
Fall 2024 CIS 5150

Fundamentals of Linear Algebra and Optimization

Jean Gallier

Homework 1

August 28, 2024; Due September 16, 2024

Problem B1 (30 pts). (i) Prove that the axioms of vector spaces imply that

α · 0 = 0

0 · v = 0

α · (−v) = −(α · v)

(−α) · v = −(α · v),

for all v ∈ E and all α ∈ K, where E is a vector space over K.

(ii) For every λ ∈ R and every x = (x1, . . . , xn) ∈ Rn, define λx by

λx = λ(x1, . . . , xn) = (λx1, . . . , λxn).

Recall that every vector x = (x1, . . . , xn) ∈ Rn can be written uniquely as

x = x1e1 + · · ·+ xnen,

where ei = (0, . . . , 0, 1, 0, . . . , 0), with a single 1 in position i. For any operation · : R×Rn →
Rn, if · satisfies the axiom (V1) of a vector space, then prove that for any α ∈ R, we have

α · x = α · (x1e1 + · · ·+ xnen) = α · (x1e1) + · · ·+ α · (xnen).

Conclude that · is completely determined by its action on each of the one-dimensional sub-
spaces of Rn spanned by ei (1 ≤ i ≤ n).

(iii) Use (ii) to define operations · : R × Rn → Rn that satisfy the axioms (V1–V3), but
for which axiom V4 fails.

(iv) Extra credit (20 pts). For any operation · : R×Rn → Rn, prove that if · satisfies
the axioms (V2–V3), then for every rational number r ∈ Q and every vector x ∈ Rn, we
have

r · x = r(1 · x).

In the above equation, 1 · x is some vector (y1, . . . , yn) ∈ Rn not necessarily equal to x =
(x1, . . . , xn), and

r(1 · x) = (ry1, . . . , ryn),
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as in part (ii).

Use (iv) to conclude that any operation · : Q×Rn → Rn that satisfies the axioms (V1–V3)
is completely determined by the action of 1 on the one-dimensional subspaces of Rn spanned
by e1, . . . , en.

Problem B2 (45 pts). (In solving this problem, do not use determinants). (1) Let
(u1, . . . , um) and (v1, . . . , vm) be two families of vectors in some vector space E. Assume that
each vi is a linear combination of the ujs, so that

vi = ai 1u1 + · · ·+ aimum, 1 ≤ i ≤ m,

and that the matrix A = (ai j) is an upper-triangular matrix, which means that if 1 ≤ j <
i ≤ m, then ai j = 0. Prove that if (u1, . . . , um) are linearly independent and if all the
diagonal entries of A are nonzero, then (v1, . . . , vm) are also linearly independent.

Hint . Use induction on m.

(2) Let A = (ai j) be an upper-triangular matrix. Prove that if all the diagonal entries of
A are nonzero, then A is invertible and the inverse A−1 of A is also upper-triangular.

Hint . Use induction on m and multiplication by blocks.

Prove that if A is invertible, then all the diagonal entries of A are nonzero (do not use
determinants or eigenvalues!).

Hint . Use induction on m and multiplication by blocks.

(3) Prove that if the families (u1, . . . , um) and (v1, . . . , vm) are related as in (1), then
(u1, . . . , um) are linearly independent iff (v1, . . . , vm) are.

Problem B3 (40 pts). (In solving this problem, do not use determinants). Consider
the n× n matrix

A =



1 2 0 0 . . . 0 0
0 1 2 0 . . . 0 0
0 0 1 2 . . . 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . 0 1 2 0
0 0 . . . 0 0 1 2
0 0 . . . 0 0 0 1


.

(1) Find the solution x = (x1, . . . , xn) of the linear system

Ax = b,

for

b =


b1
b2
...
bn

 .
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(2) Prove that the matrix A is invertible and find its inverse A−1. Given that the number
of atoms in the universe is estimated to be ≤ 1082, compare the size of the coefficients the
inverse of A to 1082, if n ≥ 300.

(3) Prove that (A− I)n = 0.

Problem B4 (80 pts). Consider the polynomials

B2
0(t) = (1− t)2 B2

1(t) = 2(1− t)t B2
2(t) = t2

B3
0(t) = (1− t)3 B3

1(t) = 3(1− t)2t B3
2(t) = 3(1− t)t2 B3

3(t) = t3,

known as the Bernstein polynomials of degree 2 and 3.

