), �, ⌧ 2 T ,

safe(', PQ) = safe(', P ) and safe(', Q), P,Q 2 P⇤,

safe(',M�) = safe(',M) and safe(',�), M 2 P⇤,� 2 T ,

safe(',�x:�. M) = safe('�x

,�) and safe('�x

,M) and x /2 FV ('),

M 2 P⇤,� 2 T , x 2 X ,

safe(',⇤t:K.M) = safe('�t

,M) and t /2 FV('), M 2 P⇤, t 2 V.

When safe(',M) holds we say that M is safe for ', and when safe(',�) holds we

say that � is safe for '.

Given any substitution ' and any term M (or type �), it is immediately seen that

there is some term M 0 (or type �0) such that M ⌘
↵

M 0 (� ⌘
↵

�0) and M 0 is safe for ' (�0

is safe for '). From now on, it is assumed that terms and types are ↵-renamed before a

substitution is applied, so that the substitution is safe. It is natural to extend ↵-equivalence

to substitutions as follows.

Definition 13.7 Given any two substitutions ' and '0 such dom(') = dom('0), we write

' ⌘
↵

' i↵ '(x) ⌘
↵

'0(x) for every x 2 dom(').

We have the following lemma.

Lemma 13.8 For any two substitutions ' and '0, terms M , M 0, and types � and �0, if M ,

M 0, �, �0 are safe for ' and '0, ' ⌘
↵

'0, M ⌘
↵

M 0, and � ⌘
↵

�0, then '(M) ⌘
↵

'0(M 0),

and '(�) ⌘
↵

'0(�0).

Proof . A very tedious induction on terms with many cases corresponding to the definition

of ↵-equivalence.

Corollary 13.9 (i) If (�t:K.�1)⌧1 ⌘↵

(�v:K.�2)⌧2, �1 is safe for [⌧1/t], and �2 is safe for

[⌧2/v], then �1[⌧1/t] ⌘↵

�2[⌧2/v]. (ii) If (�x:�1. M1)N1 ⌘↵

(�y:�2. M2)N2, M1 is safe for

[N1/x], and M2 is safe for [N2/y], then M1[N1/x] ⌘↵

M2[N2/y]. (iii) If (⇤t:K. M1)⌧1 ⌘↵

(⇤v:K.M2)⌧2, M1 is safe for [⌧1/t], and M2 is safe for [⌧2/v], then M1[⌧1/t] ⌘↵

M2[⌧2/v].

We are now ready to present the proof system for kind-checking raw types and type-

checking raw terms.

14 Contexts, Kind-Checking, and Type-Checking

First, we need the notion of a context.
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Definition 14.1 A context is a partial function �:V [ X ! K [ T with a finite domain

denoted as dom(�), and such that �(t) 2 K for every type variable t 2 V and �(x) 2 T
for every term variable x 2 X . Thus, a context � is a finite set of pairs of the form t

i

:K
i

or

x
j

:�
j

, where the variables are pairwise distinct. Given a context � and a pair ht,Ki where
t 2 V and K 2 K, or a pair hx,�i where x 2 X and � 2 T , provided that t /2 dom(�) and

x /2 dom(�), we write �, t:K for � [ {ht,Ki}, and �, x:� for � [ {hx,�i}.

In order to determine whether a raw type kind-checks, or whether a raw term type-

checks, we attempt to construct a proof of a judgment using the proof systems described

below.

Definition 14.2 We define a number of judgments. A judgment is one of the following

assertions:
Judgments

` � . � kind-checks

` � . �:K � kind-checks with kind K

` � .M :� M type-checks with type �

Definition 14.3 Given any context �, the proof system for proving judgments of the

form � . or judgments of the form � . �:K, called kinding judgments, is the following:

Axiom:

; .

Inference Rules:

� . K 2 K
�, t:K .

, where t /2 dom(�)

� .

� . t:�(t)
, where t 2 dom(�) \ V (type variables)

� .

� . �:K
, where ⌅(�) = K (type constructors)

� . �: ?

�, x:� .
, where x /2 dom(�)

�, t:K1 . �:K2

� . (�t:K1. �):K1 ! K2
(abstraction)
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where t /2 FV(�(x)) for every x 2 dom(�) \ X

� . �:K1 ! K2 � . ⌧ :K1

� . �⌧ :K2
(application)

� . �: ? � . ⌧ : ?

� . � ) ⌧ : ?
())

� . �:K ! ?

� .⇧
K

�: ?
(⇧)

A context � kind-checks i↵ � . is provable. When a judgment � . �:K is provable,

we say that the type � kind-checks with kind K. It is not di�cult to show that if � . �:K

is provable, then � kind-checks. From now on, we assume that ⇥:⌃ ! T satisfies the

following property: if ⇥(f) = �, then . �: ? (recall that � has no free variables).

We extend ⌘
↵

to (kinding) judgments as follows.

Definition 14.4 First, we define ↵-equivalence of contexts. Given two contexts � =

� [ {x1:�1, . . . , xn

:�
n

} and �0 = � [ {x1:�0
1, . . . , xn

:�0
n

}, where all pairs in � are of the

form t:K, t 2 V , K 2 K, we write � ⌘
↵

�0 i↵ �
i

⌘
↵

�0
i

for all i, 1  i  n. Two kinding

judgments � . �:K and �0 . �0:K are ↵-equivalent i↵ � ⌘
↵

�0 and � ⌘
↵

�0.

In order to be able to manipulate ⌘
↵

-equivalence classes of types, we add the following

inference rules to the proof system of definition 14.3.

� . �:K � ⌘
↵

�0

�0 . �:K
(⌘0

↵

)

� . �:K � ⌘
↵

�0

� . �0:K
(⌘00

↵

)

It it is not di�cult to show that if two kinding judgments � . �:K and �0 . �0:K

are ⌘
↵

-equivalent and there is a proof ` � . �:K, then there is a proof ` �0 . �0:K.

Consequently, it is legitimate to identify ⌘
↵

-equivalent types and contexts, and we will do

so from now on.

The types that kind-check form a simply-typed lambda calculus with set BK of base

types. Any two types that are �⌘-convertible will be considered equivalent. Thus, we review

the conversion rules for this calculus.

It is convenient to define reduction on raw types, and verify that it is kind-preserving

when applied to a type that kind-checks.
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Definition 14.5 The relation �!
�

! of immediate reduction is defined in terms of the

two relations �!
�

and �!
⌘

, defined by the following proof system:

Axioms:

(�t:K. �)⌧ �!
�

�[⌧/t], provided that � is safe for [⌧/t] (�)

�t:K. (�t) �!
⌘

�, provided that t /2 FV(�) (⌘)

Inference Rules: For each kind of reduction �!
r

where r 2 {�, ⌘},

� �!
r

⌧

�⇢ �!
r

⌧⇢

� �!
r

⌧

⇢� �!
r

⇢⌧
for all �, ⌧ 2 T (congruence)

� �!
r

⌧

�t:K. � �!
r

�t:K. ⌧
t 2 V,K 2 K (⇠)

We define �!
�

! = (�!
�

[ �!
⌘

), and reduction as the reflexive and transitive closure
⇤�!

�

! of �!
�

! . We also define immediate conversion  !
�

! such that  !
�

! = �!
�

!

[ �!�1
�

! , and conversion as the reflexive and transitive closure
⇤ !

�

! of  !
�

! .

It is easily shown that reduction is kind-preserving. The relation �!
�

! given in

definition 14.5 induces a notion of reduction �!
�

!
,↵

on ⌘
↵

-equivalence classes of types

defined as follows:

[�] �!
�

!
,↵

[⌧ ] i↵ � �!
�

! ⌧.

It is immediately verified using lemma 13.5 and corollary 13.9 that �!
�

!
,↵

is also defined

by the proof system of definition 14.5 applied to ⌘
↵

-equivalence classes.

Corollary 6.18 and corollary 6.19 imply that every type � that kind-checks is strongly

normalizable under �⌘-reduction, and that the Church-Rosser theorem holds under �⌘-

reduction. Thus, every (⌘
↵

-equivalence class of) type � that kind-checks has a unique

�⌘-normal form. We can now define the proof system used for type-checking terms.

Definition 14.6 The proof system for proving judgments of the form � . M :�, called

typing judgments, is the following:

Axioms: For every context � that kind-checks,

� . c:�, where ⇥(c) = � (constants)

� . x:�(x), where x 2 dom(�) \ X (variables)
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Inference Rules:
� .M :� ) ⌧ � .N :�

� .MN : ⌧
(application)

�, x:� .M : ⌧

� . (�x:�. M):� ) ⌧
(abstraction)

� .M :⇧
K

� � . ⌧ :K

� .M⌧ :�⌧
(type application)

�, t:K .M :�t

� . (⇤t:K.M):⇧
K

�
(type abstraction)

where in this rule, t /2 FV(�), and t /2 FV(�(x)) for every x 2 dom(�) \ X .

� . ⌧ : ? � .M :� �
⇤ !

