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Abstract: This paper consists primarily of a survey of results of Harvey Fried-

man about some proof theoretic aspects of various forms of Kruskal’s tree the-

orem, and in particular the connection with the ordinal Γ0. We also include a

fairly extensive treatment of normal functions on the countable ordinals, and

we give a glimpse of Veblen hierarchies, some subsystems of second-order logic,

slow-growing and fast-growing hierarchies including Girard’s result, and Good-

stein sequences. The central theme of this paper is a powerful theorem due to

Kruskal, the “tree theorem”, as well as a “finite miniaturization” of Kruskal’s

theorem due to Harvey Friedman. These versions of Kruskal’s theorem are re-

markable from a proof-theoretic point of view because they are not provable in

relatively strong logical systems. They are examples of so-called “natural inde-

pendence phenomena”, which are considered by most logicians as more natural

than the metamathematical incompleteness results first discovered by Gödel.

Kruskal’s tree theorem also plays a fundamental role in computer science, be-

cause it is one of the main tools for showing that certain orderings on trees are

well founded. These orderings play a crucial role in proving the termination of

systems of rewrite rules and the correctness of Knuth-Bendix completion pro-

cedures. There is also a close connection between a certain infinite countable

ordinal called Γ0 and Kruskal’s theorem. Previous definitions of the function in-

volved in this connection are known to be incorrect, in that, the function is not

monotonic. We offer a repaired definition of this function, and explore briefly

the consequences of its existence.
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1 Introduction

This paper consists primarily of a survey of results of Harvey Friedman [47] about some

proof theoretic aspects of various forms of Kruskal’s tree theorem [28], and in particular the

connection with the ordinal Γ0. Initially, our intention was to restrict ourselves to Kruskal’s

tree theorem and Γ0. However, as we were trying to make this paper as self contained as

possible, we found that it was necessary to include a fairly extensive treatment of normal

functions on the countable ordinals. Thus, we also give a glimpse of Veblen hierarchies,

some subsystems of second-order logic, slow-growing and fast-growing hierarchies including

Girard’s result, and Goodstein sequences.

The central theme of this paper is a powerful theorem due to Kruskal, the “tree

theorem”, as well as a “finite miniaturization” of Kruskal’s theorem due to Harvey Friedman.

These versions of Kruskal’s theorem are remarkable from a proof-theoretic point of view

because they are not provable in relatively strong logical systems. They are examples of

so-called “natural independence phenomena”, which are considered by most logicians as

more natural than the metamathematical incompleteness results first discovered by Gödel.

Kruskal’s tree theorem also plays a fundamental role in computer science, because it

is one of the main tools for showing that certain orderings on trees are well founded. These

orderings play a crucial role in proving the termination of systems of rewrite rules and the

correctness of Knuth-Bendix completion procedures [27].

There is also a close connection between a certain infinite countable ordinal called Γ0

(Feferman [13], Schütte [46]) and Kruskal’s theorem. This connection lies in the fact that

there is a close relationship between the embedding relation � on the set T of finite trees

(see definition 4.11) and the well-ordering ≤ on the set O(Γ0) of all ordinals < Γ0. Indeed,

it is possible to define a function h : T → O(Γ0) such that h is (1). surjective, and (2).

preserves order, that is, if s � t, then h(s) ≤ h(t). Previous definitions of this function are

known to be incorrect, in that, the function is not monotonic. We offer a repaired definition

of this function, and explore briefly the consequences of its existence.

We believe that there is a definite value in bringing together a variety of topics revolv-

ing around a common theme, in this case, ordinal notations and their use in mathematical

logic. We are hoping that our survey will help in making some beautiful but seemingly rather

arcane tools and techniques known to more researchers in logic and theoretical computer

science.

The paper is organized as follows. Section 2 contains all the definitions about pre-

orders, well-founded orderings, and well-quasi orders (WQO’s), needed in the rest of the

paper. Higman’s theorem for WQO’s on strings is presented in section 3. Several versions
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of Kruskal’s tree theorem are presented in section 4. Section 5 is devoted to several versions

of the finite miniaturization of Kruskal’s theorem due to Harvey Friedman. Section 6 is a

fairly lengthy presentation of basic facts about the countable ordinals, normal functions,

and Γ0. Most of this material is taken from Schütte [46], and we can only claim to have

presented it our own way, and hopefully made it more accessible. Section 7 gives a glimpse

at Veblen hierarchies. A constructive system of notations for Γ0 is presented in section 8.

The connection between Kruskal’s tree theorem and Γ0 due to Friedman is presented in

section 9. A brief discussion of some relevant subsystems of second-order arithmetic occurs

in section 10. An introduction to the theory of term orderings is presented in section 11,

including the recursive path ordering and the lexicographic path ordering. A glimpse at

slow-growing and fast-growing hierarchies is given in section 12. Finally, constructive proofs

of Higman’s lemma are briefly discussed in section 13.

2 Well Quasi-Orders (WQO’s)

We let N denote the set {0, 1, 2, . . .} of natural numbers, and N+ denote the set {1, 2, . . .} of

positive natural numbers. Given any n ∈ N+, we let [n] denote the finite set {1, 2, . . . , n},
and we let [0] = ∅. Given a set S, a finite sequence u over S, or string over S, is a

function u : [n] → S, for some n ∈ N. The integer n is called the length of u and is

denoted by |u|. The special sequence with domain ∅ is called the empty sequence, or empty

string , and will be denoted by e. Strings can be concatenated in the usual way: Given

two strings u : [m] → S and v : [n] → S, their concatenation denoted by u.v or uv, is

the string uv : [m + n] → S such that, uv(i) = u(i) if 1 ≤ i ≤ m, and uv(i) = v(i −m)

if m + 1 ≤ i ≤ m + n. Clearly, concatenation is associative and e is an identity element.