(1) Show that the Bernstein polynomials B2
0(t), B2

1(t), B2
2(t) are expressed as linear com-

binations of the basis (1, t, t2) of the vector space of polynomials of degree at most 2 as
follows: B2

0(t)
B2

1(t)
B2

2(t)

 =

1 −2 1
0 2 −2
0 0 1

1
t
t2

 .

Prove that
B2

0(t) +B2
1(t) +B2

2(t) = 1.

(2) Show that the Bernstein polynomials B3
0(t), B3

1(t), B3
2(t), B3

3(t) are expressed as linear
combinations of the basis (1, t, t2, t3) of the vector space of polynomials of degree at most 3
as follows: 

B3
0(t)

B3
1(t)

B3
2(t)

B3
3(t)

 =


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1




1
t
t2

t3

 .

Prove that
B3

0(t) +B3
1(t) +B3

2(t) +B3
3(t) = 1.

(3) Prove that the Bernstein polynomials of degree 2 are linearly independent, and that
the Bernstein polynomials of degree 3 are linearly independent.

(4) Recall that the binomial coefficient
(
m
k

)
is given by(

m

k

)
=

m!

k!(m− k)!
,

with 0 ≤ k ≤ m.

For any m ≥ 1, we have the m+ 1 Bernstein polynomials of degree m given by

Bm
k (t) =

(
m

k

)
(1− t)m−ktk, 0 ≤ k ≤ m.
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Prove that

Bm
k (t) =

m∑
j=k

(−1)j−k

(
m

j

)(
j

k

)
tj. (∗)

Use the above to prove that Bm
0 (t), . . . , Bm

m(t) are linearly independent.

(5) Prove that
Bm

0 (t) + · · ·+Bm
m(t) = 1.

Extra credit (20 pts). What can you say about the symmetries of the (m+ 1)× (m+ 1)
matrix expressing Bm

0 , . . . , B
m
m in terms of the basis 1, t, . . . , tm?

Prove your claim (beware that in equation (∗) the coefficient of tj in Bm
k is the entry on

the (k+1)th row of the (j+1)th column, since 0 ≤ k, j ≤ m. Make appropriate modifications
to the indices).

What can you say about the sum of the entries on each row of the above matrix? What
about the sum of the entries on each column?

(6) (This is no longer for extra credit!) The purpose of this question is to express
the ti in terms of the Bernstein polynomials Bm

0 (t), . . . , Bm
m(t), with 0 ≤ i ≤ m.

First, prove that

ti =
m−i∑
j=0

tiBm−i
j (t), 0 ≤ i ≤ m.

Then prove that (
m

i

)(
m− i
j

)
=

(
m

i+ j

)(
i+ j

i

)
.

Use the above facts to prove that

ti =
m−i∑
j=0

(
i+j
i

)(
m
i

) Bm
i+j(t).

Conclude that the Bernstein polynomials Bm
0 (t), . . . , Bm

m(t) form a basis of the vector
space of polynomials of degree ≤ m.

Compute the matrix expressing 1, t, t2 in terms of B2
0(t), B2

1(t), B2
2(t), and the matrix

expressing 1, t, t2, t3 in terms of B3
0(t), B3

1(t), B3
2(t), B3

3(t).

You should find 1 1 1
0 1/2 1
0 0 1
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and 
1 1 1 1
0 1/3 2/3 1
0 0 1/3 1
0 0 0 1

 .

(7) A polynomial curve C(t) of degree m in the plane is the set of points

C(t) =

(
x(t)
y(t)

)
given by two polynomials of degree ≤ m,

x(t) = α0t
m1 + α1t

m1−1 + · · ·+ αm1

y(t) = β0t
m2 + β1t

m2−1 + · · ·+ βm2 ,

with 1 ≤ m1,m2 ≤ m and α0, β0 6= 0.

Prove that there exist m+ 1 points b0, . . . , bm ∈ R2 so that

C(t) =

(
x(t)
y(t)

)
= Bm

0 (t)b0 +Bm
1 (t)b1 + · · ·+Bm

m(t)bm

for all t ∈ R, with C(0) = b0 and C(1) = bm. Are the points b1, . . . , bm−1 generally on the
curve?

We say that the curve C is a Bézier curve and (b0, . . . , bm) is the list of control points of
the curve (control points need not be distinct).

Remark: Because Bm
0 (t) + · · · + Bm

m(t) = 1 and Bm
i (t) ≥ 0 when t ∈ [0, 1], the curve

segment C[0, 1] corresponding to t ∈ [0, 1] belongs to the convex hull of the control points.
This is an important property of Bézier curves which is used in geometric modeling to
find the intersection of curve segments. Bézier curves play an important role in computer
graphics and geometric modeling, but also in robotics because they can be used to model
the trajectories of moving objects.