�

! ⌧

� .M : ⌧
(type conversion)

If � .M :� is provable using the above proof system, we say that M type-checks with

type � under � and we write ` � .M :�. We say that the raw term M type-checks (or is

typable) i↵ there is some � and some � such that � .M :� is derivable. It is not di�cult

to show that if a typing judgment � .M :� is provable, then � kind-checks and � . �: ? is

provable.

In order to deal with ⌘
↵

-equivalence, we define ⌘
↵

-equivalent typing judgments as

follows.

Definition 14.7 Two typing judgments � . M :� and �0 . M 0:�0 are ↵-equivalent i↵

� ⌘
↵

�0, M ⌘
↵

M 0, and � ⌘
↵

�0.

We also add the following inference rules to the proof system of definition 14.6.

� .M :� � ⌘
↵

�0

�0 .M :�
(⌘0

↵

)

� .M :� M ⌘
↵

M 0

� .M 0:�
(⌘00

↵

)

� .M :� � ⌘
↵

�0

� .M :�0 (⌘000
↵

)

Clearly, if � . M :� is provable, then � . �: ? and � . are also provable. It is not

di�cult to show that if two typing judgments � . M :� and �0 . M 0:�0 are ↵-equivalent

and there is a proof ` � .M :�, then there is a proof ` �0 .M 0:�0. Thus, it is legitimate to

work with equivalence classes of types, terms, and contexts, modulo ⌘
↵

-equivalence. This

is also true for substitutions.
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Example 14.8 The following is a proof that M = ⇤t: ?. �x: t. x type-checks with type

8u: ?. (u) u) = ⇧
?

(�u: ?. (u) u)).

t: ?, x: t . x: t

t: ? . (�x: t. x): (t) t) (t) t)
⇤ !

�

! (�u: ?. (u) u))t

t: ? . (�x: t. x): (�u: ?. (u) u))t

. (⇤t: ?. �x: t. x):⇧
?

(�u: ?. (u) u)).

Remark . It is also possible to formulate the typing rules for F
!

by choosing 8 as a

primitive instead of ⇧. For instance, this is the choice adopted in Girard [10]. In this case,

we have the following two rules that replace type application and type abstraction:

� .M : 8t:K. � � . ⌧ :K

� .M⌧ :�[⌧/t]
(type application’)

�, t:K .M :�

� . (⇤t:K.M): 8t:K. �
(type abstraction’)

where in this rule, t /2 FV(�(x)) for every x 2 dom(�) \ X .

Let F 0
!

be this new system. Recall that if ⇧ is chosen as a primitive, then 8t:K. �

is an abbreviation for ⇧
K

(�t:K. �). Then, using the fact that (�t:K. �)t �!
�

! �, that

(�t:K. �)⌧ �!
�

! �[⌧/t], and the type conversion rule, it is immediately verified by induc-

tion on the depth of proofs that every judgment � .M :� provable in F 0
!

is also provable

in F
!

(translating 8t:K. � in F 0
!

to ⇧
K

(�t:K. �) in F
!

). Conversely, using the fact that

for every t /2 FV(�), 8t:K. (�t) = ⇧
K

(�t:K. (�t)) �!
⌘

⇧
K

�, �⌧ = (�t)[⌧/t], and the type

conversion rule, it is immediately verified by induction on the depth of proofs that every

judgment � . M :� provable in F
!

is also provable in F 0
!

. Thus, the two proof systems

are equivalent. In the absence of ⌘-conversion (on types), it is an interesting exercise to

show that every proof in F
!

can be converted into a proof in F 0
!

(it can be shown that

⇧
K

(�t:K. (�t)) and ⇧
K

� are equivalent in F 0
!

). Thus, F
!

and F 0
!

are also equivalent in

the absence of ⌘-conversion.

We can define the concept of the order of a kind or of a type. This will enable us to

define subsets of F
!

.

Definition 14.9 The order of a kind K 2 K is defined inductively as follows:

ord(K) = 0, K 2 BK � {?}
ord(?) = 1

ord(K1 ! K2) = max(ord(K1) + 1, ord(K2)).
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The order of a type � that kind-checks is the order of its kind, and in particular,

given a context �, for every t:K 2 � where t is a type variable, ord(t) = ord(K). Then,

given any m > 0, we define F
m

as the subset of F
!

obtained by restricting the order of

all type variables and of all type constructors to be at most m, and the order of all bound

type variables to be at most m � 1. Thus, in F1, only type variables of base kind (other

than ?) can be bound, and F1 corresponds to minimal first-order logic. In F2, we can also

have bound type variables of kind ? or K1 ! . . .K
n

! K, with K1, . . . ,Kn

2 BK � {?},
K 2 BK. This corresponds to a slight extension of �8. In F3, we can also have bound

variables of kind ? ! . . . ? ! ?, and also (K1 ! K2) ! (K1 ! K2) where K1,K2 2 BK,

and generally, bound variables of order  2. It is also natural to identify F0 with the

simply-typed �-calculus.

We can now define the notion of reduction in F
!

.

15 Reduction and Conversion

As in definition 14.5, we first define reduction on raw terms, and then extend it to ⌘
↵

-

equivalence classes.

Definition 15.1 The relation �!
F! of immediate reduction is defined in terms of the

four relations �!
�

, �!
⌘

, �!
⌧�

, and �!
⌧⌘

, defined by the following proof system:

Axioms:

(�x:�. M)N �!
�

M [N/x], provided that M is safe for [N/x] (�)

�x:�. (Mx) �!
⌘

M, provided that x /2 FV (M) (⌘)

(⇤t:K.M)⌧ �!
⌧�

M [⌧/t], provided that M is safe for [⌧/t] (type �)

⇤t:K. (Mt) �!
⌧⌘

M, provided that t /2 FV(M) (type ⌘)

Inference Rules : For each kind of reduction �!
r

where r 2 {�, ⌘, ⌧�, ⌧⌘,�!}, where
�!

�

! is from definition 14.5,

M �!
r

N

MQ �!
r

NQ

M �!
r

N

PM �!
r

PN
for all P,Q 2 P⇤ (congruence)

M �!
r

N

M� �!
r

N�

� �!
r

⌧

M� �!
r

M⌧

� �!
r

⌧

�x:�. M �!
r

�x: ⌧. M
�, ⌧ 2 T

(type congruence)
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M �!
r

N

�x:�. M �!
r

�x:�. N
x 2 X ,� 2 T (⇠)

M �!
r

N

⇤t:K.M �!
r

⇤t:K. N
t 2 V,K 2 K (type ⇠)

We define �!
F! = �!

�

[ �!
⌘

[ �!
⌧�

[ �!
⌧⌘

[ �!
�

! , and reduction as the reflexive

and transitive closure
⇤�!

F! of �!
F! . We also define immediate conversion  !

F! such

that !
F! = �!

F! [ �!�1
F!

, and conversion as the reflexive and transitive closure
⇤ !

F!

of  !
F! .

It can be shown that reduction and conversion are type-preserving. The relation �!
F!

given in definition 15.1 induces a notion of reduction �!
F!,↵

on ⌘
↵

-equivalence classes of

terms defined as follows:

[M ] �!
F!,↵

[N ] i↵ M �!
F! N.

It is immediately verified using lemma 13.5 and corollary 13.9 that �!
F!,↵

is also defined by

the proof system of definition 15.1 applied to ⌘
↵

-equivalence classes. Thus, in what follows,

contexts, types, and terms, are identified with their ⌘
↵

-equivalence classes. In particular,

if we consider an equivalence class of the form [(�x:�. M)N ], we can assume that M has

been ↵-renamed so that M is safe for the substitution [N/x], and similarly for a class of the

form [(⇤t:K.M)⌧ ] (and for types). For simplicity of notation, we will write �!
F! instead

of �!
F!,↵

.

It should be noted that the type congruence rules are indispensable, unless one requires

that the result of performing a substitution is �⌘-normalized.

Example 15.2 It is easy to give a proof for the typing judgment

t: ? . (⇤u: (?! ?). �x:ut. x):⇧
?!?

(�u: (?! ?). (ut) ut)),

and since the type �v: ?. v kind-checks (with kind ?! ?), the typing judgment

t: ? . ((⇤u: (?! ?). �x:ut. x)�v: ?. v): ((�u: (?! ?). (ut) ut))�v: ?. v),

is also provable. Note that all the types in the term (⇤u: (? ! ?). �x:ut. x)�v: ?. v are

�⌘-normalized. Now, we have the reduction

(⇤u: (?! ?). �x:ut. x)�v: ?. v �!
F! �x: (�v: ?. v)t. x,

but �x: (�v: ?. v)t.x is not �⌘-normalized. For that, it is necessary to perform the reduction

�x: (�v: ?. v)t. x �!
F! �x: t. x.
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We also have the reduction sequence

(�u: (?! ?). (ut) ut))�v: ?. v �!
F! ((�v: ?. v)t) (�v: ?. v)t)

⇤�!
F! (t) t).

Note that the typing judgment t: ? . (�x: t. x): (t) t) is provable.