Occasionally, a finite sequence u of length n will be denoted as 〈u1, . . . , un〉 (denoting u(i)

as ui), or as u1 . . . un. Strings of length 1 are identified with elements of S. The set of all

strings over S is denoted as S∗.

An infinite sequence is a function s : N+ → S. An infinite sequence s is also denoted

by (si)i≥1, or by 〈s1, s2, . . . , si, . . .〉. Given an infinite sequence s = (si)i≥1, an infinite

subsequence of s is any infinite sequence s′ = (s′j)j≥1 such that there is a strictly monotonic

function1 f : N+ → N+, and s′i = sf(i) for all i > 0. An infinite subsequence s′ of s

associated with the function f is also denoted as s′ = (sf(i))i≥1.

We now review preorders and well-foundedness.

Definition 2.1 Given a set A, a binary relation � ⊆ A × A on the set A is a preorder

1 A function f : N+ → N+ is strictly monotonic (or increasing) iff for all i, j > 0, i < j implies that
f(i) < f(j).
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(or quasi-order) iff it is reflexive and transitive. A preorder that is also antisymmetric is

called a partial order . A preorder is total iff for every x, y ∈ A, either x � y or y � x. The

relation � is defined such that x � y iff y � x, the relation ≺ such that

x ≺ y iff x � y and y 6� x,

the relation � such that x � y iff y ≺ x, and the equivalence relation ≈ such that

x ≈ y iff x � y and y � x.

We say that x and y are incomparable iff x 6� y and y 6� x, and this is also denoted by x | y.

Given two preorders �1 and �2 on a set A, �2 is an extension of �1 iff �1 ⊆ �2. In

this case, we also say that �1 is a restriction of �2.

Definition 2.2 Given a preorder � over a set A, an infinite sequence (xi)i≥1 is an infinite

decreasing chain iff xi � xi+1 for all i ≥ 1. An infinite sequence (xi)i≥1 is an infinite

antichain iff xi | xj for all i, j, 1 ≤ i < j. We say that � is well-founded and that � is

Noetherian iff there are no infinite decreasing chains w.r.t. �.

We now turn to the fundamental concept of a well quasi-order. This concept goes

back at least to Janet [23], whose paper appeared in 1920, as recently noted by Pierre

Lescanne [31]. Irving Kaplanski also told me that this concept is defined and used in his

Ph.D thesis [25] (1941). The concept was further investigated by Higman [22], Kruskal [28],

and Nash-Williams [36], among the forerunners.

Definition 2.3 Given a preorder � over a set A, an infinite sequence (ai)i≥1 of elements

in A is termed good iff there exist positive integers i, j such that i < j and ai � aj , and

otherwise, it is termed a bad sequence. A preorder � is a well quasi-order , abbreviated as

wqo, iff every infinite sequence of elements of A is good.

Among the various characterizations of wqo’s, the following ones are particularly use-

ful.

Lemma 2.4 Given a preorder � on a set A, the following conditions are equivalent:

1. Every infinite sequence is good (w.r.t. �).

2. There are no infinite decreasing chains and no infinite antichains (w.r.t. �).

3. Every preorder extending � (including � itself) is well-founded.
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Proof . (1) =⇒ (2). Suppose that (xi)i≥1 is an infinite sequence over A such that xi � xi+1

for all i ≥ 1. Hence, for every i ≥ 1,

xi+1 � xi, and xi 6� xi+1. (∗)

Since � satisfies (1), there exist integers i, j > 0 such that i < j and xi � xj . If j = i+ 1,

this contradicts (∗). If j > (i+ 1), by transitivity of �, since xj−1 � . . . � xi+1 � xi � xj ,
we have xj−1 � xj , contradicting (∗). Hence there are no infinite decreasing sequences,

that is, � is well-founded. Also, it is clear that the existence of an infinite antichain would

contradict (1).

(2) =⇒ (3). We argue by contradiction. Let �′ be any preorder extending � and

assume that �′ is not well-founded. Then, there is some strictly decreasing chain

x1 �′ x2 �′ · · · �′ xi �′ xi+1 �′ · · · .

Either infinitely many elements in this sequence are related under �, in which case we

have an infinite decreasing chain w.r.t. �, contradicting (2), or infinitely many elements in

this sequence are incomparable under �, in which case we have an infinite antichain, again

contradicting (2).

(3) =⇒ (1). If (1) fails, then there is some infinite sequence s = (xi)i≥1 such that

xi 6� xj for all i, j, 1 ≤ i < j. But then, we can extend � to a preorder �′ such that s

becomes an infinite decreasing chain in �′, contradicting (3).

It is interesting to observe that the property of being a wqo is substantially stronger

that being well-founded. Indeed, it is not true in general that any preorder extending a

given well-founded preorder is well-founded. However, by (3) of lemma 2.4, this property

characterizes a wqo. Every preorder on a finite set (including the equality relation) is a

wqo, and by (3) of lemma 2.4, every partial ordering that is total and well-founded is a wqo

(such orderings are called well-orderings).

