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Abstract. The purpose of this paper is to give an exposition of material dealing with constructive
logics, typed λ-calculi, and linear logic. The first part of this paper gives an exposition of back-
ground material (with a few exceptions). This second part is devoted to linear logic and proof nets.
Particular attention is given to the algebraic semantics (in Girard’s terminology, phase semantics)
of linear logic. We show how phase spaces arise as an instance of a Galois connection. We also give
a direct proof of the correctness of the Danos-Regnier criterion for proof nets. This proof is based
on a purely graph-theoretic decomposition lemma. As a corollary, we give an O(n2)-time algorithm
for testing whether a proof net is correct. Although the existence of such an algorithm has been
announced by Girard, our algorithm appears to be original.

∗This research was partially supported by ONR Grant NOOO14-88-K-0593.

1



Contents

1 Core Linear Logic and Propositional Linear Logic 3

2 Representing Intuitionistic Logic into Linear Logic 7

3 Representing Classical Logic into Linear Logic 8

4 Closure Operations, Galois Connections, Adjunctions 9

5 Phase Semantics 17

6 A Variation On the Semantics of the Connective ! 29

7 Proof Nets for Multiplicative Linear Logic 31

8 Conclusion 39

9 Appendix: Summary of Notation 41

2



1 Core Linear Logic and Propositional Linear Logic

In Girard’s linear logic [6], the connectives ∧ and ∨ are split into two versions: the multiplicative
version of ∧ and ∨, denoted as ⊗ and ℘, and the additive version of ∧ and ∨, denoted as & and
⊕. The constants > (truth) and ⊥ (falsity) are also split into their multiplicative version 1 and
⊥, and their additive version > and 0. We confess having some difficulties remembering Girard’s
notation for the connectives and constants, and we propose to use the following notation which we
find reasonably motivated semantically, and thus easier to memorize. The multiplicative version of
∧ and ∨ is denoted as ⊗ (called tensor) and ] (called par), and the additive version of ∧ and ∨ is
denoted as & and ⊕. The constants > (truth) and ⊥ (falsity) have their multiplicative version I
and ⊥, and their additive version 1 and 0. We also have linear implication, denoted as −◦ (which
is a multiplicative), and linear negation, denoted as ⊥. For pedagogical reasons, we feel that it is
preferable to present the inference rules of linear logic in terms of two-sided sequents Γ − ∆, with
explicit rules for linear negation (⊥). One can then show that negation is an involution satisfying De
Morgan-like properties, and that every proposition is equivalent to another proposition in “negation
normal form”, in which negation only applies to atoms. Thus, it is possibe to describe linear logic
in terms of one-sided sequents − ∆, and this is the approach originally followed by Girard [6]. The
presentation using one-sided sequents also has the technical advantage of cutting down in half the
number of cases to be considered in proving properties of the logic, cut elimination for example.
On the other hand, the presentation using two-sided sequents is better suited if one is interested
in the “intuitionistic fragment” of linear logic in which the righthand side ∆ of a sequent Γ − ∆
contains at most one proposition.

Definition 1.1 The axioms and inference rules of the system Lin0 for core linear logic are given
below.

Axioms:
A − A

− I ⊥−

Γ − ∆,1 0,Γ − ∆

Cut Rule:
Γ − A,∆ A,Λ − Θ

Γ,Λ − ∆,Θ
(cut)

Multiplicative Rules:

A,B,Γ − ∆

A⊗B,Γ − ∆
(⊗: left)

Γ − ∆, A Λ − Θ, B

Γ,Λ − ∆,Θ, A⊗B
(⊗: right)

A,Γ − ∆ B,Λ − Θ

A ] B,Γ,Λ − ∆,Θ
(]: left)

Γ − ∆, A,B

Γ − ∆, A ] B
(]: right)

Γ − ∆, A B,Λ − Θ

A −◦ B,Γ,Λ − ∆,Θ
(−◦: left)

A,Γ − ∆, B

Γ − ∆, A −◦ B
(−◦: right)
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Γ − ∆, A

A⊥,Γ − ∆
(⊥: left)

A,Γ − ∆

Γ − ∆, A⊥
(⊥: right)

Γ − ∆

I,Γ − ∆
(I: left)

Γ − ∆

Γ − ∆,⊥
(⊥: right)

Additive Rules:

A,Γ − ∆

A & B,Γ − ∆
(&: left)

B,Γ − ∆

A & B,Γ − ∆
(&: left)

Γ − ∆, A Γ − ∆, B

Γ − ∆, A & B
(&: right)

A,Γ − ∆ B,Γ − ∆

A⊕B,Γ − ∆
(⊕: left)

Γ − ∆, A

Γ − ∆, A⊕B
(⊕: right)

Γ − ∆, B

Γ − ∆, A⊕B
(⊕: right)

The fragment of linear logic involving the formulae, axioms, and rules, containing only the
multiplicative connectives ⊗, ], ⊥, I, and ⊥, is called multiplicative linear logic.

From the above rules, it is clear (as in classical logic) that linear negation is involutive, i.e., both
A − A⊥⊥ and A⊥⊥ − A are provable, and that both (A −◦ B) − (A⊥ ] B) and (A⊥ ] B) − (A −◦ B)
are provable. We also have the following “De Morgan” properties of linear negation over ⊗, ] on
the one hand, and &,⊕ on the other hand, namely that the following sequents are provable:

(A⊗B)⊥ − A⊥ ] B⊥, A⊥ ] B⊥ − (A⊗B)⊥,

(A ] B)⊥ − A⊥ ⊗B⊥, A⊥ ⊗B⊥ − (A ] B)⊥,

(A & B)⊥ − A⊥ ⊕B⊥, A⊥ ⊕B⊥ − (A & B)⊥,

(A⊕B)⊥ − A⊥ & B⊥, A⊥ & B⊥ − (A⊕B)⊥.

It is very easy to show that linear negation exchanges on the one hand I and ⊥, and on the other
hand 1 and 0, formally expressed by the provability of the following sequents:

I⊥ −⊥, ⊥− I⊥,

1⊥ − 0, 0 − 1⊥.

It is also useful to note that in writing sequents, the meaning of the comma (,) is overloaded.
In a sequent A1, . . . , Am − B1, . . . , Bn, on the lefthand side, the comma is an “uncommitted” ⊗,
but on the righthand side, the commma is an “uncommitted” ]. The difference between ⊗ and &
is illustrated by the fact that the sequents

(A −◦ B) & (A −◦ C) − (A −◦ (B & C)) and A −◦ B,A −◦ C − ((A⊗A) −◦ (B ⊗ C))

are provable, but that the sequent A −◦ B,A −◦ C − (A −◦ (B⊗C)) is not provable. The additive
connectives require resource sharing, but the multiplicative disallow it.
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Since contraction and weakening have been eliminated, core linear logic is not very expressive.
In order to regain expressiveness, new formulae involving the exponentials ! (of course) and ? (why
not) are introduced. Then, weakening and contraction are reintroduced, but in a controlled manner.
The inference rules for the exponentials are given in the next definition. If Γ = A1, . . . , An, then
!Γ =!A1, . . . , !An, and ?Γ =?A1, . . . , ?An.

Definition 1.2 The rules for the exponentials are given below.

A,Γ − ∆

!A,Γ − ∆
(dereliction: left)

Γ − ∆, A

Γ − ∆, ?A
(dereliction: right)

Γ − ∆

!A,Γ − ∆
(weakening: left)

Γ − ∆

Γ − ∆, ?A
(weakening: right)

!Γ, A − ?∆

!Γ, ?A − ?∆
(?: left)

!Γ − A, ?∆

!Γ − !A, ?∆
(!: right)

!A, !A,Γ − ∆

!A,Γ − ∆
(contraction: left)

Γ − ∆, ?A, ?A

Γ − ∆, ?A
(contraction: right)

The system Lin!,?0 for propositional linear logic is obtained from the system Lin0 by adding the
inference rules of Definition 1.2. We can show easily that linear negation exchanges ! and ?, in the
sense that the following sequents are provable:

(!A)⊥ −?A⊥ ?A⊥ − (!A)⊥,

(?A)⊥ −!A⊥ !A⊥ − (?A)⊥.

Using (?: left), (!: right), (dereliction: left), and (dereliction: right), it is easy to show that ! and
? are idempotent, in the sense that the following sequents are provable:

!!A − !A !A − !!A,

??A − ?A ?A − ??A.

The best way to understand linear negation is to think in terms of action and reaction, or
(output, answer) and (input, question). Thus, an action of type A (answer of type A) corresponds
to a reaction of type A⊥ (question of type A⊥ ). We can adopt the convention that an occurrence
of a formula A on the lefthand side of a sequent Γ − ∆ corresponds to a reaction, or input (or
question), and an occurrence of A on the righthand side of a sequent corresponds to an action,
or output (or answer). Intuitiveley, the action !A has the meaning that an action of type A is
reusable, or can be duplicated as many times as necessary. It also corresponds to the idea of
storage. Dually, the action ?A has the meaning that the action of type A can be consumed as many
times as necessary. It also corresponds to the idea of reading from memory. The intuitive meaning
of the rule

!Γ − A, ?∆

!Γ − !A, ?∆
(!: right)
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is more easily grasped if we consider its intuitionistic version

!Γ − A
!Γ − !A

(!: right)

where ∆ = ∅. This rule says that since all inputs in !Γ are reusable, and A is an output consequence
of !Γ, then in fact, as many copies as needed of the action A can be output from !Γ. Thus, this
corresponds to storing the action A in memory. Similarly, the intuitive meaning of the rule

Γ − ∆, A

Γ − ∆, ?A
(dereliction: right)

is that the action of type ?A is read (retrieved) from memory, the intuitive meaning of

Γ − ∆

Γ − ∆, ?A
(weakening: right)

is that the action of type ?A is erased , and the intuitive meaning of

Γ − ∆, ?A, ?A

Γ − ∆, ?A
(contraction: right)

is that the action of type ?A is duplicated .

It is possible to prove the following sequents, showing a form of distributivity of ! over & and
⊗, and of ? over ⊕ and ].

Lemma 1.3 The following sequents are provable

?(A⊕B) − ?A ] ?B ?A ] ?B − ?(A⊕B),

!(A & B) − !A ⊗ !B !A ⊗ !B − !(A & B).

Remark : We can introduce a new connective, linear equivalence, denoted by the symbol ◦−◦,
and write the obvious inference rules for it. Alternatively, we can take the formula A ◦−◦ B as an
abbreviation for (A −◦ B) & (B −◦ A). Then, for example, the provability of the two sequents
?(A ⊕ B) − ?A ] ?B and ?A ] ?B − ?(A ⊕ B) can be written as the provability of the formula
?(A⊕B) ◦−◦ (?A ] ?B).

In view of the fact that linear negation is an involution, it is possible to give a more concise
description of linear logic if we restrict ourselves to right-sided sequents, that is, sequents of the
form − ∆. This is possible because the sequent A1, . . . , Am − B1, . . . , Bn is provable iff the sequent
− A⊥1 , . . . , A

⊥
m, B1, . . . , Bn is provable. We can go further by taking advantage of the De Morgan

properties noted earlier. Thus, we can write formulae in negation normal form, where negation is
pushed in all the way so that it applies only to atomic formulae. In this formulation, negation is no
longer a connective. We have positive literals of the form A where A is atomic, and negative literals
of the form A⊥ where A is atomic. We construct formulae using the connectives ⊗, ], &, ⊕, !, and

6



?, and we only need the contants ⊥ and 1. We define A −◦ B as an abbrevation for A⊥ ] B, and
the negation of a formula is defined inductively as follows:

I⊥ =⊥,
⊥⊥ = I,

1⊥ = 0,

0⊥ = 1,

(A)⊥ = A⊥, for A a positive literal,

(A⊥)⊥ = A, for A⊥ a negative literal,

(A⊗B)⊥ = A⊥ ] B⊥,

(A ] B)⊥ = A⊥ ⊗B⊥,
(A & B)⊥ = A⊥ ⊕B⊥,
(A⊕B)⊥ = A⊥ & B⊥,

(!A)⊥ = ?A⊥,

(?A)⊥ = !A⊥.

The inference rules are immediately rewritten for right-sided sequents. The only minor difference
is that (!: right) is now written as

− ?Γ, A

− ?Γ, !A
(!: right)

2 Representing Intuitionistic Logic into Linear Logic

It is possible to represent Intuitionistic Logic into Linear Logic via the following translation.

Definition 2.1 Given a formula A of propositional logic, its translation Ai in linear logic is defined
as follows:

Ai = A when A is atomic,

(A ∧B)i = Ai & Bi,

(A ∨B)i = !Ai ⊕ !Bi,

(A ⊃ B)i = !Ai −◦ Bi,

(¬A)i = !Ai −◦ 0,

⊥i = 0.