16 The Method of Candidates

We now generalize the method of candidates to F
!

. The proof that we sketch is modelled

after Girard’s original proof, and only di↵ers in the notation and in the fact that we present

it in a slightly more general setting, using T -closed families, and closed families of Girard

sets. As pointed out by Thierry Coquand, it is possible to prove strong normalization for F
!

using an untyped version of the candidates and the erasing trick. However, the typed version

seems necessary when the system F
!

is enriched, for example with first-order rewriting, and

we present the typed version. The main complication is that we now have new types formed

by �-abstraction and application. Thus, it is necessary to define candidates of reducibility

by induction on the kind of types. As before, let C
�

denote the set of candidates of type �.

For types of kind ?, basically nothing changes. For a type � of kind K1 ! K2, a candidate

of type � is any function

f :
[

⌧ :K1

{⌧}⇥ C
⌧

!
[

⌧ :K1

C
�⌧

such that f(⌧, C) 2 C
�⌧

for every C 2 C
⌧

and satisfying a technical condition listed in

definition 16.2.

Actually, there is a problem with this definition, namely that types may contain type

variables, and in order for these types to kind-check, we need to assume that the type

variables have been assigned kinds. There are two ways to overcome this problem. The first

solution, which is the solution adopted by Coquand in his proof of normalization for the

theory of constructions [5], is to define the notion of a candidate of type � . �:K, where

� . �:K kind-checks. In this approach, we deal with families C�.�:K of sets of candidates

indexed by provable kinding judgments. Roughly, a candidate C of type � . �:K is a set

of provable typing judgments of the form �0 .M :� where � ✓ �0, and satisfying certain

properties as in definition 7.8. If this approach is followed, it is also necessary to define

[[� . �:K]]✓⌘, as opposed to simply [[�]]✓⌘. The proof can be carried out, but the notation

is quite formidable.

However, in F
!

, since the fact that a type kind-checks only depends on assigning kinds

to types variables, and kinds are independent of the types, there is a second simpler solution
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(adopted by Girard). This second solution is to relativize the definition of a family of sets

of candidates to a global kind assignment :V ! K. This way, we can deal with types �

that kind-check under some context that agrees with  on V. We also assume that  is

extended to the type constructors, so that it agrees with ⌅ on T C. The above discussion

leads to the following definition.

Definition 16.1 Given a kind assignment :V ! K, we let T |


be the set of all types

� that “kind-check under ”, that is, such that � . �:K is provable for some kind K 2 K
and some context � whose restriction to V agrees with . Given :V ! K, for every type

� 2 T |


of kind ?, we let PT
�

be the set of all provable typing judgments of the form

� .M :�, where � is any context whose restriction to V agrees with .

We will use the abbreviation � .M 2 S for � .M :� 2 S when S is a subset of PT
�

.

We also use the notation �:K 2 T |


to express the fact that � kind-checks with kind K

under , and �, . M :� to mean that �0 . M :� is provable for some (finite) context �0

such that � ✓ �0 and the restriction of �0 to V agrees with .

Given any two types �, ⌧ 2 T |


of kind ? and any two sets S ✓ PT
�

and T ✓ PT
⌧

,

we let [S ) T ] be the subset of PT
�)⌧

defined as before:

[S ) T ] = {� .M 2 PT
�)⌧

| 8�0 .N, if � ✓ �0 and �0 .N 2 S, then �0 .MN 2 T}.

Given a kind assignment :V ! K, a T |


-closed family is defined as follows.

Definition 16.2 Let C = (C
�

)
�2T | be a T |



-indexed family where for each �, if � is of

kind ? then C
�

is a nonempty set of subsets of PT
�

, else if � is of kind K1 ! K2 then C
�

is

a nonempty set of functions from
S

⌧ :K1
{⌧}⇥ C

⌧

to
S

⌧ :K1
C
�⌧

, and the following properties

hold:

(1) For every � 2 T |


of kind ?, every C 2 C
�

is a nonempty subset of PT
�

.

(2) For every �, ⌧ 2 T |


of kind ?, for every C 2 C
�

and D 2 C
⌧

, we have [C ) D] 2 C
�)⌧

.

(3) For every � 2 T |


of kind K ! ?, for every ⌧ 2 T |


of kind K, for every family

(A
⌧,C

)
⌧2T |,C2C⌧

, where each set A
⌧,C

is in C
�⌧

, we have

{� .M 2 PT ⇧K�

| 8(⌧ :K) 2 T |


, �, .M⌧ 2
\

C2C⌧

A
⌧,C

} 2 C⇧K�

.

(4) For every � 2 T |


of kind K1 ! K2,

C
�

= {f :
[

⌧ :K12T |

{⌧}⇥ C
⌧

!
[

⌧ :K12T |

C
�⌧

such that f(⌧, C) 2 C
�⌧

for every C 2 C
⌧

, and

f(⌧1, C) = f(⌧2, C) whenever ⌧1
⇤ !

�

! ⌧2}.
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A family satisfying the above conditions is called a T |


-closed family .

Definition 16.3 Let C be a T |


-closed family. A pair h✓, ⌘i where ✓:V ! T |


is a

substitution and ⌘: T C [ V !
S

C is a candidate assignment i↵ for every t 2 V , (t) = K

implies that ✓(t):K 2 T |


, ⌘(t) 2 C
✓(t), and ⌘(�) 2 C

�

for every � 2 T C.

We can associate certain sets of provable typing judgments to the types inductively

as explained below.

Definition 16.4 Given any candidate assignment h✓, ⌘i, for every type � 2 T |


, we define

[[�]]✓⌘ as follows:

[[t]]✓⌘ = ⌘(t), whenever t 2 T C [ V;
[[(� ) ⌧)]]✓⌘ = [[[�]]✓⌘ ) [[⌧ ]]✓⌘];

[[⇧
K

�]]✓⌘ = {� .M 2 PT
✓(⇧K�) | 8(⌧ :K) 2 T |



,

�, .M⌧ 2
\

C2C⌧

[[�]]✓⌘(⌧, C)};

[[�⌧ ]]✓⌘ = [[�]]✓⌘(✓(⌧), [[⌧ ]]✓⌘);

[[�t:K. �]]✓⌘ = �⌧�C 2 C
⌧ :K . [[�]]✓[t := ⌧ ]⌘[t := C].

In the last clause of this definition, �⌧�C 2 C
⌧ :K . [[�]]✓[t := ⌧ ]⌘[t := C] denotes the function

f such that f(⌧, C) = [[�]]✓[t := ⌧ ]⌘[t := C] for every C 2 C
⌧

such that ⌧ 2 T |


is of kind

K.

The following technical lemmas will be useful later.

Lemma 16.5 Given any candidate assignments h✓1, ⌘1i and h✓2, ⌘2i, for every � 2 T |


, if

✓1, ✓2 agree on FV(�), and ⌘1, ⌘2 agree on FV(�) and T C, then [[�]]✓1⌘1 = [[�]]✓2⌘2.

Proof . Easy induction on the structure of types.

Lemma 16.6 Given any two types �, ⌧ 2 T |


, for every candidate assignment h✓, ⌘i,

[[�[⌧/t]]]✓⌘ = [[�]]✓[t := ✓(⌧)]⌘[t := [[⌧ ]]✓⌘].

Proof . Straightforward induction on the structure of �.

The following lemma is crucial and shows that [[�]]✓⌘ actually has a constant value on

the equivalence class of � modulo �!-convertibility.
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Lemma 16.7 For every candidate assignment h✓, ⌘i, for every two types �,�0 2 T |


, if

�
⇤ !

�

! �0, then [[�]]✓⌘ = [[�0]]✓⌘.

Proof . It is su�cient to prove that if �
⇤�!

�

! �0, then [[�]]✓⌘ = [[�0]]✓⌘. The proof proceeds

by induction on the proof that �
⇤�!

�

! �0. The only nontrivial cases are � and ⌘-conversion,

and those are handled using lemma 16.6 and lemma 16.5.

We now have a version of “Girard’s trick” for F
!

.

Lemma 16.8 (Girard) If C is a T |


-closed family, for every candidate assignment h✓, ⌘i,
for every type �, then [[�]]✓⌘ 2 C

✓(�).

Proof . The lemma is proved by induction on the structure of types. The only case worth

mentioning is the case of a typed �-abstraction. By ↵-renaming, it can be assumed that

�t:K.� is safe for ✓. In this case, we use lemma 16.7 and the fact that (�t:K.✓(�))⌧ �!
�

!

✓(�)[⌧/t], and that because �t:K. � is safe for ✓, ✓(�)[⌧/t] = ✓[t := ⌧ ](�).

In order to use lemma 16.8 in proving properties of polymorphic lambda calculi, we

need to define T |


-closed families satisfying some additional properties.

Definition 16.9 We say that a T |


-indexed family C is a family of sets of candidates of

reducibility i↵ it is T |


-closed and satisfies the conditions listed below.22

R0. Whenever � .M 2 C and � ✓ �0, then �0 .M 2 C.

