
Constructive Logics. Part I: A Tutorial on Proof Systems and

Typed λ-Calculi

Jean Gallier∗

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St.
Philadelphia, PA 19104, USA

e-mail: jean@saul.cis.upenn.edu

November 13, 2012

Abstract. The purpose of this paper is to give an exposition of material dealing with constructive
logic, typed λ-calculi, and linear logic. The emergence in the past ten years of a coherent field of
research often named “logic and computation” has had two major (and related) effects: firstly, it has
rocked vigorously the world of mathematical logic; secondly, it has created a new computer science
discipline, which spans from what is traditionally called theory of computation, to programming
language design. Remarkably, this new body of work relies heavily on some “old” concepts found
in mathematical logic, like natural deduction, sequent calculus, and λ-calculus (but often viewed
in a different light), and also on some newer concepts. Thus, it may be quite a challenge to become
initiated to this new body of work (but the situation is improving, there are now some excellent
texts on this subject matter). This paper attempts to provide a coherent and hopefully “gentle”
initiation to this new body of work. We have attempted to cover the basic material on natural
deduction, sequent calculus, and typed λ-calculus, but also to provide an introduction to Girard’s
linear logic, one of the most exciting developments in logic these past six years. The first part of
these notes gives an exposition of background material (with some exceptions, such as “contraction-
free” systems for intuitionistic propositional logic and the Girard-translation of classical logic into
intuitionistic logic, which is new). The second part is devoted to more current topics such as linear
logic, proof nets, the geometry of interaction, and unified systems of logic (LU).

∗This research was partially supported by ONR Grant NOOO14-88-K-0593.

1

Contents

1 Introduction 3

2 Natural Deduction, Simply-Typed λ-Calculus 4

3 Adding Conjunction, Negation, and Disjunction 10

4 Gentzen’s Sequent Calculi 14

5 Definition of the Transformation N from Gi to Ni 18

6 Definition of the Transformation G from Ni to Gi 25

7 First-Order Quantifiers 28

8 Gentzen’s Cut Elimination Theorem 36

9 Invertible Rules 43

10 A Proof-Term Calculus for G⊃,∧,∨,∀,∃,⊥,cuti 48

11 The Gentzen Systems LJ and LK 52

12 Cut Elimination in LK (and LJ) 55

13 Reductions of Classical Logic to Intuitionistic Logic 70

2

1 Introduction

The purpose of this paper is to give an exposition of material dealing with constructive logics,
typed λ-calculi, and linear logic. During the last fifteen years, a significant amount of research
in the areas of programming language theory, automated deduction, and more generally logic and
computation, has relied heavily on concepts and results found in the fields of constructive logics
and typed λ-calculi. However, there are very few comprehensive and introductory presentations of
constructive logics and typed λ-calculi for noninitiated researchers, and many people find it quite
frustrating to become acquainted to this type of research. Our motivation in writing this paper is
to help fill this gap. We have attempted to cover the basic material on natural deduction, sequent
calculus, and typed λ-calculus, but also to provide an introduction to Girard’s linear logic [12], one
of the most exciting developments in logic these past six years. As a consequence, we discovered
that the amount of background material necessary for a good understanding of linear logic was
quite extensive, and we found it convenient to break this paper into two parts. The first part gives
an exposition of background material (with some exceptions, such as “contraction-free” systems
for intuitionistic propositional logic and the Girard-translation of classical logic into intuitionistic
logic, which is new [14]). The second part is devoted to more current topics such as linear logic,
proof nets, the geometry of interaction, and unified systems of logic (LU).

In our presentation of background material, we have tried to motivate the introduction of
various concepts by showing that they are indispensable to achieve certain natural goals. For
pedagogical reasons, it seems that it is best to begin with proof systems in natural deduction style
(originally due to Gentzen [8] and thoroughly investigated by Prawitz [23] in the sixties). This
way, it is fairly natural to introduce the distinction between intuitionistic and classical logic. By
adopting a description of natural deduction in terms of judgements, as opposed to the tagged
trees used by Gentzen and Prawitz, we are also led quite naturally to the encoding of proofs as
certain typed λ-terms, and to the correspondence between proof normalization and β-conversion
(the Curry/Howard isomorphism [16]). Sequent calculi can be motivated by the desire to obtain
more “symmetric” systems, but also systems in which proof search is easier to perform (due to
the subformula property). At first, the cut rule is totally unnecessary and even undesirable, since
we are trying to design systems as deterministic as possible. We then show how every proof in
the sequent calculus (Gi) can be converted into a natural deduction proof (in Ni). In order to
provide a transformation in the other direction, we introduce the cut rule. But then, we observe
that there is a mismatch, since we have a transformation N :Gi → Ni on cut-free proofs, whereas
G:Ni → Gcuti maps to proofs possibly with cuts. The mismatch is resolved by Gentzen’s fundamental
cut elimination theorem, which in turn singles out the crucial role played by the contraction rule.
Indeed, the contraction rule plays a crucial role in the proof of the cut elimination theorem, and
furthermore it cannot be dispensed with in traditional systems for intuitionistic logic (however,
in the case of intuitionistic propositional logic, it is possible to design contraction-free systems,
see section 9 for details). We are thus setting the stage for linear logic, in which contraction (and
weakening) are dealt with in a very subtle way. We then investigate a number of sequent calculi that
allow us to prove the decidability of provability in propositional classical logic and in propositional
intuitionistic logic. In particular, we discuss some “contraction-free” systems for intuitionistic
propositional logic for which proof search always terminates. Such systems were discovered in
the early fifties by Vorob’ev [35, 36]. Interest in such systems has been revived recently due to
some work in automated theorem proving by Dyckhoff [5], on the embedding of intuitionistic logic

3

into linear logic by Lincoln, Scedrov and Shankar [20], and on the complexity of cut-elimination
by Hudelmaier [17]. The cut elimination theorem is proved in full for the Gentzen system LK
using Tait’s induction measure [29] and some twists due to Girard [13]. We conclude with a fairly
extensive discussion of the reduction of classical logic to intuitionistic logic. Besides the standard
translations due to Gödel, Gentzen, and Kolmogorov, we present an improved translation due to
Girard [14] (based on the notion of polarity of a formula).

In writing this paper, we tried to uncover some of the intuitions that may either have been
lost or obscured in advanced papers on the subject, but we have also tried to present relatively
sophisticated material, because this is more exciting for the reader. Thus, we have assumed that
the reader has a certain familiarity with logic and the lambda calculus. If the reader does not
feel sufficiently comfortable with these topics, we suggest consulting Girard, Lafont, Taylor [9] or
Gallier [6] for background on logic, and Barendregt [2], Hindley and Seldin [15], or Krivine [19] for
background on the lambda calculus. For an in-depth study of constructivism in mathematics, we
highly recommend Troelstra and van Dalen [32].

2 Natural Deduction, Simply-Typed λ-Calculus

We first consider a syntactic variant of the natural deduction system for implicational propositions
due to Gentzen [8] and Prawitz [23].

In the natural deduction system of Gentzen and Prawitz, a deduction consists in deriving
a proposition from a finite number of packets of assumptions, using some predefined inference
rules. Technically, packets are multisets of propositions. During the course of a deduction, certain
packets of assumptions can be “closed”, or “discharged”. A proof is a deduction such that all the
assumptions have been discharged. In order to formalize the concept of a deduction, one faces the
problem of describing rigorously the process of discharging packets of assumptions. The difficulty
is that one is allowed to discharge any number of occurrences of the same proposition in a single
step, and this requires some form of tagging mechanism. At least two forms of tagging techniques
have been used.

• The first one, used by Gentzen and Prawitz, consists in viewing a deduction as a tree whose
nodes are labeled with propositions (for a lucid presentation, see van Dalen [34]). One is allowed
to tag any set of occurrences of some proposition with a natural number, which also tags the
inference that triggers the simultaneous discharge of all the occurrences tagged by that number.

• The second solution consists in keeping a record of all undischarged assumptions at every stage
of the deduction. Thus, a deduction is a tree whose nodes are labeled with expressions of the
form Γ − A, called sequents, where A is a proposition, and Γ is a record of all undischarged
assumptions at the stage of the deduction associated with this node.

Although the first solution is perhaps more natural from a human’s point of view and more
economical, the second one is mathematically easier to handle. In the sequel, we adopt the second
solution. It is convenient to tag packets of assumptions with labels, in order to discharge the
propositions in these packets in a single step. We use variables for the labels, and a packet labeled
with x consisting of occurrences of the proposition A is written as x:A. Thus, in a sequent Γ − A,
the expression Γ is any finite set of the form x1:A1, . . . , xm:Am, where the xi are pairwise distinct
(but the Ai need not be distinct). Given Γ = x1:A1, . . . , xm:Am, the notation Γ, x:A is only well

4

defined when x 6= xi for all i, 1 ≤ i ≤ m, in which case it denotes the set x1:A1, . . . , xm:Am, x:A.
We have the following axioms and inference rules.

Definition 2.1 The axioms and inference rules of the system N⊃m (implicational logic) are listed
below:

Γ, x:A − A

Γ, x:A − B
Γ − A ⊃ B

(⊃-intro)

Γ − A ⊃ B Γ − A
Γ − B

(⊃-elim)

In an application of the rule (⊃-intro), we say that the proposition A which appears as a
hypothesis of the deduction is discharged (or closed).1 It is important to note that the ability to
label packets consisting of occurrences of the same proposition with different labels is essential,
in order to be able to have control over which groups of packets of assumptions are discharged
simultaneously. Equivalently, we could avoid tagging packets of assumptions with variables if
we assumed that in a sequent Γ − C, the expression Γ, also called a context , is a multiset of
propositions. The following two examples illustrate this point.

Example 2.2 Let
Γ = x:A ⊃ (B ⊃ C), y:A ⊃ B, z:A.

Γ − A ⊃ (B ⊃ C) Γ − A
Γ − B ⊃ C

Γ − A ⊃ B Γ − A
Γ − B

x:A ⊃ (B ⊃ C), y:A ⊃ B, z:A − C

x:A ⊃ (B ⊃ C), y:A ⊃ B − A ⊃ C

x:A ⊃ (B ⊃ C) − (A ⊃ B) ⊃ (A ⊃ C)

− (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

In the above example, two occurrences of A are discharged simultaneously. Compare with the
example below where these occurrences are discharged in two separate steps.

Example 2.3 Let
Γ = x:A ⊃ (B ⊃ C), y:A ⊃ B, z1:A, z2:A.

1In this system, the packet of assumptions A is always discharged. This is not so in Prawitz’s system (as presented
for example in van Dalen [34]), but we also feel that this is a slightly confusing aspect of Prawitz’s system.

5

Γ − A ⊃ (B ⊃ C) Γ − A
Γ − B ⊃ C

Γ − A ⊃ B Γ − A
Γ − B

x:A ⊃ (B ⊃ C), y:A ⊃ B, z1:A, z2:A − C

x:A ⊃ (B ⊃ C), y:A ⊃ B, z1:A − A ⊃ C

x:A ⊃ (B ⊃ C), z1:A − (A ⊃ B) ⊃ (A ⊃ C)

z1:A − (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

− A ⊃
(
(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

)
For the sake of comparison, we show what these two natural deductions look like in the system

of Gentzen and Prawitz, where packets of assumptions discharged in the same inference are tagged
with a natural number. Example 2.2 corresponds to the following tree:

Example 2.4

(A ⊃ (B ⊃ C))3 A1

B ⊃ C
(A ⊃ B)2 A1

B

C
1

A ⊃ C
2

(A ⊃ B) ⊃ (A ⊃ C)
3

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

and Example 2.3 to the following tree:

Example 2.5

(A ⊃ (B ⊃ C))3 A1

B ⊃ C
(A ⊃ B)2 A4

B

C
1

A ⊃ C
2

(A ⊃ B) ⊃ (A ⊃ C)
3

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
4

A ⊃
(
(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

)

It is clear that a context (the Γ in a sequent Γ − A) is used to tag packets of assumptions and
to record the time at which they are discharged. From now on, we stick to the presentation of
natural deduction using sequents.

6

Proofs may contain redundancies, for example when an elimination immediately follows an
introduction, as in the following example in which D1 denotes a deduction with conclusion Γ, x:A −
B and D2 denotes a deduction with conclusion Γ − A.

D1

Γ, x:A − B
Γ − A ⊃ B

D2

Γ − A
Γ − B

Intuitively, it should be possible to construct a deduction for Γ − B from the two deductions
D1 and D2 without using at all the hypothesis x:A. This is indeed the case. If we look closely at
the deduction D1, from the shape of the inference rules, assumptions are never created, and the
leaves must be labeled with expressions of the form Γ′,∆, x:A, y:C − C or Γ,∆, x:A − A, where
y 6= x and either Γ = Γ′ or Γ = Γ′, y:C. We can form a new deduction for Γ − B as follows: in
D1, wherever a leaf of the form Γ,∆, x:A − A occurs, replace it by the deduction obtained from
D2 by adding ∆ to the premise of each sequent in D2. Actually, one should be careful to first make
a fresh copy of D2 by renaming all the variables so that clashes with variables in D1 are avoided.
Finally, delete the assumption x:A from the premise of every sequent in the resulting proof. The
resulting deduction is obtained by a kind of substitution and may be denoted as D1[D2/x], with
some minor abuse of notation. Note that the assumptions x:A occurring in the leaves of the form
Γ′,∆, x:A, y:C − C were never used anyway. This illustrates the fact that not all assumptions are
necessarily used. This will not be the case in linear logic [12]. Also, the same assumption may
be used more than once, as we can see in the (⊃-elim) rule. Again, this will not be the case in
linear logic, where every assumption is used exactly once, unless specified otherwise by an explicit
mechanism. The step which consists in transforming the above redundant proof figure into the
deduction D1[D2/x] is called a reduction step or normalization step.

We now show that the simply-typed λ-calculus provides a natural notation for proofs in natural
deduction, and that β-conversion corresponds naturally to proof normalization. The trick is to
annotate inference rules with terms corresponding to the deductions being built, by placing these
terms on the righthand side of the sequent, so that the conclusion of a sequent appears to be
the “type of its proof”. This way, inference rules have a reading as “type-checking rules”. This
discovery due to Curry and Howard is known as the Curry/Howard isomorphism, or formulae-
as-types principle [16]. An early occurrence of this correspondence can be found in Curry and
Feys [3] (1958), Chapter 9E, pages 312-315. Furthermore, and this is the deepest aspect of the
Curry/Howard isomorphism, proof normalization corresponds to term reduction in the λ-calculus
associated with the proof system.

Definition 2.6 The type-checking rules of the λ-calculus λ⊃ (simply-typed λ-calculus) are listed
below:

Γ, x:A − x:A

Γ, x:A −M :B

Γ − (λx:A.M):A ⊃ B
(abstraction)

7

Γ −M :A ⊃ B Γ − N :A

Γ − (MN):B
(application)

Now, sequents are of the form Γ − M :A, where M is a simply-typed λ-term representing a
deduction of A from the assumptions in Γ. Such sequents are also called judgements, and Γ is
called a type assignment or context .

The example of redundancy is now written as follows:

Γ, x:A −M :B

Γ − (λx:A.M):A ⊃ B Γ − N :A

Γ − (λx:A.M)N :B

Now, D1 is incorporated in the deduction as the term M , and D2 is incorporated in the deduction
as the term N . The great bonus of this representation is that D1[D2/x] corresponds to M [N/x],
the result of performing a β-reduction step on (λx:A.M)N .

Example 2.7

x:P ⊃ (Q ⊃ P), u:P − u:P

x:P ⊃ (Q ⊃ P) − λu:P. u: (P ⊃ P)

− λx: (P ⊃ (Q ⊃ P)). λu:P. u: (P ⊃ (Q ⊃ P)) ⊃ (P ⊃ P)

y:P, z:Q − y:P

y:P − λz:Q. y: (Q ⊃ P)

− λy:P. λz:Q. y:P ⊃ (Q ⊃ P)

− (λx: (P ⊃ (Q ⊃ P)). λu:P. u)λy:P. λz:Q. y: (P ⊃ P)

The term (λx: (P ⊃ (Q ⊃ P)). λu:P. u)λy:P. λz:Q. y reduces to λu:P. u, which is indeed the
term representation of the natural deduction proof

u:P − P
− (P ⊃ P)

Thus, the simply-typed λ-calculus arises as a natural way to encode natural deduction proofs,
and β-reduction corresponds to proof normalization. The correspondence between proof normaliza-
tion and term reduction is the deepest and most fruitful aspect of the Curry/Howard isomorphism.
Indeed, using this correspondence, results about the simply-typed λ-calculus can be translated into
the framework of natural deduction proofs, a very nice property. On the other hand, one should
not be too dogmatic (or naive) about the Curry/Howard isomorphism and make it into some kind
of supreme commandment (as we say in French, “prendre ses désirs pour des réalités”). In the
functional style of programming, λ-reduction corresponds to parameter-passing, but more is going
on, in particular recursion. Thus, although it is fruitful to view a program as a proof, the speci-
fication of a program as the proposition proved by that proof, and the execution of a program as
proof normalization (or cut elimination, but it is confusing to say that, since in most cases we are
dealing with a natural deduction system), it is abusive to claim that this is what programming is
all about. In fact, I believe that statements to that effect are detrimental to our field. There are

8

plenty of smart people who are doing research in the theory of programming and programming lan-
guage design, and such statements will only make them skeptical (at best). Programming cannot
be reduced to the Curry/Howard isomorphism.

When we deal with the calculus λ⊃, rather than using ⊃, we usually use →, and thus, the
calculus is denoted as λ→. In order to avoid ambiguities, the delimiter used to separate the lefthand
side from the righthand side of a judgement Γ −M :A will be ., so that judgements are written as
Γ . M :A.

Before moving on to more fascinating topics, we cannot resist a brief digression on notation
(at least, we will spare the reader the moralistic lecture that we have inflicted upon students over
more than fourteen years!). Notation is supposed to help us, but the trouble is that it can also be
a handicap. This is because there is a very delicate balance between the explicit and the implicit.
Our philosophy is that the number of symbols used should be minimized, and that notation should
help remembering what things are, rather than force remembering what things are. The most
important thing is that notation should be as unambiguous as possible. Furthermore, we should
allow ourselves dropping certain symbols as long as no serious ambiguities arise, and we should
avoid using symbols that already have a standard meaning, although this is nearly impossible.

Lambda-abstraction and substitution are particularly spicy illustrations. For example, the
notation λx:σM together with (MN) for application is unambiguous. However, when we see the
term (λx:σMN), we have to think a little (in fact, too much) to realize that this is indeed the
application of λx:σM to N , and not the abstraction λx:σ(MN). This is even worse if we look at
the term λx:σMN where the parentheses have been dropped. So, we may consider introducing
extra markers, just to help readability, although they are not strictly necessary. For example, we
can add a dot between σ and M : abstraction is then written as λx:σ. M . Similarly, universally
quantified formulae are written as ∀x:σ. A. Now, λx:σ. MN is a little better, but still requires an
effort. Thus, we will add parentheses around the lambda abstraction and write (λx:σ. M)N . Yes,
we are using more symbols than we really need, but we feel that we have removed the potential
confusion with λx:σ.MN (which should really be written as λx:σ.(MN)). Since we prefer avoiding
subscripts or superscripts unless they are really necessary, we favor the notation λx:σ.M over the
(slightly old-fashion) λxσ. M (we do not find the economy of one symbol worth the superscript).2

Now, let us present another choice of notation, a choice that we consider poor since it forces us
to remember something rather than help us. In this choice, abstraction is written as [x:σ]M , and
universal quantification as (x:σ)A. The problem is that the reader needs to remember which kind of
bracket corresponds to abstraction or to (universal) quantification. Since additional parentheses are
usually added when applications arise, we find this choice quite confusing. The argument that this
notation corresponds to some form of machine language is the worst that can be given. Humans are
not machines, and thus should not be forced to read machine code! An interesting variation on the
notations λx:σ. M and ∀x:σ. A is λ(x:σ)M and ∀(x:σ)A, which is quite defendable. Substitution
is an even more controversial subject! Our view is the following. After all, a substitution is
a function whose domain is a set of variables and which is the identity except on a finite set.
Furthermore, substitutions can be composed. But beware: composition of substitutions is not
function composition (indeed, a substitution ϕ induces a homomorphism ϕ̂, and the composition of
two substitutions ϕ and ψ is the function composition of ϕ̂ and ψ, and not of ϕ and ψ). Thus, the

2The notation λxσ. M seems to appear mostly in systems where contexts are not used, but instead where it is
assumed that each variable has been preassigned a type.

9

choice of notation for composition of substitutions has an influence on the notation for substitution.
If we choose to denote composition of substitution in the order ϕ ;ψ, then it is more convenient to
denote the result of applying a substitution ϕ to a term M as Mϕ, or (M)ϕ, or as we prefer as M [ϕ].
Indeed, this way, M [ϕ][ψ] is equal to M [ϕ ;ψ]. Now, since a substitution is a function with domain
a finite set of variables, it can be denoted as [x1 7→M1, . . . , xn 7→Mn]. In retrospect, we regret not
having adopted this notation. If this was the case, applying a substitution to M would be denoted
as M [x1 7→ M1, . . . , xn 7→ Mn]. Instead, we use the notation [t1/x1, . . . , tn/xn] which has been
used for some time in automated theorem proving. Then, applying a substitution to M is denoted
as M [t1/x1, . . . , tn/xn] (think for just a second of the horrible clash if this notation was used
with [x:σ]M for abstraction!). Other authors denote substitutions as [x1: = M1, . . . , xn: = Mn].
Personally, we would prefer switching to [x1 7→ M1, . . . , xn 7→ Mn], because : = is also used for
denoting a function f whose value at some argument x is redefined to be a, as in f [x: = a]. Finally,
a word about sequents and judgements. To us, the turnstile symbol ` means provability. A sequent
consists of two parts Γ and ∆, and some separator is needed between them. In principle, anything
can do, and if the arrow→ was not already used as a type-constructor, we would adopt the notation
Γ→ ∆. Some authors denote sequents as Γ ` ∆. A problem then arises when we want to say that
a sequent is provable, since this is written as ` Γ ` ∆. The ideal is to use symbols of different size
for the two uses of `. In fact, we noticed that Girard himself has designed his own ` which has a
thicker but smaller (in height) foot: −. Thus, we will use the “Girardian turnstile” − in writing
sequents as Γ − ∆. Judgements have three parts, Γ, M , and σ. Our view is that Γ and M actually
come together to form what we have called elsewhere a “declared term” (thinking of the context Γ
as a declaration of the variables). Again we need a way to put together Γ and M , and we use the
symbol ., thus forming Γ . M . Then, a declared term may have a type σ, and such a judgement
is written as Γ . M :σ. To say that a judgement is provable, we write ` Γ . M :σ. We find this
less confusing than the notation ` Γ ` M :σ, and this is why we favor Γ . M :σ over Γ ` M :σ
(but some authors use . for the reduction relation! We use −→). And please, avoid the notation
` Γ `M ∈ σ, which we find terribly confusing and cruel to ∈. But we have indulged too long into
this digression, and now back to more serious business.