Given an intuitionistic sequent A1, . . . , Am − B, its translation is defined as the sequent
!Ai

1, . . . , !A
i
m − Bi. This translation preserves intuitionistic provability and is conservative, as

shown in the following lemma.

Lemma 2.2 Given a sequent Γ − C of intuitionistic logic, if Γ − C is provable in G⊃,∧,∨,⊥i , then
its translation !Γi − Ci is provable in linear logic Lin!0. Conversely, if the translation !Γi − Ci of

a sequent Γ − C is provable in linear logic Lin!,?0 , then Γ − C is provable in G⊃,∧,∨,⊥i .
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Proof . One needs to show that the translated version of the axioms and the inference rules
of G⊃,∧,∨,⊥i are provable in Lin!0, which is indeed the case. The point is that ! is added by the
translation when necessary to allow weakening or contraction on the left, and this allows the
simulation of the rules of G⊃,∧,∨,⊥i . The provability of the sequent !(A −◦ B) − !A −◦!B is also
needed. For the converse, there is a difficulty with the constant 0. If we consider the fragment not
involving 0, we need to know that the cut elimination theorem holds for Lin!,?0 , which was proved
by Girard [6] (see also Lincoln, Mitchell, Scedrov, and Shankar [8]), and we simply need to observe
that a cut-free proof of an intuitionistic sequent over −◦, &, ⊕, and !, only involves intuitionistic
sequents. Thus, such a proof yields an intuitionistic proof if we erase ! and replace the additive
connectives by the standard connectives ⊃, ∧, ∨. A more complex argument is needed in order to
handle 0 (see Schellinx [11]).

Classical logic can also be represented in linear logic.

3 Representing Classical Logic into Linear Logic

Given a classical sequent A1, . . . , Am − B1, . . . , Bn, we will consider that the occurrences of
B1, . . . , Bn are positive, and that the occurrences of A1, . . . , Am are negative. Consequently, the
translation makes use of signed formulae of the form pA and nA. Given Γ = A1, . . . , Am, then
pΓ = pA1, . . . , pAm, and nΓ = nA1, . . . , nAm.

Definition 3.1 Given a formula A of propositional logic, its translations pAc and nAc in linear
logic are defined as follows:

pAc = nAc = A when A is atomic,

(p¬A)c = (nAc)⊥,

(n¬A)c = (pAc)⊥,

(pA ∧B)c = ?pAc & ?pBc,

(nA ∧B)c = nAc & nBc,

(pA ∨B)c = pAc ⊕ pBc,

(nA ∨B)c = !nAc ⊕ !nBc,

(pA ⊃ B)c = (nAc)⊥ ⊕ pBc,

(nA ⊃ B)c = !(pAc)⊥ ⊕ !nBc.

Given a classical sequent Γ − ∆, its translation is defined as the sequent !nΓc −?p∆c, where
nΓc = nAc

1, . . . , nA
c
m if Γ = A1, . . . , Am, and similarly for p∆c. This translation preserves classical

provability and is conservative, as shown in the following lemma.

Lemma 3.2 Given a sequent Γ − ∆ of classical logic, if Γ − ∆ is provable in G⊃,∧,∨,¬c , then its
translation !nΓc −?p∆c is provable in linear logic Lin!,?0 . Conversely, if the translation !nΓc −?p∆c

of a sequent Γ − ∆ is provable in linear logic Lin!,?0 , then Γ − ∆ is provable in G⊃,∧,∨,¬c .

Proof . One needs to show that the translated version of the axioms and the inference rules of
G⊃,∧,∨,¬c are provable in Lin!0, which is indeed the case. The point is that ! and ? are added by the
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translation when necessary to allow weakening or contraction, and this allows the simulation of the
rules of G⊃,∧,∨,¬c . We also use the equivalences ?(A⊕B) ◦−◦ (?A ] ?B) and !(A & B) ◦−◦ (!A ⊗ !B).

For the converse, we need the fact that the cut elimination theorem holds for Lin!,?0 , which
was proved by Girard [6] (see also Lincoln, Mitchell, Scedrov, and Shankar [8]). Then, we simply
observe that a cut-free proof of the translation of a classical sequent only involves translations of
classical sequents. Thus, such a proof yields a classical proof if we erase the connectives ! and ?, and
replace the additive connectives and ⊥ by the standard connectives ⊃, ∧, ∨, ¬ (it is also necessary
to simulate (⊕: right) and (&: left) with the rules of G⊃,∧,∨,¬c , but this is standard).

Remark : The above proof shows that the following translation for pA∧B, nA∨B, and nA ⊃ B,
also works:

(pA ∧B)c = ?pAc ⊗ ?pBc,

(nA ∨B)c = !nAc ] !nBc,

(nA ⊃ B)c = ?pAc −◦ !nBc.

We now consider one of the possible semantics for linear logic, “phase semantics”.

4 Closure Operations, Galois Connections, Adjunctions

Phase semantics due to Girard [6] is an algebraic semantics for linear logic. Actually, this semantics
turns out to be an instance of a well known concept of lattice theory (Galois connections). We
believe that phase semantics can be understood better if it is presented explicitly in terms of a
Galois connection. Thus, we will begin by reviewing some basic notions of lattice theory, the
notion of closure operation and the notion of Galois connection (see Birkhoff [3]). The relationship
between phase semantics and Galois connections has been noted by Avron [2].

Definition 4.1 Let I be a set. A function †: 2I → 2I is a closure operation on 2I iff the following
properties hold: For all X,Y ⊆ I,

(1) X ⊆ X†;

(2) X†† ⊆ X†;

(3) X ⊆ Y implies X† ⊆ Y †.

From (1) and (2), it is clear that X†† = X†. A set X is called closed iff X† = X. It is clear
that X is closed iff X = Y † for some Y . The set of closed subsets of I is denoted as I†.

Observe that the set I† of closed subsets of I is closed under arbitrary intersections. Given
a family (Aj)j ∈J of closed sets in I†, since

⋂
j ∈J{Aj} ⊆ Aj for every j ∈ J , by monotonicity

(property (3) in Definition 4.1), we have (
⋂

j ∈J{Aj})† ⊆ A†j for every j ∈ J , which is equivalent

to (
⋂

j ∈J{Aj})† ⊆ Aj , since A†j = Aj for every j ∈ J because the Aj are closed subsets. Thus,

(
⋂

j ∈J{Aj})† ⊆
⋂

j ∈J{Aj}. The inclusion
⋂

j ∈J{Aj} ⊆ (
⋂

j ∈J{Aj})† follows from condition (1).

Remark : If we drop condition (3) of Definition 4.1 and add the two conditions:

(0) ∅† = ∅, and
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(3′) (A ∪B)† = A† ∪B†,

then we obtain one of the possible definitions of a topology (the Kuratowski closure axioms).
Indeed, we can define the family of open sets of the topology as the complements of the closed
subsets of I. One can also verify easily that (3′) implies (3).

The set I† of closed subsets of I can be naturally given the structure of a complete lattice. For
the (easy) proof, see Birkhoff [3].

Theorem 4.2 Given a set I and a closure operation † on 2I , if we define the operations
∨

and
∧

on the set I† of closed subsets of I by∧
j ∈J
{Aj} =

⋂
j ∈J
{Aj},

∨
j ∈J
{Aj} = (

⋃
j ∈J
{Aj})†,

then I† is a complete lattice under inclusion.

If † is a closure operation which is injective on singleton sets (i.e., {x}† 6= {y}† whenever x 6= y),
then the mapping x 7→ {x}† is a natural embedding of I into the complete lattice of closed subsets.
If I is equiped with a binary operation, say •, then we define XY = {x • y | x ∈ X, y ∈ Y }, and
we extend • to the complete lattice I† by defining X • Y = (XY )†.

A way to define closure operations is via Galois connections.

Definition 4.3 Let I and J be two sets and R be a binary relation on I × J . Given any two
subsets X ⊆ I and Y ⊆ J , we define (with a slight ambiguity of notation) the sets X∗ ⊆ J and
Y + ⊆ I as follows:

X∗ = {y ∈ J | ∀x ∈ X, xRy},
Y + = {x ∈ I | ∀y ∈ Y, xRy}.

We have the following lemma showing that ∗+ is a closure operation on 2I , and that +∗ is a
closure operation on 2J . The proof can be found in Birkhoff [3].

Lemma 4.4 Given a binary relation R on I × J , the following properties hold: For all X,X ′ ⊆ I
and Y, Y ′ ⊆ J ,

(1) X ⊆ X ′ implies X ′∗ ⊆ X∗ and Y ⊆ Y ′ implies Y ′+ ⊆ Y +;

(2) X ⊆ X∗+, Y ⊆ Y +∗, X∗+∗ = X∗, Y +∗+ = Y +;

(3) ∗+ and +∗ are closure operations on 2I and 2J respectively. Furthermore, the mappings
X 7→ X∗ and Y 7→ Y + define a dual isomorphism1 between the complete lattices of closed subsets
of I and J .

The dual isomorphisms X 7→ X∗ and Y 7→ Y + are called polarities, and they are said to define
a Galois connection between I and J .

In particular, if ≤ is a partial order on I = J , by taking R = ≤, then † = ∗+ is a closure
operation. Note that for X ⊆ I, X∗ is the set of upper bounds of X, denoted as upper(X), X+ is

1A dual isomorphism h between posets is a bijection which is anti-monotonic, i.e., a ≤ b implies h(b) ≤ h(a).
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the set of lower bounds of X, denoted as lower(X), X∗+ = lower(upper(X)), and {x}† = {x}∗+ =
{y | y ≤ x} (the principal ideal generated by x). The natural mapping x 7→ {x}∗+ is an embedding
of 〈I,≤〉 into the complete lattice of closed subsets of I, and this embedding preserves all existings
least upper bounds and greatest lower bounds (in fact, I is dense in this lattice). It is also called
the “Mac Neille completion”, or “completion by cuts”. Furthermore, if ∼ is an involution on I,
that is, x = ∼∼ x, and x ≤ y implies ∼ y ≤ ∼ x for all x, y ∈ I, then we can extend ∼ to I† by
defining

∼ X = {∼ y | y ∈ X∗}.

It is easily verified that we get an involution.

A particularly interesting case arises when I = J and R is symmetric. In this case, ∗ = +, and
the closure operation is † = ∗∗. Also, the operation on the set I† = I∗∗ of closed subsets defined
by X 7→ X∗ is an involution with some nice properties. We define 1 = ∅∗ = I, and 0 = I∗ = ∅∗∗.
It is immediately verified that 1 is the greatest element of I∗∗, and that 0 is its least element.

Lemma 4.5 Given a symmetric relation R on a set I, for any family (Aj)j ∈J of closed sets in
I† = I∗∗, we have

(
⋃
j ∈J
{Aj})∗ =

⋂
j ∈J
{A∗j},

(
⋂
j ∈J
{Aj})∗ = (

⋃
j ∈J
{A∗j})∗∗,

(
∧
j ∈J
{Aj})∗ =

∨
j ∈J
{A∗j},

(
∨
j ∈J
{Aj})∗ =

∧
j ∈J
{A∗j}.

Proof . We have

a ∈ (
⋃
j ∈J
{Aj})∗ iff

∀b(b ∈ (
⋃
j ∈J
{Aj}) ⊃ aRb), iff

∀b(∃j ∈ J (b ∈ Aj) ⊃ aRb), iff

∀j ∈ J ∀b(b ∈ Aj ⊃ aRb), iff

∀j ∈ J (a ∈ A∗j ), iff

a ∈
⋂
j ∈J
{A∗j}.

Since the Aj are closed we have A∗∗j = Aj , and the second identity follows from the first by applying
∗ to both sides, and replacing each Aj by A∗j . Since by definition,∧

j ∈J
{Aj} =

⋂
j ∈J
{Aj},

∨
j ∈J
{Aj} = (

⋃
j ∈J
{Aj})∗∗,

the last two identities follow from the first two and the fact that X∗∗∗ = X∗.
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If R is irreflexive, that is, ∀x ∈ I¬(xRx), then X ∧ X∗ = ∅ and X ∨ X∗ = I. Indeed,
a ∈ X ∩ X∗ implies aRa, which shows that X ∧ X∗ = ∅. The other equality follows by duality.
If R is symmetric and we also have a binary operation • on I, we can extend • to I∗∗ by defining
X • Y = (XY )∗∗. We also define ‖ by X ‖ Y = (X∗ • Y ∗)∗ = (X∗Y ∗)∗. We can immediately verify
that X • Y = (X∗ ‖ Y ∗)∗. We have the following useful properties.