R1. For every �: ? 2 T |


, for every set C 2 C
�

, � . x 2 C, for every x:� 2 �,

For every �: ? 2 T |


where � = ⇥(f), for every set C 2 C
�

, � . f 2 C, for every

f 2 ⌃.

R2. (i) For all �: ?, ⌧ : ? 2 T |


, for every C 2 C
⌧

, for all �,�0, if

� .M 2
[

C
⌧

,

�0 .N 2
[

C
�

, and

�0 .M [N/x] 2 C, then

�0 . (�x:�. M)N 2 C.

(ii) For every � 2 T |


of kind K ! ?, every ⌧ 2 T |


of kind K, for every C 2 C
�⌧

,

for all �,�0, if

� .M 2
[

C
�t

and

�0 .M [⌧/t] 2 C, then

�0 . (⇤t:K.M)⌧ 2 C.

Lemma 7.9 generalizes to F
!

as follows.

22 Again, we also have to assume that every C 2 C is closed under ↵-equivalence.
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Lemma 16.10 (Girard) Let C = (C
�

)
�2T | be a family of sets of candidates of reducibility.

For every � . M 2 PT
�

, for every candidate assignment h✓, ⌘i, for every substitution

':�! �, if ✓(�), . '(x) 2 [[�(x)]]✓⌘ for x 2 FV (M), then ✓(�), . '(✓(M)) 2 [[�]]✓⌘.

Proof . It is similar to the proof of lemma 7.9 and proceeds by induction on the depth of

the proof tree for � .M :�. Type conversion is handled using lemma 16.7. We only sketch

the verification for two of the other cases.

Case 1.
�, t:K .M :�t

� . (⇤t:K.M):⇧
K

�
(type abstraction)

where in this rule, t /2 FV(�), and t /2 FV(�(x)) for every x 2 dom(�) \ X .

Given any ⌧ 2 T |


, the induction hypothesis applies to �, t:K . M :�t and to any

candidate assignment h✓[t := ⌧ ], ⌘[t := C]i where C 2 C
⌧

and ⌧ :K 2 T |


(and by suitable ↵-

renaming, t /2 FV(�(x)) for every x 2 dom(�), and the safeness conditions for substitution

hold). Thus, ✓[t := ⌧ ](�) = ✓(�), and due to the proviso on the inference rule, ✓[t :=

⌧ ](�) = ✓(�), and ✓[t := ⌧ ](M) = ✓(M)[⌧/t]. Thus, we have

✓(�), . '(✓(M))[⌧/t] 2 [[�t]]✓[t := ⌧ ]⌘[t := C].

In particular, this holds for ⌧ = t, and so ✓(�), . '(✓(M)) 2
S
C
✓(�t). Then, by (R2)(ii),

✓(�), . (⇤t:K. '(✓(M)))⌧ 2 [[�t]]✓[t := ⌧ ]⌘[t := C],

that is, ✓(�), . '(✓(⇤t:K.M))⌧ 2 [[�t]]✓[t := ⌧ ]⌘[t := C].

Again, due to the the proviso on the rule, [[�]]✓[t := ⌧ ]⌘[t := C] = [[�]]✓⌘, and since

[[�t]]✓[t := ⌧ ]⌘[t := C] = [[�]]✓[t := ⌧ ]⌘[t := C](✓[t := ⌧ ](t), [[t]]✓[t := ⌧ ]⌘[t := C])

and [[t]]✓[t := ⌧ ]⌘[t := C] = C, ✓[t := ⌧ ](t) = ⌧ , we have

[[�t]]✓[t := ⌧ ]⌘[t := C] = [[�]]✓⌘(⌧, C).

Thus, ✓(�), . '(✓(⇤t:K. M))⌧ 2 [[�]]✓⌘(⌧, C) for all C 2 C
⌧

such that ⌧ :K 2 T |


, which

proves that

✓(�) . '(✓(⇤t:K.M)) 2 [[⇧
K

�]]✓⌘.

Case 2.
� .M :⇧

K

� � . ⌧ :K

� .M⌧ :�⌧
(type application)
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By the induction hypothesis, ✓(�), . '(✓(M)) 2 [[⇧
K

�]]✓⌘, and so

✓(�), . '(✓(M))� 2 [[�]]✓⌘(�, C)

for every C 2 C
�

where �:K 2 T |


. By choosing � = ✓(⌧), C = [[⌧ ]]✓⌘, and using the fact

that '(✓(M))✓(⌧) = '(✓(M⌧)) and [[�⌧ ]]✓⌘ = [[�]]✓⌘(✓(⌧), [[⌧ ]]✓⌘), we have

✓(�), . '(✓(M⌧)) 2 [[�⌧ ]]✓⌘,

as desired.

As for �8, in order to show the existence of families of candidates of reducibility, we

need stronger conditions. One can define saturated sets as in section 8, or Girard sets as in

section 9. We shall present the version of the Girard sets, leaving the other version as an

exercise to the reader.

A simple term is defined as in definition 9.1, that is, a term M is simple i↵ it is either

a variable x, a constant f 2 ⌃, an application MN , or a type application M⌧ .

Definition 16.11 Let S = (S
�

)
�:?2T | be a family such that each S

�

is a nonempty

subset of PT
�

.23 For every type �: ? 2 T |


, a subset C of S
�

is a Girard set of type � i↵

the following conditions hold:24

CR0. Whenever � .M 2 C and � ✓ �0, then �0 .M 2 C.

CR1. If � .M 2 C, then M is SN w.r.t. �!
F! ;

CR2. If � .M 2 C and M �!
F! N , then � .N 2 C;

CR3. For every simple term �.M 2 PT
�

, if �.N 2 C for every N such that M �!
F! N ,

then � .M 2 C.

Note that (CR3) implies that all simple irreducible terms are in C. Also, (CR1),

(CR2), and (CR3) are defined w.r.t. �!
F! , which means that �⌘-reduction on types is

taken into account. This is crucial for proving strong normalization.

Definition 16.12 Let S = (S
�

)
�:?2T | be a family such that each S

�

is a nonempty

subset of PT
�

. We say that S is closed i↵ for all �: ?, ⌧ : ? 2 T |


, for every x 2 X , if

� .M 2 PT
�)⌧

and �, x:� .Mx 2 S
⌧

, then � .M 2 S
�)⌧

, and for every t:K 2 T |


and

�:K 2 T |


, if � .M 2 PT ⇧K�

and �, t:K .Mt 2 S
�t

then � .M 2 S⇧K�

.

We have the following generalization of lemma 9.4.

23 Note that S = (S�)�:?2T | is not a T |-indexed family. It is indexed by the set of types of kind ?.
24 We also have to assume that every Girard subset of S is closed under ↵-equivalence.
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Lemma 16.13 (Girard) Let S = (S
�

)
�:?2T | be a closed family where each S

�

is a

nonempty subset of PT
�

, and let C be the T |


-indexed family such that for each �: ? 2 T |


,

C
�

is the set of Girard subsets of S
�

, and for �:K1 ! K2 2 T |


, C
�

is defined as in clause

(4) of definition 16.2. If S
�

2 C
�

for every �: ? 2 T |


(i.e. S
�

is a Girard subset of itself),

then C is a family of sets of candidates of reducibility.

Proof . It is similar to the proof of lemmas 9.3 and 9.4. A subtlety arises in proving that

(R2) holds. We proceed as in the proof that (S2) holds (given in lemma 9.3), that is, we

show that � . Q 2 C whenever (�x:�. M)N �!
F! Q, and that � . Q 2 C whenever

(⇤t:K.M)⌧ �!
F! Q, assuming that M and N are SN. However, � or ⌧ can be �⌘-reduced,

and we also need to prove that �⌘-reduction on types (�!
�

!) is strongly normalizing.

Fortunately, this is a special case of corollary 6.18, as observed earlier.

It is also necessary to verify conditions (1), (2), (3), (4) of definition 16.2. This is

done by induction on kinds, and for the kind ? by induction on types. Verifying (1), (2),

(3) is done as in lemma 9.4. We still need to check (4), that for a type �:K1 ! K2 2 T |


,

C
�

is nonempty. This is done by induction on K1 ! K2. The base case holds since

can
�

= S
�

2 C
�

for every �: ? 2 T |


. For �:K1 ! K2 2 T |


, for every ⌧ :K1 2 T |


, since

�⌧ :K2 2 T |


, by the induction hypothesis there is some function can
�⌧

2 C
�⌧

, and so the

function can
�

such that can
�

(⌧, C) = can
�⌧

for every C 2 C
⌧

(⌧ :K1 2 T |


) is in C
�

.

We now have a version of Girard’s fundamental theorem for F
!

.

Theorem 16.14 (Girard) Let S = (S
�

)
�:?2T | be a closed family where each S

�

is a

nonempty subset of PT
�

, let C be the T |


-indexed family of sets defined in lemma 16.13,

and assume that S
�

2 C
�

for every �: ? 2 T |


. For every �.M 2 PT
�

, we have �.M 2 S
�

.