Problem B5 (40 pts). (a) Let A be an n×n matrix. If A is invertible, prove that for any
x ∈ Rn, if Ax = 0, then x = 0.

The converse is true: If for all x ∈ Rn, Ax = 0 implies that x = 0, then A is invertible.
We will prove this fact later, and you may use it without proof in part (b) of this problem.

(b) Let A be an m × n matrix and let B be an n ×m matrix. Prove that Im − AB is
invertible iff In −BA is invertible.

Hint . Look at A(I −BA) and (I − AB)A.
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Problem B6 (40 pts). Consider the following n× n matrix, for n ≥ 3:

B =



1 −1 −1 −1 · · · −1 −1
1 −1 1 1 · · · 1 1
1 1 −1 1 · · · 1 1
1 1 1 −1 · · · 1 1
...

...
...

...
...

...
...

1 1 1 1 · · · −1 1
1 1 1 1 · · · 1 −1


(1) If we denote the columns of B by b1, . . . , bn, prove that

(n− 3)b1 − (b2 + · · ·+ bn) = 2(n− 2)e1

b1 − b2 = 2(e1 + e2)

b1 − b3 = 2(e1 + e3)

...
...

b1 − bn = 2(e1 + en),

where e1, . . . , en are the canonical basis vectors of Rn.

(2) Prove that B is invertible and that its inverse A = (aij) is given by

a11 =
(n− 3)

2(n− 2)
, ai1 = − 1

2(n− 2)
2 ≤ i ≤ n

and

aii = − (n− 3)

2(n− 2)
, 2 ≤ i ≤ n

aji =
1

2(n− 2)
, 2 ≤ i ≤ n, j 6= i.

(3) Show that the n diagonal n× n matrices Di defined such that the diagonal entries of
Di are equal the entries (from top down) of the ith column of B form a basis of the space of
n × n diagonal matrices (matrices with zeros everywhere except possibly on the diagonal).
For example, when n = 4, we have

D1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 D2 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

D3 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , D4 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
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Problem B7 (20 pts). For any integer n > 0, recall that Z/nZ denotes the set of equiva-
lence classes of Z modulo n, which in bijection with the set {0, 1, . . . , n− 1}. We can define
addition and multiplication modulo n but here we are more interested in multiplication, so
for a, b ∈ {0, 1, . . . , n}, we let

a · b = ab (mod n),

which is the remainder of the division of ab by n.

From now on assume that n ≥ 2. It is a bit tedious to verify that Z/nZ with the
above multiplication is an abelian monoid with identity element 1. We have the following
multiplication tables for n = 2, 3, 4, given only for nonzero arguments:

n = 2
· 1

1 1

n = 3
· 1 2

1 1 2
2 2 1

n = 4
· 1 2 3

1 1 2 3
2 2 0 2
3 3 2 1

Observe that for n = 4, the nonzero elements {1, 2, 3} do not have a group structure under
multiplication, since 2 · 2 = 0. What is the set of invertible elements under multiplication?
Is it a group?

(1) Construct the multiplication table of Z/5Z. Is the set of nonzero elements {1, 2, 3, 4}
a group under multiplication?

(2) Construct the multiplication table of Z/6Z. Is (Z/6Z)−{0} a group under multipli-
cation? What is the set of invertible elements under multiplication? Is is a group?

(3) Extra credit (20 pts). Again, assume n ≥ 2. The set of invertible elements of Z/nZ
under multiplication is a group denoted (Z/nZ)∗. The group (Z/nZ)∗ has ϕ(n) elements,
where ϕ(n) is the number of integers a, with 1 ≤ a ≤ n− 1, which are relatively prime with
n (gcd(a, n) = 1).

A generator of (Z/nZ)∗ is an element g ∈ (Z/nZ)∗ such that {g, g2, . . . , gϕ(n) = 1} =
(Z/nZ)∗ (the fact that gϕ(n) ≡ 1 (mod n) is a theorem of Euler). Find a generator of
(Z/nZ)∗ for n = 2, 3, 4, 5, 6. Does (Z/8Z)∗ have a generator?

What is the next n for which (Z/nZ)∗ does not have a generator?

Remark: Gauss proved that (Z/nZ)∗ always have a generator if n is prime. The proof is
nontrivial!

TOTAL: 295 + 60 points.
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