Lemma 4.6 Given a symmetric relation R on a set I and a binary operation • on I, then for any
family (Aj)j ∈J of closed sets in I† = I∗∗ and any B ∈ I†, we have∨

j ∈J
{(Aj • B)} = ((

⋃
j ∈J
{Aj})B)∗∗, (

∨
j ∈J
{Aj}) • B = ((

⋃
j ∈J
{Aj})∗∗B)∗∗,

∧
j ∈J
{(Aj ‖ B)} = ((

⋃
j ∈J
{A∗j})B∗)

∗, (
∧
j ∈J
{Aj}) ‖ B = ((

⋃
j ∈J
{A∗j})∗∗B∗)

∗.

Proof . Using the fact that X ‖ Y = (X∗Y ∗)∗ and that
∧

j ∈J{Aj} =
⋂

j ∈J{Aj}, we have

a ∈
∧
j ∈J
{(Aj ‖ B)} iff

a ∈
⋂
j ∈J
{(Aj ‖ B)}, iff

a ∈
⋂
j ∈J
{(A∗jB∗)∗}, iff

∀j ∈ J(a ∈ (A∗jB
∗)∗), iff

∀j ∈ J ∀b(b ∈ A∗jB∗ ⊃ aRb), iff

∀b(∃j ∈ J(b ∈ A∗jB∗) ⊃ aRb), iff

∀b(b ∈ (
⋃
j ∈J
{A∗j})B∗ ⊃ aRb), iff

a ∈ ((
⋃
j ∈J
{A∗j})B∗)

∗.

On the other hand,

a ∈ (
∧
j ∈J
{Aj}) ‖ B iff

a ∈ ((
⋂
j ∈J
{Aj})∗B∗)∗, iff

a ∈ ((
⋃
j ∈J
{A∗j})∗∗B∗)

∗.

Using the fact that X • Y = (X∗ ‖ Y ∗)∗ and that (
∧

j ∈J{Aj})∗ =
∨

j ∈J{A∗j} by Lemma 4.5,
the first equality follows from the third, and the second one follows by unwinding the definitions
X • Y = (XY )∗∗ and

∨
j ∈J{Aj} = (

⋃
j ∈J{Aj})∗∗.

In general, we only have the inclusions∨
j ∈J
{(Aj • B)} ⊆ (

∨
j ∈J
{Aj}) • B, (

∧
j ∈J
{Aj}) ‖ B ⊆

∧
j ∈J
{(Aj ‖ B)}.
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Equality holds when R has additional properties. For example, this is the case when pRq • r
holds iff p • qRr holds. For this, we need the following lemma which will also be useful later.

Lemma 4.7 If the relation R is symmetric and pRq • r holds iff p • qRr holds, then

p ∈ (X • Y ∗)∗ iff ∀q(q ∈ X ⊃ p • q ∈ Y ).

Proof . By the definitions, p ∈ (X • Y ∗)∗ iff p ∈ (XY ∗)∗ iff ∀u(u ∈ XY ∗ ⊃ pRu), iff

∀u(∃q∃r(q ∈ X ∧ r ∈ Y ∗ ∧ u = q • r) ⊃ pRu),

iff
∀u
(
∃q∃r(q ∈ X ∧ ∀t(t ∈ Y ⊃ rRt) ∧ u = q • r) ⊃ pRu

)
,

iff
∀u∀q∀r

(
(q ∈ X ∧ ∀t(t ∈ Y ⊃ rRt) ∧ u = q • r)) ⊃ pRu

)
,

iff
∀q∀r

(
(q ∈ X ∧ ∀t(t ∈ Y ⊃ rRt)) ⊃ pRq • r

)
.

Now assume that there is some q such that q ∈ X but p • q /∈ Y . Letting t = p • q in the above
formula, (t ∈ Y ⊃ rRt) is trivially false, and thus, we have

∀r(pRq • r).

However, by the hypothesis, pRq • r holds iff p • qRr holds, and so ∀r(p • qRr) holds, that is,
p • q ∈ I∗ = 0. But we know that 0 is the smallest element of I∗∗, and so 0 ⊆ Y , which implies that
p • q ∈ Y , contradicting the assumption p • q /∈ Y . Thus, we have shown that if p ∈ (X • Y ∗)∗

then ∀q(q ∈ X ⊃ pRq ∈ Y ). The converse it easier to show. For every q and r, if we assume that

(q ∈ X ⊃ p • q ∈ Y ) and (q ∈ X ∧ ∀t(t ∈ Y ⊃ rRt)),

then by letting t = p • q, we get rRp • q, which is equivalent to pRq • r, by symmetry of R and the
fact that pRq • r holds iff p • qRr holds.

Note that (X • Y ∗)∗ can be taken as the semantic definition of X −◦ Y , since in linear logic,
X −◦ Y is equivalent to X⊥ ] Y . Thus, the fact that p ∈ (X • Y ∗)∗ iff ∀q(q ∈ X ⊃ p • q ∈ Y )
should not be a total surprise to those who know about Kripke semantics.

Lemma 4.8 If the relation R is symmetric, • has an identity 1, and pRq • r holds iff p • qRr
holds, then for any family (Aj)j ∈J of closed sets in I† = I∗∗ and any B ∈ I†, we have

B ‖ (
∧
j ∈J
{Aj}) =

∧
j ∈J
{(B ‖ Aj)}, B • (

∨
j ∈J
{Aj}) =

∨
j ∈J
{(B • Aj)},

B ‖ 1 = 1, B • 0 = 0.

13



Proof . By Lemma 4.7, p ∈ (XY ∗)∗ iff ∀q(q ∈ X ⊃ p • q ∈ Y ). Since X ‖ Y = (X∗Y ∗)∗,

p ∈ B ‖ (
∧
j ∈J
{Aj}) iff

p ∈ B ‖ (
⋂
j ∈J
{Aj}), iff

∀q
(
q ∈ B∗ ⊃ p • q ∈ (

⋂
j ∈J
{Aj})

)
, iff

∀q(q ∈ B∗ ⊃ ∀j ∈ J(p • q ∈ Aj)), iff

∀j ∈ J ∀q(q ∈ B∗ ⊃ p • q ∈ Aj), iff

∀j ∈ J(p ∈ (B∗A∗j )
∗), iff

∀j ∈ J(p ∈ (B ‖ Aj)), iff

p ∈
⋂
j ∈J
{(B ‖ Aj)}, iff

p ∈
∧
j ∈J
{(B ‖ Aj)}.

The special case where J = ∅ is handled easily, and yields B ‖ 1 = 1 and B • 0 = 0. The other
equality follows from duality.

One should note that an argument symmetric to the one used in Lemma 4.7 shows that p ∈
(X∗Y )∗ iff ∀q(q ∈ Y ⊃ q • p ∈ X). Therefore, under the hypotheses of Lemma 4.8, we also obtain
the following identities, without appealing to the commutativity of •:

(
∧
j ∈J
{Aj}) ‖ B =

∧
j ∈J
{(Aj ‖ B)}, (

∨
j ∈J
{Aj}) • B =

∨
j ∈J
{(Aj • B)}.

Another important concept is that of an adjunction. The concept of adjunction is central in
category theory (see MacLane [9]), but for our purposes, we only need to define it for partially
ordered sets.

Definition 4.9 Given two partially ordered sets 〈A,≤〉 and 〈B,≤〉, for any two monotonic func-
tions f :A → B and g:B → A, f is a left adjoint to g (and g is a right adjoint to f) iff for all
x ∈ A, y ∈ B,

f(x) ≤ y iff x ≤ g(y).

First, observe that if a function f has a right adjoint g, then it must be unique, even if f and
g are not monotonic.

Lemma 4.10 If f has a right adjoint g, then g is unique, even if f and g are not monotonic.
Furthermore, g(y) is the greatest element of the set {x ∈ A | f(x) ≤ y}, and f(x) is the least
element of the set {y ∈ B | x ≤ g(y)}.

Proof. Since f(x) ≤ y iff x ≤ g(y), for x = g(y), we get f(g(y)) ≤ y iff g(y) ≤ g(y). Since
≤ is reflexive, g(y) ≤ g(y) always holds, and thus f(g(y)) ≤ y for all y ∈ B. Now, assume that
g1 and g2 are two right adjoints of f . Since g2 is a right adjoint of f , f(x) ≤ y iff x ≤ g2(y). In

14



particular, for x = g1(y), f(g1(y)) ≤ y iff g1(y) ≤ g2(y). But since g1 is also a right adjoint of f ,
we know that f(g1(y)) ≤ y for all y ∈ B, and thus g1(y) ≤ g2(y) for all y ∈ B. The argument
being symmetric, we also have g2(y) ≤ g1(y) for all y ∈ B, and by antisymmetry of ≤, we have
g1(y) = g2(y) for all y ∈ B. Consider the set {x ∈ A | f(x) ≤ y}. Since f(g(y)) ≤ y for all y ∈ B,
we have g(y) ∈ {x ∈ A | f(x) ≤ y}. If f(x) ≤ y, since g is a right adjoint of f , then x ≤ g(y), and
thus g(y) is an upper bound for the set {x ∈ A | f(x) ≤ y}. Since g(y) also belongs to this set, it
is its greatest element. The case of f(x) is treated in a similar fashion.

Other properties of adjoints are given in the next lemma.

Lemma 4.11 (i) Two monotonic functions f :A → B and g:B → A are adjoints iff f(g(y)) ≤ y
and x ≤ g(f(x)) for all y ∈ B, x ∈ A. (ii) When f and g are adjoints, then f = fgf , g = gfg,
and f and g restrict to bijections between {a ∈ A | a = g(f(a))} and {b ∈ B | b = f(g(b))}.

Proof. (i) We have already shown in Lemma 4.10 that if f and g are adjoints, then f(g(y)) ≤ y
for all y ∈ B and x ≤ g(f(x)) for all x ∈ A. Conversely, if we assume that f(x) ≤ y, by
monotonicity of g, we have g(f(x)) ≤ g(y), and since x ≤ g(f(x)) holds, we get x ≤ g(y). If we
assume that x ≤ g(y), then by monotonicity of f , we have f(x) ≤ f(g(y)), and since f(g(y)) ≤ y
holds, we get f(x) ≤ y. Thus, f and g are adjoints. (ii) Since x ≤ g(f(x)) holds, by monotonicity
of f , we have f(x) ≤ f(g(f(x))). Since f(g(y)) ≤ y holds for all y, then f(g(f(x))) ≤ f(x). By
antisymmetry, we get f(x) = f(g(f(x))) for all x ∈ A. The proof of the other identity is similar,
and the last part of (ii) follows easily.

Another crucial property of left adjoints is that they preserve all existing lubs of A.

Lemma 4.12 If two monotonic functions f :A → B and g:B → A are adjoints, then f preserves
all lubs existing in A, and g preserves all glbs existing in B.

Proof. Assume that S ⊆ A and that
∨
S exists. By monotonicity of f , we have f(x) ≤ f(

∨
S)

for all x ∈ S, and thus
∨
{f(x) | x ∈ S} ≤ f(

∨
S). On the other hand, if f(x) ≤ b for all x ∈ S,

since f and g are adjoints, we have x ≤ g(b) for all x ∈ S, and thus
∨
S ≤ g(b). Using once again

the fact that f and g are adjoints, we have f(
∨
S) ≤ b, which shows that f(

∨
S) =

∨
{f(x) | x ∈ S}.

The argument for g is symmetric.

Lemma 4.12 gives a necessary condition for the existence of adjoints. By Lemma 4.10, the value
of g(y) is the greatest element of the set {x ∈ A | f(x) ≤ y}. Thus, if all lubs exist in A and f
preserves all lubs, it seems likely that its right adjoint g exists. This fundamental fact is indeed
true. In the case of (nondegenerate) categories, this fundamental theorem due to Peter Freyd is
known as the “Adjoint Functor Theorem”. The proof of the general theorem involves a technical
condition know as the “solution set condition”, but fortunately, in the case of posets, this condition
is always satisfied (see MacLane [9]).

Lemma 4.13 [Adjoint Functor Theorem, after Freyd] Let 〈A,≤〉 and 〈B,≤〉 be two partially
ordered sets, and f :A → B a monotonic function. If all lubs exist in A and f preserves all lubs,
then f has a right adjoint g:B → A given by g(y) =

∨
{z ∈ A | f(z) ≤ y}.

Proof. We know from Lemma 4.10 that g(y) =
∨
{z ∈ A | f(z) ≤ y} is the only possible

candidate. It is immediately verified that such a g is monotonic. Since f preserves existing lubs,
we have

f(g(y)) = f(
∨
{z ∈ A | f(z) ≤ y}) =

∨
{f(z) ∈ A | f(z) ≤ y} ≤ y.
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By the definition of g(y), we also have g(f(x)) =
∨
{z ∈ A | f(z) ≤ f(x)} ≥ x. Thus, f(g(y)) ≤ y

and x ≤ g(f(x)) for all y ∈ B, x ∈ A, which by Lemma 4.11 shows that f and g are adjoints.

The notion of adjunction yields an interesting generalization of the concept of Galois connection
that we now describe. First, we consider the concept of a closure operation in an arbitrary partially
ordered set.