The following lemma turns out to be the key to the proof of Kruskal’s theorem. It is

implicit in Nash-Williams [36], lemma 1, page 833.

Lemma 2.5 Given a preorder � on a set A, the following are equivalent:

(1) � is a wqo on A.

(2) Every infinite sequence s = (si)i≥1 over A contains some infinite subsequence s′ =

(sf(i))i≥1 such that sf(i) � sf(i+1) for all i > 0.

Proof . It is clear that (2) implies (1). Next, assume that � is a wqo. We say that a member

si of a sequence s is terminal iff there is no j > i such that si � sj . We claim that the
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number of terminal elements in the sequence s is finite. Otherwise, the infinite sequence t of

terminal elements in s is a bad sequence (because if the sequence t was good, then we would

have sh � sk for two terminal elements in s, contradicting the fact that sh is terminal),

and this contradicts the fact that � is a wqo. Hence, there is some N > 0 such that si is

not terminal for every i ≥ N . We can define a strictly monotonic function f inductively

as follows. Let f(1) = N , and for any i ≥ 1, let f(i + 1) be the least integer such that

sf(i) � sf(i+1) and f(i+1) > f(i) (since every element sf(i) is not terminal by the choice of

N and the definition of f , such an element exists). The infinite subsequence s′ = (sf(i))i≥1

has the property stated in (2).

As a corollary of lemma 2.5, we obtain another result of Nash-Williams [36]. Given

two preorders 〈�1, A1〉 and 〈�2, A2〉, the cartesian product A1 × A2 is equipped with the

preorder � defined such that (a1, a2) � (a′1, a
′
2) iff a1 �1 a

′
1 and a2 �2 a

′
2.

Lemma 2.6 If �1 and �2 are wqo, then � is a wqo on A1 ×A2.

Proof . Consider any infinite sequence s in A1 × A2. This sequence is formed of pairs

(s′i, s
′′
i ) ∈ A1 × A2, and defines an infinite sequence s′ = (s′i)i≥1 over A1 and an infinite

sequence s′′ = (s′′i )i≥1 over A2. By lemma 2.5, since �1 is a wqo, there is some infinite

subsequence t′ = (s′f(i))i≥1 of s′ such that s′f(i) �1 s
′
f(i+1) for all i > 0. Since �2 is also

a wqo and t′′ = (s′′f(i))i≥1 is an infinite sequence over A2, there exist some i, j such that

f(i) < f(j) and s′′f(i) �2 s
′′
f(j). Then, we have (s′f(i), s

′′
f(i)) � (s′f(j), s

′′
f(j)), which shows that

the sequence s is good, and that � is a wqo.

In turn, lemma 2.6 yields an interesting result due to Dickson [12], published in 1913!

Lemma 2.7 Let n be any integer such that n > 1. Given any infinite sequence (si)i≥1 of

n-tuples of natural numbers, there exist positive integers i, j such that i < j and si �n sj ,
where �n is the partial order on n-tuples of natural numbers induced by the natural ordering

≤ on N.

Proof . The proof follows immediately by observing that ≤ is a wqo on N and that lemma

2.6 extends to any n > 1 by a trivial induction.

Next, given a wqo � on a set A, we shall extend � to the set of strings A∗, and prove

what is known as Higman’s theorem [22].
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3 WQO’s On Strings, Higman’s Theorem

Our presentation of Higman’s theorem is inspired by Nash-Williams’s proof of a similar

theorem ([36], lemma 2, page 834), and is also very similar to the proof given by Steve

Simpson ([47], lemma 1.6, page 92). Nash-Williams’s proof is not entirely transparent, and

Simpson’s proof appeals to Ramsey’s theorem. Using lemma 2.5, it is possible to simplify

the proof. A proof along this line has also been given by Jean Jacques Levy in some

unpublished notes [33] that came mysteriously in my possession.

Definition 3.1 Let v be a preorder on a set A. We define the preorder � (string em-

bedding) on A∗ as follows: e� u for each u ∈ A∗, and, for any two strings u = u1u2 . . . um
and v = v1u2 . . . vn, 1 ≤ m ≤ n,

u1u2 . . . um � v1v2 . . . vn

iff there exist integers j1, . . . , jm such that 1 ≤ j1 < j2 < . . . < jm−1 < jm ≤ n and

u1 v vj1 , . . . , um v vjm .

It is easy to show that � is a preorder, and we leave as an exercise to show that � is

a partial order if v is a partial order. It is also easy to check that � is the least preorder

on A∗ satisfying the following two properties:

(1) (deletion property) uv � uav, for all u, v ∈ A∗ and a ∈ A;

(2) (monotonicity) uav � ubv whenever a v b, for all u, v ∈ A∗ and a, b ∈ A.

Theorem 3.2 (Higman) If v is a wqo on A, then � is a wqo on A∗.

Proof . Assume that � is not a wqo on A∗. Then, there is at least one bad sequence from

A∗. Following Nash-Williams, we define a minimal bad sequence t inductively as follows.

Let t1 be a string of minimal length starting a bad sequence. If t1, . . . , tn have been defined,

let tn+1 be a string of minimal length such that there is a bad sequence whose first n

elements are t1, . . . , tn. Note that we must have |ti| ≥ 1 for all i ≥ 1, since otherwise the

sequence t is not bad (since e� u for each u ∈ A∗). Since |ti| ≥ 1 for all i ≥ 1, let

ti = aisi,

where ai ∈ A is the leftmost symbol in ti. The elements ai define an infinite sequence

a = (ai)i≥1 in A, and the si define an infinite sequence s = (si)i≥1 in A∗. Since v is a

wqo on A, by lemma 2.5, there is an infinite subsequence a′ = (af(i))i≥1 of a such that
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af(i) v af(i+1) for all i > 0. We claim that the infinite subsequence s′ = (sf(i))i≥1 of s is

good. Otherwise, if s′ = (sf(i))i≥1 is bad, there are two cases.

