
Fall 2024 CIS 515

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 3

October 2, 2024; Due October 21, 2024

Problem B1 (10 pts). Let f : E → F be a linear map which is also a bijection (it is
injective and surjective). Prove that the inverse function f−1 : F → E is linear.

Problem B2 (10 pts). Given two vectors spaces E and F , let (ui)i∈I be any basis of E
and let (vi)i∈I be any family of vectors in F . Prove that the unique linear map f : E → F
such that f(ui) = vi for all i ∈ I is surjective iff (vi)i∈I spans F .

Problem B3 (40 pts). (1) Let f : E → F be a linear map with dim(E) = n and dim(F ) =
m. Prove that f has rank 1 iff f is represented by an m× n matrix of the form

A = uv>

with u a nonzero column vector of dimension m and v a nonzero column vector of dimension
n.

In the rest of this problem we assume that m = n ≥ 1.

(2) Prove that if v>u 6= 1, then M = I −uv> is invertible and that its inverse is given by

M−1 = I + (1− v>u)−1uv>.

(3) Consider the (n+ 1)× (n+ 1) matrix

H =

(
I u
v> 1

)
.

Prove that (
I 0
−v> 1

)
H =

(
I u
0 1− v>u

)
.

Then prove that (
I u
0 1− v>u

)−1
=

(
I −u(1− v>u)−1

0 (1− v>u)−1

)
,

and that

H−1 =

(
I + u(1− v>u)−1v> −u(1− v>u)−1

−(1− v>u)−1v> (1− v>u)−1

)
.
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(4) Prove that (
I −u
0 1

)
H =

(
I − uv> 0
v> 1

)
.

Then prove that (
I − uv> 0
v> 1

)−1
=

(
(I − uv>)−1 0
−v>(I − uv>)−1 1

)
and that

H−1 =

(
M−1 −M−1u
−v>M−1 1 + v>M−1u

)
,

where M = I − uv> is the matrix form Part (2).

From the two expressions for H−1, deduce again that

M−1 = I + (1− v>u)−1uv>.

Problem B4 (60 pts). (1) Let U and V be n × k matrices, with k ≤ n. We know from
HW1, Problem B5, that In − UV > is invertible iff Ik − V >U is invertible. If Ik − V >U is
invertible, then prove that

(In − UV >)−1 = In + U(Ik − V >U)−1V >.

If k is a lot smaller than n, this formula provides a much cheaper way of computing
(In − UV >)−1.

(2) Let A be an invertible n × n matrix. Again, show that HW1, Problem B5, implies
that A − UV > is invertible iff Ik − V >A−1U is invertible. If A − UV > is invertible, prove
that

(A− UV >)−1 = A−1 + A−1U(Ik − V >A−1U)−1V >A−1.

This is the Sherman–Morrison–Woodburry formula.

(3) Prove that the (n+ k)× (n+ k) matrix

H =

(
A U
V > Ik

)
is invertible iff the matrix A− UV > is invertible.

Hint . Examine the nullspaces of these two matrices.

(4) Check that (
In 0

−V >A−1 Ik

)
H =

(
A U
0 Ik − V >A−1U

)
.

Also check that (
In −U
0 Ik

)
H =

(
A− UV > 0

V > Ik

)
.
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Let C = Ik − V >A−1U and M = A− UV >. Check that(
A U
0 C

)−1
=

(
A−1 −A−1UC−1

0 C−1

)
,

and that (
M 0
V > Ik

)−1
=

(
M−1 0

−V >M−1 Ik

)
.

Deduce from the above equations that

H−1 =

(
A−1 + A−1UC−1V >A−1 −A−1UC−1

−C−1V >A−1 C−1

)
=

(
M−1 −M−1U

−V >M−1 Ik + V >M−1U

)
.

Use the above to derive again the formula in (2).

(5) Prove that UV > has rank at most k. Prove that UV > has rank k iff both U and V
have rank k.

(6) Suppose M = A − UV > is invertible. Here is a method to solve the linear system
My = b (where b ∈ Rn) without actually using M , but instead using Ik − V >A−1U , which
is a much smaller matrix than M if k � n.

(1) Let Z be an n× k matrix with columns Z1, . . . , Zk. Solve the system Ax = b (x ∈ Rn)
and the k linear systems AZi = U i, where U i is the ith column of U for i = 1, . . . , k,
which is equivalent to solving AZ = U .

(2) Let C = Ik − V >Z, and solve the system Cw = V >x (w ∈ Rk).

Note that no matrix inversion is necessary, only Gaussian elimination is needed.

We claim that the solution y (y ∈ Rn) to the system My = b is

y = x+ Zw.

Prove the above claim by using the equation of Part (2).

Problem B5 (20 pts). Prove that for every vector space E, if f : E → E is an idempotent
linear map, i.e., f ◦ f = f , then we have a direct sum

E = Ker f ⊕ Im f,

so that f is the projection onto its image Im f .

Problem B6 (40 pts). Given any vector space E, a linear map f : E → E is an involution
if f ◦ f = id.

(1) Prove that an involution f is invertible. What is its inverse?
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(2) Let E1 and E−1 be the subspaces of E defined as follows:

E1 = {u ∈ E | f(u) = u}
E−1 = {u ∈ E | f(u) = −u}.

Prove that we have a direct sum
E = E1 ⊕ E−1.

Hint . For every u ∈ E, write

u =
u+ f(u)

2
+
u− f(u)

2
.