Proof . By lemma 16.13, C is a family of sets of candidates of reducibility. We now apply

lemma 16.10 to any assignment (for example, the assignment with value ⌘(t) = can
t

), the

identity type substitution, and the identity term substitution, which is legitimate since by

(CR3), every variable belongs to every Girard set.25

Remark : Thierry Coquand pointed out to us that because �⌘-reduction on types

(�!
�

!) is strongly normalizing, an untyped version of the candidates using the erasing

trick works for F
!

. The function Erase:P⇤! ⇤ for F
!

is defined recursively as follows:

Erase(c) = c, whenever c 2 ⌃,

Erase(x) = x, whenever x 2 X ,

Erase(MN) = Erase(M)Erase(N),

Erase(�x:�. M) = �x. Erase(M),

25 Actually, some ↵-renaming may have to be performed on M and � so that they are both safe for the
type and term identity substitution.
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Erase(M�) = Erase(M),

Erase(�t:K.M) = Erase(M).

However, obtaining the confluence property using the erasing trick is an open problem.

The next lemma is a generalization of lemma 10.2 and gives interesting examples of closed

families of Girard sets.

Lemma 16.15 (i) The family SN
�

such that for every �: ? 2 T |


, SN
�,�

is the set

of typing judgments � . M :� provable in F
!

such that M is strongly normalizing under

�-reduction, is a closed family of Girard sets. (ii) The family SN
�⌘

such that for every

�: ? 2 T |


, SN
�⌘,�

is the set of typing judgments � .M :� provable in F
!

such that M is

strongly normalizing under �⌘-reduction, is a closed family of Girard sets. (iii) The family

consisting for every �: ? 2 T |


of the set of typing judgments � .M :� provable in F
!

such

that confluence under �-reduction holds from M and all of its subterms, is a closed family

of Girard sets. (iv) The family consisting for every �: ? 2 T |


of the set of typing judgments

� .M :� provable in F
!

such that confluence under �⌘-reduction holds from M and all of

its subterms, is a closed family of Girard sets.

Proof . (i)-(ii) It is trivial to verify that closure and (CR0)–(CR3) hold. (iii)-(iv) The proof

is similar to the one given in appendix 2.

It should be noted that the fact that the above results are relativized to a type assign-

ment  is really not a restriction. Indeed, we could assume that the set of type variables

is partitioned into a family of countable sets, one for each kind. Thus, we can assume that

we are dealing with a single .

The system F
!

can be extended in several ways. For example, product types and

existential types can be added. In fact, such an extension is studied in Girard’s thesis [10],

including disjunctive types. Strong normalization still holds. Another way of extending

F
!

is to allow a richer class of kinds and types. This can be achieved by allowing term

variables in types and the formation of new types by �-abstraction over these variables. At

the same time, richer kinds are allowed, namely dependent products. Such a system, the

theory of constructions, was invented by Coquand [5, 7]. The theory of constructions is

also investigated in Huet and Coquand [6]. A related system, LF, has been investigated by

Harper, Honsell, and Plotkin [13, 14]. Strong normalization holds for these systems. For

the theory of construction, the proof uses Girard’s method of candidates of reducibility and

follows the general scheme used in the proof of strong normalization for F
!

, but it is more

complex because types may contain terms. The problem is that it is no longer possible to

prove first that �⌘-reduction is strongly normalizing on types. Roughly, one needs to define

[[� . �:K]]✓⌘ and [[� .K:Kind]]✓⌘. For details, the interested (and perseverant) reader is

referred to Coquand [5]. A proof of strong normalization for the theory of constructions is
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also given in Seldin [33], which also contains an extensive study of type systems including

�8 and the theory of constructions. For LF, a proof of strong normalization consists in

mapping LF into the simply-typed lambda calculus. For details, the reader should consult

[14]. Other interesting work on the theory of constructions and F
!

appears in Paulin-

Morhing [26], where it is shown how programs and their proofs can be extracted. Related

work is done in Pfenning [28].
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17 Appendix 1: Product Types in F!

In this section, we extend the system F
!

by allowing product types. An even more general

system with disjunctive and existential types was investigated by Girard [10].

In the formula–as–type analogy, product types correspond to conjunctions, and the

typing rules correspond to the introduction and elimination rules for conjunction. We will

be dealing with product types with surjective pairing.

The definition of the kinds given in definition 12.1 remains unchanged. However, it

is assumed that every set T C of type constructors contains the special symbols ⇥, ) and

⇧
K

for every K 2 K. The type constructor ⇥ is the product type constructor. The type

constructors are assigned kinds by a kind signature.

Definition 17.1 A kind signature is a function ⌅: T C ! K assigning a kind to every

type constructor in T C, and such that ⌅()) = ? ! (? ! ?), ⌅(⇥) = ? ! (? ! ?), and

⌅(⇧
K

) = (K ! ?)! ?.

The definition of raw types remains unchanged, but since ⇥ belongs to every set T C
of type constructors, more raw types are allowed. The definition is repeated for the reader’s

convenience.
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Definition 17.2 The set T of raw type expressions (for short, raw types) is defined in-

ductively as follows:

t 2 T , whenever t 2 V,
� 2 T , whenever � 2 T C,
(�t:K. �) 2 T , whenever t 2 V, � 2 T , and K 2 K, and

(�⌧) 2 T , whenever �, ⌧ 2 T .

Since ⇥ belong to T C, by the last clause, ((⇥�)⌧) is a raw type for all �, ⌧ 2 T , For

simplicity of notation, ((⇥�)⌧) is denoted as (�⇥ ⌧). The subset of T consisting of the raw

types of kind ? is the set of types that can actually be the types of terms.

Next, we define the polymorphic raw terms. There is no change in the definition of a

type signature.

Definition 17.3 The set P⇤ of polymorphic lambda raw ⌃-terms (for short, raw terms)

is defined inductively as follows:

c 2 P⇤, whenever c 2 ⌃,

x 2 P⇤, whenever x 2 X ,

(MN) 2 P⇤, whenever M,N 2 P⇤,

hM,Ni 2 P⇤, whenever M,N 2 P⇤,

⇡1(M),⇡2(M) 2 P⇤, whenever M 2 P⇤,

(�x:�. M) 2 P⇤, whenever x 2 X , � 2 T , and M 2 P⇤,

(M�) 2 P⇤, whenever � 2 T and M 2 P⇤,

(⇤t:K.M) 2 P⇤, whenever t 2 V, K 2 K, and M 2 P⇤.

The notions of substitution and ↵-equivalence are extended in the obvious way. In

order to deal with product types, it is necessary to add the following kind-checking rule:

� . �: ? � . ⌧ : ?

� . � ⇥ ⌧ : ?
(⇥)

The definition of the relation �!
�

! does not have to be changed, since the congruence

rule takes care of ), ⇥, and ⇧
K

.

It is easy to see that corollary 6.18 and corollary 6.19 hold for the new class of types.

Thus, every (⌘
↵

-equivalence class of) type � that kind-checks has a unique �⌘-normal form.

The following inference rules need to be added to the proof system used for type-

checking terms.
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� .M :� � .N : ⌧

� . hM,Ni:� ⇥ ⌧
(product)

� .M :� ⇥ ⌧

� . ⇡1(M):�

� .M :� ⇥ ⌧

� . ⇡2(M): ⌧
(projection)

The notion of reduction in F
!

is defined by adding the following axioms and rules to

definition 15.1.

Axioms:

⇡1(hM,Ni) �!
⇡

M, (⇡)

⇡2(hM,Ni) �!
⇡

N, (⇡)

h⇡1(M),⇡2(M)i �!hi M, (hi)

Inference Rules: For each kind of reduction �!
r

where r 2 {�, ⌘,⇡, hi, ⌧�, ⌧⌘,�!},

M �!
r

N

hM,Qi �!
r

hN,Qi
M �!

r

N

hP,Mi �!
r

hP,Ni
for all P,Q 2 P⇤

M �!
r

N

⇡1(M) �!
r

⇡1(N)

M �!
r

N

⇡2(M) �!
r

⇡2(N)
for all P,Q 2 P⇤

We now generalize the method of candidates to F
!

with product types (with surjective

pairing). As the proof given in section 16, the proof presented next is modelled after Girard’s

original proof, and only di↵ers in the notation and in the fact that we present it in a slightly

more general setting, using T -closed families, and families of closed Girard sets. It should

be noted that in the case of the simply-typed lambda calculus, a very similar method (but

simpler, since only simple types need to be handled) has been used to give proofs of strong

normalization, by Lambek and Scott [19], and de Vrijer [38,39].

Given any two types �, ⌧ 2 T |


of kind ? and any two sets S ✓ PT
�

and T ✓ PT
⌧

,

we let S ⇥ T be the subset of PT
�⇥⌧

defined as before:

S ⇥ T = {� .M 2 PT
�⇥⌧

| � . ⇡1(M) 2 S and � . ⇡2(M) 2 T}.