3 Adding Conjunction, Negation, and Disjunction

First, we present the natural deduction systems, and then the corresponding extensions of the
simply-typed λ-calculus. As far as proof normalization is concerned, conjunction does not cause
any problem, but as we will see, negation and disjunction are more problematic. In order to
add negation, we add the new constant ⊥ (false) to the language, and define negation ¬A as an
abbreviation for A ⊃⊥.

Definition 3.1 The axioms and inference rules of the system N⊃,∧,∨,⊥i (intuitionistic propositional
logic) are listed below:

Γ, x:A − A

Γ −⊥
Γ − A

(⊥-elim)

Γ, x:A − B
Γ − A ⊃ B

(⊃-intro)

10

Γ − A ⊃ B Γ − A
Γ − B

(⊃-elim)

Γ − A Γ − B
Γ − A ∧B

(∧-intro)

Γ − A ∧B
Γ − A

(∧-elim)
Γ − A ∧B

Γ − B
(∧-elim)

Γ − A
Γ − A ∨B

(∨-intro)
Γ − B

Γ − A ∨B
(∨-intro)

Γ − A ∨B Γ, x:A − C Γ, y:B − C
Γ − C

(∨-elim)

Since the rule (⊥-elim) is trivial (does nothing) when A =⊥, from now on, we will assume that
A 6=⊥. Minimal propositional logic N⊃,∧,∨,⊥m is obtained by dropping the (⊥-elim) rule. In order
to obtain the system of classical propositional logic, denoted N⊃,∧,∨,⊥c , we add to N⊃,∧,∨,⊥m the
following inference rule corresponding to the principle of proof by contradiction (by-contra) (also
called reductio ad absurdum).

Γ, x:¬A −⊥
Γ − A

(by-contra)

Several useful remarks should be made.

(1) In classical propositional logic (N⊃,∧,∨,⊥c), the rule

Γ −⊥
Γ − A

(⊥-elim)

can be derived, since if we have a deduction of Γ −⊥, then for any arbitrary A we have a deduction
Γ, x:¬A −⊥, and thus a deduction of Γ − A by applying the (by-contra) rule.

(2) The proposition A ⊃ ¬¬A is derivable in N⊃,∧,∨,⊥m , but the reverse implication ¬¬A ⊃ A is

not derivable, even in N⊃,∧,∨,⊥i . On the other hand, ¬¬A ⊃ A is derivable in N⊃,∧,∨,⊥c :

x:¬¬A, y:¬A − ¬¬A x:¬¬A, y:¬A − ¬A
x:¬¬A, y:¬A −⊥

(by-contra)
x:¬¬A − A
− ¬¬A ⊃ A

(3) Using the (by-contra) inference rule together with (⊃-elim) and (∨-intro), we can prove
¬A ∨A (that is, (A ⊃⊥) ∨A). Let

Γ = x: ((A ⊃⊥) ∨A) ⊃⊥ .

We have the following proof for (A ⊃⊥) ∨A in N⊃,∧,∨,⊥c :

11

Γ − ((A ⊃⊥) ∨A) ⊃⊥

Γ, y:A − ((A ⊃⊥) ∨A) ⊃⊥

Γ, y:A − A

Γ, y:A − (A ⊃⊥) ∨A

Γ, y:A −⊥
Γ − A ⊃⊥

Γ − (A ⊃⊥) ∨A

Γ −⊥
(by-contra)

− (A ⊃⊥) ∨A

As in (2), ¬A ∨ A is not derivable in N⊃,∧,∨,⊥i . The reader might wonder how one shows that

¬¬A ⊃ A and ¬A∨A are not provable in N⊃,∧,∨,⊥i . In fact, this is not easy to prove directly. One
method is to use the fact (given by theorem 3.4 and theorem 3.5) that every proof-term reduces
to a unique normal form. Then, argue that if the above propositions have a proof in normal form,
this leads to a contradiction. Another even simpler method is to use cut-free Gentzen systems, to
be discussed in sections 4, 8, and 9.

The typed λ-calculus λ→,×,+,⊥ corresponding to N⊃,∧,∨,⊥i is given in the following definition.

Definition 3.2 The typed λ-calculus λ→,×,+,⊥ is defined by the following rules.

Γ, x:A . x:A

Γ . M :⊥
Γ .5A(M):A

(⊥-elim)

with A 6=⊥,
Γ, x:A .M :B

Γ . (λx:A.M):A→ B
(abstraction)

Γ . M :A→ B Γ . N :A

Γ . (MN):B
(application)

Γ . M :A Γ . N :B

Γ . 〈M,N〉:A×B
(pairing)

Γ . M :A×B
Γ . π1(M):A

(projection)
Γ . M :A×B
Γ . π2(M):B

(projection)

Γ . M :A

Γ . inl(M):A+B
(injection)

Γ . M :B

Γ . inr(M):A+B
(injection)

Γ . P :A+B Γ, x:A .M :C Γ, y:B . N :C

Γ . case(P, λx:A.M, λy:B. N):C
(by-cases)

12

A syntactic variant of case(P, λx:A.M, λy:B. N) often found in the literature is

case P of inl(x:A)⇒M | inr(y:B)⇒ N,

or even
case P of inl(x)⇒M | inr(y)⇒ N,

and the (by-cases) rule can be written as

Γ . P :A+B Γ, x:A .M :C Γ, y:B . N :C

Γ . (case P of inl(x:A)⇒M | inr(y:B)⇒ N):C
(by-cases)

We also have the following reduction rules.

Definition 3.3 The reduction rules of the system λ→,×,+,⊥ are listed below:

(λx:A.M)N −→M [N/x],

π1(〈M,N〉) −→M,

π2(〈M,N〉) −→ N,

case(inl(P), λx:A.M, λy:B. N) −→M [P/x], or

case inl(P) of inl(x:A)⇒M | inr(y:B)⇒ N −→M [P/x],

case(inr(P), λx:A.M, λy:B. N) −→ N [P/y], or

case inr(P) of inl(x:A)⇒M | inr(y:B)⇒ N −→ N [P/y],

5A→B(M)N −→ 5B(M),

π1(5A×B(M)) −→ 5A(M),

π2(5A×B(M)) −→ 5B(M),

case(5A+B(P), λx:A.M, λy:B. N) −→ 5C(P).

Alternatively, as suggested by Ascánder Suárez, we could replace the rules for case by the rules

case(inl(P),M,N) −→MP,

case(inr(P),M,N) −→ NP,

case(5A+B(P),M,N) −→ 5C(P).

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up to α-renaming. This result was first proved by Prawitz [24] for

the system N⊃,∧,∨,⊥i .

Theorem 3.4 [Church-Rosser property, Prawitz (1971)] Reduction in λ→,×,+,⊥ (specified in Def-
inition 3.3) is confluent. Equivalently, conversion in λ→,×,+,⊥ is Church-Rosser.

A proof can be given by adapting the method of Tait and Martin-Löf [21] using a form of
parallel reduction (see also Barendregt [2], Hindley and Seldin [15], or Stenlund [27]).

13

Theorem 3.5 [Strong normalization property, Prawitz (1971)] Reduction in λ→,×,+,⊥ (as in Def-
inition 3.3) is strongly normalizing.

A proof can be given by adapting Tait’s reducibility method [28], [30], as done in Girard [10]
(1971), [11] (1972) (see also Gallier [7]).

If one looks at the rules of the systems N⊃,∧,∨,⊥ (or λ→,×,+,⊥), one notices a number of un-
pleasant features:

(1) There is an asymmetry between the lefthand side and the righthand side of a sequent (or
judgement): the righthand side must consist of a single formula, but the lefthand side may
have any finite number of assumptions. This is typical of intuitionistic logic (and it is one
of the major characteristics of its sequent-calculus formulations, see section 4) but it is also
a defect.

(2) Negation is very badly handled, only in an indirect fashion.

(3) The (⊃-intro) rule and the (∨-elim) rule are global rules requiring the discharge of assump-
tions.

(4) Worse of all, the (∨-elim) rule contains the parasitic formula C which has nothing to do
with the disjunction being eliminated.

Finally, note that it is quite difficult to search for proofs in such a system. Gentzen’s sequent
systems remedy some of these problems.

4 Gentzen’s Sequent Calculi

The main idea is that now, a sequent Γ − ∆ consists of two finite multisets Γ and ∆ of formulae, and
that rather than having introduction and elimination rules, we have rules introducing a connective
on the left or on the right of a sequent. A first version of such a system for classical propositional
logic is given next. In these rules Γ and ∆ stand for possibly empty finite multisets of propositions.

Definition 4.1 The axioms and inference rules of the system G⊃,∧,∨,¬c for classical propositional
logic are given below.

A,Γ − ∆, A

A,A,Γ − ∆

A,Γ − ∆
(contrac: left)

Γ − ∆, A,A

Γ − ∆, A
(contrac: right)

A,B,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

Γ − ∆, A Γ − ∆, B

Γ − ∆, A ∧B
(∧: right)

A,Γ − ∆ B,Γ − ∆

A ∨B,Γ − ∆
(∨: left)

Γ − ∆, A,B

Γ − ∆, A ∨B
(∨: right)

Γ − ∆, A B,Γ − ∆

A ⊃ B,Γ − ∆
(⊃: left)

A,Γ − ∆, B

Γ − ∆, A ⊃ B
(⊃: right)

Γ − ∆, A

¬A,Γ − ∆
(¬: left)

A,Γ − ∆

Γ − ∆,¬A
(¬: right)

14

Note the perfect symmetry of the left and right rules. If one wants to deal with the extended
language containing also ⊥, one needs to add the axiom

⊥,Γ − ∆.

One might be puzzled and even concerned about the presence of the contraction rule. Indeed,
one might wonder whether the presence of this rule will not cause provability to be undecidable.
This would certainly be quite bad, since we are only dealing with propositions! Fortunately, it can
be shown that the contraction rule is redundant for classical propositional logic (see section 8).
But then, why include it in the first place? The main reason is that it cannot be dispensed with in
traditional systems for intuitionistic logic, or in the case of quantified formulae (however, in the case
of propositional intuitionistic logic, it is possible to formulate contraction-free systems which easily
yield the decidability of provability, see section 9). Since we would like to view intuitionistic logic
as a subsystem of classical logic, we cannot eliminate the contraction rule from the presentation of
classical systems. Another important reason is that the contraction rule plays an important role
in cut elimination. Although it is possible to hide it by dealing with sequents viewed as pairs of
sets rather than multisets, we prefer to deal with it explicitly. Finally, the contraction rule plays
a crucial role in linear logic, and in the understanding of the correspondence between proofs and
computations, in particular strict versus lazy evaluation (see Abramsky [1]).

In order to obtain a system for intuitionistic logic, we restrict the righthand side of a sequent
to consist of at most one formula. We also modify the (⊃: left) rule and the (∨: right) rule which
splits into two rules. The (contrac: right) rule disappears, and it is also necessary to add a rule of
weakening on the right, to mimic the (⊥-elim) rule.

Definition 4.2 The axioms and inference rules of the system G⊃,∧,∨,¬i for intuitionistic proposi-
tional logic are given below.

A,Γ − A
Γ −

Γ − A
(weakening: right)

A,A,Γ − ∆

A,Γ − ∆
(contrac: left)

A,B,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

Γ − A Γ − B
Γ − A ∧B

(∧: right)

A,Γ − ∆ B,Γ − ∆

A ∨B,Γ − ∆
(∨: left)

Γ − A
Γ − A ∨B

(∨: right)
Γ − B

Γ − A ∨B
(∨: right)

Γ − A B,Γ − ∆

A ⊃ B,Γ − ∆
(⊃: left)

A,Γ − B
Γ − A ⊃ B

(⊃: right)

Γ − A
¬A,Γ −

(¬: left)
A,Γ −
Γ − ¬A

(¬: right)

15

In the above rules, ∆ contains at most one formula. If one wants to deal with the extended
language containing also ⊥, one simply needs to add the axiom

⊥,Γ − ∆,

where again, ∆ contains at most one formula. If we choose the language restricted to formulae over
∧,⊃,∨, and ⊥, then negation ¬A is viewed as an abbreviation for A ⊃⊥. Such a system can be
simplified a little bit if we observe that the axiom ⊥,Γ − ∆ implies that the rule

Γ −⊥
Γ − A

with A 6=⊥ is derivable. Indeed, assume that we have the axiom ⊥,Γ − ∆. If Γ −⊥ is provable,
inspection of the inference rules shows that the proof must contain some leaf nodes of the form
Γ′ −⊥. Since these leaves are axioms, we must have ⊥∈ Γ′, in which case Γ′ − A is also an axiom.
A simple induction shows that we obtain a proof of Γ − A by replacing all occurrences of ⊥ on the
righthand side of − by A. We can also prove that the converse almost holds. Since ⊥,Γ −⊥ is an
axiom, using the rule

⊥,Γ −⊥
⊥,Γ − A

we see that ⊥,Γ − A is provable. The reason why this is not exactly the converse is that ⊥,Γ − is
not provable in this system. This suggests to consider sequents of the form Γ − A where A consists
exactly of a single formula. In this case, the axiom ⊥,Γ − A is equivalent to the rule

Γ −⊥
Γ − A

(⊥: right)

(with A 6=⊥). We have the following system.

Definition 4.3 The axioms and inference rules of the system G⊃,∧,∨,⊥i for intuitionistic proposi-
tional logic are given below.

A,Γ − A
Γ −⊥
Γ − A

(⊥: right)

with A 6=⊥,
A,A,Γ − C
A,Γ − C

(contrac: left)

A,B,Γ − C
A ∧B,Γ − C

(∧: left)
Γ − A Γ − B

Γ − A ∧B
(∧: right)

A,Γ − C B,Γ − C
A ∨B,Γ − C

(∨: left)

Γ − A
Γ − A ∨B

(∨: right)
Γ − B

Γ − A ∨B
(∨: right)

Γ − A B,Γ − C
A ⊃ B,Γ − C

(⊃: left)
A,Γ − B

Γ − A ⊃ B
(⊃: right)

16

There is a close relationship between the natural deduction system N⊃,∧,∨,⊥i and the Gentzen

system G⊃,∧,∨,⊥i . In fact, there is a procedure N for translating every proof in G⊃,∧,∨,⊥i into a

deduction in N⊃,∧,∨,⊥i . The procedure N has the remarkable property that N (Π) is a deduction in

normal form for every proof Π. Since there are deductions in N⊃,∧,∨,⊥i that are not in normal form,

the function N is not surjective. The situation can be repaired by adding a new rule to G⊃,∧,∨,⊥i ,

the cut rule. Then, there is a procedure N mapping every proof in G⊃,∧,∨,⊥i to a deduction in

N⊃,∧,∨,⊥i , and a procedure G mapping every deduction in N⊃,∧,∨,⊥i to a proof in G⊃,∧,∨,⊥,cuti .

In order to close the loop, we would need to show that every proof in G⊃,∧,∨,⊥,cuti can be

transformed into a proof in G⊃,∧,∨,⊥i , that is, a cut-free proof. It is an extremely interesting

and deep fact that the system G⊃,∧,∨,⊥,cuti and the system G⊃,∧,∨,⊥i are indeed equivalent. This
fundamental result known as the cut elimination theorem was first proved by Gentzen in 1935 [8].
The proof actually gives an algorithm for converting a proof with cuts into a cut-free proof. The
main difficulty is to prove that this algorithm terminates. Gentzen used a fairly complex induction
measure which was later simplified by Tait [29].

The contraction rule plays a crucial role in the proof of this theorem, and it is therefore natural
to believe that this rule cannot be dispensed with. This is indeed true for the intuitionistic system
G⊃,∧,∨,⊥i (but it can be dispensed with in the classical system G⊃,∧,∨,¬c). If we delete the contraction

rule from the system G⊃,∧,∨,⊥i (or G⊃,∧,∨,¬i), certain formulae are no longer provable. For example,
− ¬¬(P ∨ ¬P) is provable in G⊃,∧,∨,¬i , but it is impossible to build a cut-free proof for it without
using (contrac: left). Indeed, the only way to build a cut-free proof for − ¬¬(P ∨ ¬P) without
using (contrac: left) is to proceed as follows:

− P ∨ ¬P
¬(P ∨ ¬P) −

− ¬¬(P ∨ ¬P)

Since the only rules that could yield a cut-free proof of − P ∨ ¬P are the (∨: right) rules and
neither − P nor − ¬P is provable, it is clear that there is no cut-free proof of − P ∨ ¬P .

However, − ¬¬(P ∨ ¬P) is provable in G⊃,∧,∨,¬i , as shown by the following proof (the same

example can be worked out in G⊃,∧,∨,⊥i):

Example 4.4

P − P
P − P ∨ ¬P

P,¬(P ∨ ¬P) −

¬(P ∨ ¬P) − ¬P

¬(P ∨ ¬P) − P ∨ ¬P

¬(P ∨ ¬P),¬(P ∨ ¬P) −
(contrac: left)

¬(P ∨ ¬P) −

− ¬¬(P ∨ ¬P)

17

Nevertheless, it is possible to formulate a cut-free system GK⊃,∧,∨,⊥i which is equivalent to

G⊃,∧,∨,⊥i (see section 8). Such a system due to Kleene [18] has no contraction rule, and the premise
of every sequent can be interpreted as a set as opposed to a multiset (furthermore, in the case of
intuitionistic propositional logic, it is possible to design contraction-free systems which yield easily
the decidability of provability, see section 9 for details).

5 Definition of the Transformation N from Gi to Ni

The purpose of this section is to give a procedure N mapping every proof in G⊃,∧,∨,⊥i to a deduction

in N⊃,∧,∨,⊥i . The procedure N is defined by induction on the structure of proof trees and requires
some preliminary definitions.

Definition 5.1 A proof tree Π in G⊃,∧,∨,⊥i with root node Γ − C is denoted as

Π

Γ − C

and similarly a deduction D in N⊃,∧,∨,⊥i with root node Γ − C is denoted as

D
Γ − C

A proof tree Π whose last inference is
Γ − B
∆ − D

is denoted as

Π1

Γ − B
∆ − D

where Π1 is the immediate subproof of Π whose root is Γ − B, and a proof tree Π whose last
inference is

Γ − B Γ − C
∆ − D

is denoted as

Π1

Γ − B
Π2

Γ − C
∆ − D

where Π1 and Π2 are the immediate subproofs of Π whose roots are Γ − B and Γ − C, respectively.
A similar notation applies to deductions.

18

Given a proof tree Π with root node Γ − C,

Π

Γ − C

N yields a deduction N (Π) of C from the set of assumptions Γ+,

N (Π)

Γ+ − C

where Γ+ is obtained from the multiset Γ. However, one has to exercise some care in defining Γ+

so that N is indeed a function. This can be achieved as follows. We can assume that we have a
fixed total order ≤p on the set of all propositions so that they can be enumerated as P1, P2, . . .,
and a fixed total order ≤v on the set of all variables so that they can be enumerated as x1, x2,

Definition 5.2 Given a multiset Γ = A1, . . . , An, since {A1, . . . , An} = {Pi1 , . . . , Pin} where
Pi1 ≤p Pi2 ≤p . . . ≤p Pin (where P1, P2, . . ., is the enumeration of all propositions and where
ij = ij+1 is possible since Γ is a multiset), we define Γ+ as the set Γ+ = x1:Pi1 , . . . , xn:Pin .

We will also need the following concepts and notation.

Definition 5.3 Given a deduction

D
Γ − C

the deduction obtained by adding the additional assumptions ∆ to the lefthand side of every sequent
of D is denoted as ∆ +D, and it is only well defined provided that dom(Γ′)∩dom(∆) = ∅ for every
sequent Γ′ − A occurring in D.3 Similarly, given a sequential proof

Π

Γ − ∆

we define the proof Λ + Π by adding Λ to the lefthand side of every sequent of Π, and we define
the proof Π + Θ by adding Θ to the righthand side of every sequent of Π.

We also need a systematic way of renaming the variables in a deduction.

Definition 5.4 Given a deduction D with root node ∆ − C the deduction D′ obtained from D by
rectification is defined inductively as follows:

Given a context ∆ = y1:A1, . . . , ym:Am, define the total order < on ∆ as follows:

yi:Ai < yj :Aj iff

{
Ai <p Aj , or
Ai = Aj and yi <v yj .

3Given a context Γ = x1:A1, . . . , xn:An, we let dom(Γ) = {x1, . . . , xn}.

19

The order < on y1:A1, . . . , ym:Am defines the permutation σ such that

yσ(1):Aσ(1) < yσ(2):Aσ(2) < . . . < yσ(m−1):Aσ(m−1) < yσ(m):Aσ(m).

If D consists of the single node y1:A1, . . . , ym:Am − C, let ∆′ = x1:Aσ(1), . . . , xm:Aσ(m), and define
D′ as ∆′ − C. The permutation σ induces a bijection between {x1, . . . , xm} and {y1, . . . , ym},
namely xi 7→ yσ(i).

If D is of the form

D1

y1:A1, y2:A2, . . . , ym:Am − B
y2:A2, . . . , ym:Am − A1 ⊃ B

by induction, we have the rectified deduction

D′1
x1:Aσ(1), . . . , xj−1:Aσ(j−1), xj :A1, xj+1:Aσ(j+1), . . . , xm:Aσ(m) − B

where xj corresponds to y1 in the bijection between {x1, . . . , xm} and {y1, . . . , ym} (in fact, j =
σ−1(1) since A1 = Aσ(j)). Then, apply the substitution [xm/xj , xj/xj+1, . . . , xm−1/xm] to the
deduction D′1, and form the deduction

D′1[xm/xj , xj/xj+1, . . . , xm−1/xm]

x1:Aσ(1), . . . , xj−1:Aσ(j−1), xm:A1, xj :Aσ(j+1), . . . , xm−1:Aσ(m) − B

x1:Aσ(1), . . . , xj−1:Aσ(j−1), xj :Aσ(j+1), . . . , xm−1:Aσ(m) − A1 ⊃ B

A similar construction applies to the rule (∨-elim) and is left as an exercise to the reader. The
other inference rules do not modify the lefthand side of sequents, and D′ is obtained by rectifying
the immediate subtree(s) of D.

Note that for any deduction D with root node y1:A1, . . . , ym:Am − C, the rectified deduction D′
has for its root node the sequent Γ+ − C, where Γ+ is obtained from the multiset Γ = A1, . . . , Am
as in Definition 5.2.

The procedure N is defined by induction on the structure of the proof tree Π.

• An axiom Γ, A − A is mapped to the deduction (Γ, A)+ − A.