(3) If E is finite-dimensional and f is an involution, prove that there is some basis of E
with respect to which the matrix of f is of the form

Ik,n−k =

(
Ik 0
0 −In−k

)
,

where Ik is the k × k identity matrix (similarly for In−k) and k = dim(E1). Can you give a
geometric interpretation of the action of f (especially when k = n− 1)?

Problem B7 (60 pts). Let E be a real vector space of dimension n ≥ 2 and let F be any
real vector space. Pick any basis (u1, . . . , un) in E.

(1) Prove that for any bilinear alternating map f : E × E → F , for any two vectors
x = x1u1 + · · ·+ xnun and y = y1u1 + · · ·+ ynun, we have

f(x, y) =
∑

1≤i<j≤n

(xiyj − xjyi)f(ui, uj).

Observe that

xiyj − xjyi =

∣∣∣∣xi xj
yi yj

∣∣∣∣
is the determinant obtained from the 2× n matrix

X =

(
x1 x2 · · · xn
y1 y2 · · · yn

)
by choosing two columns of index i < j among the n columns.

Hint . Let v = x2u2 + · · ·+ xnun and w = y2u2 + · · ·+ ynun. First prove that

f(x, y) = (x1y2 − x2y1)f(u1, u2) + (x1y3 − x3y1)f(u1, u3) + · · ·+ (x1yn − xny1)f(u1, un)

+ f(v, w).

Then use induction.
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(2) Prove that for any sequence (wij)1≤i<j≤n of
(
n
2

)
= n(n− 1)/2 vectors wij ∈ F , there

is a unique bilinear alternating map f : E × E → F such that

f(ui, uj) = wij, 1 ≤ i < j ≤ n,

and in fact,

f(x, y) =
∑

1≤i<j≤n

(xiyj − xjyi)wij.

Conclude that there is a bijection ϕ between the set Alt2(E;F ) of bilinear alternating
maps f : E × E → F and the product vector space F n(n−1)/2 given by

ϕ(f) = (f(ui, uj))1≤i<j≤n.

Remark. Observe that when F = R, if we let A be the n×n matrix given by A = (f(ei, ej))
and if we let X be the column vector with entries (x1, . . . , xn) and Y be the column vector
with entries (y1, . . . , yn), then A> = −A and f(x, y) = X>AY .

(3) We define addition and scalar multiplication on the set of bilinear alternating maps
as follows. For any two bilinear alternating maps f : E ×E → F and g : E ×E → F , for all
x, y ∈ E and all λ ∈ R,

(f + g)(x, y) = f(x, y) + g(x, y),

and
(λf)(x, y) = λf(x, y).

Check (quickly) that f + g and λf are bilinear and alternating, and that the set Alt2(E;F )
of bilinear alternating maps with the above addition and scalar multiplication is a real vector
space.

(4) Prove that the bijection ϕ : Alt2(E;F )→ F n(n−1)/2 in (2) given by

ϕ(f) = (f(ui, uj))1≤i<j≤n

is linear. Conclude that ϕ is an isomorphism of vector spaces, and that if F has dimension
m, then Alt2(E;F ) has dimension mn(n− 1)/2.

Extra Credit (50 pts).

(5) Let p be an integer such that 1 ≤ p ≤ n. Consider the set Altp(E;F ) of multilinear
alternating maps f : Ep → F . Prove that for any vectors x1, . . . , xp ∈ E, if

xi = xi1u1 + · · ·+ xinun, i = 1, . . . , p,

then
f(x1, . . . , xp) =

∑
1≤j1<j2<···<jp≤n

∆j1,j2,...,jp(x1, . . . , xp)f(uj1 , uj2 , . . . , ujp),
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where ∆j1,j2,...,jp(x1, . . . , xp) is the determinant (of a p× p matrix)

∆j1,j2,...,jp(x1, . . . , xp) =

∣∣∣∣∣∣∣∣∣
x1j1 x1j2 · · · x1jp
x2j1 x2j2 · · · x2jp

...
...

. . .
...

xpj1 xpj2 · · · xpjp

∣∣∣∣∣∣∣∣∣ .
Observe that the above determinant is obtained from the p× n matrix

X =


x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xp1 xp2 · · · xpn

 ,

by choosing the columns of index j1, j2, . . . , jp among the n columns.

Hint . First observe that

f(x1, . . . , xp) =
∑

(j1,...,jp)∈{1,...,n}{1,...,p}
x1j1 · · ·xpjpf(uj1 , . . . , ujp),

where the sum extends over all sequences (j1, . . . , jp) of length p of elements from {1, . . . , n}.

You will also need the fact that the notion of signature of a permutation, which was
defined for permutations of the set {1, . . . , n}, is defined in a similar way for permutations
of the set {j1, . . . , jp}, with 1 ≤ j1 < · · · < jp ≤ n.

(6) Give Altp(E;F ) the structure of a vector space as in (3). Prove that the map

ϕ : Altp(E;F )→ F (n
p) given by

ϕ(f) =
(
f(uj1 , uj2 , . . . , ujp)

)
1≤j1<j2<···<jp≤n

is an isomorphism of vector spaces.

What more can you say when p = n? What is the dimension of Altn(E;F )?

Suppose F = R. Prove that the dimension of Altp(E;R) is
(
n
p

)
(recall that 1 ≤ p ≤ n).

What is the dimension of Altn(E;R)?

(7) Prove that for p > n, every multilinear alternating map f : Ep → F is the zero map.

TOTAL: 240 + 50 points.
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