Definition 4.14 Let 〈A,≤〉 be a partially ordered set. A function †:A→ A is a closure operation
on A iff the following properties hold: For all X,Y ∈ A,

(1) X ≤ X†;

(2) X†† ≤ X†;

(3) X ≤ Y implies X† ≤ Y †.

Note that Definition 4.1 corresponds to the special case where the poset A is some power set
2I and the partial order is inclusion. Recalling that a binary relation R on I × J induces two
functions ∗: 2I → 2J and +: 2J → 2I satisfying the properties of Lemma 4.4, we can define a Galois
connection between two posets 〈A,≤〉 and 〈B,≤〉 as a pair 〈∗,+〉 of functions such that ∗:A→ B
and +:B → A are order-reversing and such that X ≤ X∗+ and Y ≤ Y +∗ for all X ∈ A and
Y ∈ B. But then, in view of Lemma 4.11, this is almost equivalent to saying that ∗ and + are
adjoints. The reason this is not exactly correct is that ∗ and + are order-reversing rather than
being order-preserving, and the inequality Y ≤ Y +∗ is in the wrong direction. We can fix this
problem easily. Given any poset 〈A,≤〉, we define the dual poset 〈Aop,≤op〉 such that Aop = A and
x ≤op y iff y ≤ x. Then, ∗:A → Bop and +:Bop → A are monotonic and X ≤ X∗+ and Y ≤ Y +∗

express that they are adjoints. Thus, we are led to the following definition (see Birkhoff [3] and
MacLane [9]).

Definition 4.15 Given two posets 〈A,≤〉 and 〈B,≤〉, two monotonic functions ∗:A → Bop and
+:Bop → A form a Galois connection between A and B iff ∗ is a left adjoint to +, that is, for all
X ∈ A, Y ∈ B,

X∗ ≥ Y iff X ≤ Y +.

The following generalization of Lemma 4.4 is immediate.

Lemma 4.16 Given a Galois connection 〈∗,+〉 between two posets A and B, for all X ∈ A and
Y ∈ B, the following properties hold:

(1) X ≤ X∗+, Y ≤ Y +∗, X∗+∗ = X∗, Y +∗+ = Y +;

(2) ∗+ and +∗ are closure operations on A and B respectively.

We can now apply the above considerations to the definition of the phase semantics. We begin
with core linear logic.
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5 Phase Semantics

We first define core Girard structures. These structures consist of a carrier equipped with two
overlapping algebraic structures: a (commutative) monoid structure to interpret the multiplica-
tives, and a lattice structure to interpret the additives. Similar structures have been considred by
Avron [2],

Definition 5.1 A core Girard structure is a quintuple D = 〈D,≤, •, 1,∼〉, satisfying the following
conditions:

(1) 〈D,≤〉 is a complete lattice;

(2) ∼ is an involution on D;

(3) 〈D, •, 1〉 is a commutative monoid with identity 1;

(4) The monoid operation • is monotonic in each of its arguments, i.e., if a ≤ a′ and b ≤ b′,
then a • b ≤ a′ • b′.

(5) Defining ‖ such that a ‖ b = ∼ (∼ a •∼ b), we have
a • b ≤ c iff a ≤ ∼ b ‖ c.

We can prove easily that the condition a • b ≤ c iff a ≤ ∼ b ‖ c, is equivalent to the condition
a ≤ b iff 1 ≤ ∼ a ‖ b. Indeed, assuming that a • b ≤ c iff a ≤ ∼ b ‖ c holds, using the fact that 1 is
an identity for •, setting a = 1, we obtain b ≤ c iff 1 ≤ ∼ b ‖ c. Conversely, assuming that a ≤ b iff
1 ≤ ∼ a ‖ b holds, we have a • b ≤ c iff 1 ≤ ∼ (a • b) ‖ c, that is a • b ≤ c iff 1 ≤ (∼ a ‖∼ b) ‖ c.
Since ‖ is associative, this is equivalent to a • b ≤ c iff 1 ≤ ∼ a ‖ (∼ b ‖ c). But we also have
a ≤ ∼ b ‖ c iff 1 ≤ ∼ a ‖ (∼ b ‖ c), and thus a • b ≤ c iff a ≤ ∼ b ‖ c.

Letting 0 = ∼ 1, the condition a • b ≤ c iff a ≤ ∼ b ‖ c is also equivalent to the condition a ≤ b
iff a •∼ b ≤ 0. This follows immediately from the fact that ∼ is an involution.

A core Girard prestructure is a core Girard structure where D is a lattice (not necessarily
complete) having a greatest element denoted as 1 and a least element denoted as 0, where • is
monotonic in each of its arguments.

In a core Girard structure, it is immediately verified that 0 is an identity for ‖, and that

∼ (
∧
j ∈J
{aj}) =

∨
j ∈J
{∼ aj},

∼ (
∨
j ∈J
{aj}) =

∧
j ∈J
{∼ aj}.

What is more interesting is the fact that • preserves arbitrary least upper bounds. This follows
from the fact that a 7→ a • b is a left adjoint of a 7→∼ b ‖ a.

Lemma 5.2 Given a Girard structure D = 〈D,≤, •, 1,∼〉, for every family (aj)j ∈J of elements of
D, for every b ∈ D, we have

(
∨
j ∈J
{aj}) • b =

∨
j ∈J
{(aj • b)}, b • (

∨
j ∈J
{aj}) =

∨
j ∈J
{(b • aj)};

In particular, corresponding to the case J = ∅, we have 0 • b = b • 0 = 0.
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Proof . First, we note that 1 = ∼ 0 ‖ 0, the greatest element of D. Since 0 is the least element
of D, for every a ∈ D we have 0 ≤ ∼ a ‖ 0. But 0 ≤ ∼ a ‖ 0 iff 0 • a ≤ 0, iff a • 0 ≤ 0 (since • is
commutative), iff a ≤ ∼ 0 ‖ 0. Thus, 1 = ∼ 0 ‖ 0. As a consequence, a • 0 = 0, since a • 0 ≤ 0
iff a ≤ ∼ 0 ‖ 0 = 1, and 0 is the least element of D. Note that conditions (2) and (4) imply
that a 7→ a • b and a 7→∼ b ‖ a are monotonic (for any b), and condition (5) implies that they are
adjoint. Thus, by Lemma 4.12, a 7→ a • b preserves least upper bounds. The other identities follow
by commutativity of •.

In fact, it is possible to define an intuitionistic version of Girard structures which is interesting
in its own right. Such structures were investigated by Abrusci [1], Ono [10], and Troelstra [12].

Definition 5.3 A core intuitionistic Girard structure is a tuple D = 〈D,≤, •, 1, 0,−◦,∼〉, satisfying
the following conditions:

(1) 〈D,≤〉 is a complete lattice with least element 0 and greatest element 1;

(2) ∼ a = a −◦ 0, for every a ∈ D (where 0 is a distinguished element of D);

(3) 〈D, •, 1〉 is a commutative monoid with identity element 1;

(4) if a ≤ a′ and b ≤ b′, then a • b ≤ a′ • b′ and a′ −◦ b ≤ a −◦ b′;
(5) a • b ≤ c iff a ≤ b −◦ c.

A core intuitionistic Girard structure is classical iff a = ∼∼ a for all a ∈ D. It will be shown
below that core Girard structures as defined in Definition 5.1 and classical core intuitionistic Girard
structures are equivalent. We also have the following properties.

Lemma 5.4 The following properties hold for core intuitionistic Girard structures.

(i) 1 = 0 −◦ 0 is the greatest element of D;

(ii) For every family (aj)j ∈J of elements of D, for every b ∈ D, we have

(
∨
j ∈J
{aj}) • b =

∨
j ∈J
{(aj • b)}, b • (

∨
j ∈J
{aj}) =

∨
j ∈J
{(b • aj)};

In particular, corresponding to the case J = ∅, we have 0 • b = b • 0 = 0.

(iii) a −◦ (b −◦ c) = (a • b) −◦ c;
(iv) For a classical structure, a −◦ b = ∼ (a •∼ b), 0 = ∼ 1, and a ∨ b = ∼ (∼ a ∧ ∼ b).

Proof . (i) Since a • b ≤ c iff a ≤ b −◦ c and 0 is the least element of D, we have for every a ∈ D,
0 ≤ a −◦ 0, iff 0 • a ≤ 0, iff a • 0 ≤ 0 (by commutativity of •), iff a ≤ 0 −◦ 0. Thus, 1 = 0 −◦ 0.
(ii) Note that condition (4) of Definition 5.3 expresses that •:D ×D → D and −◦:Dop ×D → D
are monotonic (where Dop is equipped with the order ≤op such that x ≤op y iff y ≤ x), and that (5)
says that x 7→ x • y is left adjoint to x 7→ y −◦ x. By Lemma 4.12, x 7→ x • y preserves least upper
bounds. The other identities follow by commutativity of •. (iii) u ≤ a −◦ (b −◦ c) iff u • a ≤ b −◦ c
iff u • a • b ≤ c iff u ≤ (a • b) −◦ c. (iv)

∼ (a •∼ b) = (a •∼ b) −◦ 0

= a −◦ (∼ b −◦ 0) (by (iii))

= a −◦ (∼∼ b) since ∼ x = x −◦ 0

= a −◦ b since b = ∼∼ b.
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In particular, ∼ 1 = 1 −◦ 0 = ∼ (1 •∼ 0) = ∼∼ 0 = 0, and thus 0 = ∼ 1. From condition (4) of
Definition 5.3, x ≤ y implies that ∼ y ≤ ∼ x. Since we also have ∼∼ x = x, ∼ is an involution,
and a ∨ b = ∼ (∼ a ∧ ∼ b) follows.

One can also show as an easy exercise that condition (4) of Definition 5.3 can be replaced by
the identity

a • (b ∨ c) = (a • b) ∨ (a • c).

We observed in the proof of Lemma 5.4 that •:D ×D → D and −◦:Dop ×D → D are monotonic,
and that (5) says that x 7→ x • y is left adjoint to x 7→ y −◦ x. It is possible to develop categorical
semantics for linear logic inspired by these observations. We now return to (classical) core linear
logic.

We can interpret formulae of core linear logic as follows. Given any mapping v, called a val-
uation, assigning some element v(P ) ∈ D to every atomic symbol P , we extend v to formulae
inductively as follows:

Definition 5.5 Given a core Girard (pre)structure D, a valuation v is extended to formulae as
follows:

v(I) = 1,

v(⊥) = 0,

v(1) = 1,

v(0) = 0,

v(A⊥) = ∼ v(A),

v(A⊗B) = v(A) • v(B),

v(A ] B) = v(A) ‖ v(B),

v(A & B) = v(A) ∧ v(B),

v(A⊕B) = v(A) ∨ v(B),

where ∧ and ∨ are the lattice operations on D.

Note that the fact that D is complete is not needed for this definition to make sense, just the
existence of a least and a greatest element. Given a sequent Γ − ∆ where Γ = A1, . . . , Am and
∆ = B1, . . . , Bn, we define

v(Γ − ∆) =∼ v(A1) ‖ · · · ‖∼ v(Am) ‖ v(B1) ‖ · · · ‖ v(Bn).

The set TD = {a ∈ D | 1 ≤ a} is called a truth subset of D. Given a sequent Γ − ∆, we say
that v satisfies Γ − ∆ in D iff v(Γ − ∆) ∈ TD, i.e., 1 ≤ v(Γ − ∆). If Γ = A1, . . . , Am and
∆ = B1, . . . , Bn, then 1 ≤ v(Γ − ∆) is equivalent to

v(A1) • . . . • v(Am) ≤ v(B1) ‖ · · · ‖ v(Bn),

or to
v(A1) • . . . • v(Am) •∼ v(B1) • . . . •∼ v(Bn) ≤ 0.
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In the special case m = 0, the condition 1 ≤ v(− ∆) is equivalent to

1 ≤ v(B1) ‖ · · · ‖ v(Bn),

and in the special case n = 0, the condition 1 ≤ v(Γ −) is equivalent to

v(A1) • . . . • v(Am) ≤ 0.

The condition 1 ≤ v(Γ − ∆) is also denoted as D |= (Γ − ∆)[v]. We say that Γ − ∆ is valid in D,
denoted as D |= Γ − ∆, iff D |= (Γ − ∆)[v] for every v, and finally we say that Γ − ∆ is universally
valid , denoted as |= Γ − ∆, iff D |= Γ − ∆ for all D. If we consider sequents of the special form
− A where A is a formula, we obtain the notion of satisfaction, validity, and universal vality, for
formulae. A universal formula is also called a linear tautology .

The soundness of the interpretation defined above is easily shown.

Lemma 5.6 If Γ − ∆ is provable in linear logic, then for every core Girard (pre)structure D and
every valuation v, D |= (Γ − ∆)[v]. As a corollary, Γ − ∆ is valid.