• A proof Π of the form

Π1

Γ −⊥
Γ − A

is mapped to the deduction

20

N (Π1)

Γ+ −⊥
Γ+ − A

• A proof Π of the form

Π1

A,A,Γ − B
A,Γ − B

is mapped to a deduction as follows. First map Π1 to the deduction N (Π1)

N (Π1)

x:A, y:A,Γ∗ − B

Next, replace every occurrence of “x:A, y:A” in N (Π1) by “z:A” where z is a new variable not
occurring in N (Π1), and finally rectify the resulting tree.

Before we proceed any further, a sticky point needs to be clarified regarding the context
x:A, y:A,Γ∗. In the above transformation, the multiset A,A,Γ is mapped to (A,A,Γ)+ under
the operation +. Unfortunately, we cannot assume in general that (A,A,Γ)+ = x:A, y:A,Γ+, be-
cause in the enumeration of the propositions forming the multiset A,A,Γ, the two occurrences of
A may not appear as the last two elements. Thus, (A,A,Γ)+ is of the form x:A, y:A,Γ∗ for some
Γ∗ not necessarily equal to Γ+. This point being cleared up, we will use the notation Γ∗ in the rest
of the construction without any further comments.

• A proof Π of the form

Π1

Γ − A
Π2

Γ − B
Γ − A ∧B

is mapped to the deduction

N (Π1)

Γ+ − A
N (Π2)

Γ+ − B
Γ+ − A ∧B

• A proof Π of the form

Π1

A,B,Γ − C
A ∧B,Γ − C

is mapped to a deduction obtained as follows. First, map Π1 to N (Π1)

21

N (Π1)

x:A, y:B,Γ∗ − C

Next, replace every leaf of the form x:A, y:B,∆,Γ∗ − A in N (Π1) by the subtree

z:A ∧B,∆,Γ∗ − A ∧B
z:A ∧B,∆,Γ∗ − A

and every leaf of the form x:A, y:B,∆,Γ∗ − B in N (Π1) by the subtree

z:A ∧B,∆,Γ∗ − A ∧B
z:A ∧B,∆,Γ∗ − B

where z is new, replace “x:A, y:B” by “z:A ∧ B” in every antecedent of the resulting deduction,
and rectify this last tree.

• A proof Π of the form

Π1

A,Γ − B
Γ − A ⊃ B

is mapped to the deduction

N (Π1)

x:A,Γ∗ − B
Γ∗ − A ⊃ B

which is then rectified.

• A proof Π of the form

Π1

Γ − A
Π2

B,Γ − C
A ⊃ B,Γ − C

is mapped to a deduction as follows. First map Π1 and Π2 to deductions N (Π1)

N (Π1)

Γ+ − A

and N (Π2)

N (Π2)

x:B,Γ∗ − C

22

Modify N (Π1) so that it becomes a deduction N (Π1)′ with conclusion Γ∗ − A.
Next, form the deduction D

z:A ⊃ B,Γ∗ − A ⊃ B
z:A ⊃ B +N (Π1)′

z:A ⊃ B,Γ∗ − A
z:A ⊃ B,Γ∗ − B

and modify N (Π2) as follows: replace every leaf of the form x:B,∆,Γ∗ − B by the deduction
which itself is obtained from ∆ +D by replacing “x:B” by “z:A ⊃ B” in the lefthand side of every
sequent. Finally, rectify this last deduction.

• A proof Π of the form

Π1

Γ − A
Γ − A ∨B

is mapped to the deduction

N (Π1)

Γ+ − A
Γ+ − A ∨B

and similarly for the other case of the (∨: right) rule.

• A proof Π of the form

Π1

A,Γ − C
Π2

B,Γ − C
A ∨B,Γ − C

is mapped to a deduction as follows. First map Π1 and Π2 to deductions N (Π1)

N (Π1)

x:A,Γ∗1 − C

and N (Π2)

N (Π2)

y:B,Γ∗2 − C

Since Γ∗1 and Γ∗2 may differ, construct deductions N (Π1)′ and N (Π2)′ with conclusions x:A,Γ∗ − C
and y:B,Γ∗ − C for the same Γ∗. Next, form the deduction

z:A ∨B,Γ∗ − A ∨B
z:A ∨B +N (Π1)′

z:A ∨B, x:A,Γ∗ − C
z:A ∨B +N (Π2)′

z:A ∨B, y:B,Γ∗ − C
z:A ∨B,Γ∗ − C

23

and rectify this last tree.

This concludes the definition of the procedure N . Note that the contraction rule can be stated
in the system of natural deduction as follows:

x:A, y:A,Γ − B
z:A,Γ − B

where z is a new variable. The following remarkable property of N is easily shown.

Lemma 5.5 [Gentzen (1935), Prawitz (1965)] For every proof Π in G⊃,∧,∨,⊥i , N (Π) is a deduction

in normal form (in N⊃,∧,∨,⊥i).

Since there are deductions in N⊃,∧,∨,⊥i that are not in normal form, the function N is not
surjective. It is interesting to observe that the function N is not injective either. What happens
is that G⊃,∧,∨,⊥i is more sequential than N⊃,∧,∨,⊥i , in the sense that the order of application of

inferences is strictly recorded. Hence, two proofs in G⊃,∧,∨,⊥i of the same sequent may differ for

bureaucratic reasons: independent inferences are applied in different orders. In N⊃,∧,∨,⊥i , these
differences disappear. The following example illustrates this point. The sequent − (P ∧ P ′) ⊃
((Q ∧Q′) ⊃ (P ∧Q)) has the following two sequential proofs

P, P ′, Q,Q′ − P P, P ′, Q,Q′ − Q

P,P ′, Q,Q′ − P ∧Q

P ∧ P ′, Q,Q′ − P ∧Q

P ∧ P ′, Q ∧Q′ − P ∧Q

P ∧ P ′ − (Q ∧Q′) ⊃ (P ∧Q)

− (P ∧ P ′) ⊃ ((Q ∧Q′) ⊃ (P ∧Q))

and

P, P ′, Q,Q′ − P P, P ′, Q,Q′ − Q

P,P ′, Q,Q′ − P ∧Q

P,P ′, Q ∧Q′ − P ∧Q

P ∧ P ′, Q ∧Q′ − P ∧Q

P ∧ P ′ − (Q ∧Q′) ⊃ (P ∧Q)

− (P ∧ P ′) ⊃ ((Q ∧Q′) ⊃ (P ∧Q))

Both proofs are mapped to the deduction

24

x:P ∧ P ′, y:Q ∧Q′ − P ∧ P ′

x:P ∧ P ′, y:Q ∧Q′ − P

x:P ∧ P ′, y:Q ∧Q′ − Q ∧Q′

x:P ∧ P ′, y:Q ∧Q′ − Q

x:P ∧ P ′, y:Q ∧Q′ − P ∧Q

x:P ∧ P ′ − (Q ∧Q′) ⊃ (P ∧Q)

− (P ∧ P ′) ⊃ ((Q ∧Q′) ⊃ (P ∧Q))

6 Definition of the Transformation G from Ni to Gi
We now show that if we add a new rule, the cut rule, to the system G⊃,∧,∨,⊥i , then we can define a

procedure G mapping every deduction in N⊃,∧,∨,⊥i to a proof in G⊃,∧,∨,⊥,cuti .

Definition 6.1 The system G⊃,∧,∨,⊥,cuti is obtained from the system G⊃,∧,∨,⊥i by adding the fol-
lowing rule, known as the cut rule:

Γ − A A,Γ − C
Γ − C

(cut)

The system G⊃,∧,∨,¬,cutc is obtained from G⊃,∧,∨,¬c by adding the following rule, also known as
the cut rule:

Γ − ∆, A A,Γ − ∆

Γ − ∆
(cut)

Next, we define the procedure G mapping every deduction in N⊃,∧,∨,⊥i to a proof in G⊃,∧,∨,⊥,cuti .
The procedure G is defined by induction on the structure of deduction trees. Given a deduction
tree D of C from the assumptions Γ,

D
Γ − C

G yields a proof G(D) of the sequent Γ− − C

G(D)

Γ− − C

where Γ− is the multiset A1, . . . , An obtained from the context Γ = x1:A1, . . . , xn:An by erasing
x1, . . . , xn.

• The deduction Γ, x:A − A is mapped to the axiom Γ−, A − A.

• A deduction D of the form

D1

Γ −⊥
Γ − A

is mapped to the proof

25

G(D1)

Γ− −⊥
Γ− − A

• A deduction D of the form

D1

Γ − A
D2

Γ − B
Γ − A ∧B

is mapped to the proof

G(D1)

Γ− − A
G(D2)

Γ− − B
Γ− − A ∧B

• A deduction D of the form

D1

Γ − A ∧B
Γ − A

is mapped to the proof

G(D1)

Γ− − A ∧B

A,B,Γ− − A

A ∧B,Γ− − A
(cut)

Γ− − A

and similarly for the symmetric rule.

• A deduction D of the form

D1

x:A,Γ − B
Γ − A ⊃ B

is mapped to the proof

G(D1)

A,Γ− − B

Γ− − A ⊃ B

• A deduction D of the form

26

D1

Γ − A ⊃ B
D2

Γ − A
Γ − B

is mapped to the proof

G(D1)

Γ− − A ⊃ B

G(D2)

Γ− − A B,Γ− − B

A ⊃ B,Γ− − B
(cut)

Γ− − B

• A deduction D of the form

D1

Γ − A
Γ − A ∨B

is mapped to the proof

G(D1)

Γ− − A
Γ− − A ∨B

and similarly for the symmetric rule.

• A deduction D of the form

D1

Γ − A ∨B
D2

x:A,Γ − C
D3

y:B,Γ − C
Γ − C

is mapped to the proof

G(D1)

Γ− − A ∨B

G(D2)

A,Γ− − C
G(D3)

B,Γ− − C

A ∨B,Γ− − C
(cut)

Γ− − C

This concludes the definition of the procedure G.

For the sake of completeness, we also extend the definition of the function N which is presently
defined on the set of sequential proofs of the system G⊃,∧,∨,⊥i to proofs with cuts, that is, to proofs

in the system G⊃,∧,∨,⊥,cuti . A proof Π of the form

27

Π1

Γ − A
Π2

A,Γ − C
Γ − C

is mapped to the deduction obtained as follows: First, construct

N (Π1)

Γ+ − A

and

N (Π2)

x:A,Γ∗ − C

ModifyN (Π1) to a deductionN (Π1)′ with conclusion Γ∗ − A. Then, replace every leaf x:A,∆,Γ∗ −
A in N (Π2) by ∆ + N (Π1)′, delete “x:A” from the antecedent in every sequent, and rectify this
last tree.

7 First-Order Quantifiers

We extend the systems N⊃,∧,∨,⊥i and G⊃,∧,∨,⊥,cuti to deal with the quantifiers.

Definition 7.1 The axioms and inference rules of the system N⊃,∧,∨,∀,∃,⊥i for intuitionistic first-
order logic are listed below:

Γ, x:A − A

Γ −⊥
Γ − A

(⊥-elim)

with A 6=⊥,
Γ, x:A − B
Γ − A ⊃ B

(⊃-intro)

Γ − A ⊃ B Γ − A
Γ − B

(⊃-elim)

Γ − A Γ − B
Γ − A ∧B

(∧-intro)

Γ − A ∧B
Γ − A

(∧-elim)
Γ − A ∧B

Γ − B
(∧-elim)

Γ − A
Γ − A ∨B

(∨-intro)
Γ − B

Γ − A ∨B
(∨-intro)

Γ − A ∨B Γ, x:A − C Γ, y:B − C
Γ − C

(∨-elim)

28

Γ − A[u/t]

Γ − ∀tA
(∀-intro)

Γ − ∀tA
Γ − A[τ/t]

(∀-elim)

where in (∀-intro), u does not occur free in Γ or ∀tA;

Γ − A[τ/t]

Γ − ∃tA
(∃-intro)

Γ − ∃tA z:A[u/t],Γ − C
Γ − C

(∃-elim)

where in (∃-elim), u does not occur free in Γ, ∃tA, or C.

The variable u is called the eigenvariable of the inference.

One should observe that we are now using two kinds of variables: term (or package) variables
(x, y, z, . . .), and individual (or type) variables (t, u, . . .).

The typed λ-calculus λ→,×,+,∀,∃,⊥ corresponding to N⊃,∧,∨,∀,∃,⊥i is given in the following defini-
tion.

Definition 7.2 The typed λ-calculus λ→,×,+,∀,∃,⊥ is defined by the following rules.

Γ, x:A . x:A

Γ . M :⊥
Γ .5A(M):A

(⊥-elim)

with A 6=⊥,
Γ, x:A .M :B

Γ . (λx:A.M):A→ B
(abstraction)

Γ . M :A→ B Γ . N :A

Γ . (MN):B
(application)

Γ . M :A Γ . N :B

Γ . 〈M,N〉:A×B
(pairing)

Γ . M :A×B
Γ . π1(M):A

(projection)
Γ . M :A×B
Γ . π2(M):B

(projection)

Γ . M :A

Γ . inl(M):A+B
(injection)

Γ . M :B

Γ . inr(M):A+B
(injection)

Γ . P :A+B Γ, x:A .M :C Γ, y:B . N :C

Γ . case(P, λx:A.M, λy:B. N):C
(by-cases)

or
Γ . P :A+B Γ, x:A .M :C Γ, y:B . N :C

Γ . (case P of inl(x:A)⇒M | inr(y:B)⇒ N):C
(by-cases)

Γ . M :A[u/t]

Γ . (λu: ι. M):∀tA
(∀-intro)

29

where u does not occur free in Γ or ∀tA;

Γ . M : ∀tA
Γ . Mτ :A[τ/t]

(∀-elim)

Γ . M :A[τ/t]

Γ . inx(τ,M):∃tA
(∃-intro)

Γ . M : ∃tA Γ, x:A[u/t] . N :C

Γ . casex(M,λu: ι. λx:A[u/t]. N):C
(∃-elim)

where u does not occur free in Γ, ∃tA, or C.

In the term (λu: ι. M), the type ι stands for the type of individuals. Note that

Γ . λu: ι. λx:A[u/t]. N :∀u(A[u/t]→ C).

The term λu: ι. λx:A[u/t]. N contains the type A[u/t] which is a dependent type, since it usually
contains occurrences of u. Observe that (λu: ι. λx:A[u/t]. N)τ reduces to λx:A[τ/t]. N [τ/u], in
which the type of x is now A[τ/t]. The term casex(M,λu: ι. λx:A[u/t]. N) is also denoted as
casex M of inx(u: ι, x:A[u/t]) ⇒ N , or even casex M of inx(u, x) ⇒ N , and the (∃-elim) rule
as

Γ . M : ∃tA Γ, x:A[u/t] . N :C

Γ . (casexM of inx(u: ι, x:A[u/t])⇒ N):C
(∃-elim)

where u does not occur free in Γ, ∃tA, or C.

Such a formalism can be easily generalized to many sorts (base types), if quantified formulae
are written as ∀t:σ. A and ∃t:σ. A, where σ is a sort (base type). A further generalization would
be to allow higher-order quantification as in Girard’s system Fω (see Girard [11] or Gallier [7]). We
also have the following reduction rules.

Definition 7.3 The reduction rules of the system λ→,×,+,∀,∃,⊥ are listed below:

(λx:A.M)N −→M [N/x],

π1(〈M,N〉) −→M,

π2(〈M,N〉) −→ N,

case(inl(P),M,N) −→MP, or

case inl(P) of inl(x:A)⇒M | inr(y:B)⇒ N −→M [P/x],

case(inr(P),M,N) −→ NP, or

case inr(P) of inl(x:A)⇒M | inr(y:B)⇒ N −→ N [P/y],

5A→B(M)N −→ 5B(M),

π1(5A×B(M)) −→ 5A(M),

π2(5A×B(M)) −→ 5B(M),

(λt: ι. M)τ −→M [τ/t],

5∀tA(M)τ −→ 5A[τ/t](M),

30

case(5A+B(P),M,N) −→ 5C(P),

casex(inx(τ, P),M) −→ (Mτ)P, or

casex inx(τ, P) of inx(t: ι, x:A)⇒ N −→ N [τ/t, P/x],

casex(5∃tA(P),M) −→ 5C(P).

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up to α-renaming. This result was first proved by Prawitz [24] for

the system N⊃,∧,∨,∀,∃,⊥i .

Theorem 7.4 [Church-Rosser property, Prawitz (1971)] Reduction in λ→,×,+,∀,∃,⊥ (specified in
Definition 7.3) is confluent. Equivalently, conversion in λ→,×,+,∀,∃,⊥ is Church-Rosser.

A proof can be given by adapting the method of Tait and Martin-Löf [21] using a form of
parallel reduction (see also Barendregt [2], Hindley and Seldin [15], or Stenlund [27]).

Theorem 7.5 [Strong normalization property, Prawitz (1971)] Reduction in λ→,×,+,∀,∃,⊥ is
strongly normalizing.

A proof can be given by adapting Tait’s reducibility method [28], [30], as done in Girard [10]
(1971), [11] (1972) (see also Gallier [7]).

If one looks carefully at the structure of proofs, one realizes that it is not unreasonable to declare
other proofs as being redundant, and thus to add some additional reduction rules. For example,
the proof term 〈π1(M), π2(M)〉 can be identified with M itself. Similarly, if x is not free in M , the
term λx:A. (Mx) can be identified with M . Thus, we have the following additional set of reduction
rules:

λx:A. (Mx) −→M, if x /∈ FV (M),

〈π1(M), π2(M)〉 −→M,

caseM of inl(x:A)⇒ inl(x) | inr(y:B)⇒ inr(y) −→M,

λt: ι. (Mt) −→M, if t /∈ FV (M),

casexM of inx(u: ι, x:A[u/t])⇒ inx(u, x) −→M, if u /∈ FV (M).

These rules are important in setting up categorical semantics for intuitionistic logic. However, a
discussion of this topic would take us far beyond the scope of this paper. Actually, in order to salvage
some form of subformula property ruined by the introduction of the connectives ∨, ∃, and ⊥, one
can add further conversions known as “commuting conversions” (or “permutative conversions”). A
lucid discussion of the necessity for such rules can be found in Girard [9]. Theorem 7.4 and theorem
7.5 can be extended to cover the reduction rules of definition 7.3 together with the new reductions
rules, but at the cost of rather tedious and rather noninstructive technical complications. Due to
the lack of space, we will not elaborate any further on this subject and simply refer the interested
reader to Prawitz [23], Girard [11], or Girard [9] for details.

A sequent-calculus formulation for intuitionistic first-order logic is given in the next definition.

31

Definition 7.6 The axioms and inference rules of the system G⊃,∧,∨,∀,∃,⊥,cuti for intuitionistic first-
order logic are given below.

A,Γ − A
Γ −⊥
Γ − A

(⊥: right)

with A 6=⊥,
A,A,Γ − C
A,Γ − C

(contrac: left)

Γ − A A,Γ − C
Γ − C

(cut)

A,B,Γ − C
A ∧B,Γ − C

(∧: left)
Γ − A Γ − B

Γ − A ∧B
(∧: right)

A,Γ − C B,Γ − C
A ∨B,Γ − C

(∨: left)

Γ − A
Γ − A ∨B

(∨: right)
Γ − B

Γ − A ∨B
(∨: right)

Γ − A B,Γ − C
A ⊃ B,Γ − C

(⊃: left)
A,Γ − B

Γ − A ⊃ B
(⊃: right)

A[τ/x],Γ − C
∀xA,Γ − C

(∀: left)
Γ − A[y/x]

Γ − ∀xA
(∀: right)

where in (∀: right), y does not occur free in the conclusion;

A[y/x],Γ − C
∃xA,Γ − C

(∃: left)
Γ − A[τ/x]

Γ − ∃xA
(∃: right)

where in (∃: left), y does not occur free in the conclusion.

The variable y is called the eigenvariable of the inference.

A variation of the system G⊃,∧,∨,∀,∃,⊥,cuti in which negation appears explicitly is obtained by
replacing the rule

Γ −⊥
Γ − A

(⊥: right)

by the rule
Γ −

Γ − A
(weakening: right)

and adding the following negation rules:

Γ − A
¬A,Γ −

(¬: left)
A,Γ −
Γ − ¬A

(¬: right)

32

The resulting system is denoted as G⊃,∧,∨,∀,∃,¬,cuti .

The system G⊃,∧,∨,∀,∃,⊥,cutc of classical logic is shown in the next definition.

Definition 7.7 The axioms and inference rules of the system G⊃,∧,∨,∀,∃,⊥,cutc for classical first-order
logic are given below.

A,Γ − ∆, A

A,A,Γ − ∆

A,Γ − ∆
(contrac: left)

Γ − ∆, A,A

Γ − ∆, A
(contrac: right)

Γ − ∆,⊥
Γ − ∆, A

(⊥: right)

with A 6=⊥,
Γ − ∆, A A,Γ − ∆

Γ − ∆
(cut)

A,B,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

Γ − ∆, A Γ − ∆, B

Γ − ∆, A ∧B
(∧: right)

A,Γ − ∆ B,Γ − ∆

A ∨B,Γ − ∆
(∨: left)

Γ − ∆, A,B

Γ − ∆, A ∨B
(∨: right)

Γ − ∆, A B,Γ − ∆

A ⊃ B,Γ − ∆
(⊃: left)

A,Γ − ∆, B

Γ − ∆, A ⊃ B
(⊃: right)

A[τ/x],Γ − ∆

∀xA,Γ − ∆
(∀: left)

Γ − ∆, A[y/x]

Γ − ∆, ∀xA
(∀: right)

where in (∀: right), y does not occur free in the conclusion;

A[y/x],Γ − ∆

∃xA,Γ − ∆
(∃: left)

Γ − ∆, A[τ/x]

Γ − ∆, ∃xA
(∃: right)

where in (∃: left), y does not occur free in the conclusion.

A variation of the system G⊃,∧,∨,∀,∃,⊥,cutc in which negation appears explicitly is obtained by
deleting the rule

Γ − ∆,⊥
Γ − ∆, A

(⊥: right)

and adding the following negation rules:

Γ − ∆, A

¬A,Γ − ∆
(¬: left)

A,Γ − ∆

Γ − ∆,¬A
(¬: right)

Indeed, it is easy to see that the rule

Γ − ∆

Γ − ∆, A
(weakening: right)

33

is derivable (using the axioms A,Γ − ∆, A). The resulting system is denoted as G⊃,∧,∨,∀,∃,¬,cutc .

We now extend the functions N and G to deal with the quantifier rules. The procedure N is
extended to G⊃,∧,∨,∀,∃,⊥,cuti as follows.

• A proof Π of the form

Π1

A[τ/x],Γ − C

∀xA,Γ − C

is mapped to a deduction obtained as follows. First, map Π1 to

N (Π1)

y:A[τ/x],Γ∗ − C

Next, replace every leaf of the form y:A[τ/x],∆,Γ∗ − A[τ/x] in N (Π1) by the subtree

y: ∀xA,∆,Γ∗ − ∀xA

y:∀xA,∆,Γ∗ − A[τ/x]

replace every occurrence of “y:A[τ/x]” in the resulting tree by “y: ∀xA”, and rectify this last tree.