Given a kind assignment :V ! K, a T |


-closed family is defined as follows.
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Definition 17.4 Let C = (C
�

)
�2T | be a T |



-indexed family where for each �, if � is of

kind ? then C
�

is a nonempty set of subsets of PT
�

, else if � is of kind K1 ! K2 then C
�

is

a nonempty set of functions from
S

⌧ :K1
{⌧}⇥ C

⌧

to
S

⌧ :K1
C
�⌧

, and the following properties

hold:

(1) For every � 2 T |


of kind ?, every C 2 C
�

is a nonempty subset of PT
�

.

(2) For every �, ⌧ 2 T |


of kind ?, for every C 2 C
�

and D 2 C
⌧

, we have [C ) D] 2 C
�)⌧

.

(3) For every � 2 T |


of kind K ! ?, for every ⌧ 2 T |


of kind K, for every family

(A
⌧,C

)
⌧2T |,C2C⌧

, where each set A
⌧,C

is in C
�⌧

, we have

{� .M 2 PT ⇧K�

| 8(⌧ :K) 2 T |


, �, .M⌧ 2
\

C2C⌧

A
⌧,C

} 2 C⇧K�

.

(4) For every � 2 T |


of kind K1 ! K2,

C
�

= {f :
[

⌧ :K12T |

{⌧}⇥ C
⌧

!
[

⌧ :K12T |

C
�⌧

such that f(⌧, C) 2 C
�⌧

for every C 2 C
⌧

, and

f(⌧1, C) = f(⌧2, C) whenever ⌧1
⇤ !

�

! ⌧2}.

(5) For every �, ⌧ 2 T |


of kind ?, for every C 2 C
�

and D 2 C
⌧

, we have C ⇥D 2 C
�⇥⌧

.

A family satisfying the above conditions is called a T |


-closed family .

We associate certain sets of provable typing judgments to the types inductively as

explained below.

Definition 17.5 Given any candidate assignment h✓, ⌘i, for every type � 2 T |


, we define

[[�]]✓⌘ as follows:

[[t]]✓⌘ = ⌘(t), whenever t 2 T C [ V;
[[(� ) ⌧)]]✓⌘ = [[[�]]✓⌘ ) [[⌧ ]]✓⌘];

[[� ⇥ ⌧ ]]✓⌘ = [[�]]✓⌘ ⇥ [[⌧ ]]✓⌘;

[[⇧
K

�]]✓⌘ = {� .M 2 PT
✓(⇧K�) | 8(⌧ :K) 2 T |



,

�, .M⌧ 2
\

C2C⌧

[[�]]✓⌘(⌧, C)};

[[�⌧ ]]✓⌘ = [[�]]✓⌘(✓(⌧), [[⌧ ]]✓⌘);

[[�t:K. �]]✓⌘ = �⌧�C 2 C
⌧ :K . [[�]]✓[t := ⌧ ]⌘[t := C].



68 ON GIRARD’S “CANDIDATS DE REDUCTIBILITÉ”

In the last clause of this definition, �⌧�C 2 C
⌧ :K . [[�]]✓[t := ⌧ ]⌘[t := C] denotes the function

f such that f(⌧, C) = [[�]]✓[t := ⌧ ]⌘[t := C] for every C 2 C
⌧

such that ⌧ 2 T |


is of kind

K.

Lemma 16.5, 16.6, and 16.7 are unchanged. It is also easy to prove the following

version of “Girard’s trick” for F
!

with product types.

Lemma 17.6 (Girard) If C is a T |


-closed family, for every candidate assignment h✓, ⌘i,
for every type �, then [[�]]✓⌘ 2 C

✓(�).

One more condition needs to be added to the conditions of definition 16.9

Definition 17.7 We say that a T |


-indexed family C is a family of sets of candidates of

reducibility i↵ it is T |


-closed and satisfies the conditions listed below.26

R0. Whenever � .M 2 C and � ✓ �0, then �0 .M 2 C.

R1. For every �: ? 2 T |


, for every set C 2 C
�

, � . x 2 C, for every x:� 2 �,

For every �: ? 2 T |


where � = ⇥(f), for every set C 2 C
�

, � . f 2 C, for every

f 2 ⌃.

R2. (i) For all �: ?, ⌧ : ? 2 T |


, for every C 2 C
⌧

, for all �,�0, if

� .M 2
[

C
⌧

,

�0 .N 2
[

C
�

, and

�0 .M [N/x] 2 C, then

�0 . (�x:�. M)N 2 C.

(ii) For every � 2 T |


of kind K ! ?, every ⌧ 2 T |


of kind K, for every C 2 C
�⌧

,

for all �,�0, if

� .M 2
[

C
�t

and

�0 .M [⌧/t] 2 C, then

�0 . (⇤t:K.M)⌧ 2 C.

R3. For all �: ?, ⌧ : ? 2 T |


, for every C 2 C
�

and D 2 C
⌧

, if � .M 2 C and � .N 2 D,

then � . hM,Ni 2 C ⇥D.

We now have a version of lemma 16.10 for F
!

with product types.

26 Again, we also have to assume that every C 2 C is closed under ↵-equivalence.
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Lemma 17.8 (Girard) Let C = (C
�

)
�2T | be a T |



-indexed family of sets of candidates of

reducibility. For every � .M 2 PT
�

, every candidate assignment h✓, ⌘i, every substitution

':�! �, if ✓(�), . '(x) 2 [[�(x)]]✓⌘ for x 2 FV (M), then ✓(�), . '(✓(M)) 2 [[�]]✓⌘.

Proof . We only sketch the verification for the new cases.

Case 1.
� .M :� � .N : ⌧

� . hM,Ni:� ⇥ ⌧
(product)

By the induction hypothesis,

✓(�), . '(✓(M)) 2 [[�]]✓⌘,

and

✓(�), . '(✓(N)) 2 [[⌧ ]]✓⌘.

By (R3) and the definition of [[� ⇥ ⌧ ]]✓⌘, we have

✓(�), . h'(✓(M)),'(✓(N))i 2 [[� ⇥ ⌧ ]]✓⌘.

However, this is equivalent to

✓(�), . '(✓(hM,Ni)) 2 [[� ⇥ ⌧ ]]✓⌘.

Case 2.
� .M :� ⇥ ⌧

� . ⇡1(M):�

� .M :� ⇥ ⌧

� . ⇡2(M): ⌧
(projection)

By the induction hypothesis,

✓(�), . '(✓(M)) 2 [[� ⇥ ⌧ ]]✓⌘.

Since [[� ⇥ ⌧ ]]✓⌘ = [[�]]✓⌘ ⇥ [[⌧ ]]✓⌘, this implies that ✓(�), . '(✓(⇡1(M))) 2 [[�]]✓⌘ and

✓(�), . '(✓(⇡2(M))) 2 [[⌧ ]]✓⌘.

Remarkably, because Girard’s conditions take the reduction relation �!
F! into ac-

count, there is no need to add extra conditions besides (CR0), (CR1), (CR2), and (CR3).

We simply need to modify the definition of a simple term, so that lemma 16.13 holds for

F
!

with product types. For this, it is enough to preclude a pair hM,Ni from being simple.

Thus, a term M is simple i↵ it is either a variable x, a constant f 2 ⌃, an application MN ,

a projection ⇡1(M) or ⇡2(M), or a type application M⌧ .
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Definition 17.9 Let S = (S
�

)
�:?2T | be a family such that each S

�

is a nonempty subset

of PT
�

.27 For every type �: ? 2 T |


, a subset C of S
�

is a Girard set of type � i↵ the

following conditions hold:28

CR0. Whenever � .M 2 C and � ✓ �0, then �0 .M 2 C.

CR1. If � .M 2 C, then M is SN w.r.t �!
F! ;

CR2. If � .M 2 C and M �!
F! N , then � .N 2 C;

CR3. For every simple term �.M 2 PT
�

, if �.N 2 C for every N such that M �!
F! N ,

then � .M 2 C.

Note that in the above definition, �!
F! is the reduction relation for F

!

with product

types, and consequently, covers the case of reductions when M is of the form ⇡1(hP,Qi) or
⇡2(hP,Qi).

We need to add one more clause to definition 16.12 (defining a closed family): for

all �: ?, ⌧ : ? 2 T |


, if � . M 2 PT
�⇥⌧

, � . ⇡1(M) 2 S
�

, and � . ⇡2(M) 2 S
⌧

, then

� .M 2 S
�⇥⌧

.

We have the following generalization of lemma 16.13.

Lemma 17.10 (Girard) Let S = (S
�

)
�:?2T | be a closed family where each S

�

is a

nonempty subset of PT
�

, and let C be the T |


-indexed family such that for each �: ? 2 T |


,

C
�

is the set of Girard subsets of S
�

, and for �:K1 ! K2 2 T |


, C
�

is defined as in clause

(4) of definition 17.4. If S
�

2 C
�

for every �: ? 2 T |


(i.e. S
�

is a Girard subset of itself),

then C is a family of sets of candidates of reducibility.