Proof . The verification proceeds by induction on proof trees. It amounts to checking the
soundness of the axioms and of the proof rules. We check only a few cases, as the verification is
straightforward. Consider the rule

Γ − ∆, A Λ − Θ, B

Γ,Λ − ∆,Θ, A⊗B
(⊗: right)

Thus, we can assume that 1 ≤ v(Γ − ∆, A) and 1 ≤ v(Λ − Θ, B). By (5) and Definition 5.5, this
is equivalent to

v(Γ) • v(∆⊥) ≤ v(A), and v(Λ) • v(Θ⊥) ≤ v(B),

where v(Γ) = v(A1) • . . . • v(Am) if Γ = A1, . . . , Am, and v(∆⊥) = ∼ v(B1) • . . . •∼ v(Bn) if
∆ = B1, . . . , Bn. By monotonicity of •, we have

v(Γ) • v(Λ) • v(∆⊥) • v(Θ⊥) ≤ v(A) • v(B),

that is
v(Γ,Λ) • v(∆⊥,Θ⊥) ≤ v(A⊗B),

which means that
1 ≤ v(Γ,Λ − ∆,Θ, A⊗B).

Consider the rule
A,B,Γ − ∆

A⊗B,Γ − ∆
(⊗: left)

By hypothesis, 1 ≤ v(A,B,Γ − ∆). By (5), this is equivalent to

v(A) • v(B) • v(Γ) • v(∆⊥) ≤ 0,

that is
v(A⊗B) • v(Γ) • v(∆⊥) ≤ 0,
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which means that
1 ≤ v(A⊗B,Γ − ∆).

Consider the cut rule
Γ − A,∆ A,Λ − Θ

Γ,Λ − ∆,Θ
(cut)

By assumption, we have 1 ≤ v(Γ − A,∆) and 1 ≤ v(A,Λ − Θ). By (5) and Definition 5.5, this is
equivalent to

v(Γ) • v(∆⊥) ≤ v(A), and v(Λ) • v(Θ⊥) ≤∼ v(A).

By monotonicity of •, we have

v(Γ) • v(Λ) • v(∆⊥) • v(Θ⊥) ≤ v(A) •∼ v(A).

However, from a ≤ a, we have a •∼ a ≤ 0, and so

v(Γ) • v(Λ) • v(∆⊥) • v(Θ⊥) ≤ 0,

that is
v(Γ,Λ) • v(Λ⊥,Θ⊥) ≤ 0,

which means that
1 ≤ v(Γ,Λ − ∆,Θ).

The case of the additives follows from the fact that ∧ corresponds to greatest lower bound and ∨
corresponds to least upper bound.

Note that the fact that D is complete is not used anywhere in the proof. We now turn to
Girard’s phase structures [6], and show their equivalence with core Girard structures.

Definition 5.7 A phase structure P is a quadruple 〈P, •, 1,⊥〉, where

(1) 〈P, •, 1〉 is a commutative monoid with identity 1;

(2) ⊥ is a distinguished subset of P , the set of antiphases.

The set P is called the set of phases.

Definition 5.8 Given a phase structure P, for any subset X of P , its dual X⊥ is defined by

X⊥ = {p ∈ P | ∀q ∈ X, p • q ∈⊥}.

A subset X of P such that X = X⊥⊥ is called a fact . Observe that ⊥= {1}⊥. We define
I =⊥⊥= {1}⊥⊥, 1 = ∅⊥ = P , and 0 = 1⊥.

We can now establish the connection with closure operations. Given a phase structure P, if we
define the binary relation R on P such that

xRy iff x • y ∈⊥,
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then we have a Galois connection such that

X∗ = X+ = {p ∈ P | ∀q ∈ X, p • q ∈⊥} = X⊥,

and by Lemma 4.4, X 7→ X⊥⊥ is a closure operation. By Theorem 4.2, the set of facts, i.e., the
set P † of closed subsets of P , is a complete lattice. It is immediately verified that 1 = P is the
greatest element of P †, and that 0 is its least element. The operation • can be extended to P † and
we can define an involution ∼ on P † by setting

X ⊗ Y = (XY )⊥⊥, ∼ X = X⊥.

It should be noted that in order for ⊥ to be an involution, that is, to have X∗ = X+ = X⊥,
it is not actually required that • be commutative. What we need is that R be symmetric, which
holds iff ⊥ satisfies the following property:

x • y ∈⊥ iff y • x ∈⊥ .

Abrusci [1] calls such a ⊥ cyclic. Obviously, ⊥ is cyclic when • is commutative. When ⊥ is cyclic
but • is not commutative, Abrusci calls the corresponding structure a cyclic classical phase space [1]
(as opposed to a commutative classical phase space). We have not found yet situations where the
more general condition of cyclicity of ⊥ is preferable to the commutativity of •. Thus, from now
on, we assume • to be commutative. However, noncommutative phase spaces are interesting since
they lead to noncommutative linear logic, investigated by Absrusci (among others).

When • is commutative, it is immediately verified that 〈P †,⊗, I〉 is a commutative monoid with
I as its identity. If we define X ] Y = (X⊥ ⊗ Y ⊥)⊥ = (X⊥Y ⊥)⊥, then we also have a monoid
structure 〈P †, ],⊥〉 with ⊥ as its identity. The lattice operations on P † are defined as in Theorem
4.2, but it will be convenient to regroup all these definitions:

X ⊗ Y = (XY )⊥⊥, X ] Y = (X⊥Y ⊥)⊥,

X ∧ Y = X ∩ Y, X ∨ Y = (X ∪ Y )⊥⊥.

Thus, P † is practically a core Girard structure. For this, we need a lemma.

Lemma 5.9 Given a phase structure P, the following properties hold: (1) For any two facts X,Y ⊆
P , we have X ⊆ Y iff X ⊗ Y ⊥ ⊆⊥. (2) the operation ⊗ is monotonic in each argument (in fact,
⊗ preserves arbitrary least upper bounds).

Proof . In order to prove (1), we first apply Lemma 4.7 to the relation R defined such that xRy
iff x • y ∈⊥. Therefore, we have p ∈ (X ⊗ Y ⊥)⊥ iff ∀q(q ∈ X ⊃ p • q ∈ Y ).

In view of the above equivalence, p ∈ X ⊗ Y ⊥ iff p ∈ (X ⊗ Y ⊥)⊥⊥ iff

∀q(q ∈ (X ⊗ Y ⊥)⊥ ⊃ p • q ∈⊥),

iff
∀q(∀r(r ∈ X ⊃ q • r ∈ Y ) ⊃ p • q ∈⊥).
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This means that X ⊗ Y ⊥ ⊆⊥ is equivalent to

∀p
(
∀q(∀r(r ∈ X ⊃ q • r ∈ Y ) ⊃ p • q ∈⊥) ⊃ p ∈⊥

)
. (a)

Now, observe that if ⊥= P , then X⊥ = P for every X ⊆ P , and then all facts are equal to P . In
this degenerated case, (1) holds trivially. Thus, we can assume that there is some p ∈ P such that
p /∈⊥. Assume that

∀q(∀r(r ∈ X ⊃ q • r ∈ Y ) ⊃ p • q ∈⊥)

holds. In particular, we can pick q = 1, and assume that

∀r(r ∈ X ⊃ r ∈ Y ) ⊃ p ∈⊥

holds. Also assume that there is some r such that r ∈ X but r /∈ Y . Since (r ∈ X ⊃ r ∈ Y ) is
false, the implication

∀r(r ∈ X ⊃ r ∈ Y ) ⊃ p ∈⊥

holds trivially, and from (a), this implies that p ∈⊥, contradicting the choice of p. Thus, X⊗Y ⊥ ⊆⊥
implies that X ⊆ Y . Conversely, assume that X ⊆ Y holds. For every p, if

∀q(∀r(r ∈ X ⊃ q • r ∈ Y ) ⊃ p • q ∈⊥)

holds, then this holds for q = 1, and since ∀r(r ∈ X ⊃ r ∈ Y ) also holds, we conclude than p ∈⊥,
establishing that X ⊗ Y ⊥ ⊆ ⊥ holds. This concludes the proof of (1). Property (2) follows from
Lemma 4.8. In fact, by Lemma 4.12, the preservation of least upper bounds is also a consequence
of property (1) just proved above.

Putting things together, we have the following lemma showing that every phase structures gives
rise to a core Girard structure.

Lemma 5.10 Given a phase structure P = 〈P, •, 1,⊥〉, if we define X⊗Y = (XY )⊥⊥ and I =⊥⊥,
then D = 〈P⊥⊥,⊆,⊗, I,⊥ 〉 is a core Girard structure, the lattice operations being defined by X∧Y =
X ∩ Y and X ∨ Y = (X ∪ Y )⊥⊥.

Proof . This follows from Lemma 5.9 and the fact that ⊥⊥ is a closure operation.

Girard defines validity in a phase structure almost as we did in Definition 5.5, but in terms of
valuations into the set of facts of P , and P |= A[v] holds iff 1 ∈ v(A) (see Girard [6]). Recall that
I = {1}⊥⊥. Thus, given any fact X, if 1 ∈ X then {1} ⊆ X, which implies {1}⊥⊥ ⊆ X⊥⊥, that is
I ⊆ X, since X is a fact (X = X⊥⊥). Conversely, if I ⊆ X, since I = {1}⊥⊥, then 1 ∈ X. Thus, for
a fact X, we have 1 ∈ X iff I ⊆ X. This establishes the equivalence of Girard’s notion of validity
in terms of phase structures and the notion given in Definition 5.5.

Interestingly, every core Girard structure arises from a phase structure, as shown in the following
lemma.

Lemma 5.11 Given a core Girard structure D = 〈D,≤, •, 1,∼〉, if we define the set ⊥ by ⊥ =
{x ∈ D | x ≤ 0}, then P = 〈D, •, 1,⊥〉 is a phase structure such that the core Girard structure
D′ = 〈D⊥⊥,⊆,⊗, I,⊥ 〉 defined in Lemma 5.10 is isomorphic to D.
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Proof . Given any subset X of D, let lower(X) denote the set of lower bounds of X and
upper(X) denote the set of upper bounds of X. Also, let ∼ X = {∼ x | x ∈ X}. One easily verifies
that X⊥ = lower(∼ X), upper(X) =∼ lower(∼ X), and X⊥⊥ = lower(upper(X)). Thus, since D
is a complete lattice, every fact X⊥⊥ = lower(upper(X)) of P corresponds uniquely to the lower
ideal lower(

∨
X), which itself corresponds uniquely to

∨
X. This mapping establishes a bijection

between D and D′, and it is easily checked that it is an isomorphism.

In Lemma 5.6, we have shown that the semantics given by core Girard structures (or equivalently
phase structures) is sound with respect to the proof system. We can also show that the proof system
is complete w.r.t. this semantics.

Lemma 5.12 If a sequent Γ − ∆ is valid (in phase semantics), then it is provable in Lin0.

Proof . First of all, note that it is enough to prove completeness for sequents of the form − A,
i.e. propositions. At least two proofs can be given. The first one, suggested by Avron [2], consists
in two steps. The first step is to prove completeness w.r.t. core Girard prestructures. For this,
define an equivalence relation ≡ on propositions as follows: A ≡ B iff both sequents A − B
and B − A are provable. Then, define an algebraic structure on the set D of equivalence classes
modulo ≡ by setting

1 = [1],

0 = [0],

1 = [I],

0 = [⊥],

[A] ‖ [B] = [A ] B],

[A] • [B] = [A⊗B],

[A] ∨ [B] = [A⊕B],

[A] ∧ [B] = [A & B],

∼ [A] = [A⊥],

and define [A] ≤ [B] iff A − B is provable. One can then check that D = 〈D,≤, •, 1,∼〉 is a core
Girard prestructure. Note that 1 ≤ [A] iff A is provable. If we pick the valuation v such that
v(P ) = [P ] for every atom P , then v(A) = [A], and if A is valid, then in particular D |= A[v], that
is 1 ≤ [A], and thus A is provable. The second step is to show that every core Girard prestructure
can be embedded into a core Girard structure, and this in preserving existing least upper bounds
and greatest lower bounds. This is easily shown by using the Mac Neille completion and Theorem
4.2.

The second proof due to Girard consists in producing a particular phase structure and a par-
ticular valuation, such that validity amounts to provability (see Girard [6]). This construction
appears to be another way of constructing the structure D defined in the first proof, in terms of
a phase structure. Note that the set M of finite multisets of formulae is a commutative monoid
under multiset union (Γ • ∆ = Γ,∆), with identity ∅. If we let ⊥ = {Γ | − Γ is provable}, we
can check that the sets of the form

Pr(A) = {Γ | − Γ, A is provable},
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are facts, because Pr(A) = Pr(A⊥)⊥. If we define the valuation v such that v(P ) = Pr(P ) for
every atom P , we can check that v(A) = Pr(A). Since A is valid, D |= A[v], that is, ∅ ∈ Pr(A),
and thus A is provable.