• A proof Π of the form

Π1

Γ − A[y/x]

Γ − ∀xA

is mapped to the deduction

N (Π1)

Γ+ − A[y/x]

Γ+ − ∀xA

• A proof Π of the form

Π1

A[y/x],Γ − C

∃xA,Γ − C

is mapped to the deduction

u:∃xA,Γ∗ − ∃xA
u:∃xA+N (Π1)

u:∃xA, v:A[y/x],Γ∗ − C

u: ∃xA,Γ∗ − C

34

and rectify this last tree.

• A proof Π of the form

Π1

Γ − A[τ/x]

Γ − ∃xA

is mapped to the deduction

N (Π1)

Γ+ − A[τ/x]

Γ+ − ∃xA

It is easily seen that Lemma 5.5 generalizes to quantifiers.

Lemma 7.8 [Gentzen (1935), Prawitz (1965)] For every proof Π in G⊃,∧,∨,∀,∃,⊥i , N (Π) is a de-

duction in normal form (in N⊃,∧,∨,∀,∃,⊥i).

Next, we extend the procedure G to N⊃,∧,∨,∀,∃,⊥i .

• A deduction D of the form

D1

Γ − A[y/x]

Γ − ∀xA

is mapped to the proof

G(D1)

Γ− − A[y/x]

Γ− − ∀xA

• A deduction D of the form

D1

Γ − ∀xA
Γ − A[τ/x]

is mapped to the proof

G(D1)

Γ− − ∀xA

A[τ/x],Γ− − A[τ/x]

∀xA,Γ− − A[τ/x]
(cut)

Γ− − A[τ/x]

35

• A deduction D of the form

D1

Γ − A[τ/x]

Γ − ∃xA

is mapped to the proof

G(D1)

Γ− − A[τ/x]

Γ− − ∃xA

• A deduction D of the form

D1

Γ − ∃xA
D2

z:A[y/x],Γ − C
Γ − C

is mapped to the proof

G(D1)

Γ− − ∃xA

G(D2)

A[y/x],Γ− − C

∃xA,Γ− − C
(cut)

Γ− − C

We now turn to cut elimination.

8 Gentzen’s Cut Elimination Theorem

As we said earlier before presenting the function G from N⊃,∧,∨,∀,∃,⊥i to G⊃,∧,∨,∀,∃,⊥,cuti , it is possible

to show that the system G⊃,∧,∨,∀,∃,⊥,cuti is equivalent to the seemingly weaker system G⊃,∧,∨,∀,∃,⊥i .

We have the following fundamental result.

Theorem 8.1 [Cut Elimination Theorem, Gentzen (1935)] There is an algorithm which, given

any proof Π in G⊃,∧,∨,∀,∃,⊥,cuti produces a cut-free proof Π′ in G⊃,∧,∨,∀,∃,⊥i . There is an algorithm
which, given any proof Π in G⊃,∧,∨,∀,∃,⊥,cutc produces a cut-free proof Π′ in G⊃,∧,∨,∀,∃,⊥c .

Proof . The proof is quite involved. It consists in pushing up cuts towards the leaves, and in
breaking cuts involving compound formulae into cuts on smaller subformulae. Full details are given
for the system LK in Section 12. Interestingly, the need for the contraction rule arises when a cut
involves an axiom. The typical example is as follows. The proof

36

A,Γ − A
Π1

A,A,Γ − C
A,Γ − C

is equivalent to a (contrac: left), and it is eliminated by forming the proof

Π1

A,A,Γ − C
(contrac: left)

A,Γ − C

If we are interested in cut-free proofs, except in classical propositional logic, the contraction
rules cannot be dispensed with. We already saw in Example 4.4 that ¬¬(P ∨¬P) is a proposition
which is not provable without contractions in G⊃,∧,∨,¬i . Another example involving quantifiers is

the sequent ∀x∃y(Py ∧ ¬Px) − which is not provable without contractions in G⊃,∧,∨,∀,∃,¬i or even

in G⊃,∧,∨,∀,∃,¬c . This sequent has the following proof in G⊃,∧,∨,∀,∃,¬i :

Example 8.2

Pu,¬Px, Pv − Pu
Pu,¬Px, Pv,¬Pu −

Pu,¬Px, (Pv ∧ ¬Pu) −

(Pu ∧ ¬Px), (Pv ∧ ¬Pu) −

(Pu ∧ ¬Px), ∃y(Py ∧ ¬Pu) −

(Pu ∧ ¬Px), ∀x∃y(Py ∧ ¬Px) −

∃y(Py ∧ ¬Px), ∀x∃y(Py ∧ ¬Px) −

∀x∃y(Py ∧ ¬Px),∀x∃y(Py ∧ ¬Px) −
(contrac: left)

∀x∃y(Py ∧ ¬Px) −

It is an interesting exercise to find a deduction of ∀x∃y(Py ∧ ¬Px) ⊃⊥ in N⊃,∧,∨,∀,∃,⊥i .

For classical logic, it is possible to show that the contraction rules are only needed to permit an
unbounded number of applications of the (∀: left)-rule and the (∃: right)-rule (see lemma 8.7). For
example, the formula ∃x∀y(Py ⊃ Px) is provable in G⊃,∧,∨,∀,∃,⊥c , but not without the rule (contrac:
right). The cut-free system G⊃,∧,∨,∀,∃,⊥c can be modified to obtain another system GK⊃,∧,∨,∀,∃,⊥c in
which the contraction rules are deleted and the quantifier rules are slightly changed to incorporate
contraction.

Definition 8.3 The axioms and inference rules of the cut-free system GK⊃,∧,∨,∀,∃,⊥c for classical
first-order logic are given below.

A,Γ − ∆, A

⊥,Γ − ∆, A

37

A,B,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

Γ − ∆, A Γ − ∆, B

Γ − ∆, A ∧B
(∧: right)

A,Γ − ∆ B,Γ − ∆

A ∨B,Γ − ∆
(∨: left)

Γ − ∆, A,B

Γ − ∆, A ∨B
(∨: right)

Γ − ∆, A B,Γ − ∆

A ⊃ B,Γ − ∆
(⊃: left)

A,Γ − ∆, B

Γ − ∆, A ⊃ B
(⊃: right)

∀xA,A[τ/x],Γ − ∆

∀xA,Γ − ∆
(∀: left)

Γ − ∆, A[y/x]

Γ − ∆, ∀xA
(∀: right)

where in (∀: right), y does not occur free in the conclusion;

A[y/x],Γ − ∆

∃xA,Γ − ∆
(∃: left)

Γ − ∆, ∃xA,A[τ/x]

Γ − ∆, ∃xA
(∃: right)

where in (∃: left), y does not occur free in the conclusion.

The above system is inspired from Kleene [18] (see system G3, page 481). Note that contraction
steps have been incorporated in the (∀: left)-rule and the (∃: right)-rule. As noted in the discussion
before definition 4.3, if we consider sequents in which the righthand side is nonempty, using axioms
of the form

⊥,Γ − ∆, A

is equivalent to using the rule
Γ − ∆,⊥
Γ − ∆, A

(⊥: right)

with A 6=⊥. However, the axioms ⊥,Γ − ∆, A are technically simpler to handle in proving the next
three lemmas, and thus we prefer them to the rule (⊥: right). Accordingly, from now on, we will
also assume that G⊃,∧,∨,∀,∃,⊥c has been formulated using the axioms ⊥,Γ − ∆, A rather than the
rule (⊥: right).

The equivalence of the systems G⊃,∧,∨,∀,∃,⊥c and GK⊃,∧,∨,∀,∃,⊥c is shown using two lemmas inspired
from Kleene [18] (1952). First, it is quite easy to see that every proof in GK⊃,∧,∨,∀,∃,⊥c can be
converted to a proof in G⊃,∧,∨,∀,∃,⊥c .

For the converse, we warn the reader that some of the lemmas given in an earlier version were
incorrect. The proof of the converse is quite tricky, and we are grateful to Peter Baumann for
pointing out the earlier errors and helping me in working out the new proof. The plan of attack is
to show that the weakening and contraction rules are derived rules of the system GK⊃,∧,∨,∀,∃,⊥c . For
the weakening rules, this follows immediately by induction, the crucial fact being that the axioms
are “fat”, that is of the form A,Γ − ∆, A. For technical reasons (in the proof of lemma 8.5), we will
need the fact that in GK⊃,∧,∨,∀,∃,⊥c , every provable sequent has a proof in which every axiom has a
special form. Such axioms A,Γ − ∆, A are such that the formula A itself is atomic, all formulae
in Γ are atomic or universal, and all formulae in ∆ are atomic or existential. Such axioms will be
called atomic axioms.

38

Lemma 8.4 Every proof Π in GK⊃,∧,∨,∀,∃,⊥c of a sequent A1, . . . , Am − B1, . . . , Bn can be trans-
formed into a proof with atomic axioms.

Proof . In constructing a proof, whenever the rule (∀: left) of definition 8.3 is used, let us mark
the occurrence of ∀xA recopied in the premise, and similarly mark the occurrence of ∃xA recopied
in the premise when (∃: right) is used. The lemma is then shown by induction on |A1| + . . . +
|Am|+ |B1|+ . . .+ |Bn|, the sum of the sizes of the unmarked formulae A1, . . . , Am, B1, . . . , Bn in
a sequent.

We now prove a useful permutation lemma. Given an inference of GK⊃,∧,∨,∀,∃,⊥c , note that the
inference creates a new occurrence of a formula called the principal formula.

Lemma 8.5 Given a proof Π with atomic axioms in GK⊃,∧,∨,∀,∃,⊥c of a sequent Γ − ∆, for every
selected occurrence of a formula of the form A ∧B, A ∨B, or A ⊃ B in Γ or ∆, or ∃xA in Γ, or
∀xA in ∆, there is another proof Π′ whose last inference has the specified occurrence of the formula
as its principal formula. Furthermore, depth(Π′) ≤ depth(Π).

Proof . The proof is by induction on the structure of the proof tree. There are a number of
cases depending on what the last inference is.

Lemma 8.5 does not hold for an occurrence of a formula ∀xA in Γ or for a formula ∃xA in ∆,
because the inference that creates it involves a term τ , and moving this inference down in the proof
may cause a conflict with the side condition on the eigenvariable y involved in the rules (∀: right)
or (∃: left). As shown by the following example, Lemma 8.5 also fails for intuitionistic logic. The
sequent P, (P ⊃ Q), (R ⊃ S) − Q has the following proof:

P, (R ⊃ S) − P P, (R ⊃ S), Q − Q

P, (P ⊃ Q), (R ⊃ S) − Q

On the other hand, the following tree is not a proof:

P − P P,Q − R

P, (P ⊃ Q) − R

P, S − P P, S,Q − Q

P, (P ⊃ Q), S − Q

P, (P ⊃ Q), (R ⊃ S) − Q

This shows that in searching for a proof, one has to be careful not to stop after the first failure.
Since the contraction rule cannot be dispensed with, it is not obvious at all that provability of an
intuitionistic propositional sequent is a decidable property. In fact, it is, but proving it requires a
fairly subtle argument. We will present an argument due to Kleene. For the time being, we return
to classical logic.

Lemma 8.6 Given any formula A, any pairwise disjoint sets of variables {x1, . . . , xn}, {y1, . . . , yn}
and {z1, . . . , zn}, and any proof Π with atomic axioms of a sequent A[y1/x1, . . . , yn/xn], A[z1/x1, . . . ,
zn/xn],Γ − ∆ in GK⊃,∧,∨,∀,∃,⊥c (resp. of a sequent Γ − ∆, A[y1/x1, . . . , yn/xn], A[z1/x1, . . . , zn/xn]),
if the variables yi and zj are not free in Γ, ∆, or A, then there is a proof of the sequent A[y1/x1, . . . ,
yn/xn],Γ − ∆ and a proof of the sequent A[z1/x1, . . . , zn/xn],Γ − ∆ (resp. there is a proof of the
sequent Γ − ∆, A[y1/x1, . . . , yn/xn] and a proof of the sequent Γ − ∆, A[z1/x1, . . . , zn/xn]).

39

Proof . We prove the slightly more general claim:

Claim. Given any formula A, any pairwise disjoint sets of variables {x1, . . . , xn}, {y1, . . . , yn}
and {z1, . . . , zn}, and any proof Π with atomic axioms of a sequentA[y1/x1, . . . , yn/xn], A[z1/x1, . . . ,
zn/xn],Γ − ∆ in GK⊃,∧,∨,∀,∃,⊥c (resp. of a sequent Γ − ∆, A[y1/x1, . . . , yn/xn], A[z1/x1, . . . , zn/xn]),
if the yi and zj are not free in A, then there is a proof of A[y1/x1, . . . , yn/xn],Γ[y1/z1, . . . , yn/zn] −
∆[y1/z1, . . . , yn/zn] and a proof of A[z1/x1, . . . , zn/xn],Γ[z1/y1, . . . , zn/yn] − ∆[z1/y1, . . . , zn/yn]
(resp. there is a proof of Γ[y1/z1, . . . , yn/zn] − ∆[y1/z1, . . . , yn/zn], A[y1/x1, . . . , yn/xn] and a
proof of Γ[z1/y1, . . . , zn/yn] − ∆[z1/y1, . . . , zn/yn], A[z1/x1, . . . , zn/xn]).

The proof of the claim is by induction on the structure of the proof tree and uses lemma 8.5.

We can now prove that in classical logic, the contraction rules are only needed for the quantifier-
rules.

Lemma 8.7 [Contraction elimination] The contraction rules are derivable in the system
GK⊃,∧,∨,∀,∃,⊥c .

Proof . First, by lemma 8.4, we know that it is sufficient to consider proofs with atomic axioms.
We establish the following claim:

Claim: Given any m formulae A1, . . . , Am and any n formulae B1, . . . , Bn, every proof Π with
atomic axioms in GK⊃,∧,∨,∀,∃,⊥c of the sequent A1, A1, . . . , Am, Am,Γ − B1, B1, . . . , Bn, Bn,∆ can
be converted to a proof of the sequent A1, . . . , Am,Γ − B1, . . . , Bn,∆ .

The claim is proved by induction on the pairs

〈{|A1|, . . . , |Am|, |B1|, . . . , |Bn|}, h〉,

where {|A1|, . . . , |Am|, |B1|, . . . , |Bn|} is the multiset of the sizes of the formulae A1, . . . , Am, B1, . . . ,
Bn, and h is the depth of Π. When A1 is of the form A ∧ B, A ∨ B, A ⊃ B or ∀xA, or B1 is of
the form A ∧B, A ∨B, A ⊃ B or ∃xA, we use the induction hypothesis and lemma 8.5. When A1

is of the form ∃xA or B1 is of the form ∀xA, we use lemma 8.5 and lemma 8.6. In this case, the
multiset component is always reduced.

Since the weakening and the contraction rules are derivable in GK⊃,∧,∨,∀,∃,⊥c , it is possible to
convert every proof in G⊃,∧,∨,∀,∃,⊥c into a proof in GK⊃,∧,∨,∀,∃,⊥c . Thus, the systems G⊃,∧,∨,∀,∃,⊥c and
GK⊃,∧,∨,∀,∃,⊥c are equivalent. Note in passing that a semantic proof can also be given. Indeed,
it is possible to show that GK⊃,∧,∨,∀,∃,⊥c is complete (see Gallier [6]). Also, as suggested by Peter
Baumann, it is possible to prove directly that every proof in G⊃,∧,∨,∀,∃,⊥c can be converted to a proof
in GK⊃,∧,∨,∀,∃,⊥c . Given a proof Π in G⊃,∧,∨,∀,∃,⊥c , the idea is to eliminate one by one all top-level
instances of contraction rules in Π. For every such subproof Π′, every inference above the root is
not a contraction. This allows us to work with contraction-free proofs in G⊃,∧,∨,∀,∃,⊥c , and to prove
lemmas analogous to lemma 8.5 and lemma 8.6.

We now present a cut-free system for intuitionistic logic which does not include any explicit
contraction rules and in which the premise of every sequent can be interpreted as a set. Using this
system GKi due to Kleene (see system G3a, page 481, in [18]), we can give a very nice proof of
the decidability of provability in intuitionistic propositional logic. The idea behind this system is
to systematically keep a copy of the principal formula in the premise(s) of every left-rule. Since
Lemma 8.7 fails for intuitionistic logic, such a system is of interest.

40

Definition 8.8 The axioms and inference rules of the system GK⊃,∧,∨,∀,∃,⊥i for intuitionistic first-
order logic are given below.

A,Γ − A

⊥,Γ − A

A ∧B,A,B,Γ − C
A ∧B,Γ − C

(∧: left)
Γ − A Γ − B

Γ − A ∧B
(∧: right)

A ∨B,A,Γ − C A ∨B,B,Γ − C
A ∨B,Γ − C

(∨: left)

Γ − A
Γ − A ∨B

(∨: right)
Γ − B

Γ − A ∨B
(∨: right)

A ⊃ B,Γ − A A ⊃ B,B,Γ − C
A ⊃ B,Γ − C

(⊃: left)
A,Γ − B

Γ − A ⊃ B
(⊃: right)

∀xA,A[τ/x],Γ − C
∀xA,Γ − C

(∀: left)
Γ − A[y/x]

Γ − ∀xA
(∀: right)

where in (∀: right), y does not occur free in the conclusion;

∃xA,A[y/x],Γ − C
∃xA,Γ − C

(∃: left)
Γ − A[τ/x]

Γ − ∃xA
(∃: right)

where in (∃: left), y does not occur free in the conclusion.

The variable y is called the eigenvariable of the inference.

As noted in the discussion before definition 4.3, if we consider sequents in which the righthand
side is nonempty, using axioms of the form

⊥,Γ − A

is equivalent to using the rule
Γ −⊥
Γ − A

(⊥: right)

with A 6=⊥. However, the axioms ⊥,Γ − A are technically simpler to handle, and thus we prefer
them to the rule (⊥: right). Thus, from now on, we will assume that G⊃,∧,∨,∀,∃,⊥i has been formulated
using the axioms ⊥,Γ − A rather than the rule (⊥: right).

The following lemma shows that GK⊃,∧,∨,∀,∃,⊥i is equivalent to G⊃,∧,∨,∀,∃,⊥i , and also that the

premise of every sequent of GK⊃,∧,∨,∀,∃,⊥i can be viewed as a set.

Lemma 8.9 For every sequent Γ − C, every proof Π in G⊃,∧,∨,∀,∃,⊥i can be transformed into a

proof Π′ of Γ − C in GK⊃,∧,∨,∀,∃,⊥i . Furthermore, a proof Π′ can be found such that every formula
occurring on the left of any sequent in Π′ occurs exactly once. In other words, for every sequent
Γ − C in Π′, the premise Γ can be viewed as a set.

41

Proof . The proof is by induction on the structure of Π. The case where the last inference (at
the root of the tree) is a contraction follows by the induction hypothesis. Otherwise, the sequent to
be proved is either of the form Γ − D where Γ is a set, or it is of the form ∆, A,A − D. The first
case reduces to the second since Γ can be written as ∆, A, and from a proof of ∆, A − D, we easily
obtain a proof of ∆, A,A − D. If the last inference applies to a formula in ∆ or D, the induction
hypothesis yields the desired result. If the last inference applies to one of the two A’s, we apply
the induction hypothesis and observe that the rules of GKi have been designed to automatically
contract the two occurrences of A that would normally be created. For example, if A = B ∧C, the
induction hypothesis would yield a proof of ∆, B ∧ C,B,C − D considered as a set, and the (∧:
left)-rule of GKi yields ∆, B ∧ C − D considered as a set.

As a corollary of Lemma 8.9 we obtain the fact that provability is decidable for intuitionistic
propositional logic. Similarly, Lemma 8.7 implies that provability is decidable for classical propo-
sitional logic.

Theorem 8.10 It is decidable whether a proposition is provable in N⊃,∧,∨,⊥i . It is decidable
whether a proposition is provable in G⊃,∧,∨,⊥,cutc .

Proof . By the existence of the functions N and G, there is a proof of a proposition A in N⊃,∧,∨,⊥i

iff there is a proof of the sequent − A in G⊃,∧,∨,⊥,cuti . By the cut elimination theorem (Theorem

8.1), there is a proof in G⊃,∧,∨,⊥,cuti iff there is a proof in G⊃,∧,∨,⊥i . By Lemma 8.9, there is a proof in

G⊃,∧,∨,⊥i iff there is a proof in GK⊃,∧,∨,⊥i . Call a proof irredundant if for every sequent Γ − C in this
proof, Γ is a set, and no sequent occurs twice on any path. If a proof contains a redundant sequent
Γ − C occurring at two locations on a path, it is clear that this proof can be shortened by replacing
the subproof rooted at the lower (closest to the root) location of the repeating sequent Γ − C by
the smaller subproof rooted at the higher location of the sequent Γ − C. Thus, a redundant proof
in GK⊃,∧,∨,⊥i can always be converted to an irredundant proof of the same sequent. Now, by lemma

8.9, we can assume that for every proof in GK⊃,∧,∨,⊥i of a given sequent, every node is labeled with
a sequent whose lefthand side is a set. Furthermore, since we are considering cut-free proofs, only
subformulae of the formulae occurring in the original sequent to be proved can occur in this proof.
Since the original sequent if finite, the number of all subformulae of the formulae occurring in this
sequent is also finite, and thus there is a uniform bound on the size of every irredundant proof for
this sequent. Thus, one simply has to search for an irredundant proof of the given sequent.

By the cut elimination theorem (Theorem 8.1), there is a proof in G⊃,∧,∨,⊥,cutc iff there is a
proof in G⊃,∧,∨,⊥c . By Lemma 8.7, there is a proof in G⊃,∧,∨,⊥c iff there is a proof in GK⊃,∧,∨,⊥c . To
conclude, note that every inference of GK⊃,∧,∨,⊥c decreases the total number of connectives in the
sequent. Thus, given a sequent, there are only finitely many proofs for it.

As an exercise, the reader can show that the proposition

((P ⊃ Q) ⊃ P) ⊃ P,

known as Pierce’s law , is not provable in N⊃,∧,∨,⊥i , but is provable classically in N⊃,∧,∨,⊥c .

The fact that in any cut-free proof (intuitionistic or classical) of a propositional sequent only
subformulae of the formulae occurring in that sequent can occur is an important property called
the subformula property . The subformula property is not preserved by the quantifier rules, and this
suggests that provability in first-order intuitionistic logic or classical logic is undecidable. This can
indeed be shown.