Case 1: f(1) = 1. Then, the infinite sequence s′ = (sf(i))i≥1 is a bad sequence with

|s1| < |t1|, contradicting the minimality of t.

Case 2: f(1) > 1. Then, the infinite sequence

t′ = 〈t1, . . . , tf(1)−1, sf(1), sf(2), . . . , sf(j), . . .〉

is also bad, because tk = aksk for all k ≥ 1 and ti � sf(j) implies that ti � tf(j) by the

definition of �. But |sf(1)| < |tf(1)|, and this contradicts the minimality of t.

Since the sequence s′ = (sf(i))i≥1 is good, there are some positive integers i, j such

that f(i) < f(j) and sf(i) � sf(j). Since the infinite sequence a′ = (af(i))i≥1 was chosen

such that af(i) v af(i+1) for all i > 0, by the definition of �, we have

af(i)sf(i) � af(j)sf(j),

that is, tf(i) � tf(j) (since tk = aksk for all k ≥ 1). But this shows that the sequence t is

good, contradicting the initial assumption that t is bad.

A theorem similar to theorem 3.2 applying to finite subsets of A can be shown. Fol-

lowing Nash-Williams [36], let F(S) denote the set of all finite subsets of S. Given any

two subsets A, B of S, a function f : A → B is non-descending if a v f(a) for every

a ∈ A. The set F(S) is equipped with the preorder � defined as follows: ∅ � A for every

A ∈ F(S), and for any two nonempty subsets A,B ∈ F(S), A� B iff there is an injective

non-descending function f : A→ B. The proof of theorem 3.2 can be trivially modified to

obtain the following.

Theorem 3.3 (Nash-Williams) If v is a wqo on A, then � is a wqo on F(A).

We now turn to trees.

4 WQO’s On Trees, Kruskal’s Tree Theorem

First, we review the definition of trees in terms of tree domains.

Definition 4.1 A tree domain D is a nonempty subset of strings in N∗+ satisfying the

conditions:

(1) For all u, v ∈ N∗+, if uv ∈ D then u ∈ D.

(2) For all u ∈ N∗+, for every i ∈ N+, if ui ∈ D then, for every j, 1 ≤ j ≤ i, uj ∈ D.

The elements of D are called tree addresses or nodes. We now consider labeled trees.
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Definition 4.2 Given any set Σ of labels, a Σ-tree (or term) is any function t : D → Σ,

where D is a tree domain denoted by dom(t).

Hence, a labeled tree is defined by a tree domain D and a labeling function t with

domain D and range Σ. The tree address e is called the root of t, and its label t(e) is

denoted as root(t). A tree is finite iff its domain is finite. In the rest of this paper, only

finite trees will be considered. The set of all finite Σ-trees is denoted as TΣ.

Definition 4.3 Given a (finite) tree t, the number of tree addresses in dom(t) is denoted

by |t|. The depth of a tree t is defined as depth(t) = max({|u| | u ∈ dom(t)}). The number

of immediate successors of the root of a tree is denoted by rank(t), and it is defined formally

as the number of elements in the set {i | i ∈ N+ and i ∈ dom(t)}. Given a tree t and some

tree address u ∈ dom(t), the subtree of t rooted at u is the tree t/u whose domain is the set

{v | uv ∈ dom(t)} and such that t/u(v) = t(uv) for all v in dom(t/u).

A tree t such that rank(t) = 0 is a one-node tree, and if root(t) = f , t will also

be denoted by f . Given any k ≥ 1 trees t1, . . . , tk and any element f ∈ Σ, the tree

t = f(t1, . . . , tk) is the tree whose domain is the set

{e} ∪
i=k⋃
i=1

{iu | u ∈ dom(ti)},

and whose labeling function is defined such that t(e) = f and t(iu) = ti(u), for u ∈ dom(ti),

1 ≤ i ≤ k. It is well known that every finite tree t is either a one-node tree, or can be

written uniquely as t = f(t/1, . . . , t/k), where f = root(e), and k = rank(t). It is also

convenient to introduce the following abbreviations. Let v be a binary relation on trees.

Then

s v f(. . . , s, . . .)

is an abbreviation for s v f(s1, . . . , si−1, s, si+1, . . . , sn),

f(. . .) v f(. . . , s, . . .)

is an abbreviation for f(s1, . . . , si−1, si+1, . . . , sn) v f(s1, . . . , si−1, s, si+1, . . . , sn),

f(. . . , s, . . .) v g(. . . , t, . . .)

is an abbreviation for f(s1, . . . , si−1, s, si+1, . . . , sn) v g(s1, . . . , si−1, t, si+1, . . . , sn), for

some trees s, t, s1, . . . , si−1, si+1, . . . , sn, 1 ≤ i ≤ n. When n = 1, these are understood as

s v f(s), f v f(s), and f(s) v g(t).
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4.1 Kruskal’s Theorem, Version 1

Assuming that Σ is preordered by v, we define a preorder � on Σ-trees extending v in the

following way.