We now extend the above semantics to (full) linear logic. For this, we need to add a unary
operation to interpret the connective ! (of course).

Definition 5.13 A Girard structure is a sextuple G = 〈G,≤, •, 1,∼, 〉 such that the quintuple
〈G,≤, •, 1,∼〉 is a core Girard structure, and :G→ G is a unary operator satisfying the following
properties: for all x, y ∈ G,

(1) (1) = 1;

(2) (x) ≤ x;

(3) ( (x)) = (x);

(4) (x) • (y) = (x ∧ y).

Definition 5.5 is extended to the exponentials as follows:

v(!A) = (v(A)),

v(?A) =∼ (∼ v(A)).

The following lemma is needed to show soundness of this semantics.

Lemma 5.14 In every Girard structure, the following properties hold:

(1) (x) ≤ 1;

(2) (x) • y ≤ y;

(3) (x) • (x) = (x);

(4) If x ≤ y then (x) ≤ (y);

(5) If 1 ≤ x then (x) = 1;

(6) If (x) ≤ y then (x) ≤ (y);

(7) If x1 • . . . • xn ≤ y then (x1) • . . . • (xn) ≤ (y).

Proof . These properties are easy to prove. Property (1) holds because

(x) = (x) • 1 = (x) • (1) = (x ∧ 1) ≤ x ∧ 1 ≤ 1.

For (2), since by (1), (x) ≤ 1, by monotonicity of •, we have (x) • y ≤ 1 • y = y. For (3),
(x) • (x) = (x ∧ x) = (x). For (4), If x ≤ y then x = x ∧ y. Thus, (x) = (x ∧ y) =
(x) • (y) ≤ (y), by (2). It is clear that (5) follows from (1) and (4). If (x) ≤ y, by (4),

we have ( (x)) ≤ (y), and since ( (x)) = (x), we have (x) ≤ (y). Since (x) ≤ x, if
x1 • . . . • xn ≤ y then (x1) • . . . • (xn) ≤ y. Since (x) • (y) = (x∧ y), we have (x1) • . . . •

(xn) = (x1 ∧ . . . ∧ xn), and so (x1 ∧ . . . ∧ xn) ≤ y. By (6), we get (x1 ∧ . . . ∧ xn) ≤ (y),
that is (x1) • . . . • (xn) ≤ (y).
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Lemma 5.15 If Γ − ∆ is provable in linear logic, then for every Girard structure G and every
valuation v, G |= (Γ − ∆)[v]. As a corollary, Γ − ∆ is valid.

Proof . Immediate by Lemma 5.14.

We now give the following construction which shows how a Girard structure arises from a core
Girard structure.

Theorem 5.16 Let G = 〈G,≤, •, 1,∼, 〉 be a Girard structure. The set F defined by F = {x ∈
G | x = (x)} satisfies the following properties:

(1) F is closed under arbitrary least upper bounds. In particular, 0 ∈ F ;

(2) F is closed under •;

(3) x • x = x for every x ∈ F ;

(4) The identity element 1 is the greatest element of F .

Furthermore, for every a ∈ G, (a) =
∨
{x ∈ F | x ≤ a}.

Conversely, given a core Girard structure 〈G,≤, •, 1,∼〉 and a subset F of G satisfying the
properties (1)–(4), then if we define by (a) =

∨
{x ∈ F | x ≤ a}, the sextuple G =

〈G,≤, •, 1,∼, 〉 is a Girard structure.

Proof . Let {xj}j ∈J be any family of elements from F , i.e., such that (xj) = xj for all i ∈ J .
Since xj ≤

∨
j ∈J{xj}, by monotonicity of (proved in Lemma 5.14), (xj) ≤ (

∨
j ∈J{xj}), and

since (xj) = xj for all i ∈ J , we have xj ≤ (
∨

j ∈J{xj}), and thus∨
j ∈J
{xj} ≤ (

∨
j ∈J
{xj}).

Since (
∨

j ∈J{xj}) ≤
∨

j ∈J{xj} holds by property (2) of the definition of (Definition 5.13), we
have

(
∨
j ∈J
{xj}) =

∨
j ∈J
{xj},

showing that F is closed under nonempty least upper bounds. Since (x) ≤ x for all x ∈ G, in
particular (0) ≤ 0, which implies that (0) = 0, since 0 is the least element of G. Therefore, F
is closed under arbitrary least upper bounds.

For x, y ∈ F , we have x • y = (x) • (y) = (x ∧ y), by property (4) of the definition of
. Thus, (x • y) = ( (x ∧ y)) = (x ∧ y), by property (3) of the definition of . Therefore,
(x • y) = x • y.

For any x ∈ F , we have x • x = (x) • (x) = (x ∧ x) = (x) = x. Therefore, x • x = x.

Since (x) ≤ 1 by property 1 of the definition of , for any x ∈ F , we have x = (x) ≤ 1.
Also, by Lemma 5.14, (1) = 1. Therefore, 1 is the greatest element of F .

For every x ∈ F , by monotonicity of , x ≤ a implies (x) ≤ (a), that is x ≤ (a), since
(x) = x. But we also have ( (a)) = (a), that is, (a) ∈ F , and thus

∨
{x ∈ F | x ≤ a} = (a)

for every a ∈ G. This concludes the proof of the first half of the theorem.
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Conversely, assume that F has the properties (1)–(4), and define such that (a) =
∨
{x ∈

F | x ≤ a}. First, note that since F is closed under arbitrary least upper bounds, (a) ∈ F for
every a ∈ G, and obviously, (a) = a if a ∈ F .

Clearly, (a) ≤ a for all a ∈ G, property (2) of the definition of .

Since 1 is the greatest element of F , we also have (a) ≤ 1 for all a ∈ G, property (1) of the
definition of .

Since F is closed under arbitrary least upper bounds, (a) =
∨
{x ∈ F | x ≤ a} ∈ F , and thus,

( (a)) =
∨
{y ∈ F | y ≤ (a)} = (a), property (3) of the definition of .

Since x ≤ 1 for every x ∈ F , for x, y ∈ F , we have x • y ≤ x • 1 = x and x • y ≤ 1 • y = y,
which implies that x • y ≤ x ∧ y. Thus, a • b ≤

∨
{x ∈ F | x ≤ a ∧ b}, that is, a • b ≤ (a ∧ b),

which implies (a) • (b) ≤ (a ∧ b), since (a) ≤ a, and (b) ≤ b. Also, since • distributes over∨
,

(a) • (b) = (
∨
{x ∈ F | x ≤ a}) • (

∨
{y ∈ F | y ≤ b})

=
∨
{x • y | x, y ∈ F, x ≤ a, y ≤ b}.

Since (a ∧ b) ≤ a ∧ b ≤ a, (a ∧ b) ≤ a ∧ b ≤ b, (a ∧ b) ∈ F , and z • z = z for all z ∈ F , we
have (a ∧ b) ≤ (a) • (b). Therefore, (a) • (b) = (a ∧ b), property (4) of the definition of

. This concludes the proof of the second half of the theorem.

One can show that in every core Girard structure G, the subset

F = {x ∈ G | x • x = x and x ≤ 1}

satisfies the properties of Theorem 5.16. Thus, we obtain the following lemma, showing that every
core Girard structure can be extended to a Girard structure.

Lemma 5.17 Every core Girard structure G can be extended to a Girard structure by defining the
operator such that (a) =

∨
{x ≤ a ∧ 1 | x • x = x}.

Another interesting property of showing that it is the fixed point of some simple operators is
given in the following lemma.

Lemma 5.18 In every Girard structure G, for every a ∈ G, we have the following identities:

(1) (a) = (a ∧ 1) • (a),

and

(2) (a) = (a ∧ 1) ∧ ( (a) • (a)).

Proof . First, we prove (1). (i) Recall from Lemma 5.14 that (a) • (a) = (a). (ii) We have
(a) = (a) • 1 = (a) • (1) = (a ∧ 1). (iii) If x ≤ 1, then x • y ≤ y, since x • y ≤ 1 • y = y.

Since a ∧ 1 ≤ 1, using (iii), we have (a ∧ 1) • (a) ≤ (a). Using (ii) and the fact that (x) ≤ x
for every x ∈ G, we have (a) = (a ∧ 1) ≤ a ∧ 1. Using (i) and the monotonicity of •, we have

(a) = (a) • (a) ≤ (a ∧ 1) • (a). Therefore, (a) = (a ∧ 1) • (a), as desired. We now prove
(2). Since (a) • (a) = (a), we just have to prove that (a) = (a ∧ 1) ∧ (a). Since (a) ≤ a
and (a) ≤ 1, we have (a) ≤ a ∧ 1, and thus (a) = (a ∧ 1) ∧ (a).
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Lemma 5.18 shows that (a) is a fixed point of the operator x 7→ (a ∧ 1) • x, for every a ∈ G
(and also of the operator x 7→ (a ∧ 1) ∧ (x • x)). Since G is a complete lattice, and this operator
is monotonic, by Tarski’s fixed point theorem, the set of fixed points of this operator is a complete
lattice. In particular, since • distributes over

∨
, the least fixed point of this operator is given by

the expression ∨
n≥1

⊗
n

(a ∧ 1).

This connection probably deserves further investigations. The interest in the identity (a) =
(a ∧ 1) ∧ ( (a) • (a)) stems from the fact that it implies the properties: (i) (a) ≤ a; (ii)

(a) ≤ 1; and (iii) (a) • (a) = (a) (due to Yves Lafont). In turn, these properties imply the
soundness of the inference rules (dereliction: left), (weakening: left), and (contraction: left). Thus,
we obtain an equivalent proof system for linear logic if we add the axiom !A ◦−◦ (A & I) & (!A ⊗ !A)
and delete the above rules. By duality, we obtain an equivalent proof system for linear logic if we
add the axiom ?A ◦−◦ (A ⊕ ⊥) ⊕ (?A ] ?A) and delete the rules (dereliction: right), (weakening:
right), and (contraction: right).

In order to interpret ! and ?, Girard defines an extension of the notion of phase structure that
he calls a topolinear space (see Girard [6]). We give this definition and compare it with Definition
5.13.

Definition 5.19 A topolinear space is a triple 〈P,⊥, F 〉, where P is a phase structure, and F is a
subset of P , the set of closed facts, having the following properties:

(1) F is closed under arbitrary &. In particular, 1 ∈ F ;

(2) F is closed under (finite) ] (par);

(3) x ] x = x for every x ∈ F ;

(4) The fact ⊥ is the least element of F .

The linear negation of a closed fact is called an open fact .

Given a topolinear space, given a valuation v, the fact v(!A) is defined as the greatest open fact
included in v(A), and v(?A) is defined as the least closed fact containing v(A). In other words:

v(!A) = (
⋃
{X⊥ | X ∈ F, X⊥ ⊆ v(A)})⊥⊥, v(?A) =

⋂
{X ∈ F | X ⊇ v(A)}.

Using the correspondence between core Girard structures and phase structures given by Lemma
5.10, it is clear that the subset F of Theorem 5.16 is the collection of open facts of Girard’s topolinear
space, and that the definition of v(?A) corresponds exactly to the definition (a) =

∨
{x ∈ F | x ≤

a} (by the definition of the least upper bound of a fact).

As in the case of core Girard structures, not only do we have soundness, but also completeness.

Lemma 5.20 If a sequent Γ − ∆ is valid (in Girard structures), then it is provable in Lin!,?0 .

Proof . As in Lemma 5.12, at least two proofs are possible. The first proof is an extension of
Avron’s proof [2]. It is necessary to extend the operation defined on D by ([!A]) =![A], to the
completion by cuts D† of the core prestructure D. For every y ∈ D†, we define

†(y) =
∨
{{ (x)}† | x ∈ D, {x}† ≤ y}.
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Using the fact that • distributes over arbitrary least upper bounds, we can prove that † has the
required properties (in particular, that †(a) • †(b) = †(a ∧ b)).

The other proof is due to Girard (see [6]). It is a generalization of the proof that we sketched in
Lemma 5.12. We consider the phase structure consisting of the commutative monoid of multisets
of formulae, and define F to be the family of arbitrary intersections of facts of the form Pr(?A).
One can then prove that a topolinear space is indeed obtained (this uses the fact that ] distributes
over arbitrary intersections). Then, it is easy to prove that ?Pr(A) = Pr(?A), and completeness
follows immediately.

Presently, has the property that (a) • (b) = (a ∧ b), and it is also easy to verify that
(a∧ b) ≤ (a)∧ (b), but in general, we do not have (a∧ b) = (a)∧ (b). In the next section,

we propose to modify the proof rules and the semantics so that !A⊗ !B and !A & !B are equivalent.