42

9 Invertible Rules

If one is interested in algorithmic proof search for a certain logic, then a cut-free sequent-calculus
formulation of this logic is particularly well suited because of the subformula property. In this case,
the property of invertibility of rules is crucial. Given that the inference rules for sequent calculi are
of the form

Γ − ∆

Γ′ − ∆′
(a)

or
Γ1 − ∆1 Γ2 − ∆2

Γ′ − ∆′
(b)

we say that a rule of type (a) is invertible when Γ′ − ∆′ is provable iff Γ − ∆ is provable, and that
a rule of type (b) is invertible when Γ′ − ∆′ is provable iff both Γ1 − ∆1 and Γ2 − ∆2 are provable.
For usual inference rules, we can only claim that the conclusion of a rule is provable if the premises
are provable, but the converse does not necessarily hold. When a cut-free sequent calculus has
invertible rules and there is some measure of complexity such that the complexity of each premise
is strictly smaller than the complexity of the conclusion, then we have a decidable proof system.
This is the case of the propositional system GK⊃,∧,∨,⊥c or the system GK⊃,∧,∨,¬c obtained from the
system of definition 8.3 by deleting the axiom ⊥,Γ − ∆, A and adding the negation rules

Γ − ∆, A

¬A,Γ − ∆
(¬: left)

A,Γ − ∆

Γ − ∆,¬A
(¬: right)

(the full systems also have invertible rules, but the complexity of the premises of quantifier rules
is not smaller than the complexity of the conclusion). Systems of invertible rules for classical logic
are used systematically in Gallier [6] (see section 3.4 and 5.4). In our opinion, such systems are
best suited for presenting completeness proofs in the most transparent fashion.

One of the major differences between Gentzen systems for intuitionistic and classical logic
presented so far, is that in intuitionistic systems, sequents are restricted to have at most one
formula on the righthand side of −. This asymmetry causes the (⊃: left) and (∨: right) rules
of intuitionistic logic to be different from their counterparts in classical logic, and in particular,
the intuitionistic rules cause some loss of information. These rules are no longer invertible. For
instance, the intuitionistic (⊃: left)-rule is

Γ − A B,Γ − C
A ⊃ B,Γ − C

(⊃: left)

whereas its classical version is

Γ − A,C B,Γ − C
A ⊃ B,Γ − C

(⊃: left)

Note that C is dropped in the left premise of the intuitionistic version of the rule. Similarly, the
intuitionistic (∨: right)-rules are

Γ − A
Γ − A ∨B

(∨: right)
Γ − B

Γ − A ∨B
(∨: right)

43

whereas the classical version is
Γ − A,B

Γ − A ∨B
(∨: right)

Again, either A or B is dropped in the premise of the intuitionistic version of the rule. This loss
of information is responsible for the fact that in searching for a proof of a sequent in G⊃,∧,∨,∀,∃,⊥i ,
one cannot stop after having found a deduction tree which is not a proof (i.e. a deduction tree
in which some leaf is not labeled with an axiom). The rules may have been tried in the wrong
order, and it is necessary to make sure that all attempts have failed to be sure that a sequent is
not provable. In fact, proof search should be conducted in the system GK⊃,∧,∨,∀,∃,⊥i , since we know
that searching for an irredundant proof terminates in the propositional case (see theorem 8.10).

Takeuti [31] has made an interesting observation about invertibility of rules in intuitionistic
cut-free sequent calculi, but before discussing this observation, we shall discuss other contraction-
free systems for intuitionistic propositional logic for which decidability of provability is immediate.
Such systems were discovered in the early fifties by Vorob’ev [35, 36]. Interest in such systems
has been revived recently due to some work in automated theorem proving by Dyckhoff [5], on
the embedding of intuitionistic logic into linear logic (without using the exponentials) by Lincoln,
Scedrov and Shankar [20], and on the complexity of cut-elimination by Hudelmaier [17]. In order to
simplify the discussion, we first consider propositional intuitionistic logic based on the connective
⊃. The system GK⊃i of Definition 8.8 restricted to propositions built up only from ⊃ is shown
below:

A,Γ − A

A ⊃ B,Γ − A A ⊃ B,B,Γ − C
A ⊃ B,Γ − C

(⊃: left)
A,Γ − B

Γ − A ⊃ B
(⊃: right)

This system is contraction-free, but it is not immediately obvious that provability is decidable,
since A ⊃ B is recopied in the premises of the (⊃: left)-rule. First, note that because the systems

GK⊃,∧,∨,∀,∃,⊥i and G⊃,∧,∨,∀,∃,⊥i are equivalent and because cut-elimination holds for G⊃,∧,∨,∀,∃,⊥i , then

cut-elimination also holds for GK⊃,∧,∨,∀,∃,⊥i . In fact, it is easy to verify that cut-elimination holds
for GK⊃i . Now, it is easy to see that we can require A to be atomic in an axiom, and to see that
we can drop A ⊃ B from the right premise and obtain an equivalent system. The new rule is

A ⊃ B,Γ − A B,Γ − C
A ⊃ B,Γ − C

(⊃: left)

Indeed, if we have a proof of A ⊃ B,B,Γ − C, since B,Γ − A ⊃ B is provable, by a cut we
obtain that the sequent B,Γ − C is provable. Now, the difficulty is to weaken the hypothesis
A ⊃ B in the left premise. What is remarkable is that when A itself is an implication, that is
when A ⊃ B is of the form (A′ ⊃ B′) ⊃ B, then ((A′ ⊃ B′) ⊃ B) − (B′ ⊃ B) is provable.
Furthermore, A′, (B′ ⊃ B) − ((A′ ⊃ B′) ⊃ B) is also provable. As a consequence, for any Γ and
any propositions A′, B′, B,D, the sequent Γ, ((A′ ⊃ B′) ⊃ B) − (A′ ⊃ D) is provable iff the sequent
Γ, (B′ ⊃ B) − (A′ ⊃ D) is provable. Then, it can be shown that B′ ⊃ B does indeed work. Also,
when A is atomic, the rule (⊃: left) is simplified to a one-premise rule. The above discussion is
intended as a motivation for the system LJ T ⊃ presented next, but we warn the reader that the

44

equivalence of the new system LJ T ⊃ with the previous system GK⊃i is not as simple as it seems.
The new system LJ T ⊃ (which is a subsystem of Dyckhoff’s system [5]), is the following:

P,Γ − P

P,B,Γ − C
P,P ⊃ B,Γ − C

(⊃: left)
B ⊃ C,Γ − A ⊃ B C,Γ − D

(A ⊃ B) ⊃ C,Γ − D
(⊃: left)

A,Γ − B
Γ − A ⊃ B

(⊃: right)

where P is atomic.

As we said earlier, the equivalence of the new system LJ T ⊃ with the previous system GK⊃i is
a bit challenging. A nice proof is given in Dyckhoff [5].

As an interesting application of the system LJ T ⊃, we observe that the sequent

(((P ⊃ Q) ⊃ P) ⊃ P) ⊃ Q − Q

is provable. However, this sequent is not provable in G⊃i without using a contraction. Indeed, the
only cut-free and contraction-free proof of this sequent would require proving (((P ⊃ Q) ⊃ P) ⊃ P)
in G⊃i . However, this proposition is nonother than Pierce’s law, and we leave it to the reader to
verify that it is not provable in the system LJ T ⊃.

In showing that intuitionistic propositional logic can be embedded in linear logic (without using
the exponentials), Lincoln, Scedrov and Shankar [20] use a system ILL∗ almost identical to LJ T ⊃,
except that instead of the rule

P,B,Γ − C
P,P ⊃ B,Γ − C

(⊃: left)

they use the rule
Γ − P B,Γ − C
P ⊃ B,Γ − C

(⊃: left)

with P atomic. This second rule is obviously sound, and it is trivial that the rule

P,B,Γ − C
P,P ⊃ B,Γ − C

(⊃: left)

is derivable from the rule
Γ − P B,Γ − C
P ⊃ B,Γ − C

(⊃: left)

Thus, the proof of the equivalence of LJ T ⊃ and GK⊃i directly implies the equivalence of ILL∗ and
GK⊃i (but the converse is not obvious). However, as far as proof search goes, the system LJ T ⊃ is
superior since it avoids work done on trying to derive P in favour of waiting until it is obvious. On
the other hand, ILL∗ is the right system for the translation into linear logic.

Actually, it is possible to formulate a contraction-free system LJ T ⊃,∧,∨,⊥ for the whole of
intuitionistic propositional logic. Such a system given in Dyckhoff [5] is shown below.

45

Definition 9.1 The axioms and inference rules of the system LJ T ⊃,∧,∨,⊥ are given below.

P,Γ − P

where P is atomic;
⊥,Γ − A

A,B,Γ − C
A ∧B,Γ − C

(∧: left)
Γ − A Γ − B

Γ − A ∧B
(∧: right)

A,Γ − C B,Γ − C
A ∨B,Γ − C

(∨: left)

Γ − A
Γ − A ∨B

(∨: right)
Γ − B

Γ − A ∨B
(∨: right)

P,B,Γ − C
P,P ⊃ B,Γ − C

(⊃: left1)

where P is atomic;
A ⊃ (B ⊃ C),Γ − D
(A ∧B) ⊃ C,Γ − D

(⊃: left2)

A ⊃ C,B ⊃ C,Γ − D
(A ∨B) ⊃ C,Γ − D

(⊃: left3)

B ⊃ C,Γ − A ⊃ B C,Γ − D
(A ⊃ B) ⊃ C,Γ − D

(⊃: left4)

A,Γ − B
Γ − A ⊃ B

(⊃: right)

Among the (⊃: left) rules, notice that only (⊃: left4) is not invertible. The equivalence of

LJ T ⊃,∧,∨,⊥ and GK⊃,∧,∨,⊥i is shown in Dyckhoff [5].

A nice feature of the system LJ T ⊃,∧,∨,⊥ is that it yields easily the decidability of provability.
Note that under the multiset ordering, the complexity of the premises of each rule decreases strictly
(we consider the multiset of the weights w(A) of the formulae A occurring in each sequent. We
have w(⊥) = 1, w(P) = 1 for an atom, w(A ∨ B) = w(A ⊃ B) = w(A) + w(B) + 1, and
w(A∧B) = w(A) +w(B) + 2). For example, in rule (⊃: left4), (A ⊃ B) ⊃ C is replaced by B ⊃ C
and A ⊃ B, both of (strictly) smaller complexity. Thus, this system requires no test of circularity

(test for the repetition of sequents to find irredundant proofs), unlike in the system GK⊃,∧,∨,⊥i .

Pitts [22] reports on applications of the system LJ T to intuitionistic logic with quantification
over propositional letters, with interesting applications to the theory of Heyting algebras. An in-
depth study of invertibility and admissibility of rules in intuitionistic logic can be found in Paul
Rozière’s elegant thesis [25].

We now come back to Takeuti’s observation [31] (see Chapter 1, paragraph 8). The crucial fact
about intuitionistic systems is not so much the fact that sequents are restricted so that righthand

46

sides have at most one formula, but that the application of the rules (⊃: right) and (∀: right) should
be restricted so that the righthand side of the conclusion of such a rule consists of a single formula
(and similarly for (¬: right) if ¬ is not treated as an abbreviation). The intuitive reason is that
the rule (⊃: right) moves some formula from the lefthand side to the righthand side of a sequent
(and similarly for (¬: right)), and (∀: right) involves a side condition. Now, we can view a classical
sequent Γ − B1, . . . , Bn as the corresponding intuitionistic sequent Γ − B1 ∨ . . .∨Bn. With this in
mind, we can show the following result.

Lemma 9.2 Let GT ⊃,∧,∨,∀,∃,⊥i be the system G⊃,∧,∨,∀,∃,⊥c where the application of the rules (⊃:
right) and (∀: right) is restricted to situations in which the conclusion of the inference is a sequent

whose righthand side has a single formula. Then, Γ − B1, . . . , Bn is provable in GT ⊃,∧,∨,∀,∃,⊥i iff

Γ − B1 ∨ . . . ∨Bn is provable in G⊃,∧,∨,∀,∃,⊥i .

Proof. The proof is by induction on the structure of proofs. In the case of an axiom A,Γ − ∆, A,
letting D be the disjunction of the formulae in ∆, we easily obtain a proof of A,Γ − D ∨ A in
G⊃,∧,∨,∀,∃,⊥i by applications of (∨: right) to the axiom A,Γ − A. Similarly, ⊥,Γ − D∨A is provable
since it is an axiom. It is also necessary to show that a number of intuitionistic sequents are
provable. For example, we need to show that the following sequents are intuitionistically provable:

A ⊃ B, (A ∨D) ∧ (B ⊃ D) − D,
(A ∨D) ∧ (B ∨D) − (A ∧B) ∨D,

A[τ/x] ∨D − ∃xA ∨D,
D ∨ ⊥ − D ∨A,

C ∨ C ∨D − C ∨D.

Going from GT ⊃,∧,∨,∀,∃,⊥i to G⊃,∧,∨,∀,∃,⊥i , it is much easier to assume that the cut rule can be used
in Gi, and then use cut elimination. For example, if the last inference is

Γ − A,∆ B,Γ − ∆

A ⊃ B,Γ − ∆
(⊃: left)

letting D be the disjunction of the formulae in ∆, by the induction hypothesis, we have proofs in
G⊃,∧,∨,∀,∃,⊥i of Γ − A∨D and B,Γ − D. It is obvious that we also have proofs of A ⊃ B,Γ − A∨D
and A ⊃ B,Γ − B ⊃ D, and thus a proof of A ⊃ B,Γ − (A ∨ D) ∧ (B ⊃ D). Since the sequent
A ⊃ B,Γ, (A ∨ D) ∧ (B ⊃ D) − D is provable, using a cut, we obtain that A ⊃ B,Γ − D is
provable, as desired. The reader should be aware that the special case where ∆ is empty can arise
and deserves special treatment. In this case, D corresponds to ⊥. We only treated the case where
∆ is nonempty. The case where ∆ is empty is actually simpler and is left to the reader. The other
cases are similar.

We can also adapt the system GK⊃,∧,∨,∀,∃,⊥c to form a system GKT ⊃,∧,∨,∀,∃,⊥i having the same

property as GT ⊃,∧,∨,∀,∃,⊥i . In this system, it turns out that it is only necessary to recopy the
principal formula in the rule (⊃: left), and of course in the rules (∀: left), (∃: right). Such a system
can be shown to be complete w.r.t. Kripke semantics, and can be used to show the existence of
a finite counter-model in the case of a refutable proposition. This system is given in the next
definition.

47

Definition 9.3 The axioms and inference rules of the system GKT ⊃,∧,∨,∀,∃,⊥i are given below.

A,Γ − ∆, A

⊥,Γ − ∆, A

A,B,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

Γ − ∆, A Γ − ∆, B

Γ − ∆, A ∧B
(∧: right)

A,Γ − ∆ B,Γ − ∆

A ∨B,Γ − ∆
(∨: left)

Γ − ∆, A,B

Γ − ∆, A ∨B
(∨: right)

A ⊃ B,Γ − A,∆ B,Γ − ∆

A ⊃ B,Γ − ∆
(⊃: left)

A,Γ − B
Γ − A ⊃ B

(⊃: right)

∀xA,A[τ/x],Γ − ∆

∀xA,Γ − ∆
(∀: left)

Γ − A[y/x]

Γ − ∀xA
(∀: right)

where in (∀: right), y does not occur free in the conclusion;

A[y/x],Γ − ∆

∃xA,Γ − ∆
(∃: left)

Γ − ∆, A[τ/x], ∃xA
Γ − ∆, ∃xA

(∃: right)

where in (∃: left), y does not occur free in the conclusion.

In the system GKT ⊃,∧,∨,∀,∃,⊥i , the application of the rules (⊃: right) and (∀: right) is restricted
to sequents whose righthand side have a single formula. Using lemmas analogous to lemma 8.5,
lemma 8.6, and lemma 8.7, it is possible to show that (contraction) and (weakening) are derived

rules, and that this system is equivalent to G⊃,∧,∨,∀,∃,⊥i , in the sense that a sequent Γ − B1, . . . , Bn
is provable in GT K⊃,∧,∨,∀,∃,⊥i iff Γ − B1 ∨ . . . ∨ Bn is provable in G⊃,∧,∨,∀,∃,⊥i . However, lemma
8.5 now fails for propositions of the form A ⊃ B or ∀xA. However, it can be shown that all the
rules are invertible except (⊃: right) and (∀: right). These rules are responsible for the crucial
nondeterminism arising in proof search procedures. However, it can be shown that the strategy
consisting in alternating phases in which invertible rules are fully applied, and then one of the rules
(⊃: right) or (∀: right) is applied once, is complete. As a matter of fact, this strategy amounts
to building a Kripke model in the shape of a tree. Failure to complete this model corresponds to
provability.4 In the propositional case, it is also possible to formulate a contraction-free system
similar to the system LJ T ⊃,∧,∨,⊥. Such a system is given in Dyckhoff [5].

10 A Proof-Term Calculus for G⊃,∧,∨,∀,∃,⊥,cuti

Before we move on to the sequent calculi LK and LJ and a detailed proof of cut-elimination
for these systems, it is worth describing a term calculus corresponding to the sequent calculus
G⊃,∧,∨,∀,∃,⊥,cuti . The idea behind the design of the term calculus of this section arose from inspiring
conversations with Val Breazu-Tannen, whoom I gladly thank. In this calculus, a sequent Γ − A

4The management of quantified formulae is actually more complicated. For details, see Takeuti [31], Chapter 1,
section 8.

48

becomes a judgement Γ∗ . M :A, such that, if Γ = A1, . . . , An then Γ∗ = x1:A1, . . . , xn:An is a
context in which the xi are distinct variables and M is a proof term. Since the sequent calculus has
rules for introducing formulae on the left of a sequent as well as on the right of a sequent, we will
have to create new variables to tag the newly created formulae, and some new term constructors.
The reader should pay particular attention to the use of the let construct as a mechanism for
suspending substitution.

Definition 10.1 The term calculus associated with G⊃,∧,∨,∀,∃,⊥,cuti is defined as follows.

Γ, x:A . x:A

x:A, y:A,Γ . M :B

z:A,Γ . let z be x:A@y:A inM :B
(contrac: left)

Γ . M :⊥
Γ .5A(M):A

(⊥: right)

with A 6=⊥,
Γ . N :A x:A,Γ . M :C

Γ . let N be x:A inM :C
(cut)

x:A, y:B,Γ . M :C

z:A ∧B,Γ . let z be 〈x:A, y:B〉 inM :C
(∧: left)

Γ . M :A Γ . N :B

Γ . 〈M,N〉:A ∧B
(∧: right)

x:A,Γ . M :C y:B,Γ . N :C

z:A ∨B,Γ . case z of inl(x:A)⇒M | inr(y:B)⇒ N :C
(∨: left)

Γ . M :A

Γ . inl(M):A ∨B
(∨: right)

Γ . M :B

Γ . inr(M):A ∨B
(∨: right)

Γ . M :A x:B,Γ . N :C

z:A ⊃ B,Γ . let zM be x:B in N :C
(⊃: left)

x:A,Γ . M :B

Γ . (λx:A.M):A ⊃ B
(⊃: right)

x:A[τ/t],Γ . M :C

z: ∀tA,Γ . let zτ be x:A[τ/t] inM :C
(∀: left)

Γ . M :A[u/t]

Γ . (λu: ι. M):∀tA
(∀: right)

where u does not occur free in Γ or ∀tA;

x:A[u/t],Γ . M :C

z: ∃tA,Γ . casex z of inx(u: ι, x:A[u/t])⇒M :C
(∃: left)

49

where u does not occur free in Γ, ∃tA, or C;

Γ . M :A[τ/t]

Γ . inx(τ,M):∃tA
(∃: right)

The use of the let construct in the cut rule and the rules (⊃: left) and (∀: left) should be noted.
The effect of the let construct is to suspend substitution, and thus to allow more reductions to
take place. Most presentations use the following alternate rules in which substitution takes place
immediately:

Γ . N :A x:A,Γ . M :C

Γ . M [N/x]:C
(cut)

Γ . M :A x:B,Γ . N :C

z:A ⊃ B,Γ . N [(zM)/x]:C
(⊃: left)

x:A[τ/t],Γ . M :C

z: ∀tA,Γ . M [(zτ)/x]:C
(∀: left)

Thus, in some sense, a reduction strategy has already been imposed. This (usual) presentation
facilitates the comparison with natural deduction, but makes it impossible to describe general cut-
elimination rules. For the sake of historical accuracy, note that essentially the same system appears
in section 2 of Girard’s classic paper [10]. With our system, it is possible to write reduction rules
that correspond to cut-elimination steps (see section 12). For example,

let λx:A.M1 be z: (A ⊃ B) in (let zM2 be y:B in N)

−→ let (letM2 be x:A inM1) be y:B in N,

let 〈M,N〉 be 〈x:A, y:B〉 in P −→ letM be x:A in (let N be y:B in P),

let 〈M,N〉 be 〈x:A, y:B〉 in P −→ let N be y:B in (letM be x:A in P),

letM be u:A in (let z be 〈x:C, y:D〉 in N) −→ let z be 〈x:C, y:D〉 in (letM be u:A in N),

letM be x:A in 〈N1, N2〉 −→ 〈letM be x:A in N1, letM be x:A in N2〉,

letM be x:A in x −→M.

It can be shown that

let N be x:A inM −→+ M [N/x].

However, the reduction rules corresponding to cut elimination are finer than β-conversion. This
is the reason why it is quite difficult to prove a strong version of cut-elimination where all reduction
sequences terminate. Such a proof was given by Dragalin [4]. If the alternate rules

Γ . N :A x:A,Γ . M :C

Γ . M [N/x]:C
(cut)

50

Γ . M :A x:B,Γ . N :C

z:A ⊃ B,Γ . N [(zM)/x]:C
(⊃: left)

x:A[τ/t],Γ . M :C

z: ∀tA,Γ . M [(zτ)/x]:C
(∀: left)

are used, then the reduction rules take a different form, For example,

let 〈M,N〉 be 〈x:A, y:B〉 in P −→ P [M/x,N/y].

This amounts to imposing certain strategies on the reductions in our calculus. In fact, it is possible
to specify reduction rules imposing certain strategies, for example, eager or lazy evaluation. Such
reduction strategies have been considered in a similar setting for linear logic by Abramsky [1].

The above proof-term assignment has the property that if Γ . M :A is derivable and Γ ⊆ ∆,
then ∆ . M :A is also derivable. This is because the axioms are of the form Γ, x:A . x:A. We can
design a term assignment system for an LJ -style system. In such a system, the axioms are of the
form

x:A . x:A

and the proof-term assignment for weakening is as follows:

Γ . M :B

z:A,Γ . let z be inM :B
(weakening: left)

Note that the above proof-term assignment has the property that if Γ.M :A is provable and Γ ⊆ ∆,
then ∆ . N :A is also derivable for some N easily obtainable from M .

If instead of the above (∧: left) rule, we use the two LJ -style rules

A,Γ − C
A ∧B,Γ − C

(∧: left)
B,Γ − C

A ∧B,Γ − C
(∧: left)

then we have the following proof-term assignment:

x:A,Γ . M :C

z:A ∧B,Γ . let z be 〈x:A, 〉 inM :C
(∧: left)

y:B,Γ . M :C

z:A ∧B,Γ . let z be 〈 , y:B〉 inM :C
(∧: left)

It is then natural to write the normalization rules as

let 〈M,N〉 be 〈x:A, 〉 in P −→ letM be x:A in P,

let 〈M,N〉 be 〈 , y:B〉 in P −→ let N be y:B in P.