Definition 4.4 Assume that v is a preorder on Σ. The preorder � on TΣ (homeomorphic

embedding) is defined inductively as follows: Either

(1) f � g(t1, . . . , tn) iff f v g; or

(2) s � g(. . . , t, . . .) iff s � t; or

(3) f(s1, . . . , sm) � g(t1, . . . , tn) iff f v g, and there exist some integers j1, . . . , jm such

that 1 ≤ j1 < j2 < . . . < jm−1 < jm ≤ n, 1 ≤ m ≤ n, and

s1 � tj1 , . . . , sm � tjm .

Note that (1) can be viewed as the special case of (3) for which m = 0, and n = 0

is possible. It is easy to show that � is a preorder. One can also show that � is a

partial order if v is a partial order. This can be shown by observing that s � t implies

that depth(s) ≤ depth(t). Hence, if s � t and t � s, we have depth(s) = depth(t) and

rank(s) = rank(t) (since only case (1) or (3) can apply). Then, we can show that s = t by

induction on the depth of trees.

It is also easy to show that the preorder � can be defined as the least preorder

satisfying the following properties:

(1) s � f(. . . , s, . . .);

(2) f(. . .) � f(. . . , s, . . .);

(3) f(. . . , s, . . .) � g(. . . , t, . . .) whenever f v g and s � t.

We now prove a version of Kruskal’s theorem [28].

Theorem 4.5 (Kruskal’s tree theorem) If v is a wqo on Σ, then � is a wqo on TΣ.

Proof . Assume that � is not a wqo on TΣ. As in the proof of theorem 3.2, we define a

minimal bad sequence t of elements of TΣ satisfying the following properties:

(i) |t1| ≤ |t′1| for all bad sequences t′;

(ii) |tn+1| ≤ |t′n+1| for all bad sequences t′ such that t′i = ti, 1 ≤ i ≤ n.
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We claim that |ti| ≥ 2 for all but finitely many i ≥ 1. Otherwise, the sequence of

one-node trees in t must be infinite, and since v is a wqo, by clause (1) of the definition of

�, there are i, j > 0 such that i < j and ti � tj , contradicting the fact that t is bad.

Let s = (si)i≥1 be the infinite subsequence of t consisting of all trees having at least

two nodes, and let f = (fi)i≥1 be the infinite sequence over Σ defined such that fi = root(si)

for every i ≥ 1. Since v is a wqo over Σ, by lemma 2.5, there is some infinite subsequence

f ′ = (fϕ(i))i≥1 of f such that fϕ(i) v fϕ(i+1) for all i ≥ 1. Let

D = {sϕ(i)/j | i ≥ 1, 1 ≤ j ≤ rank(sϕ(i))}.

We claim that � is a wqo on D. Otherwise, let r = 〈r1, r2, . . . , rj , . . .〉 be a bad sequence

in D. Because r is bad, it contains a bad subsequence r′ = 〈r′1, r′2, . . . , r′j , . . .〉 with the

following property: if i < j, then r′i is a subtree of a tree tp and r′j is a subtree of a tree

tq such that p < q. Indeed, every ti only has finitely many subtrees, and r being bad must

contain an infinite number of distinct trees. Thus, we consider a bad sequence r with the

additional property that if i < j, then ri is a subtree of a tree tp and rj is a subtree of a

tree tq such that p < q. Let n be the index of the first tree in the sequence t such that

tn/j = r1 for some j. If n = 1, since |r1| < |t1| and the sequence r is bad, this contradicts

the fact that t is a minimal bad sequence. If n > 1, then the sequence

〈t1, t2, . . . , tn−1, r1, r2, . . . , rj , . . .〉

is bad, since by clause (ii) of the definition of �, for any k s.t. 1 ≤ k ≤ n − 1, tk � rj
would imply that tk � th for some th and l such that rj = th/l and k < h, since each ri is a

subtree of some tp such that n− 1 < p. But since |r1| < |tn|, this contradicts the fact that

t is a minimal bad sequence. Hence, D is a wqo.

By Higman’s theorem (theorem 3.2), the string embedding relation � extending the

preorder � on D is a wqo on D∗ . Hence, considering the infinite sequence over D∗

〈〈sϕ(1)/1, sϕ(1)/2, . . . , sϕ(1)/rank(sϕ(1))〉, . . . , 〈sϕ(j)/1, sϕ(j)/2, . . . , sϕ(j)/rank(sϕ(j))〉, . . .〉,

there exist some i, j > 0 such that, letting m = rank(sϕ(i)) and n = rank(sϕ(j)),

〈sϕ(i)/1, sϕ(i)/2, . . . , sϕ(i)/m〉 � 〈sϕ(j)/1, sϕ(j)/2, . . . , sϕ(j)/n〉,

that is, there are some positive integers j1 < j2 < . . . < jm−1 < jm ≤ n such that

sϕ(i)/1 � sϕ(j)/j1, . . . , sϕ(i)/m � sϕ(j)/jm.

Since we also have fϕ(i) v fϕ(j), by clause (3) of the definition of �, we have sϕ(i) � sϕ(j).

But s is a subsequence of t, and this contradicts the fact that t is bad. Hence, � is a wqo

on TΣ.

The above proof is basically due to Nash-Williams.
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4.2 Kruskal’s Theorem, Version 2

Another version of Kruskal’s theorem that assumes a given preorder on TΣ (and not just

Σ) can also be proved. This version (found in J.J. Levy’s unpublished notes [33]) can be

used to show that certain orderings on trees are well-founded.