6 A Variation On the Semantics of the Connective !

On the semantic side, we strengthen Definition 5.13 as follows.

Definition 6.1 A Girard topostructure is a sextuple G = 〈G,≤, •, 1,∼, 〉 such that the quintuple
〈G,≤, •, 1,∼〉 is a core Girard structure, and :G→ G is a unary operator satisfying the following
properties: for all x, y ∈ G,

(1) (1) = 1;

(2) (x) ≤ x;

(3) ( (x)) = (x);

(4) (x) • (y) = (x ∧ y).

(5) (x ∧ y) = (x) ∧ (y).

From (4) and (5), we have that (x) • (y) = (x) ∧ (y). Definition 5.5 is extended to the
exponentials as before:

v(!A) = (v(A)),

v(?A) =∼ (∼ v(A)).

We add the following rules to the definition of the rules for the exponentials

Definition 6.2
!A, !B,Γ − ∆

!A & !B,Γ − ∆
(! &: left)

Γ − ∆, ?A, ?B

Γ − ∆, ?A⊕ ?B
(?⊕: right)

The system obtained by adding the rules of Definition 6.2 to the rules of the system Lin!,?0 is

denoted as Lin!,?,!&,?⊕
0 . Soundness is easily obtained.
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Lemma 6.3 If Γ − ∆ is provable in the system of linear logic Lin!,?,!&,?⊕
0 , then for every Girard

topostructure G and every valuation v, G |= (Γ − ∆)[v]. As a corollary, Γ − ∆ is valid.

Proof . Immediate by Lemma 5.14 and the fact that (x) • (y) = (x) ∧ (y).

Theorem 5.16 is extended as follows.

Theorem 6.4 Let G = 〈G,≤, •, 1,∼, 〉 be a Girard topostructure. The set F defined by F =
{x ∈ G | x = (x)} satisfies the following properties:

(1) F is closed under arbitrary least upper bounds. In particular, 0 ∈ F ;

(2) F is closed under (finite) greatest lower bounds.

(3) F is closed under •;

(4) x • x = x for every x ∈ F ;

(5) The identity element 1 is the greatest element of F .

Furthermore, for every a ∈ G, (a) =
∨
{x ∈ F | x ≤ a}.

Conversely, given a core Girard structure 〈G,≤, •, 1,∼〉 and a subset F of G satisfying the
properties (1)–(5), then if we define by (a) =

∨
{x ∈ F | x ≤ a}, the sextuple G =

〈G,≤, •, 1,∼, 〉 is a Girard topostructure.

Proof . Properties (1), (3)–(5) are verified as in the proof of Theorem 5.16. Since (a ∧ b) =
(a) ∧ (b), if a = (a) and b = (b), then a ∧ b = (a) ∧ (b) = (a ∧ b), proving (2).

Conversely, since (x) ∈ F for every x ∈ G, by (2), (a) ∧ (b) ∈ F . Since (x) = x for
x ∈ F , ( (a) ∧ (b)) = (a) ∧ (b). On the other hand, as in the proof of Theorem 5.16, we
have (x) • (y) = (x ∧ y) and ( (x)) = (x), and so,

( (a) ∧ (b)) = ( (a)) • ( (b)) = (a) • (b) = (a ∧ b).

Thus, (a ∧ b) = (a) ∧ (b), property (5) of Definition 6.1.

We can also extend the completeness lemma (Lemma 5.20) to topostructures and Llin!,?,!&,?⊕
0 .

Lemma 6.5 If a sequent Γ − ∆ is valid (in Girard topostructures), then it is provable in Lin!,?,!&,?⊕
0 .

Proof . As in the proof of Lemma 5.20, it is necessary to extend the operation defined on D
by ([!A]) =![A], to the completion by cuts D† of the core prestructure D.2 For every y ∈ D†, we
define

†(y) =
∨
{{ (x)}† | x ∈ D, {x}† ≤ y}.

Using the fact that • distributes over arbitrary least upper bounds, we can prove that † has
the required properties, in particular, that †(a) • †(b) = †(a ∧ b). We can also prove that
†(a∧ b) = †(a)∧ †(b), using the fact that (!A & !B) ◦−◦ !(A & B) is provable, and that in the

completion by cuts, X† ∧ Y † = X† ∩ Y †.

We now turn to proof nets.

2Recall that in the completion by cuts, for every subset X ⊆ D, we have X† = lower(upper(X)), and in particular,
when X = {x}, we have {x}† = lower(x).

30



7 Proof Nets for Multiplicative Linear Logic

The same linear sequent can have different proofs differring for bureaucratic reasons, namely, that
inferences are applied in a different order. For example, the sequent

− (A⊗B)⊗ C,A⊥ ] B⊥, C⊥

has the following two proofs

− A,A⊥ − B,B⊥
(⊗)

− A⊗B,A⊥, B⊥
(])

− A⊗B,A⊥ ] B⊥ − C,C⊥
(⊗)

− (A⊗B)⊗ C,A⊥ ] B⊥, C⊥

and

− A,A⊥ − B,B⊥
(⊗)

− A⊗B,A⊥, B⊥ − C,C⊥
(⊗)

− (A⊗B)⊗ C,A⊥, B⊥, C⊥
(])

− (A⊗B)⊗ C,A⊥ ] B⊥, C⊥

Clearly, these two proofs differ in an inessential way, and it should be possible to come up with
a notation akin to natural deduction so that these two proofs are identified. This is possible for
the fragment of multiplicative linear logic involving only ⊗, ], and ⊥, using the notion of proof net
due to Girard (see Girard [6], and Girard, Lafont, and Taylor [7]). First, we recall a definition.

Definition 7.1 A literal is either a propositional letter P or the negation P⊥ of a propositional
letter.

Proofs nets are certain unoriented connected graphs whose nodes are labeled with propositions.
In order to define these graphs, we consider that labeled nodes have entry and exit points defined
as follows: a literal has a single entry and a single exit, and both a tensor and a par have two entry
points and a single exit point.

Definition 7.2 A proof net (of multiplicative linear logic) is a finite unoriented connected node-
labeled graph with the following properties:

(1) For every node labeled with a literal, there is a single arc from the entry point of that literal
to the entry point of a literal with the same name and the opposite sign;

(2) For every node labeled with a tensor A ⊗ B or a par A ] B, there are two distinct nodes
labeled with A and B respectively, such that the exit of A is connected to one of the two
entry points of A⊗B (resp. A ] B) and the exit of B is connected to the other entry point
of A⊗B (resp. A ] B), each by a single arc;
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(3) The exit point of every node is connected to at most one other node.

Nodes whose exit points are not connected to any node will be called terminal nodes, or leaves.

For reasons that will become clear when we discuss the criterion for checking that a proof net
corresponds to a sequential proof, we draw (]: right) inferences using a broken line, and (⊗: right)
inferences using a solid line. The following is an example of a proof net:

A B

A⊗B C

(A⊗B)⊗ C C⊥

A⊥ B⊥−−−−−−−
A⊥ ] B⊥

Another example of a proof net is the following:

D

D⊥ C⊥

D⊥ ⊗ C⊥
C

A B−−−−−
A ] B

C ⊗ (A ] B)

A⊥ B⊥

A⊥ ⊗B⊥

As we shall see shortly, there is an algorithm for converting any sequential proof (for the
multiplicative fragment of linear logic considered here) into a proof net. However, the definition
of a proof net is a bit too liberal, due the local nature of the conditions involved, and some proof
nets are unsound, in the sense that they do not correspond to any sequential proof. For technical
reasons, we will need a slightly more liberal notion of a proof net. In fact, it turns out that this
notion corresponds precisely to the notion of a sequential deduction, a sequential deduction being
similar to a sequential proof, except that leaf nodes can also be labeled with arbitrary sequents
− A, where A is a proposition, rather than only axioms.

Definition 7.3 A deduction net (of multiplicative linear logic) is a finite unoriented connected
node-labeled graph satisfying properties (1) and (3) of Definition 7.2, and such that if property (2)
does not hold for some node, then both entry points of such a node are not connected to any other
node.

Thus, a proof net is a deduction net that also satisfies property (2) of Definition 7.2. Contrary
to a proof net, a deduction net may have nodes whose entry points are not connected to any other
node. Such a node is called an initial node, or root . The following lemma is easily shown.
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Lemma 7.4 Let Π be a deduction net such that k of its terminal nodes are labeled with some
propositions A1, . . . , Ak, and let Π′ be some other deduction net having k of its entry nodes labeled
with A1, . . . , Ak. The graph obtained by grafting Π′ onto Π by identifying each selected terminal
node of Π labeled with Ai with the corresponding entry node of Π′ labeled with Ai is a deduction
net.

One can define a transformation that produces a deduction net from a sequential deduction, but
not all deduction nets come from a sequential deduction. In order to single out which deduction
nets really correspond to sequential deductions, one needs a global criterion. In his seminal paper,
Girard gave such a criterion for proof nets, the “long trip condition” [6]. Later, Danos and Regnier
proposed a different criterion [5].

We now present the Danos-Regnier criterion for soundness of a deduction net. This criterion is
equivalent to Girard’s original “trip conditions” criterion, but it is somewhat more manageable. It
is convenient to consider that there are two kinds of edges:

(1) Edges connecting the exit of A and B to the entries of a tensor A⊗B and edges connecting
the entry of some A to the entry of some A⊥, considered as solid ;

(2) Edges connecting the exit of A and B to the entries of a par A ] B, considered as soft .

Definition 7.5 Given a deduction net Π, a switch graph associated with Π is any subgraph of Π
obtained by deleting exactly one of the two soft edges associated with every par node in Π (and
keeping the other soft edge).

The Danos-Regnier criterion for soundness of a deduction net is stated as follows (see Danos
and Regnier [5], and Danos [4]).

Definition 7.6 A deduction net Π satisfies the Danos-Regnier criterion, or is sound , iff every
switch graph associated with Π is a tree.

For example, the following is a sound proof net, since both switch graphs are trees:

A B

A⊗B

A⊥ B⊥−−−−−−−
A⊥ ] B⊥

On the other hand, the following proof net is unsound, because the (only) switch graph has a
cycle.
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A B

A⊗B
A⊥ B⊥

A⊥ ⊗B⊥

We now give an algorithm for transforming a sequential deduction into a deduction net, and
show that the resulting proof net satisfies the Danos-Regnier criterion.

Lemma 7.7 There is algorithm N which, given a deduction Π of a multiplicative sequent −
A1, . . . , An, produces a deduction net N (Π) whose terminal nodes are in one-to-one correspon-
dence with the occurrences of formulae A1, . . . , An. Furthermore, N (Π) satisfies the Danos-Regnier
criterion.

Proof . The algorithm N is defined by induction on the structure of the deduction Π.

Case 1: Π consists of a single formula − A. Then N (Π) is the deduction net consisting of the
single node A. Obviously, N (Π) satisfies the Danos-Regnier criterion.

• Π consists of an axiom − A,A⊥. Then N (Π) is the proof net

A A⊥

Obviously, N (Π) satisfies the Danos-Regnier criterion.

Case 2: Π is of the form

Π1

− Γ, A,B
(]: right)

− Γ, A ] B

Then N (Π) is the proof net

N (Π1)

A B−−−−−
A ] B

obtained by grafting the exit nodes A and B ofN (Π1) respectively to the entry nodes A and B of the
elementary proof net corresponding to the (]: right) inference. If N (Π1) satisfies the Danos-Regnier
criterion, then it is easy to verify that N (Π) also satisfies the Danos-Regnier criterion.

Case 3: Π is of the form

Π1

− Γ, A

Π2

− ∆, B
(⊗: right)

− Γ,∆, A⊗B
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Then N (Π) is the proof net

N (Π1)

A

N (Π2)

B

A⊗B

obtained by grafting the exit node A of N (Π1) and the exit node B of N (Π2) respectively to the
entry nodes A and B of the elementary proof net corresponding to the (⊗: right) inference. If
N (Π1) and N (Π2) satisfy the Danos-Regnier criterion, then it is easy to verify that N (Π) also
satisfies the Danos-Regnier criterion.

The transformation N identifies sequential deductions that differ only for inessential reasons,
like the order of inferences. For example, the two sequential proofs

− A,A⊥ − B,B⊥
(⊗)

− A⊗B,A⊥, B⊥
(])

− A⊗B,A⊥ ] B⊥ − C,C⊥
(⊗)

− (A⊗B)⊗ C,A⊥ ] B⊥, C⊥

and

− A,A⊥ − B,B⊥
(⊗)

− A⊗B,A⊥, B⊥ − C,C⊥
(⊗)

− (A⊗B)⊗ C,A⊥, B⊥, C⊥
(])

− (A⊗B)⊗ C,A⊥ ] B⊥, C⊥

are mapped to the same proof net:

A B

A⊗B C

(A⊗B)⊗ C C⊥

A⊥ B⊥−−−−−−−
A⊥ ] B⊥

We now wish to show that the Danos-Regnier criterion insures that every proof net that satisfies
the criterion is of the form N (Π) for some sequential deduction Π. This is proved by induction on
the number of nodes in the deduction net. The proof is quite easy when the proof net has some
terminal node labeled with a par, but the case when all terminal nodes are labeled with tensors
is tricky and requires a detailed analysis of the structure of deduction nets. The problem is that

35



splitting a proof net by choosing any arbitrary terminal node labeled with a ⊗ and deleting the
two arcs incoming to this node may not yield sound proof nets. For example, splitting the proof
net below at the node A⊥ ⊗ B⊥ does not yield proof nets. On the other hand, splitting either at
node D⊥ ⊗ C⊥ or at node C ⊗ (A ] B) yields sound proof nets.