We note that for these new rules, the reduction is lazy , in the sense that it is unnecessary to
normalize N (or M) since it is discarded. With the old rules, the reduction is generally eager since
both M and N will have to be normalized, unless x or y do not appear in P . Such aspects of lazy
or eager evaluation become even more obvious in linear logic, as stressed by Abramsky [1].

We now consider some equivalent Gentzen systems.

51

11 The Gentzen Systems LJ and LK
Axioms of the form A,Γ − ∆, A are very convenient for searching for proofs backwards, but for
logical purity, it may be desirable to consider axioms of the form A − A. We can redefine axioms
to be of this simpler form, but to preserve exactly the same notion of provability, we need to add
the following rules of weakening (also called thinning).

Definition 11.1 The rules of weakening (or thinning) are

Γ − ∆

A,Γ − ∆
(weakening: left)

Γ − ∆

Γ − ∆, A
(weakening: right)

In the case of intuitionistic logic, we require that ∆ be empty in (weakening: right).

One can also observe that in order to make the (∧: left) rule and the (∨: right) rule analogous
to the corresponding introduction rules in natural deduction, we can introduce the rules

A,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

B,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

and
Γ − ∆, A

Γ − ∆, A ∨B
(∨: right)

Γ − ∆, B

Γ − ∆, A ∨B
(∨: right)

They are equivalent to the old rules provided we add (contrac: left), (contrac: right), (weakening:
left) and (weakening: right). This leads us to the systems LJ and LK defined and studied by
Gentzen [8] (except that Gentzen also had an explicit exchange rule, but we assume that we are
dealing with multisets).

Definition 11.2 The axioms and inference rules of the system LJ for intuitionistic first-order
logic are given below.

Axioms:
A − A

Structural Rules:

Γ − ∆

A,Γ − ∆
(weakening: left)

Γ −
Γ − A

(weakening: right)

A,A,Γ − ∆

A,Γ − ∆
(contrac: left)

Γ − A A,Λ − Θ

Γ,Λ − Θ
(cut)

Logical Rules:
A,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

B,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

52

Γ − A Γ − B
Γ − A ∧B

(∧: right)

A,Γ − ∆ B,Γ − ∆

A ∨B,Γ − ∆
(∨: left)

Γ − A
Γ − A ∨B

(∨: right)
Γ − B

Γ − A ∨B
(∨: right)

Γ − A B,Γ − ∆

A ⊃ B,Γ − ∆
(⊃: left)

A,Γ − B
Γ − A ⊃ B

(⊃: right)

Γ − A
¬A,Γ −

(¬: left)
A,Γ −
Γ − ¬A

(¬: right)

In the logical rules above, A ∨B, A ∧B, A ⊃ B, and ¬A are called the principal formulae and A,
B the side formulae of the inference.

A[τ/x],Γ − ∆

∀xA,Γ − ∆
(∀: left)

Γ − A[y/x]

Γ − ∀xA
(∀: right)

where in (∀: right), y does not occur free in the conclusion;

A[y/x],Γ − ∆

∃xA,Γ − ∆
(∃: left)

Γ − A[τ/x]

Γ − ∃xA
(∃: right)

where in (∃: left), y does not occur free in the conclusion.

In the above rules, ∆ and Θ consist of at most one formula. The variable y is called the
eigenvariable of the inference. The condition that the eigenvariable does not occur free in the
conclusion of the rule is called the eigenvariable condition. The formula ∀xA (or ∃xA) is called
the principal formula of the inference, and the formula A[τ/x] (or A[y/x]) the side formula of the
inference.

Definition 11.3 The axioms and inference rules of the system LK for classical first-order logic are
given below.

Axioms:
A − A

Structural Rules:

Γ − ∆

A,Γ − ∆
(weakening: left)

Γ − ∆

Γ − ∆, A
(weakening: right)

A,A,Γ − ∆

A,Γ − ∆
(contrac: left)

Γ − ∆, A,A

Γ − ∆, A
(contrac: right)

Γ − ∆, A A,Λ − Θ

Γ,Λ − ∆,Θ
(cut)

53

Logical Rules:
A,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

B,Γ − ∆

A ∧B,Γ − ∆
(∧: left)

Γ − ∆, A Γ − ∆, B

Γ − ∆, A ∧B
(∧: right)

A,Γ − ∆ B,Γ − ∆

A ∨B,Γ − ∆
(∨: left)

Γ − ∆, A

Γ − ∆, A ∨B
(∨: right)

Γ − ∆, B

Γ − ∆, A ∨B
(∨: right)

Γ − ∆, A B,Γ − ∆

A ⊃ B,Γ − ∆
(⊃: left)

A,Γ − ∆, B

Γ − ∆, A ⊃ B
(⊃: right)

Γ − ∆, A

¬A,Γ − ∆
(¬: left)

A,Γ − ∆

Γ − ∆,¬A
(¬: right)

In the logical rules above, A ∨B, A ∧B, A ⊃ B, and ¬A are called the principal formulae and A,
B the side formulae of the inference.

A[τ/x],Γ − ∆

∀xA,Γ − ∆
(∀: left)

Γ − ∆, A[y/x]

Γ − ∆, ∀xA
(∀: right)

where in (∀: right), y does not occur free in the conclusion;

A[y/x],Γ − ∆

∃xA,Γ − ∆
(∃: left)

Γ − ∆, A[τ/x]

Γ − ∆, ∃xA
(∃: right)

where in (∃: left), y does not occur free in the conclusion.

The variable y is called the eigenvariable of the inference. The condition that the eigenvariable
does not occur free in the conclusion of the rule is called the eigenvariable condition. The formula
∀xA (or ∃xA) is called the principal formula of the inference, and the formula A[τ/x] (or A[y/x])
the side formula of the inference.

One will note that the cut rule (multiplicative version)

Γ − ∆, A A,Λ − Θ

Γ,Λ − ∆,Θ
(cut)

(with ∆ empty in the intuitionistic case and Θ at most one formula) differs from the cut rule
(additive version)

Γ − ∆, A A,Γ − ∆

Γ − ∆
(cut)

used in G⊃,∧,∨,∀,∃,¬,cutc or in G⊃,∧,∨,∀,∃,⊥,cuti , in that the premises do not require the contexts Γ,
Λ to coincide, and the contexts ∆, Θ to coincide. These rules are equivalent using contraction
and weakening. Similarly, the other logical rules of LK (resp. LJ) and G⊃,∧,∨,∀,∃,¬,cutc (resp.

G⊃,∧,∨,∀,∃,¬,cuti) are equivalent using contraction and weakening.

54

12 Cut Elimination in LK (and LJ)

The cut elimination theorem also applies to LK and LJ . Historically, this is the version of the cut
elimination theorem proved by Gentzen [8] (1935). Gentzen’s proof was later simplified by Tait [29]
and Girard [13] (especially the induction measure). A simplified version of Tait’s proof is nicely
presented by Schwichtenberg [26]. The proof given here combines ideas from Tait and Girard. The
induction measure used is due to Tait [29] (the cut-rank), but the explicit transformations are
adapted from Girard [13], [9]. We need to define the cut-rank of a formula, the depth of a proof,
and the logical depth of a proof.

Definition 12.1 The degree |A| of a formula A is the number of logical connectives in A. Let Π
be an LK-proof. The cut-rank c(Π) of Π is defined inductively as follows. If Π is an axiom, then
c(Π) = 0. If Π is not an axiom, the last inference has either one or two premises. In the first case,
the premise of that inference is the root of a subtree Π1. In the second case, the left premise is
the root of a subtree Π1, and the right premise is the root of a subtree Π2. If the last inference is
not a cut, then if it has a single premise, c(Π) = c(Π1), else c(Π) = max(c(Π1), c(Π2)). If the last
inference is a cut with cut formula A, then c(Π) = max({|A| + 1, c(Π1), c(Π2)}). The depth of a
proof tree Π, denoted as d(Π), is defined inductively as follows: d(Π) = 0, when Π is an axiom. If
the root of Π is a single-premise rule, then d(Π) = d(Π1) + 1. If the root of Π is a two-premise rule,
then d(Π) = max(d(Π1), d(Π2)) + 1. We also define the logical depth of a proof tree Π, denoted
as l(Π), inductively as follows: l(Π) = 0, when Π is an axiom. If the root of Π is a single-premise
rule, then if the lowest rule is structural, l(Π) = l(Π1), else l(Π) = l(Π1) + 1. If the root of Π is a
two-premise rule, then l(Π) = max(l(Π1), l(Π2)) + 1.

Thus, for an atomic formula, |A| = 0. Note that c(Π) = 0 iff Π is cut free, and that if Π contains
cuts, then c(Π) is 1 + the maximum of the degrees of cut formulae in Π. The difference between
the depth d(Π) and the logical depth l(Π) is that structural rules are not counted in l(Π). Both
are needed in lemma 12.3, d(Π) as an induction measure, and l(Π) to bound the increase on the
size of a proof. We also need the definition of the function exp(m,n, p).

exp(m, 0, p) = p;

exp(m,n+ 1, p) = mexp(m,n,p).

This function grows extremely fast in the argument n. Indeed, exp(m, 1, p) = mp, exp(m, 2, p) =
mmp , and in general, exp(m,n, p) is an iterated stack of exponentials of height n, topped with a p:

exp(m,n, p) = mmm
··
·m
p }

n

The main idea is to move the cuts “upward”, until one of the two premises involved is an
axiom. In attempting to design transformations for converting an LK-proof into a cut-free LK-
proof, we have to deal with the case in which the cut formula A is contracted in some premise. A
transformation to handle this case is given below.

55

π1

Γ − ∆, A,A

Γ − ∆, A

π2

A,Λ − Θ

Γ,Λ − ∆,Θ

=⇒
π1

Γ − ∆, A,A

π2

A,Λ − Θ

Γ,Λ − ∆,Θ, A

π2

A,Λ − Θ

Γ,Λ,Λ − ∆,Θ,Θ

Γ,Λ − ∆,Θ

The symmetric rule in which a contraction takes place in the right subtree is not shown. How-
ever, there is a problem with this transformation. The problem is that it yields infinite reduction
sequences. Consider the following two transformation steps:

π1

Γ − ∆, C, C

Γ − ∆, C

π2

C,C,Λ − Θ

C,Λ − Θ
(cut)

Γ,Λ − ∆,Θ

=⇒

π1

Γ − ∆, C, C

π2

C,C,Λ − Θ

C,Λ − Θ

Γ,Λ − ∆,Θ, C

π2

C,C,Λ − Θ

C,Λ − Θ

Γ,Λ,Λ − ∆,Θ,Θ

Γ,Λ − ∆,Θ

=⇒

π1

Γ − ∆, C, C

π1

Γ − ∆, C, C

π2

C,C,Λ − Θ

C,Γ,Λ − ∆,Θ, C

Γ,Γ,Λ − ∆,∆,Θ, C, C

Γ,Λ − ∆,Θ, C, C

Γ,Λ − ∆,Θ, C

π2

C,C,Λ − Θ

C,Λ − Θ

Γ,Λ,Λ − ∆,Θ,Θ

Γ,Λ − ∆,Θ

The pattern with contractions on the left and on the right is repeated.

56

One solution is to consider a more powerful kind of cut rule. In the sequel, the multiset Γ, nA
denotes the multiset consisting of all occurrences of B 6= A in Γ and of m + n occurrences of A
where m is the number of occurrences of A in Γ.

Definition 12.2 (Extended cut rule)

Γ − ∆,mA nA,Λ − Θ

Γ,Λ − ∆,Θ

where m,n > 0.

This rule coincides with the standard cut rule when m = n = 1, and it is immediately verified
that it can be simulated by an application of the standard cut rule and some applications of the
contraction rules. Thus, the system LK+ obtained from LK by replacing the cut rule by the
extended cut rule is equivalent to LK. From now on, we will be working with LK+. The problem
with contraction is then resolved, since we have the following transformation:

π1

Γ − ∆, (m− 1)A,A,A

Γ − ∆,mA

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ

=⇒
π1

Γ − ∆, (m+ 1)A

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ

We now prove the main lemma, for which a set of transformations will be needed.

Lemma 12.3 [Reduction Lemma, Tait, Girard] Let Π1 be an LK+-proof of Γ − ∆,mA, and Π2

an LK+-proof of nA,Λ − Θ, where m,n > 0, and assume that c(Π1), c(Π2) ≤ |A|. An LK+-proof
Π of Γ,Λ − ∆,Θ can be constructed, such that c(Π) ≤ |A|. We also have l(Π) ≤ 2(l(Π1) + l(Π2)),
and if the rules for ⊃ are omitted, then l(Π) ≤ l(Π1) + l(Π2).

Proof . It proceeds by induction on d(Π1)+d(Π2),5 where Π1 and Π2 are the immediate subtrees
of the proof tree

Π1

Γ − ∆,mA

Π2

nA,Λ − Θ

Γ,Λ − ∆,Θ

There are several (non-mutually exclusive) cases depending on the structure of the immediate
subtrees Π1 and Π2.

(1) The root of Π1 and the root of Π2 is the conclusion of some logical inference having some
occurrence of the cut formula A as principal formula. We say that A is active.

5The reader is warned that earlier versions of this proof used the wrong measure l(Π1)+l(Π2). Indeed, l(Π1)+l(Π2)
does not decrease in the case of the structural rules (in cases (2) and (4) of the forthcoming proof).

57

Every transformation comes in two versions. The first version corresponds to the case of an
application of the standard cut rule. The other version, called the “cross-cuts” version, applies
when the extended cut rule is involved.

(i) (∧: right) and (∧: left)

π1

Γ − ∆, B

π2

Γ − ∆, C

Γ − ∆, B ∧ C

π3

B,Λ − Θ

B ∧ C,Λ − Θ

Γ,Λ − ∆,Θ

=⇒
π1

Γ − ∆, B

π3

B,Λ − Θ

Γ,Λ − ∆,Θ

By the hypothesis c(Π1), c(Π2) ≤ |A|, and it is clear that for the new proof Π we have c(Π) ≤ |A|,
since c(Π) = max({|B| + 1, c(π1), c(π3)}), |B| + 1 ≤ |A| (since A = B ∧ C), c(π1) ≤ c(Π1),
c(π2) ≤ c(Π1), and c(π3) ≤ c(Π2). It is also easy to establish the upper bound on l(Π).6

Cross-cuts version. Some obvious simplifications apply when either m = 0 or n = 0, and we
only show the main case where m,n > 0. Let A = B ∧ C.

π1

Γ − ∆,mA,B

π2

Γ − ∆,mA,C

Γ − ∆, (m+ 1)A

π3

B,nA,Λ − Θ

(n+ 1)A,Λ − Θ

Γ,Λ − ∆,Θ

Let Π′1 be the proof tree obtained by applying the induction hypothesis to

π1

Γ − ∆,mA,B

π3

B,nA,Λ − Θ

(n+ 1)A,Λ − Θ

Γ,Λ − ∆,Θ, B

and Π′2 the proof tree obtained by applying the induction hypothesis to

π1

Γ − ∆,mA,B

π2

Γ − ∆,mA,C

Γ − ∆, (m+ 1)A

π3

B,nA,Λ − Θ

B,Γ,Λ − ∆,Θ

and finally let Π be

6The simple fact that max(a, b) ≤ a+ b for a, b ≥ 0 is used here and in the next cases.

58

Π′1

Γ,Λ − ∆,Θ, B

Π′2

B,Γ,Λ − ∆,Θ

Γ,Γ,Λ,Λ − ∆,∆,Θ,Θ

Γ,Λ − ∆,Θ

Since c(π1) ≤ c(Π1), c(π2) ≤ c(Π1), and c(π3) ≤ c(Π2), by the induction hypothesis, we
have c(Π′1), c(Π′2) ≤ |A|, and it is clear that for the new proof Π we have c(Π) ≤ |A|, since
c(Π) = max({|B| + 1, c(Π′1), c(Π′2)}), and |B| + 1 ≤ |A| (since A = B ∧ C). It is also easy to
establish the upper bound on l(Π).

(ii) (∨: right) and (∨: left)

π1

Γ − ∆, B

Γ − ∆, B ∨ C

π2

B,Λ − Θ

π3

C,Λ − Θ

B ∨ C,Λ − Θ

Γ,Λ − ∆,Θ

=⇒
π1

Γ − ∆, B

π2

B,Λ − Θ

Γ,Λ − ∆,Θ

By the hypothesis c(Π1), c(Π2) ≤ |A|, it is clear that for the new proof Π we have c(Π) ≤ |A|,
since c(Π) = max({|B| + 1, c(π1), c(π2)}), |B| + 1 ≤ |A| (since A = B ∨ C), c(π1) ≤ c(Π1),
c(π2) ≤ c(Π2), and c(π3) ≤ c(Π2). It is also easy to establish the upper bound on l(Π).

Cross-cuts version: Similar to (i) (Some obvious simplifications apply when either m = 0 or
n = 0).

(iii) (⊃: right) and (⊃: left)

Left as an exercise.

(iv) (¬: right) and (¬: left)

π1

A,Γ − ∆

Γ − ∆,¬A

π2

Λ − Θ, A

¬A,Λ − Θ

Γ,Λ − ∆,Θ

=⇒
π2

Λ − Θ, A

π1

A,Γ − ∆

Γ,Λ − ∆,Θ

By the hypothesis c(Π1), c(Π2) ≤ |¬A|, it is clear that for the new proof Π we have c(Π) ≤ |¬A|,
since c(Π) = max({|A|+ 1, c(π1), c(π2)}), c(π1) ≤ c(Π1), c(π2) ≤ c(Π2). It is also easy to establish
the upper bound on l(Π).

59

Cross-cuts version (Some obvious simplifications apply when either m = 0 or n = 0).

π1

A,Γ − ∆,m(¬A)

Γ − ∆, (m+ 1)(¬A)

π2

n(¬A),Λ − Θ, A

(n+ 1)(¬A),Λ − Θ

Γ,Λ − ∆,Θ

Let Π′1 be the proof tree obtained by applying the induction hypothesis to

π1

A,Γ − ∆,m(¬A)

Γ − ∆, (m+ 1)(¬A)

π2

n(¬A),Λ − Θ, A

Γ,Λ − ∆,Θ, A

and Π′2 the proof tree obtained by applying the induction hypothesis to

π1

A,Γ − ∆,m(¬A)

π2

n(¬A),Λ − Θ, A

(n+ 1)(¬A),Λ − Θ

A,Γ,Λ − ∆,Θ

and finally let Π be

Π′1

Γ,Λ − ∆,Θ, A

Π′2

A,Γ,Λ − ∆,Θ

Γ,Γ,Λ,Λ − ∆,∆,Θ,Θ

Γ,Λ − ∆,Θ

Since c(π1) ≤ c(Π1), c(π2) ≤ c(Π2), by the induction hypothesis c(Π′1), c(Π′2) ≤ |¬A|, and it is
clear that for the new proof Π we have c(Π) ≤ |¬A|, since c(Π) = max({|A|+ 1, c(Π′1), c(Π′2)}). It
is also easy to establish the upper bound on l(Π).

(v) (∀: right) and (∀: left)

π1

Γ − ∆, B[y/x]

Γ − ∆, ∀xB

π2

B[t/x],Λ − Θ

∀xB,Λ − Θ

Γ,Λ − ∆,Θ

=⇒
π1[t/y]

Γ − ∆, B[t/x]

π2

B[t/x],Λ − Θ

Γ,Λ − ∆,Θ

In the above, it may be necessary to rename some eigenvariables in π1 so that they are distinct
from all the variables in t.

60

By the hypothesis c(Π1), c(Π2) ≤ |∀xB|, it is clear that for the new proof Π we have c(Π) ≤
|∀xB|, since c(Π) = max({|B[t/x]| + 1, c(π1[t/y]), c(π2)}), c(π1[t/y]) = c(π1), c(π1) ≤ c(Π1), and
c(π2) ≤ c(Π2). It is also easy to establish the upper bound on l(Π).

Cross-cuts version (Some obvious simplifications apply when either m = 0 or n = 0).

π1

Γ − ∆,m(∀xB), B[y/x]

Γ − ∆, (m+ 1)(∀xB)

π2

B[t/x], n(∀xB),Λ − Θ

(n+ 1)(∀xB),Λ − Θ

Γ,Λ − ∆,Θ

Let Π′1 be the proof tree obtained by applying the induction hypothesis to

π1

Γ − ∆,m(∀xB), B[y/x]

π2

B[t/x], n(∀xB),Λ − Θ

(n+ 1)(∀xB),Λ − Θ

Γ,Λ − ∆,Θ, B[y/x]

and Π′2 the proof tree obtained by applying the induction hypothesis to

π1

Γ − ∆,m(∀xB), B[y/x]

Γ − ∆, (m+ 1)(∀xB)

π2

B[t/x], n(∀xB),Λ − Θ

B[t/x],Γ,Λ − ∆,Θ

and finally let Π be

Π′1[t/y]

Γ,Λ − ∆,Θ, B[t/x]

Π′2

B[t/x],Γ,Λ − ∆,Θ

Γ,Γ,Λ,Λ − ∆,∆,Θ,Θ

Γ,Λ − ∆,Θ

In the above, it may be necessary to rename some eigenvariables in Π′1 so that they are distinct
from all the variables in t.

Since c(π1) ≤ c(Π1), and c(π2) ≤ c(Π2), by the induction hypothesis, c(Π′1), c(Π′2) ≤ |∀xB|,
and it is clear that for the new proof Π we have c(Π) ≤ |∀xB|, since c(Π) = max({|B[t/x]| +
1, c(Π′1[t/y]), c(Π′2)}) and c(Π′1[t/y]) = c(Π′1). It is also easy to establish the upper bound on l(Π).

(vi) (∃: right) and (∃: left)

π1

Γ − ∆, B[t/x]

Γ − ∆, ∃xB

π2

B[y/x],Λ − Θ

∃xB,Λ − Θ

Γ,Λ − ∆,Θ

=⇒

61

π1

Γ − ∆, B[t/x]

π2[t/y]

B[t/x],Λ − Θ

Γ,Λ − ∆,Θ

In the above, it may be necessary to rename some eigenvariables in π2 so that they are distinct
from all the variables in t.

By the hypothesis, c(Π1), c(Π2) ≤ |∃xB|, It is clear that for the new proof Π we have c(Π) ≤
|∃xB|, since c(Π) = max({|B[t/x]| + 1, c(π1), c(π2[t/y])}), c(π2[t/y]) = c(π2), c(π1) ≤ c(Π1), and
c(π2) ≤ c(Π2). It is also easy to establish the upper bound on l(Π).