Definition 4.6 Assume that v is a preorder on TΣ. The preorder � on TΣ is defined

inductively as follows: Either

(1) f � g(t1, . . . , tn) iff f v g(t1, . . . , tn); or

(2) s � g(. . . , t, . . .) iff s � t; or

(3) s = f(s1, . . . , sm) � g(t1, . . . , tn) = t iff s v t, and there exist some integers j1, . . . , jm

such that 1 ≤ j1 < j2 < . . . < jm−1 < jm ≤ n, 1 ≤ m ≤ n, and

s1 � tj1 , . . . , sm � tjm .

It is easy to show that � is a preorder. It can also be shown that � is a partial order

if v is a partial order. Again, (1) can be viewed as the special case of (3) for which m = 0

and, n = 0 is possible. It is also easy to see that � can be defined as the least preorder

satisfying the following properties:

(1) s � f(. . . , s, . . .);

(2) s = f(s1, . . . , sm) � g(t1, . . . , tn) = t whenever s v t and there exist some integers

j1, . . . , jm such that 1 ≤ j1 < j2 < . . . < jm−1 < jm ≤ n, 1 ≤ m ≤ n, and

s1 � tj1 , . . . , sm � tjm .

We can now prove another version of Kruskal’s theorem.

Theorem 4.7 (J.J. Levy) If v is a wqo on TΣ, then � is a wqo on TΣ.

Proof . Assume that � is not a wqo on TΣ. As in the proof of theorem 4.5, we find a

minimal bad sequence t of elements of TΣ.

Since v is a wqo, there is some infinite subsequence t′ = (tψ(i))i≥1 of t such that

tψ(i) v tψ(i+1) for all i ≥ 1. We claim that |tψ(i)| ≥ 2 for all but finitely many i ≥ 1.

Otherwise, the sequence of one-node trees in t′ must be infinite, and since v is a wqo, by

clause (1) of the definition of �, there are i, j > 0 such that ψ(i) < ψ(j) and tψ(i) � tψ(j),

contradicting the fact that t is bad.
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Let s = (t′η(i))i≥1 be the infinite subsequence of t′ consisting of all trees having at least

two nodes. Since s is a subsequence of t′ and t′ is a subsequence of t, s is a subsequence of

t of the form s = (tϕ(i))i≥1 for some strictly monotonic function ϕ. Let

D = {tϕ(i)/j | i ≥ 1, 1 ≤ j ≤ rank(tϕ(i))}.

As in the proof of theorem 4.5, we can show that � is a wqo on D.

By Higman’s theorem (theorem 3.2), the string embedding relation � extending the

preorder � on D is a wqo on D∗. Hence, considering the infinite sequence over D∗

〈〈tϕ(1)/1, tϕ(1)/2, . . . , tϕ(1)/rank(tϕ(1))〉, . . . , 〈tϕ(j)/1, tϕ(j)/2, . . . , tϕ(j)/rank(tϕ(j))〉, . . .〉,

there exist some i, j > 0 such that, letting m = rank(tϕ(i)) and n = rank(tϕ(j)),

〈tϕ(i)/1, tϕ(i)/2, . . . , tϕ(i)/m〉 � 〈tϕ(j)/1, tϕ(j)/2, . . . , tϕ(j)/n〉,

that is, there are some positive integers j1 < j2 < . . . < jm−1 < jm ≤ n such that

tϕ(i)/1 � tϕ(j)/j1, . . . , tϕ(i)/m � tϕ(j)/jm.

Since we also have tϕ(i) v tϕ(j) (because s = (tϕ(i))i≥1 is also a subsequence of t′ = (tψ(i))i≥1

and tψ(i) v tψ(i+1) for all i ≥ 1), by clause (3) of the definition of �, we have tϕ(i) � tϕ(j).

But this contradicts the fact that t is bad. Hence, � is a wqo on TΣ.

This second version of Kruskal’s theorem (theorem 4.7) actually implies the first ver-

sion (theorem 4.5). Indeed, if v is a preorder on Σ, we can extend it to a preorder on TΣ

by requiring that s v t iff root(s) v root(t). It is easy to check that with this definition of

v, definition 4.6 reduces to 4.4, and that theorem 4.7 is indeed theorem 4.5.

Kruskal’s theorem has been generalized in a number of ways. Among these general-

izations, we mention some versions using unavoidable sets of trees due to Puel [43, 44], and

a version using well rewrite orderings due to Lescanne [30].

4.3 WQO’s and Well-Founded Preorders

This second version of Kruskal’s theorem also has the following applications. Recall that

from lemma 2.4 a wqo is well-founded. The following proposition is very useful to prove

that orderings on trees are well-founded.
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Proposition 4.8 Let � be a preorder on TΣ and let ≤ be another preorder on TΣ such

that:

(1) If f � g(t1, . . . , tn), then f ≤ g(t1, . . . , tn);

(2) s ≤ f(. . . , s, . . .);

(3) If f(s1, . . . , sm) � g(t1, . . . , tn), and s1 ≤ tj1 , . . . , sm ≤ tjm for some j1, . . . , jm such

that 1 ≤ j1 < . . . < jm ≤ n, then f(s1, . . . , sm) ≤ g(t1, . . . , tn).

If � is a wqo, then ≤ is a wqo.