Proof . It is similar to the proof of lemmas 9.3 and 9.4. Property (R3) is shown as follows.

Assume that � . M 2 C and � . N 2 D. We show by induction on �(M) + �(N) that

�.Q 2 C whenever ⇡1(hM,Ni) �!
F! Q, and that �.Q 2 D whenever ⇡2(hM,Ni) �!

F!

Q. Then, by (CR3), we have � . ⇡1(hM,Ni) 2 C and � . ⇡2(hM,Ni) 2 D, which, by the

definition of C ⇥D, shows that � . hM,Ni 2 C ⇥D.

We prove that � . Q 2 C whenever ⇡1(hM,Ni) �!
F! Q, the other case being sim-

ilar. The point is that either Q = M , or Q = ⇡1(hM 0, Ni) where M �!
F! M 0, or

Q = ⇡1(hM,N 0i) where N �!
F! N 0. Note that the case where M = ⇡1(U) and N = ⇡2(U)

must be considered, since in this case h⇡1(U),⇡2(U)i �!
F! U . But then,

⇡1(hM,Ni) = ⇡1(h⇡1(U),⇡2(U)i) �!
F! ⇡1(U) = M.

27 Note that S = (S�)�:?2T | is not a T |-indexed family. It is indexed by the set of types of kind ?.
28 We also have to assume that every Girard subset of S is closed under ↵-equivalence.
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In the first case, the hypothesis yields � . M 2 C. In the other two cases, by (CR2) we

have � . M 0 2 C and � . N 0 2 D , and since �(M 0) < �(M) and �(N 0) < �(N), we use

the induction hypothesis and (CR3). The base case where M and N are irreducible follows

from (CR3).

It is also necessary to verify conditions (1), (2), (3), (4), (5) of definition 17.4. This is

done by induction on kinds, and for the kind ? by induction on types. The only new case is

case (5). Given that C ✓ S
�

and D ✓ S
⌧

, the fact that C⇥D ✓ S
�⇥⌧

follows from the new

closure condition (on ⇥). We need to prove that (CR1), (CR2), and (CR3) hold for C ⇥D,

given that they hold for C and D. Let � .M :�⇥ ⌧ be a term in C ⇥D, where C 2 C
�

and

D 2 C
⌧

. By the definition of C ⇥D, � . ⇡1(M) 2 C (and � . ⇡2(M) 2 D). Since all terms

in C are SN, ⇡1(M) is SN. But then, M itself is necessary SN since any infinite reduction

from M yields an infinite reduction from ⇡1(M).

Assume that M �!
F! M 0. Then, ⇡1(M) �!

F! ⇡1(M 0) and ⇡2(M) �!
F! ⇡2(M 0).

Since ⇡1(M) 2 C and ⇡2(M) 2 D, by (CR2) applied to C and D, we have ⇡1(M 0) 2 C and

⇡2(M 0) 2 D. By the definition of C ⇥D, we have � .M 0 2 C ⇥D, and (CR2) holds.

Now, assume that M is simple, and that whenever M �!
F! Q, then � .Q 2 C ⇥D.

We want to prove that � .M 2 C ⇥D. Note that ⇡1(M) and ⇡2(M) are also simple, and

that because M is simple,

(⇤) ⇡1(M) �!
F! R implies that R = ⇡1(Q) where M �!

F! Q, and similarly for ⇡2(M).

Since we assumed that � . Q 2 C ⇥ D, we have � . ⇡1(Q) 2 C and � . ⇡2(Q) 2
D. By (CR3) applied to C and D and (⇤), since ⇡1(M) and ⇡2(M) are simple, we have

� . ⇡1(M) 2 C and � . ⇡2(M) 2 D. By the definition of C ⇥D, we have � .M 2 C ⇥D,

and (CR3) holds.

We now have a version of Girard’s fundamental theorem for F
!

with product types.

Theorem 17.11 (Girard) Let S = (S
�

)
�:?2T | be a closed family where each S

�

is a

nonempty subset of PT
�

, let C be the T |


-indexed family of sets defined in lemma 17.10,

and assume that S
�

2 C
�

for every �: ? 2 T |


. For every �.M 2 PT
�

, we have �.M 2 S
�

.

Proof . By lemma 17.10, C is a family of sets of candidates of reducibility. We now apply

lemma 17.8 to any assignment (for example, the assignment with value ⌘(t) = can
t

), the

identity type substitution, and the identity term substitution, which is legitimate since by

(CR3), every variable belongs to every Girard set.29

29 Actually, some ↵-renaming may have to be performed on M and � so that they are both safe for the
type and term identity substitution.
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The next lemma shows that F
!

with product types is strongly normalizing and con-

fluent under both �-reduction and �⌘-reduction.

Lemma 17.12 (i) The family SN
�

such that for every �: ? 2 T |


, SN
�,�

is the set

of typing judgments � . M :� provable in F
!

such that M is strongly normalizing under

�-reduction, is a closed family of Girard sets. (ii) The family SN
�⌘

such that for every

�: ? 2 T |


, SN
�⌘,�

is the set of typing judgments � .M :� provable in F
!

such that M is

strongly normalizing under �⌘-reduction, is a closed family of Girard sets. (iii) The family

consisting for every �: ? 2 T |


of the set of typing judgments � .M :� provable in F
!

such

that confluence under �-reduction holds from M and all of its subterms, is a closed family

of Girard sets. (iv) The family consisting for every �: ? 2 T |


of the set of typing judgments

� .M :� provable in F
!

such that confluence under �⌘-reduction holds from M and all of

its subterms, is a closed family of Girard sets.

Proof . (i)-(ii) It is trivial to verify that closure and (CR0)–(CR3) hold. (iii)-(iv) The

proof is similar to the one given in appendix 2, with a few more cases involving pairs and

projections.

18 Appendix 2

This appendix contains the details that were omitted in the proof of lemma 10.2.

Proof of lemma 10.2. We need to prove that the family of sets in (iii) and (iv) is a closed

family of saturated sets.

Closure is obvious since if confluence holds from Mx and all of its subterms, then it

holds from M .

Verifying (S1) is easy and uses the fact that if confluence holds from N1, . . . , Nn

and

all of their subterms, then confluence holds from each uN1 . . . Nk

and all of its subterms,

where u 2 X [ ⌃ and 1  k  n. This is because reductions must apply withing the N
i

’s.

Since confluence from u is trivial, confluence from each subterm of uN1 . . . Nn

follows from

the assumption on N1, . . . , Nn

.

Proving (S2) is very tedious. Assume that confluence holds from M [N/x]N1 . . . Nn

and all of its subterms (and that confluence holds from N , which is implied by (S2)).

Thus, confluence holds from M,N,N1, . . . , Nn

. We need to show that confluence holds

from (�x:�. M)NN1 . . . Nn

and all of its subterms.

First, we show confluence from every subterm of �x:�.M . Since confluence holds from

every subterm of M , the only nontrivial case is the case where M
⇤�!

�

8 (M 0
1x), for some
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term M 0
1 such that x /2 FV (M 0

1). In this case, we can have reductions of the form

�x:�. M
⇤�!

�

8 �x:�. (M 0
1x) �!⌘

M 0
1

⇤�!
�

8 P1,

where M
⇤�!

�

8 M 0
1x. There are four cases to consider.

Case 1.

�x:�. M
⇤�!

�

8 �x:�. (M 0
1x) �!⌘

M 0
1

⇤�!
�

8 P1

and

�x:�. M
⇤�!

�

8 �x:�. (M 00
1 x) �!⌘

M 00
1

⇤�!
�

8 P2,

where M
⇤�!

�

8 M 0
1x and M

⇤�!
�

8 M 00
1 x. Since confluence holds from M , there are reduc-

tions P1x
⇤�!

�

8 Q and P2x
⇤�!

�

8 Q for some Q.

If both reductions are of the form P1x
⇤�!

�

8 P3x and P2x
⇤�!

�

8 P3x, for some P3

such that Q = P3x, P1
⇤�!

�

8 P3, and P2
⇤�!

�

8 P3, then confluence holds.

If P2
⇤�!

�

8 P3 and P1x
⇤�!

�

8 P3x is of the form

P1x
⇤�!

�

8 (�y:�. Q1)x �!�

Q1[x/y]
⇤�!

�

8 P3x,

since x /2 FV (M 00
1 ) due to the ⌘-step, and since �y:�. Q1 ⌘↵

�x:�. Q1[x/y], we have

x /2 FV (P3) and

P1
⇤�!

�

8 �y:�. Q1
⇤�!

�

8 �x:�. (P3x) �!⌘

P3.

Confluence holds, since P2
⇤�!

�

8 P3.

The subcase where P1
⇤�!

�

8 P3 and

P2x
⇤�!

�

8 (�y:�. Q2)x �!�

Q2[x/y]
⇤�!

�

8 P3x,

is symmetric.

If both

P1x
⇤�!

�

8 (�y:�. Q1)x �!�

Q1[x/y]
⇤�!

�

8 Q,

and

P2x
⇤�!