Cross-cuts version (Some obvious simplifications apply when either m = 0 or n = 0). Similar
to (v) and left as an exercise.

(2) Either the root of Π1 or the root of Π2 is the conclusion of some logical rule, the cut rule,
or some structural rule having some occurrence of a formula X 6= A as principal formula. We say
that A is passive.

We only show the transformations corresponding to the case where A is passive on the left,
the case in which it is passive on the right being symmetric. For this case (where A is passive on
the left), we only show the transformation where the last inference applied to the left subtree is a
right-rule, the others being similar.

(i) (∨: right)

π1

Γ − ∆,mA,B

Γ − ∆,mA,B ∨ C
π2

nA,Λ − Θ

Γ,Λ − ∆,Θ, B ∨ C

=⇒
π1

Γ − ∆,mA,B

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ, B

Γ,Λ − ∆,Θ, B ∨ C

Note that c(π1) ≤ c(Π1) and c(π2) ≤ c(Π2). We conclude by applying the induction hypothesis
to the subtree rooted with Γ,Λ − ∆,Θ, B. It is also easy to establish the upper bound on l(Π).

(ii) (∧: right)

π1

Γ − ∆,mA,B

π2

Γ − ∆,mA,C

Γ − ∆,mA,B ∧ C
π3

nA,Λ − Θ

Γ,Λ − ∆,Θ, B ∧ C

=⇒

62

π1

Γ − ∆,mA,B

π3

nA,Λ − Θ

Γ,Λ − ∆,Θ, B

π2

Γ − ∆,mA,C

π3

nA,Λ − Θ

Γ,Λ − ∆,Θ, C

Γ,Λ − ∆,Θ, B ∧ C

Note that c(π1) ≤ c(Π1), c(π2) ≤ c(Π1), and c(π3) ≤ c(Π2). We conclude by applying the
induction hypothesis to the subtrees rooted with Γ,Λ − ∆,Θ, B and Γ,Λ − ∆,Θ, C. It is also easy
to establish the upper bound on l(Π).

(iii) (⊃: right)

Left as an exercise.

(iv) (¬: right)

π1

B,Γ − ∆,mA

Γ − ∆,mA,¬B
π2

nA,Λ − Θ

Γ,Λ − ∆,Θ,¬B

=⇒
π1

B,Γ − ∆,mA

π2

nA,Λ − Θ

B,Γ,Λ − ∆,Θ

Γ,Λ − ∆,Θ,¬B

Note that c(π1) ≤ c(Π1), and c(π2) ≤ c(Π2). We conclude by applying the induction hypothesis
to the subtree rooted with B,Γ,Λ − ∆,Θ. It is also easy to establish the upper bound on l(Π).

(v) (∀: right)

π1

Γ − ∆,mA,B[y/x]

Γ − ∆,mA,∀xB
π2

nA,Λ − Θ

Γ,Λ − ∆,Θ,∀xB

=⇒
π1[z/y]

Γ − ∆,mA,B[z/x]

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ, B[z/x]

Γ,Λ − ∆,Θ,∀xB

In the above, some renaming may be necessary to ensure the eigenvariable condition.

Note that c(π1[z/y]) = c(π1), c(π1) ≤ c(Π1), and c(π2) ≤ c(Π2). We conclude by applying the
induction hypothesis to the subtree rooted with Γ,Λ − ∆,Θ, B[z/x]. It is also easy to establish the
upper bound on l(Π).

63

(vi) (∃: right)

π1

Γ − ∆,mA,B[t/x]

Γ − ∆,mA,∃xB
π2

nA,Λ − Θ

Γ,Λ − ∆,Θ,∃xB

=⇒
π1

Γ − ∆,mA,B[t/x]

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ, B[t/x]

Γ,Λ − ∆,Θ,∃xB

Note that c(π1) ≤ c(Π1), and c(π2) ≤ c(Π2). We conclude by applying the induction hypothesis
to the subtree rooted with Γ,Λ − ∆,Θ, B[t/x]. It is also easy to establish the upper bound on l(Π).

(vii) (cut)

π1

Γ1 − ∆1,m1A, pB

π2

qB,Λ1 − Θ1,m2A

Γ − ∆,mA

π3

nA,Λ − Θ

Γ,Λ − ∆,Θ

where in the above proof π, m1 +m2 = m, Γ = Γ1,Λ1, and ∆ = ∆1,Θ1. Since by the hypothesis,
c(Π1), c(Π2) ≤ |A|, and c(Π1) = max({|B|+ 1, c(π1), c(π2)}), we must have |B| < |A|, c(π1) ≤ |A|,
c(π2) ≤ |A|, and c(π3) ≤ |A|. Thus in particular, B 6= A. We show the transformation in the case
where m1 > 0 and m2 > 0, the cases where either m1 = 0 or m2 = 0 being special cases.

Let Π′1 be the result of applying the induction hypothesis to

π1

Γ1 − ∆1, pB,m1A

π3

nA,Λ − Θ

Γ1,Λ − ∆1,Θ, pB

let Π′2 be the result of applying the induction hypothesis to

π2

qB,Λ1 − Θ1,m2A

π3

nA,Λ − Θ

qB,Λ1,Λ − Θ1,Θ

and let Π be the proof

Π′1

Γ1,Λ − ∆1,Θ, pB

Π′2

qB,Λ1,Λ − Θ1,Θ

Γ,Λ,Λ − ∆,Θ,Θ

Γ,Λ − ∆,Θ

64

Since by the induction hypothesis, c(Π′1), c(Π′2) ≤ |A|, and since |B| < |A|, we have c(Π) ≤ |A|.
It is also easy to establish the upper bound on l(Π).

(viii) (contrac: right)

π1

Γ − ∆, B,B,mA

Γ − ∆, B,mA

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ, B

=⇒
π1

Γ − ∆, B,B,mA

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ, B,B

Γ,Λ − ∆,Θ, B

Note that c(π1) ≤ c(Π1), and c(π2) ≤ c(Π2). We conclude by applying the induction hypothesis
to the subtree rooted with Γ,Λ − ∆,Θ, B,B. It is also easy to establish the upper bound on l(Π).

(ix) (weakening: right)

π1

Γ − ∆,mA

Γ − ∆,mA,B

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ, B

=⇒
π1

Γ − ∆,mA

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ

Γ,Λ − ∆,Θ, B

Note that c(π1) ≤ c(Π1), and c(π2) ≤ c(Π2). We conclude by applying the induction hypothesis
to the subtrees rooted with Γ,Λ − ∆,Θ. It is also easy to establish the upper bound on l(Π).

(3) Either Π1 or Π2 is an axiom. We consider the case in which the left subtree is an axiom,
the other case being symmetric.

A − A
π2

nA,Λ − Θ

A,Λ − Θ

=⇒
π2

nA,Λ − Θ

A,Λ − Θ

65

Note that c(π2) ≤ c(Π2). Since by hypothesis c(Π1), c(Π2) ≤ |A|, it is clear that c(Π) ≤ |A|.

(4) Either the root of Π1 or the root of Π2 is the conclusion of some thinning or contraction
resulting in an occurrence of the cut formula A. We consider the case in which this happens in the
succedent of the left subtree, the other case being symmetric.

(i) (weakening: right)

π1

Γ − ∆

Γ − ∆, A

π2

A,Λ − Θ

Γ,Λ − ∆,Θ

=⇒
π1

Γ − ∆

Γ,Λ − ∆,Θ

and when m,n > 0,

π1

Γ − ∆,mA

Γ − ∆, (m+ 1)A

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ

=⇒
π1

Γ − ∆,mA

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ

Since by the hypothesis we have c(Π1), c(Π2) ≤ |A|, it is clear that c(Π) ≤ |A| in the first case.
In the second case, since c(π1) ≤ c(Π1) and c(π2) ≤ c(Π2), we conclude by applying the induction
hypothesis.

(ii) (contrac: right)

π1

Γ − ∆, (m− 1)A,A,A

Γ − ∆,mA

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ

=⇒
π1

Γ − ∆, (m+ 1)A

π2

nA,Λ − Θ

Γ,Λ − ∆,Θ

66

Since by the hypothesis we have c(Π1), c(Π2) ≤ |A|, and we have c(π1) ≤ c(Π1) and c(π2) ≤
c(Π2), we conclude by applying the induction hypothesis.

We can now prove the following major result (essentially due to Tait [29], 1968), showing not
only that every proof can be transformed into a cut-free proof, but also giving an upper bound on
the size of the resulting cut-free proof.

Theorem 12.4 Let Π be a proof with cut-rank c(Π) of a sequent Γ − ∆. A cut-free proof Π∗ for
Γ − ∆ can be constructed such that l(Π∗) ≤ exp(4, c(Π), l(Π)).

Proof . We prove the following claim by induction on the depth of proof trees.

Claim: Let Π be a proof with cut-rank c(Π) for a sequent Γ − ∆. If c(Π) > 0 then we can
construct a proof Π′ for Γ − ∆ such that

c(Π′) < c(Π) and l(Π′) ≤ 4l(Π).

Proof of Claim: If either the last inference of Π is not a cut, or it is a cut and c(Π) > |A|+ 1,
we apply the induction hypothesis to the immediate subtrees Π1 or Π2 (or Π1) of Π. We are left
with the case in which the last inference is a cut and c(Π) = |A|+ 1. The proof is of the form

Π1

Γ − ∆,mA

Π2

nA,Λ − Θ

Γ,Λ − ∆,Θ

By the induction hypothesis, we can construct a proof Π′1 for Γ − ∆,mA and a proof Π′2 for
nA,Λ − Θ, such that c(Π′i) ≤ |A| and l(Π′i) ≤ 4l(Πi), for i = 1, 2. Applying the reduction lemma
(Lemma 12.3), we obtain a proof Π′ such that, c(Π′) ≤ |A| and l(Π′) ≤ 2(l(Π′1) + l(Π′2)). But

2(l(Π′1) + l(Π′2)) ≤ 2(4l(Π1) + 4l(Π2)) ≤ 4max(l(Π1),l(Π2))+1 = 4l(Π).

The proof of Theorem 12.4 follows by induction on c(Π), and by the definition of exp(4,m, n).

It is easily verified that the above argument also goes through for the system LJ . Thus, we
obtain Gentzen’s original cut elimination theorem.

Theorem 12.5 [Cut Elimination Theorem, Gentzen (1935)] There is an algorithm which, given
any proof Π in LK produces a cut-free proof Π′ in LK. There is an algorithm which, given any
proof Π in LJ produces a cut-free proof Π′ in LJ .

It is instructive to see exactly where (contraction) and (weakening) are actually used in the
transformations. Contraction is used in the cross-cuts, in the case of axioms (case (3)), and of
course when it is the last inference of a proof (in case (2) and (4)). Weakening is only used in case
(2) and (4), and this because we have chosen the minimal axioms A − A. If we use the version of
the cut rule (the additive version) in which the contexts are merged rather than concatenated

Γ − ∆, A A,Γ − ∆

Γ − ∆
(cut)

67

and the corresponding extended cut rule

Γ − ∆,mA nA,Γ − ∆

Γ − ∆
(cut)

we can verify that contraction is no longer needed in the cross-cuts, but it is still needed for the
axioms, and of course when it is the last inference of a proof (in case (2) and (4)). If in addition
we use the “fat” axioms A,Γ − ∆, A, it seems that the weakening rules are no longer needed, but
this is in fact erroneous. It is true that weakening is not needed to handle the case of axioms
(only contraction is needed), but in case (2) for (contrac: left) and (contrac: right), weakening is
needed! (see case (2)(viii) for example). This is somewhat ennoying since the transformation rules
for weakening discard one of the two subproofs appearing as premises of a cut. Indeed, as observed
by Yves Lafont, it is this property which causes any two classical proofs to be identified under the
equivalence relation induced by the reduction rules for cut elimination. The proof

π1

Γ − ∆

Γ − ∆, A

π2

Γ − ∆

A,Γ − ∆

Γ − ∆

reduces both to π1 and π2, showing that the equivalence of classical proofs induced by cut-
elimination is trivial. However, note that if we allow the new transformations which take a proof π
of a sequent Γ − ∆ and create (the obvious) proof Λ + π of Λ,Γ − ∆ and π + Λ of Γ − ∆,Λ, then
weakening can be dispended with, and I conjecture that the equivalence of proofs is nontrivial. Still,
note that the proofs of the axioms A − A and B − B (with A 6= B) will be equivalent since they
are both equivalent to the proof of A,B − A,B, but this does not seem to be problematic. The
intuitionistic calculus does not suffer from the same problem: the equivalence of proofs induced by
cut elimination is nontrivial (this can be seen by mapping sequential proofs to natural deduction
proofs and using the normal form property of λ-terms).

From theorem 12.4, we see that the complexity of cut-elimination is horrendous, since the upper
bound on the size of a cut-free proof is exp(4, c(Π), l(Π)), a super exponential. Careful inspection of
the proof of lemma 12.3 shows that l(Π) ≤ l(Π1) + l(Π2), except for case (1)(iii). This is the reason
for the upper bound exp(4, c(Π), l(Π)), which applies even in the propositional case. However,
Hudelmaier [17] has shown that for the system LJ T ⊃,∧,∨,⊥, this upper bound can be reduced to
a quadruple exponential, and in the classical case for a system similar to GK⊃,∧,∨,⊥ to a double
exponential. But nothing is obtained for free! Indeed, the lower complexity of cut-elimination in
the system LJ T ⊃,∧,∨,⊥ is attained at the cost of the computational expressive power of the system.
In the system of natural deduction N⊃,∧,∨,⊥, the proposition (P ⊃ P) ⊃ (P ⊃ P) has infinitely
many inequivalent proofs (in fact, the Church numerals for P). On the other hand, in LJ T ⊃,∧,∨,⊥,
(P ⊃ P) ⊃ (P ⊃ P) only has finitely many proofs, and in fact only two, corresponding to the
Church numerals “zero” and “one”. This is regrettable, but a cynic would not be surprised: there
is no free lunch!

The above considerations lead naturally to the following question: what is the exact relationship
between cut-elimination and (strong) normalization in intuitionistic logic? In [37], Jeff Zucker
makes an in-depth study of this relationship. Although Zucker obtains some very nice results in

68

this formidable paper, he does not provide a complete answer to the problem. Intuitively, the reason
is that the reduction relation induced by cut-elimination transformations is finer than β-reduction
(as alluded to in section 10). Thus, the exact relationship between cut-elimination and (strong)
normalization remains a challenging open problem. For the latest results, see Ungar [33].

A few more remarks about the role of contraction and weakening will be useful as a motivation
for linear logic. We already noticed with the cut rule that contexts (the Γ, ∆ occurring in the
premise(s) of inference rules) can be treated in two different ways: (1) either they are merged
(which implies that they are identical), or (2) they are concatenated.

In order to search for proof backwards, it is more convenient to treat contexts in mode (1), but
this hides some subtleties. For example, the (∧: right) rule can be written either as

Γ − ∆, A Γ − ∆, B

Γ − ∆, A ∧B

where the contexts are merged, or as

Γ − ∆, A Λ − Θ, B

Γ,Λ − ∆,Θ, A ∧B

where the contexts are just concatenated but not merged. Following Girard, let’s call the first
version additive, and the second version multiplicative. Under contraction and weakening, the two
versions are equivalent: the first rule can be simulated by the second rule using contractions:

Γ − ∆, A Γ − ∆, B

Γ,Γ − ∆,∆, A ∧B

Γ − ∆, A ∧B

and the second rule can be simulated by the first rule using weakenings:

Γ − ∆, A

Γ,Λ − ∆,Θ, A

Λ − Θ, B

Γ,Λ − ∆,Θ, B

Γ,Λ − ∆,Θ, A ∧B

Similarly, the (∧: left) rules can be written either as

A,Γ − ∆

A ∧B,Γ − ∆

B,Γ − ∆

A ∧B,Γ − ∆

or as
A,B,Γ − ∆

A ∧B,Γ − ∆

Again, let’s call the first version additive, and the second version multiplicative. These versions
are equivalent under contraction and weakening. The first version can be simulated by the second
rule using weakening:

69

A,Γ − ∆
(weakening: left)

A,B,Γ − ∆

A ∧B,Γ − ∆

and the second version can be simulated by the first rule and contraction:

A,B,Γ − ∆

A ∧B,B,Γ − ∆

A ∧B,A ∧B,Γ − ∆
(contrac: left)

A ∧B,Γ − ∆

If we take away contraction and weakening, the additive and multiplicative versions are no longer
equivalent. This suggests, and this path was followed by Girard, to split the connectives ∧ and
∨ into two versions: the multiplicative version of ∧ and ∨, denoted as ⊗ and ℘, and the additive
version of ∧ and ∨, denoted as & and ⊕. In linear logic, due to Girard [12], the connectives ∧ and ∨
are split into multiplicative and additive versions, contraction and weakening are dropped, negation
denoted A⊥ is involutive, and in order to regain the loss of expressiveness due to the absence of
contraction and weakening, some new connectives (the exponentials ! and ?) are introduced. The
main role of these connectives is to have better control over contraction and weakening. Thus, at
the heart of linear logic lies the notion that resources are taken into account.

13 Reductions of Classical Logic to Intuitionistic Logic

Although there exist formulae that are provable classically but not intuitionistically, there are sev-
eral ways of embedding classical logic into intuitionistic logic. More specifically, there are functions
∗ from formulae to formulae such that for every formula A, its translation A∗ is equivalent to A
classically, and A is provable classically iff A∗ is provable intuitionistically. Stronger results can be
obtained in the propositional case. Since ¬¬A ⊃ A is provable classically but not intuitionistically,
whereas A ⊃ ¬¬A is provable both classically and intuitionistically, we can expect that double-
negation will play a crucial role, and this is indeed the case. One of the crucial properties is that
triple negation is equivalent to a single negation. This is easily shown as follows (in G⊃,∧,∨,¬i):

A − A
A,¬A −
A − ¬¬A
A,¬¬¬A −
¬¬¬A − ¬A

Since we also have the following proof (in G⊃,∧,∨,¬i)

¬A − ¬A
¬A,¬¬A −
¬A − ¬¬¬A

70

it is clear that ¬¬¬A ≡ ¬A is provable intuitionistically.

The possibility of embedding classical logic into intuitionistic logic is due to four crucial facts
which we show step by step:

(1) ¬¬¬A ≡ ¬A is provable intuitionistically;

(2) If a formula A is provable classically without using the (∀: right)-rule, then ¬¬A is provable
intuitionistically;

(3) For a class of formulae for which ¬¬A − A is provable intuitionistically, (2) holds unre-
stricted. This means that if a formula A in this class is provable classically then ¬¬A is
provable intuitionistically;

(4) For every formula A built only from ⊃,∧,¬ and ∀, if ∆ = ¬¬P1 ⊃ P1, . . . ,¬¬Pk ⊃ Pk where
P1, . . . , Pk are all the atoms occurring in A, then ∆,¬¬A − A is provable intuitionistically.

The “trick” of the double-negation translation (often attributed to Gödel (1933), although it
was introduced independently by Kolmogorov (1925) and Gentzen (1933)) is that if we consider a
formula A only built from ⊃,∧,¬,∀, and replace every atomic subformula P by ¬¬P obtaining A†,
we get a subclass of formulae for which (4) holds without the ∆, and thus (3) also holds. For this
class, A is provable classically iff A† is provable intuitionistically.

Our first result will concern propositions. Given Γ = A1, . . . , Am, let ¬¬Γ = ¬¬A1, . . . ,¬¬Am.

Lemma 13.1 Given a sequent Γ − B1, . . . , Bn of propositions, if Γ − B1, . . . , Bn is provable in
G⊃,∧,∨,¬c , then ¬¬Γ − ¬(¬B1 ∧ . . . ∧ ¬Bn) is provable in G⊃,∧,∨,¬i .

Proof. We proceed by induction on proofs. In fact, it is easier to work in G⊃,∧,∨,¬,cuti and use cut
elimination. It is necessary to prove that a number of propositions are provable intuitionistically.
First, observe that if A1, . . . , Am − B is provable in G⊃,∧,∨,¬,cuti , then ¬¬A1, . . . ,¬¬Am − ¬¬B is
also provable in G⊃,∧,∨,¬,cuti . The following sequents are provable in G⊃,∧,∨,¬,cuti :

¬¬A − ¬(¬A ∧D),

¬(¬A ∧D),¬(¬B ∧D) − ¬(¬(A ∧B) ∧D),

¬¬(A ∧B) − ¬¬A ∧ ¬¬B,
¬(¬A ∧ ¬B ∧D) − ¬(¬(A ∨B) ∧D),

¬¬(A ∨B) − ¬(¬A ∧ ¬B),

(¬¬A ⊃ ¬(¬B ∧D)) − ¬(¬(A ⊃ B) ∧D),

¬¬(A ⊃ B),¬(¬A ∧D), (¬¬B ⊃ ¬D) − ¬D,
(¬¬A ⊃ ¬D) − ¬(¬¬A ∧D),

¬(¬A ∧D),¬¬¬A − ¬D,
¬(¬A ∧ ¬A ∧D) − ¬(¬A ∧D).

Given ∆ = D1, . . . , Dm, we let D = ¬D1 ∧ . . . ∧ ¬Dm. This way, observe that ¬(¬A ∧ ¬D1 ∧ . . . ∧
¬Dm) = ¬(¬A ∧D). The reader should be aware that the case where m = 0 in ∆ = D1, . . . , Dm

can arise and requires special treatment. In this case, D can be considered to be ¬ ⊥. Actually, if
we add ⊥ and the axioms ⊥,Γ − ∆ where ∆ is either empty or a single formula to G⊃,∧,∨,¬,cuti , then

71

¬¬ ⊥≡⊥ and A∧¬ ⊥≡ A are provable, and we just have to simplify the above sequents accordingly.
We proceed assuming that m ≥ 1, leaving the case m = 0 to the reader. Now, consider the axioms
and each inference rule. An axiom Γ, A − A,∆ becomes ¬¬Γ,¬¬A − ¬(¬A∧D), which is provable
in G⊃,∧,∨,¬,cuti since ¬¬A − ¬(¬A ∧ D) is. Let us also consider the case of the (⊃: right)-rule,
leaving the others as exercises.

Γ, A − B,∆
Γ − A ⊃ B,∆

By the induction hypothesis, ¬¬Γ,¬¬A − ¬(¬B ∧D) is provable in G⊃,∧,∨,¬,cuti , and so is

¬¬Γ − (¬¬A ⊃ ¬(¬B ∧D)).

Since
(¬¬A ⊃ ¬(¬B ∧D)) − ¬(¬(A ⊃ B) ∧D)

is also provable in G⊃,∧,∨,¬,cuti , by a cut, we obtain that

¬¬Γ − ¬(¬(A ⊃ B) ∧D)

is provable in G⊃,∧,∨,¬,cuti , as desired.

In order to appreciate the value of Lemma 13.1, the reader should find a direct proof of
¬¬(¬¬P ⊃ P) in G⊃,∧,∨,¬i .