Proof . Let� be the preorder associated with� as in definition 4.6. Then, an easy induction

shows that the conditions of the proposition imply that � ⊆ ≤. By theorem 4.7, since� is

a wqo, � is also a wqo, which implies that ≤ is a wqo. By lemma 2.4, ≤ is well-founded.

The following proposition also gives a sufficient condition for a preorder on trees to

be well-founded.

Proposition 4.9 Assume Σ is finite, and let ≤ be a preorder on TΣ satisfying the following

conditions:

(1) s ≤ f(. . . , s, . . .);

(2) s ≤ t implies that f(. . . , s, . . .) ≤ f(. . . , t, . . .);

(3) f(. . .) ≤ f(. . . , s, . . .).

Then, ≤ is well-founded.

Proof . Let � be the preorder on TΣ defined such that s� t iff root(s) = root(t). Since Σ

is finite, � is a wqo. Since it is clear that � and ≤ satisfy the conditions of proposition

4.8, ≤ is well-founded.

Proposition 4.8 can be used to show that certain orderings on trees are well-founded.

These orderings play a crucial role in proving the termination of systems of rewrite rules

and the correctness of Knuth-Bendix completion procedures. An introduction to the theory

of these orderings will be presented in section 11, and for more details, the reader is referred

to the comprehensive survey by Dershowitz [7] and to Dershowitz’s fundamental paper [8].

It is natural to ask whether there is an analogue to Kruskal’s theorem with respect to

well-founded preorders instead of wqo. Indeed, it is possible to prove such a theorem, using

Kruskal’s theorem.



14 WHAT’S SO SPECIAL ABOUT KRUSKAL’S THEOREM?

Theorem 4.10 If v is a well-founded preorder on TΣ, then � is well-founded on TΣ.

Proof . The proof is implicit in Levy [33], Dershowitz [8], and Lescanne [29]. Unfortunately,

one cannot directly apply theorem 4.7, since v is not necessarily a wqo. However, there

is a way around this problem. We use the fact that every well-founded preorder v can be

extended to a total well-founded preorder ≤. This fact can be proved rather simply using

Zorn’s lemma. The point is that ≤ being total and well-founded is also a wqo. Now, we

can apply theorem 4.7 since ≤ is a wqo on TΣ, and so �≤ is a wqo on TΣ, and thus it is

well-founded. Finally, we note that �≤ contains �, which proves that � is well-founded.

Exercise: Find a proof of theorem 4.10 that does not use Zorn’s lemma nor Kruskal’s

theorem.

4.4 Kruskal’s Theorem, A Special Version

Kruskal’s tree theorem is a very powerful theorem, and we state more interesting conse-

quences. We consider the case where Σ is a finite set of symbols.

Definition 4.11 The preorder � on TΣ is defined inductively as follows: Either

(1) f � f(t1, . . . , tn), for every f ∈ Σ; or

(2) s � f(. . . , t, . . .) iff s � t; or

(3) f(s1, . . . , sm) � f(t1, . . . , tn) iff 1 ≤ m ≤ n, and there exist some integers j1, . . . , jm
such that 1 ≤ j1 < j2 < . . . < jm−1 < jm ≤ n and

s1 � tj1 , . . . , sm � tjm .

Again, (1) can be viewed as the special case of (3) in which m = 0. For example,

f(f(h, h), h(a, b)) � h(f(g(f(h(b), a,h(b))), g(a), h(h(a,b, c)))).

It is also easy to show that the preorder � can be defined as the least preorder

satisfying the following properties:

(1) s � f(. . . , s, . . .);

(2) f(. . .) � f(. . . , s, . . .);

(3) f(. . . , s, . . .) � f(. . . , t, . . .) whenever s � t.

Kruskal’s theorem implies the following result.
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Theorem 4.12 Given a finite alphabet Σ, � is a wqo on TΣ.

Proof . Since any preorder on a finite set is a wqo, the identity relation on Σ is a wqo. But

then, it is trivial to verify that the preorder � of definition 4.11 is obtained by specializing

v to the identity relation in definition 4.4. Hence, the theorem is direct a consequence of

theorem 4.5.

In particular, when Σ consists of a single symbol, we have the well-known version

of Kruskal’s theorem on unlabeled trees [28], except that in Kruskal’s paper, the notion

of embedding is defined as a certain kind of function between tree domains. We find it

more convenient to define the preorder � inductively, as in definition 4.4. For the sake of

completeness, we present the alternate definition used by Simpson [47].

4.5 Tree Domains And Embeddings: An Alternate Definition

First, given a partial order ≤ on a set A, given any nonempty subset S of A, we say that

≤ is a total order on S iff for all x, y ∈ S, either x ≤ y, or y ≤ x. We also say that S is a

chain (under ≤).

Definition 4.13 A finite tree domain is a nonempty set D together with a partial order

≤ satisfying the following properties:

(1) D has a least element ⊥ (with respect to ≤).

(2) For every x ∈ D, the set anc(x) = {y ∈ D | y ≤ x} of ancestors of x is a chain under

≤.

Clearly ⊥ corresponds to the root of the tree, and for every x ∈ D, the set anc(x) =

{y ∈ D | y ≤ x} is the set of nodes in the unique path from the root to x. The main difference

between definition 4.1 and definition 4.13 is that independent nodes of a tree domain as

defined in definition 4.13 are unordered , and, in particular, the immediate successors of a

node are unordered.