D

D⊥ C⊥

D⊥ ⊗ C⊥
C

A B−−−−−
A ] B

C ⊗ (A ] B)

A⊥ B⊥

A⊥ ⊗B⊥

The key observation is contained in the following lemma.

Lemma 7.8 Let Π be a deduction net, let A ⊗ B be a terminal node labeled with a tensor, and
let Π′ be the subgraph obtained from Π by deleting this terminal node and the two edges from A
to A ⊗ B and from B to A ⊗ B. If the Danos-Regnier criterion holds for Π and A and B are
connected in Π′, then there exist two disjoint subgraphs Π1,Π2 of Π′ with the following properties:
Π1 and Π2 are deduction nets satisfying the Danos-Regnier criterion, A belongs to Π1, B belongs
to Π2, and there is a nonempty set {C1 ] D1, . . . , Ck ] Dk} of par nodes with Ci in Π1 and Di in
Π2, i = 1, . . . , k.

Proof . Let us examine closely what happens when there is a terminal node labeled A⊗B such
that A and B are connected in the subgraph Π′ defined above.

• If A and B are connected in Π′, then Π′ itself is connected. Otherwise, Π′ would consist of at
least two disjoint maximal connected components, one of which does not contain both A and
B, in which case, Π would not be connected, a contradiction.

• Π′ contains some par node C ] D. Otherwise, the only switch graph of Π′ would be Π′ itself,
and similarly for Π, and both Π and Π′ would be trees. But then, A and B would be connected
in Π′, and this would imply the existence of a cycle in Π, a contradiction.

• For every path p in Π′ from A to B, there is some par node C ] D such that the path p contains
both edges from C to C ] D and from D to C ] D. Otherwise, there is in Π′ a path p from A
to B which uses at most one of the two incoming edges into each par node. Then, it is possible
to pick a choice of the soft edges in Π′ (and thus in Π) involving the edges used by the path p,
so that this is a path from A to B in some switch graph of Π′. However, in Π, this path yields
a cycle together with the edges from A to A⊗B and from B to A⊗B.

• From the previous item, there is set {E1 ] F1, . . . , Em ] Fm} of par nodes such that every path
in Π′ from A to B contains both edges (not necessarily consecutively) from Ei to Ei ] Fi and
from Fi to Ei ] Fi, for some i, 1 ≤ i ≤ m. Consider any such set.

Let us first delete the edges from Ei to Ei ] Fi in Π′, i = 1, . . . ,m. We must obtain at least
two disjoint maximal connected components. Indeed, since every path in Π′ from A to B must
contain for some i (1 ≤ i ≤ m) both edges from Ei to Ei ] Fi and from Fi to Ei ] Fi, the

36



resulting graph is not connected, and the maximal connected components containing A and B
must be disjoint. Thus, we have at least two disjoint maximal connected components, including
some component Π1 which contains A. We claim that Π1 must be a deduction net satisfying the
Danos-Regnier criterion. Indeed consider any switch graph of Π in which the nondeleted edges
from Fi to Ei ] Fi in Π′ are selected (1 ≤ i ≤ m). Because every switch graph of Π is a tree, no
cycle can exist in Π1, and it remains to show that every switch graph of Π1 is connected. But
we know that in Π, the graph Π1 is only connected to the node A ⊗ B by the edge from A to
A⊗B, since Π1 is a maximal connected component of Π′ not containing B. Thus, every switch
graph of Π selecting the edges from Fi to Ei ] Fi must induce a tree within Π1, since otherwise
this switch graph would not be connected. Also note that the Ei ] Fi (1 ≤ i ≤ m) are not
in Π1. Otherwise, since Π1 satisfies the Danos-Regnier criterion, for every switch graph of Π1

there would be a path from Ei to Ei ] Fi not using the edge from Ei to Ei ] Fi, and by choosing
a switch graph of Π in which the edges from Ei to Ei ] Fi (1 ≤ i ≤ m) are selected, we would
obtain a cycle. Let us now delete the edges from Fi to Ei ] Fi in Π′, i = 1, . . . ,m. The same
argument as above yields that Π′ must split into at least two disjoint connected components,
among which Π2 contains B. Furthermore, Π2 is a deduction net satisfying the Danos-Regnier
criterion.

• The deduction nets Π1 and Π2 are subgraphs of Π′ from which no par nodes or edges have been
deleted since this would contradict the fact that they satisfy the Danos-Regnier criterion (the
connectedness part). Finally, consider any path from A to B in Π′. We claim that in this path,
there is some edge from C to C ] D for some C in Π1 and some C ] D not in Π1. This is because
Π1 and Π2 are disjoint connected graphs and because Π1 is the maximal connected component
of A in Π′ after deletion of the par links from Ei to Ei ] Fi in Π′ (as earlier), and so for every
node C in Π1 adjacent to an edge whose other endpoint C ′ is not in Π1, C

′ cannot be a tensor
node since otherwise it would belong to Π1. Thus, C ′ must be a par node C ] D, and in fact it
is one of the Ei ] Fi. But then, choosing (as earlier) the switching in which the edges from Fi

to Ei ] Fi in Π′ are deleted (switching which defines Π2 as the maximal connected component
of B), there must be a path from B to D since Π satisfies the Danos-Regnier criterion, which
shows that D belongs to Π2. Thus, there is a nonempty set {C1 ] D1, . . . , Ck ] Dk} of par links
with Ci in Π1 and Di in Π2, i = 1, . . . , k.

We can now prove the correctness of the Danos-Regnier criterion [5] (see also Danos [4]).

Theorem 7.9 A deduction net Π can be obtained from some sequential deduction (i.e., is of the
form N (Π0) for some sequential deduction Π0) iff every switch graph associated with Π is a tree.

Proof . The necessity of the criterion has already been checked in Lemma 7.7. Thus, we turn
to the sufficiency of the criterion. The proof proceeds by induction on the number of nodes in the
deduction net. The case where the deduction net has a single node is clear. Otherwise, there are
two cases:

Case 1. Some terminal node is labeled with a par, say A ] B. Consider the subgraph Π′

obtained from Π by deleting the terminal node in question and the two edges from A to A ] B and
from B to A ] B. We claim that Π′ is a deduction net satisfying the correctness criterion. Indeed,
if any switch graph obtained from Π′ is not a tree, we also obtain a bad switch graph for Π by
putting back the node A ] B and connecting it to either A or B (but not both).
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Case 2. Every terminal node is labeled with a tensor.

This case is more delicate, as deleting any terminal node A⊗B and the edges from A to A⊗B
and from B to A⊗B does not necessarily yield a deduction net satisfying the correctness criterion.
However, we have the following claim:

Claim: There is a least some terminal node labeled A⊗B such that the subgraph Π′ obtained
from Π by deleting this terminal node and the two edges from A to A ⊗ B and from B to A ⊗ B
is composed of two disjoint deduction nets Π′1 (having A as a terminal node) and Π′2 (having B as
a terminal node) which both satisfy the criterion.

If the claim fails, for every terminal node A⊗ B of Π, since Π is connected, the nodes labeled
with A and B must be connected in Π′, since otherwise, there would be at least three maximal
connected components, contradicting the fact that Π is connected. Thus, we can apply Lemma 7.8,
and there exist two disjoint subgraphs Π1,Π2 of Π′ with the following properties: Π1 and Π2 are
deduction nets satisfying the Danos-Regnier criterion, A belongs to Π1, B belongs to Π2, and there
is a nonempty set {C1 ] D1, . . . , Ck ] Dk} of par nodes with Ci in Π1 and Di in Π2, i = 1, . . . , k.
The above property holds for every tensor node which fails to be a splitting tensor, and thus we can
select such a tensor A′ ⊗ B′ for which the associated deduction net Π1+2 obtained by connecting
Π1 and Π2 to A′ ⊗B′ is maximal with respect to subgraph inclusion. But then, because there is a
nonempty set of par connections between Π1 and Π2 and because every exit node of Π is a tensor,
every par node in {C1 ] D1, . . . , Ck ] Dk} is the ancestor of some terminal tensor node. However,
if none of these tensors is a splitting tensor, Lemma 7.8 applies, contradicting the maximality of
the deduction net Π1+2. Thus, there is some terminal node A⊗B of Π satisfying the condition of
the claim.

This concludes the proof of the claim, and thus the proof of the theorem.

If we observe that the cut rule

− Γ, A − ∆, A⊥

− Γ,∆
(cut)

behaves just like the following special case of the (⊗: right) rule

− Γ, A − ∆, A⊥

− Γ,∆, A⊗A⊥
(⊗: right),

we can extend the above treatment of proof nets, including Lemma 7.7 and Theorem 7.9, to proof
nets including cut links, which are links of the form

A A⊥

CUT
.

Every node labeled with CUT is necessarily a terminal node.

The proof of Theorem 7.9 yields an O(n2)-time algorithm for testing whether a deduction net
comes from a sequential deduction. This is not a trivial result, since the naive method yields
an exponential-time algorithm. Girard has announced the existence of an O(n2) algorithm, but
as far as we know, no such algorithm has been published. The algorithm presented below works
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recursively. If the deduction net only has axiom links, the algorithm succeeds iff the deduction
net consists of a single axiom link between A and A⊥ or of a single node A (for some proposition
A). If the deduction net has some terminal node labeled with a par node A ] B, test recursively
the subnets obtained by deleting the edges from A ] B to A and to B. If the deduction net has
terminal nodes only labeled with tensor nodes, try to find a splitting tensor node as follows. First,
for each terminal node A⊗B, delete the edges from A⊗B to A and to B. Then, find the maximally
connected components of this graph. If the resulting graph is connected, the algorithm stops with
failure. Otherwise, some terminal node labeled with a tensor A ⊗ B has been found such that A
and B belong to two disjoint deduction nets Π1 and Π2 after the edges from A ⊗ B to A and to
B have been removed from the original deduction net (there may be several choices, just consider
the terminal nodes in some fixed order and pick the first one). Then, test recursively the subnets
Π1 and Π2.

Since maximally connected components can be found in linear time, the cost of finding a splitting
tensor is O(n). It is then clear that the algorithm runs in O(n2).

Since a proof net is a special deduction net, we also obtain an O(n2)-time algorithm for testing
whether a proof net comes from a sequential proof.

8 Conclusion

We have provided an introduction to linear logic, focusing on its propositional fragment. In par-
ticular, we describe an algebraic semantics for linear logic, phase semantics. Contrary to Girard’s
original presentation [6] in which the notions of closure operation and Galois connection are im-
plicit, we present phase semantics explicitly as a specific instance of a Galois connection. We hope
that such an approach helps to understand better the motivations for this semantics, and also the
reason why linear logic is sound and complete for this semantics. We also define proof nets for
multiplicative linear logic and give a direct proof of the correctness of the Danos-Regnier criterion.
This proof relies on a purely graph-theoretic decomposition lemma which appears to be new. As
a corollary, we obtain an O(n2)-time algorithm for testing the correctness of a proof net. The
existence of such an algorithm was conjectured before, but our algorithm appears to be original.
In a forthcoming paper, we intend to cover the quantifiers, proof nets for full linear logic, cut
elimination, and the semantics of coherent spaces.
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9 Appendix: Summary of Notation

The logical constants, logical connectives, and semantic symbols of linear logic are listed below.

I multiplicative true
⊥ multiplicative false
1 additive true
0 additive false
⊗ multiplicative and (tensor)
] multiplicative or (par)
& addittive and
⊕ addittive or
−◦ linear (multiplicative) implication
◦−◦ linear (multiplicative) equivalence
⊥ linear (multiplicative) negation
! of course
? why not
∼ interpretation of ⊥

• interpretation of ⊗
‖ interpretation of ]

interpretation of !

Other symbols are listed below.

∪ binary union
∩ binary intersection⋃

union of a family⋂
intersection of a family

∧ binary greatest lower bound
∨ binary least upper bound∧

greatest lower bound of a family∨
least upper bound of a family

∈ set membership
⊆ set inclusion
∅ empty set
7→ functional mapping
≤ partial order
† closure operation
≡ equivalence relation
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