�

8 (�y:�. Q2)x �!�

Q2[x/y]
⇤�!

�

8 Q,

since �y:�. Q1 ⌘↵

�x:�. Q1[x/y] and �y:�. Q2 ⌘↵

�x:�. Q2[x/y], we have

P1
⇤�!

�

8 �y:�. Q1
⇤�!

�

8 �x:�. Q

and

P2
⇤�!

�

8 �y:�. Q2
⇤�!

�

8 �x:�. Q.
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Case 2.

�x:�. M
⇤�!

�

8 �x:�. (M 0
1x) �!⌘

M 0
1

⇤�!
�

8 P1

and

�x:�. M
⇤�!

�

8 �x:�. M 00
1 ,

where M
⇤�!

�

8 M 0
1x and M

⇤�!
�

8 M 00
1 . This is quite similar to case 1. If P1x

⇤�!
�

8 P3x

andM 00
1

⇤�!
�

8 P3x, since x /2 FV (M 0
1) due to the ⌘-step, we have x /2 FV (P3), P1

⇤�!
�

8 P3,

and

�x:�. M 00
1

⇤�!
�

8 �x:�. (P3x) �!⌘

P3.

Confluence holds since P1
⇤�!

�

8 P3.

If

P1x
⇤�!

�

8 (�y:�. Q1)x �!�

Q1[x/y]
⇤�!

�

8 Q,

and

M 00
1

⇤�!
�

8 Q,

since �x:�. Q1[x/y] ⌘↵

�y:�. Q1, we have

P1
⇤�!

�

8 �y:�. Q1
⇤�!

�

8 �x:�. Q

and

�x:�. M 00
1

⇤�!
�

8 �x:�. Q.

Case 3. Symmetric to case 2.

Case 4.

�x:�. M
⇤�!

�

8 �x:�. M 0
1

and

�x:�. M
⇤�!

�

8 �x:�. M 00
1 ,

where M
⇤�!

�

8 M 0
1 and M

⇤�!
�

8 M 00
1 . Since confluence holds from M , we conclude

immediately.

We now prove that confluence holds from every term (�x:�. M)NN1 . . . Ni

, where

1  i  n, and from (�x:�. M)N . Without loss of generality, we can assume that i = n.

The proof of lemma 6.16 showed that every reduction sequence from (�x:�.M)NN1 . . . Nn

is of the form

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 0)N 0N 0
1 . . . N

0
n

,
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or

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 0)N 0N 0
1 . . . N

0
n

�!
�

M 0[N 0/x]N 0
1 . . . N

0
n

⇤�!
�

8 Q,

or

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. (M 0
1x))N

0N 0
1 . . . N

0
n

�!
⌘

M 0
1N

0N 0
1 . . . N

0
n

⇤�!
�

8 Q,

where in (1)-(2) M
⇤�!

�

8 M 0, in (3) M
⇤�!

�

8 M 0
1x, and in all cases N

⇤�!
�

8 N 0, and

N
i

⇤�!
�

8 N 0
i

, for every i, 1  i  n. We have seven main cases.

Case 1.

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 0)N 0N 0
1 . . . N

0
n

and

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 00)N 00N 00
1 . . . N 00

n

.

Since confluence holds from M,N,N1 . . . Nn

(for N , this is implied by (S2)), we have re-

duction sequences M 0 ⇤�!
�

8 M 000, M 00 ⇤�!
�

8 M 000, N 0 ⇤�!
�

8 N 000, N 00 ⇤�!
�

8 N 000, and

N 0
i

⇤�!
�

8 N 000
i

, N 00
i

⇤�!
�

8 N 000
i

, for every i, 1  i  n, and thus reductions

(�x:�. M 0)N 0N 0
1 . . . N

0
n

⇤�!
�

8 (�x:�. M 000)N 000N 000
1 . . . N 000

n

and

(�x:�. M 00)N 00N 00
1 . . . N 00

n

⇤�!
�

8 (�x:�. M 000)N 000N 000
1 . . . N 000

n

.

Case 2.

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 0)N 0N 0
1 . . . N

0
n

and

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 00)N 00N 00
1 . . . N 00

n

�!
�

M 00[N 00/x]N 00
1 . . . N 00

n

⇤�!
�

8 P2.

This time, we also have reduction sequences

(�x:�. M)NN1 . . . Nn

�!
�

M [N/x]N1 . . . Nn

⇤�!
�

8 M 0[N 0/x]N 0
1 . . . N

0
n

and

(�x:�. M)NN1 . . . Nn

�!
�

M [N/x]N1 . . . Nn

⇤�!
�

8 M 00[N 00/x]N 00
1 . . . N 00

n

⇤�!
�

8 P2.
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Using the confluence from M [N/x]N1 . . . Nn

, we have M 0[N 0/x]N 0
1 . . . N

0
n

⇤�!
�

8 P3 and

P2
⇤�!

�

8 P3 for some P3. Thus, we have reductions

(�x:�. M 0)N 0N 0
1 . . . N

0
n

�!
�

M 0[N 0/x]N 0
1 . . . N

0
n

⇤�!
�

8 P3

and

P2
⇤�!

�

8 P3.

Case 3.

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 0)N 0N 0
1 . . . N

0
n

�!
�

M 0[N 0/x]N 0
1 . . . N

0
n

⇤�!
�

8 P1

and

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 00)N 00N 00
1 . . . N 00

n

.

Symmetric to case 2.

Case 4.

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 0)N 0N 0
1 . . . N

0
n

�!
�

M 0[N 0/x]N 0
1 . . . N

0
n

⇤�!
�

8 P1

and

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 00)N 00N 00
1 . . . N 00

n

�!
�

M 00[N 00/x]N 00
1 . . . N 00

n

⇤�!
�

8 P2.

As in case 2, we have reductions

(�x:�. M)NN1 . . . Nn

�!
�

M [N/x]N1 . . . Nn

⇤�!
�

8 M 0[N 0/x]N 0
1 . . . N

0
n

⇤�!
�

8 P1

and

(�x:�. M)NN1 . . . Nn

�!
�

M [N/x]N1 . . . Nn

⇤�!
�

8 M 00[N 00/x]N 00
1 . . . N 00

n

⇤�!
�

8 P2,

and we conclude using the confluence from M [N/x]N1 . . . Nn

.

Case 5.

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. (M 0
1x))N

0N 0
1 . . . N

0
n

�!
⌘

M 0
1N

0N 0
1 . . . N

0
n

⇤�!
�

8 P1,

and

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. (M 00
1 x))N

00N 00
1 . . . N 00

n

�!
⌘

M 00
1 N

00N 00
1 . . . N 00

n

⇤�!
�

8 P2,
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where M
⇤�!

�

8 M 0
1x, M

⇤�!
�

8 M 00
1 x. Because of the ⌘-steps, x /2 FV (M 0

1) and x /2
FV (M 00

1 ), and thus M 0
1[N

0/x] = M 0
1 and M 00

1 [N
00/x] = M 00

1 , and we have reductions

(�x:�. M)NN1 . . . Nn

�!
�

M [N/x]N1 . . . Nn

⇤�!
�

8 M 0
1N

0N 0
1 . . . N

0
n

⇤�!
�

8 P1,

and

(�x:�. M)NN1 . . . Nn

�!
�

M [N/x]N1 . . . Nn

⇤�!
�

8 M 00
1 N

00N 00
1 . . . N 00

n

⇤�!
�

8 P2,

and we conclude using the confluence from M [N/x]N1 . . . Nn

.

Case 6.

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. (M 0
1x))N

0N 0
1 . . . N

0
n

�!
⌘

M 0
1N

0N 0
1 . . . N

0
n

⇤�!
�

8 P1,

and

(�x:�. M)NN1 . . . Nn

⇤�!
�

8 (�x:�. M 00
1 N

00)N 00
1 . . . N 00

n

�!
�

M 00
1 [N

00/x]N 00
1 . . . N 00

n

⇤�!
�

8 P2,

where M
⇤�!

�

8 M 0
1x, M

⇤�!
�

8 M 00
1 . Since we have an ⌘-reduction step, x /2 FV (M 0

1),

which implies that M 0
1[N

0/x] = M 0
1, and we have

(�x:�. M)NN1 . . . Nn

�!
�

M [N/x]N1 . . . Nn

⇤�!
�

8 M 0
1N

0N 0
1 . . . N

0
n

⇤�!
�

8 P1,

and

(�x:�. M)NN1 . . . Nn

⇤�!
�

M [N/x]N1 . . . Nn

⇤�!
�

8 M 00
1 [N

00/x]N 00
1 . . . N 00

n

⇤�!
�

8 P2.

We conclude using the confluence from M [N/x]N1 . . . Nn

.

Case 7. Symmetric to case 6.

Proving that confluence holds from (⇤t. M)⌧N1 . . . Nn

and all its subterms assuming

that confluence holds from M [⌧/t]N1 . . . Nn

and all its subterms is similar to the previous

proof, except that there are no reductions from ⌧ .
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