Given any two elements x, y ∈ D, the greatest element of the set anc(x) ∩ anc(y) is

the greatest lower bound of x and y, and it is denoted as x ∧ y. It is the “lowest” common

ancestor of x and y. A (labeled) tree is defined as in definition 4.2, but using definition

4.13 for that of a tree domain. The notion of an embedding (or homeomorphic embedding)

is then defined as follows. Let Σ be a set with some preorder v.

Definition 4.14 Given any two trees t1 and t2 with tree domains 〈D1,≤1〉 and 〈D2,≤2〉,
an embedding h from t1 to t2 is an injective function h : 〈D1,≤1〉 → 〈D2,≤2〉 such that:
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(1) h(x ∧ y) = h(x) ∧ h(y), for all x, y ∈ D1.

(2) t1(x) v t2(h(x)), for every x ∈ D1.

It is easily shown that h is monotonic (choose x, y such that x ≤1 y). One can verify

that when the immediate successors of a node are ordered, definition 4.4 is equivalent to

definition 4.14.

Next, we shall consider an extremely interesting version of Kruskal’s theorem due to

Harvey Friedman. A complete presentation of this theorem and its ramifications is given

by Simpson [47].

5 Friedman’s Finite Miniaturization of Kruskal’s Theorem

Friedman’s version of Kruskal’s theorem, which has been called a finite miniaturization

of Kruskal’s theorem, is remarkable from a proof-theoretic point of view because it is not

provable in relatively strong logical systems. Actually, Kruskal’s original theorem is also

not provable in relatively strong logical systems, but Kruskal’s version is a second-order

statement (a Π1
1 statement, meaning that it is of the form ∀XA, where X is a second-order

variable ranging over infinite sequences and A is first-order), whereas Friedman’s version

is a first-order statement (a Π0
2 statement, meaning that it is of the form ∀x∃yA, where A

only contains bounded first-order quantifiers).

From now on, we assume that Σ is a finite alphabet, and we consider the embedding

preorder of definition 4.11.

Theorem 5.1 (Friedman) Let Σ be a finite set. For every integer k ≥ 1, there exists

some integer n ≥ 2 so large that, for any finite sequence 〈t1, . . . , tn〉 of trees in TΣ with

|tm| ≤ k(m+ 1) for all m, 1 ≤ m ≤ n, there exist some integers i, j such that 1 ≤ i < j ≤ n
and ti � tj .

Proof . Following the hint given by Simpson [47], we give a proof using theorem 4.12 and

König’s lemma. Assume that the theorem fails. Let us say that a finite sequence 〈t1, . . . , tn〉
such that |tm| ≤ k(m+1) for all m, 1 ≤ m ≤ n, is good iff there exist some integers i, j such

that 1 ≤ i < j ≤ n and ti � tj , and otherwise, that it is bad . Then, there is some k ≥ 1

such that for all n > 1, there is some bad sequence 〈t1, . . . , tn〉 (and |tm| ≤ k(m+ 1) for all

m, 1 ≤ m ≤ n). Observe that any initial subsequence 〈t1, . . . , tj〉, j < n, of a bad sequence

is also bad. Furthermore, the size restriction (|tm| ≤ k(m + 1) for all m, 1 ≤ m ≤ n) and

the fact that Σ is finite implies that there are only finitely many bad sequences of length n.

Hence, the set of finite bad sequences can be arranged into an infinite tree T as follows: the
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root of T is the empty sequence, and every finite bad sequence t is connected to the root by

the unique path consisting of all the initial subsequences of t. From our previous remark,

this infinite tree is finite-branching. By König’s lemma, this tree contains an infinite path

s. But since all finite initial subsequences of s are bad, s itself is bad, and this contradicts

theorem 4.12.

A stronger version of the previous theorem also due to Friedman holds.

Theorem 5.2 (Friedman) Let Σ be a finite set. For every integer k ≥ 2, there exists some

integer n ≥ 2 so large that, for any finite sequence 〈t1, . . . , tn〉 of trees in TΣ with |tm| ≤ m
for all m, 1 ≤ m ≤ n, there exist some integers i1, . . . , ik such that 1 ≤ i1 < . . . < ik ≤ n

and ti1 � . . . � tik .

Proof . The proof is very similar to that of theorem 5.1, but lemma 2.5 also needs to be

used at the end.

Note that theorems 5.1 and 5.2 are both of the form ∀k∃nA(k, n), where A(k, n) only

contains bounded quantifiers, that is, they are Π0
2 statements. Hence, each statement defines

a function Fr, where Fr(k) is the least integer n such that ∀k∃nA(k, n) holds.

One may ask how quickly this function grows. Is it exponential, super exponential,

or worse? Well, this function grows extremely fast. It grows faster than Ackermann’s

function, and, even though it is recursive, it is not provably total recursive in fairly strong

logical theories, including Peano’s arithmetic. We will consider briefly hierarchies of fast-

growing functions in section 12. For more details, we refer the reader to Cichon and Wainer

[4], Wainer [54], and to Smoryński’s articles [50,51].

The other remarkable property of the two previous theorems is that neither is provable

in fairly strong logical theories (ATR0, see section 10). The technical reason is that it

is possible to define a function mapping finite trees to (rather large) countable ordinals,

and this function is order preserving (between the embedding relation � on trees and the

ordering relation on ordinals). This is true in particular for the ordinal Γ0 (see Schütte [46],

chapters 13, 14). For further details, see the articles by Simpson and Smoryński in [21]. We

shall present the connection with Γ0 in sections 9 and 10.