Since ¬¬¬A ≡ ¬A is provable intuitionistically, we obtain the following lemma known as
Glivenko’s Lemma.

Lemma 13.2 [Glivenko, 1929] Given a sequent ¬Γ,∆ − ¬B1, . . . ,¬Bn made of propositions, if
¬Γ,∆ − ¬B1, . . . ,¬Bn is provable in G⊃,∧,∨,¬c , then ¬Γ,¬¬∆ − ¬(B1 ∧ . . . ∧ Bn) is provable in
G⊃,∧,∨,¬i . In particular, if ¬Γ − ¬B is a propositional sequent provable in G⊃,∧,∨,¬c , then it is also
provable in G⊃,∧,∨,¬i .

Proof. By Lemma 13.1, using the fact that ¬¬¬A ≡ ¬A is provable intuitionistically, and that
the sequent

¬(¬¬B1 ∧ . . . ∧ ¬¬Bn) − ¬(B1 ∧ . . . ∧Bn)

is provable in G⊃,∧,∨,¬i .

As a consequence of Lemma 13.1, if a proposition A is provable classically, then ¬¬A is provable
intuitionistically, and as a consequence of Lemma 13.2, if a proposition ¬A is provable classically,
then it is also provable intuitionistically. It should be noted that Lemma 13.1 fails for quantified
formulae. For example, ∀x(P (x)∨¬P (x)) is provable classically, but we can show that ¬¬∀x(P (x)∨
¬P (x)) is not provable intuitionistically, for instance using the system of Lemma 8.9. Similarly,
∀x¬¬P (x) ⊃ ¬¬∀xP (x) is provable classically, but it is not provable intuitionistically, and neither
is ¬¬(∀x¬¬P (x) ⊃ ¬¬∀xP (x)). As observed by Gödel, Lemma 13.2 has the following remarkable
corollary.

Lemma 13.3 [Gödel, 1933] For every proposition A built only from ∧ and ¬, if A is provable
classically, then A is also provable intuitionistically.

72

Proof. By induction on A. If A = ¬B, then this follows by Glivenko’s Lemma. Otherwise,
it must be possible to write A = B1 ∧ . . . ∧ Bn where each Bi is not a conjunct and where each
Bi is provable classically. Thus, each Bi must be of the form ¬Ci, since if Bi is an atom it is not
provable. Again, each Bi is provable intuitionistically by Glivenko’s Lemma, and thus so is A.

Lemma 13.1 confirms that double-negation plays an important role in linking classical logic to
intuitionistic logic. The following lemma shows that double-negation distributes over the connec-
tives ∧ and ⊃.

Lemma 13.4 The following formulae are provable in G⊃,∧,∨,¬i :

¬¬(A ∧B) ≡ ¬¬A ∧ ¬¬B,
¬¬(A ⊃ B) ≡ ¬¬A ⊃ ¬¬B.

Proof. We give proofs for
¬¬(A ⊃ B) − ¬¬A ⊃ ¬¬B

and
¬¬A ⊃ ¬¬B − ¬¬(A ⊃ B),

leaving the others as exercises.

A,¬B − A
A,B − B
A,B,¬B −

A,A ⊃ B,¬B −

A,¬B − ¬(A ⊃ B)

A,¬¬(A ⊃ B),¬B −

¬¬(A ⊃ B),¬B − ¬A

¬¬(A ⊃ B),¬¬A,¬B −

¬¬(A ⊃ B),¬¬A − ¬¬B

¬¬(A ⊃ B) − ¬¬A ⊃ ¬¬B

A − A
¬A,A −
¬A,A − B
¬A − A ⊃ B
¬(A ⊃ B),¬A −

¬(A ⊃ B) − ¬¬A

B,A − B
B − A ⊃ B

B,¬(A ⊃ B) −

¬(A ⊃ B) − ¬B

¬¬B,¬(A ⊃ B) −

¬¬A ⊃ ¬¬B,¬(A ⊃ B) −

¬¬A ⊃ ¬¬B − ¬¬(A ⊃ B)

73

Lemma 13.4 fails for disjunctions. For example,

¬¬(P ∨ ¬P) − (¬¬P ∨ ¬¬¬P)

is not provable in G⊃,∧,∨,¬i , since ¬¬(P ∨ ¬P) is provable but (¬¬P ∨ ¬¬¬P) is not provable in
G⊃,∧,∨,¬i (this is easily shown using the system GKi). Lemma 13.4 also fails for the quantifiers.
For example, using the system of Lemma 8.9, we can show that ∀x¬¬P (x) ⊃ ¬¬∀xP (x) and
¬¬∃xP (x) ⊃ ∃x¬¬P (x) are not provable intuitionistically.

Even though Lemma 13.1 fails in general, in particular for universal formulae, Kleene has made
the remarkable observation that the culprit is precisely the (∀: right)-rule [18] (see Theorem 59,
page 492). Indeed, the lemma still holds for arbitrary sequents Γ − B1, . . . , Bn, provided that their
proofs in G⊃,∧,∨,¬,∀,∃c do not use the rule (∀: right).

Lemma 13.5 Given a first-order sequent Γ − B1, . . . , Bn, if Γ − B1, . . . , Bn is provable in
G⊃,∧,∨,¬,∀,∃c without using the rule (∀: right), then ¬¬Γ − ¬(¬B1 ∧ . . . ∧ ¬Bn) is provable in

G⊃,∧,∨,¬,∀,∃i .

Proof. As in the proof of Lemma 13.1, we proceed by induction on proofs. It is necessary to
prove that the following sequents are provable in G⊃,∧,∨,¬,∀,∃i :

¬(¬A[t/x] ∧D) − ¬(¬∃xA ∧D),

∀x(¬¬A ⊃ ¬D),¬¬∃xA − ¬D,
(¬¬A[t/x] ⊃ ¬D),¬¬∀xA − ¬D.

where x does not occur in D in the second sequent. Proofs for the above sequents follow:

A[t/x], D − A[t/x]

A[t/x], D − ∃xA

A[t/x],¬∃xA,D −

¬∃xA,D − ¬A[t/x] ¬∃xA,D − D

¬∃xA,D − ¬A[t/x] ∧D

¬(¬A[t/x] ∧D),¬∃xA,D −

¬(¬A[t/x] ∧D),¬∃xA ∧D −

¬(¬A[t/x] ∧D) − ¬(¬∃xA ∧D)

74

D,A[y/x] − A[y/x]

D,A[y/x],¬A[y/x] −

D,A[y/x] − ¬¬A[y/x]

D,A[y/x] − D

¬D,D,A[y/x] −

¬¬A[y/x] ⊃ ¬D,D,A[y/x] −

∀x(¬¬A ⊃ ¬D), D,A[y/x] −

∀x(¬¬A ⊃ ¬D), D, ∃xA −

∀x(¬¬A ⊃ ¬D), D − ¬∃xA

∀x(¬¬A ⊃ ¬D),¬¬∃xA,D −

∀x(¬¬A ⊃ ¬D),¬¬∃xA − ¬D

where x does not occur in D, and y is a new variable.

D,A[t/x] − A[t/x]

D,A[t/x],¬A[t/x] −

D,A[t/x] − ¬¬A[t/x]

D,A[t/x] − D

¬D,D,A[t/x] −

(¬¬A[t/x] ⊃ ¬D), D,A[t/x] −

(¬¬A[t/x] ⊃ ¬D), D, ∀xA −

(¬¬A[t/x] ⊃ ¬D), D − ¬∀xA

(¬¬A[t/x] ⊃ ¬D),¬¬∀xA,D −

(¬¬A[t/x] ⊃ ¬D),¬¬∀xA − ¬D

We now have to consider the cases where the last inference is one of (∀: left), (∃: left), or (∃:
right). We treat the case of the rule (∃: right), leaving the others as exercises.

Γ − A[t/x],∆

Γ − ∃xA,∆

Given ∆ = D1, . . . , Dm, we let D = ¬D1 ∧ . . . ∧ ¬Dm. The reader should be aware that the
case where m = 0 in ∆ = D1, . . . , Dm can arise and requires special treatment (as in the proof of
Lemma 13.1). We proceed with the case where m ≥ 1, leaving the case m = 0 to the reader. By

the induction hypothesis, ¬¬Γ − ¬(¬A[t/x] ∧ D) is provable in G⊃,∧,∨,¬,∀,∃i . On the other hand,
since the sequent

¬(¬A[t/x] ∧D) − ¬(¬∃xA ∧D)

is provable in G⊃,∧,∨,¬,∀,∃i , using a cut, we obtain that the sequent

¬¬Γ − ¬(¬∃xA ∧D)

is provable in G⊃,∧,∨,¬,∀,∃i , as desired.

75

Technically, the problem with Lemma 13.5, is that the sequent

∀x¬(¬A ∧D) − ¬(¬∀xA ∧D)

(where x does not occur in D) is not provable in G⊃,∧,∨,¬,∀,∃i . In order to see where the problem
really lies, we attempt to construct a proof of this sequent.

¬(¬A[y/x] ∧D), D − A[y/x]

∀x¬(¬A ∧D), D − A[y/x]

∀x¬(¬A ∧D), D − ∀xA

∀x¬(¬A ∧D),¬∀xA,D −

∀x¬(¬A ∧D),¬∀xA ∧D −

∀x¬(¬A ∧D) − ¬(¬∀xA ∧D)

where x does not occur in D, and y is a new variable. The problem is that we cannot apply the (∀:
left)-rule before ¬∀xA has been transferred to the righthand side of the sequent (as ∀xA) and before
the (∀: right)-rule has been applied to ∀xA, since this would violate the eigenvariable condition.
Unfortunately, we are stuck with the sequent ¬(¬A[y/x] ∧D), D − A[y/x] which is unprovable in

G⊃,∧,∨,¬,∀,∃i . However, note that the sequent ¬(¬A[y/x] ∧D), D − ¬¬A[y/x] in which A[y/x] has

been replaced with ¬¬A[y/x] is provable in G⊃,∧,∨,¬,∀,∃i :

D,¬A[y/x] − ¬A[y/x] D,¬A[y/x] − D

D,¬A[y/x] − ¬A[y/x] ∧D

¬(¬A[y/x] ∧D), D,¬A[y/x] −

¬(¬A[y/x] ∧D), D − ¬¬A[y/x]

Thus, if the sequent ¬¬A − A was provable in G⊃,∧,∨,¬,∀,∃i , the sequent

∀x¬(¬A ∧D) − ¬(¬∀xA ∧D)

would also be provable in G⊃,∧,∨,¬,∀,∃i . It is therefore important to identify a subclass of first-

order formulae for which ¬¬A − A is provable in G⊃,∧,∨,¬,∀,∃i , since for such a class, Lemma 13.5
holds without restrictions. The following lemma showing the importance of the axiom ¬¬P − P
where P is atomic, leads us to such a class of formulae. It is at the heart of the many so-called
“double-negation translations”.

Lemma 13.6 For every formula A built only from ⊃,∧,¬, ∀, the sequent ¬¬A − A is provable in
the system G⊃,∧,¬,∀i+ obtained from G⊃,∧,¬,∀i by adding all sequents of the form ¬¬P,Γ − P where P
is atomic as axioms. In the propositional case, if ∆ = ¬¬P1 ⊃ P1, . . . ,¬¬Pk ⊃ Pk where P1, . . . , Pk
are all the atoms occurring in A, then ∆,¬¬A − A is provable in G⊃,∧,¬i .

Proof. It proceeds by induction on the structure of A. If A is an atom P , this is obvious
since ¬¬P − P is an axiom. If A = B ∧ C, by the induction hypothesis, both ¬¬B − B and

76

¬¬C − C are provable in G⊃,∧,¬,∀i+ , and so is ¬¬B ∧ ¬¬C − B ∧ C. We just have to prove that

¬¬(B ∧ C) − ¬¬B ∧ ¬¬C is provable in G⊃,∧,¬,∀i , which is easily done. If A = ¬B, since we have

shown that ¬¬¬B − ¬B is provable in G⊃,∧,¬,∀i , so is ¬¬A − A. If A = B ⊃ C, then by the

induction hypothesis, ¬¬C − C is provable in G⊃,∧,¬,∀i+ (and so is ¬¬B − B, but we won’t need it).

Observe that the sequent ¬¬C ⊃ C,¬¬(B ⊃ C) − B ⊃ C is provable in G⊃,∧,¬,∀i :

B − B B,C − C

B, (B ⊃ C) − C

B,¬C, (B ⊃ C) −

B,¬C − ¬(B ⊃ C)

¬¬(B ⊃ C), B,¬C −

¬¬(B ⊃ C), B − ¬¬C ¬¬(B ⊃ C), B,C − C

¬¬C ⊃ C,¬¬(B ⊃ C), B − C

¬¬C ⊃ C,¬¬(B ⊃ C) − B ⊃ C

Using the fact that ¬¬C − C is provable in G⊃,∧,¬,∀i+ and a suitable cut, ¬¬(B ⊃ C) − B ⊃ C

is provable in G⊃,∧,¬,∀i+ . If A = ∀xB, we can show easily that ¬¬∀xB − ¬¬B[t/x] is provable

in G⊃,∧,¬,∀i . Since by the induction hypothesis, ¬¬B − B is provable in G⊃,∧,¬,∀i+ , for any new

variable y, ¬¬B[y/x] − B[y/x] is also provable in G⊃,∧,¬,∀i+ , and thus by choosing t = y, the sequent

¬¬∀xB − B[y/x] is provable where y is new, so that ¬¬∀xB − ∀xB is provable in G⊃,∧,¬,∀i+ .

Unfortunately, Lemma 13.6 fails for disjunctions and existential quantifiers. For example,

¬¬P ⊃ P − ¬¬(P ∨ ¬P) ⊃ (P ∨ ¬P)

is not provable in G⊃,∧,∨,¬,∀,∃i . This can be shown as follows. Since P ∨¬P is provable in G⊃,∧,∨,¬c ,
by Lemma 13.1, ¬¬(P ∨¬P) is provable in G⊃,∧,∨,¬i . Thus, ¬¬P ⊃ P − (P ∨¬P) would be provable

in G⊃,∧,∨,¬,∀,∃i , but we can show using the system of Lemma 8.9 that this is not so.

The sequent

¬¬P ⊃ P − ¬¬(¬¬∃xP (x) ⊃ ∃x¬¬P (x)) ⊃ (¬¬∃xP (x) ⊃ ∃x¬¬P (x))

is also not provable in G⊃,∧,∨,¬,∀,∃i . This is because (¬¬∃xP (x) ⊃ ∃x¬¬P (x)) is provable in
G⊃,∧,∨,¬,∀,∃c without using the (∀: right)-rule, and so, by Lemma 13.5, ¬¬(¬¬∃xP (x) ⊃ ∃x¬¬P (x))

is provable in G⊃,∧,∨,¬,∀,∃i . Then,

¬¬P ⊃ P − (¬¬∃xP (x) ⊃ ∃x¬¬P (x))

would be provable in G⊃,∧,∨,¬,∀,∃i , but we can show using the system of Lemma 8.9 that this is not
so.

Since the sequent A ∨ ¬A − ¬¬A ⊃ A is easily shown to be provable in G⊃,∧,∨,¬,∀,∃i , Lemma
13.6 also holds with the axioms Γ − P ∨¬P substituted for ¬¬P,Γ − P (for all atoms P). In fact,

77

with such axioms, we can even show that Lemma 13.6 holds for disjunctions (but not for existential
formulae).

In view of Lemma 13.6 we can define the following function † on formulae built from ⊃,∧,¬,∀:

A† = ¬¬A, if A is atomic,

(¬A)† = ¬A†,
(A ∗B)† = (A† ∗B†), if ∗ ∈ {⊃,∧},

(∀xA)† = ∀xA†.

Given a formula built only from ⊃,∧,¬,∀, the function † simply replaces every atom P by ¬¬P . It
is easy to show that A and A† are classically equivalent. The following lemma shows the significance
of this function.

Lemma 13.7 For every formula A built only from ⊃,∧,¬,∀, the sequent ¬¬A† − A† is provable
in the system G⊃,∧,¬,∀i .

Proof. Since ¬¬¬A ≡ ¬A is provable in G⊃,∧,¬,∀i , the sequent ¬¬¬¬P ≡ ¬¬P is provable in

G⊃,∧,¬,∀i for every atom P , and thus the result follows from the definition of A† and Lemma 13.6.

Actually, we can state a slightly more general version of Lemma 13.7, based on the observation
that ¬¬¬A ≡ ¬A is provable in G⊃,∧,¬,∀i .

Lemma 13.8 For every formula A built only from ⊃,∧,¬, ∀ and where every atomic subformula
occurs negated (except ⊥), the sequent ¬¬A − A is provable in the system G⊃,∧,¬,∀i .

The formulae of the kind mentioned in Lemma 13.8 are called negative formulae. The following
lemma shows that if we use double-negation, then ∨, ⊃, and ∃ are definable intuitionistically from
the connectives ∧,¬, ∀.

Lemma 13.9 The following formulae are provable in G⊃,∧,¬,∀i :

¬¬(A ∨B) ≡ ¬(¬A ∧ ¬B),

¬¬∃xA ≡ ¬∀x¬A,
¬(A ∧ ¬B) ≡ ¬¬(A ⊃ B).

Proof. We give a proof of the sequents ¬¬∃xA − ¬∀x¬A and ¬(A∧¬B) − ¬¬(A ⊃ B), leaving
the others as exercises.

A[y/x] − A[y/x]

¬A[y/x], A[y/x] −

∀x¬A,A[y/x] −

∀x¬A, ∃xA −
∀x¬A − ¬∃xA
¬¬∃xA, ∀x¬A −
¬¬∃xA − ¬∀x¬A

78

where y is a new variable,

¬(A ⊃ B), A − A

A,B,A − B
A,B − A ⊃ B

¬(A ⊃ B), A,B −

¬(A ⊃ B), A − ¬B

¬(A ⊃ B), A − A ∧ ¬B

¬(A ∧ ¬B),¬(A ⊃ B), A −

¬(A ∧ ¬B),¬(A ⊃ B), A − B

¬(A ∧ ¬B),¬(A ⊃ B) − A ⊃ B

¬(A ∧ ¬B),¬(A ⊃ B),¬(A ⊃ B) −

¬(A ∧ ¬B),¬(A ⊃ B) −

¬(A ∧ ¬B) − ¬¬(A ⊃ B)

We are now ready to prove the main lemma about the double-negation translation. The cor-
rectness of many embeddings of classical logic into intuitionistic logic follows from this lemma,
including those due to Kolmogorov, Gödel, and Gentzen.

Lemma 13.10 Let Γ − B1, . . . , Bn be any first-order sequent containing formulae made only from
⊃,∧,¬, and ∀. If Γ − B1, . . . , Bn is provable in G⊃,∧,∨,¬,∀,∃c then its translation Γ† − ¬(¬B†1 ∧ . . .∧
¬B†n) is provable in G⊃,∧,¬,∀i . In particular, if B is provable in G⊃,∧,∨,¬,∀,∃c , then B† is provable in

G⊃,∧,¬,∀i .

Proof. First, we prove that if Γ − B1, . . . , Bn is provable in G⊃,∧,∨,¬,∀,∃c then Γ† − B†1, . . . , B
†
n

is also provable in G⊃,∧,∨,¬,∀,∃c . This is done by a simple induction on proofs. Next, we prove that
¬¬Γ† − ¬(¬B†1 ∧ . . .∧¬B†n) is provable in G⊃,∧,¬,∀i . The only obstacle to Lemma 13.5 is the use of
the (∀: right)-rule. However, we have seen in the discussion following Lemma 13.5 that the problem

is overcome for formulae such that ¬¬A − A is provable in G⊃,∧,¬,∀i . But this is the case by Lemma
13.7 (which itself is a direct consequence of Lemma 13.6), since we are now considering formulae

of the form A†. Since B − ¬¬B is provable in G⊃,∧,¬,∀i for any B, using cuts on the premises in

¬¬Γ†, we obtain a proof of Γ† − ¬(¬B†1 ∧ . . . ∧ ¬B†n) in G⊃,∧,¬,∀i . In the special case where n = 1

and Γ is empty, we have shown that − ¬¬B† is provable in G⊃,∧,¬,∀i , and using Lemma 13.7, we

obtain that B† is provable in G⊃,∧,¬,∀i .

It is trivial that the converse of Lemma 13.10 holds (since G⊃,∧,¬,∀i is a subsystem of G⊃,∧,∨,¬,∀,∃c)
(and using the fact that A† is classically equivalent to A). As a corollary of Lemma 13.10, observe
that for negative formulae (defined in Lemma 13.8), A is provable in G⊃,∧,¬,∀c iff A is provable in

G⊃,∧,¬,∀i . This is because for a negative formula A, all atoms appears negated, and thus A ≡ A†

is provable in G⊃,∧,¬,∀i .

We now define several translations of classical logic into intuitionistic logic.

79

Definition 13.11 The function ◦ (due to Gentzen) is defined as follows:

A◦ = ¬¬A, if A is atomic,

(¬A)◦ = ¬A◦,
(A ∧B)◦ = (A◦ ∧B◦),
(A ⊃ B)◦ = (A◦ ⊃ B◦),
(A ∨B)◦ = ¬(¬A◦ ∧ ¬B◦),

(∀xA)◦ = ∀xA◦,
(∃xA)◦ = ¬∀x¬A◦.

The function ∗ (due to Gödel) is defined as follows:

A∗ = ¬¬A, if A is atomic,

(¬A)∗ = ¬A∗,
(A ∧B)∗ = (A∗ ∧B∗),
(A ⊃ B)∗ = ¬(A∗ ∧ ¬B∗),
(A ∨B)∗ = ¬(¬A∗ ∧ ¬B∗),

(∀xA)∗ = ∀xA∗,
(∃xA)∗ = ¬∀x¬A∗.

The function κ (due to Kolmogorov) is defined as follows:

Aκ = ¬¬A, if A is atomic,

(¬A)κ = ¬Aκ,
(A ∧B)κ = ¬¬(Aκ ∧Bκ),

(A ⊃ B)κ = ¬¬(Aκ ⊃ Bκ),

(A ∨B)κ = ¬¬(Aκ ∨Bκ),

(∀xA)κ = ¬¬∀xAκ,
(∃xA)κ = ¬¬∃xAκ.

Since all atoms are negated twice in A◦, A∗, and Aκ, we can use Lemma 13.6 to show that
A◦ ≡ ¬¬A◦, A∗ ≡ ¬¬A∗, and Aκ ≡ ¬¬Aκ are provable in G⊃,∧,¬,∀i . Then, using this fact and
Lemma 13.9, we can show by induction on formulae that A◦ ≡ A∗, A∗ ≡ Aκ, and Aκ ≡ A◦ are
provable in G⊃,∧,¬,∀i . Consequently, for any sequent Γ − B1, . . . , Bn, the sequent

Γ◦ − ¬(¬B◦1 ∧ . . . ∧ ¬B◦n)

is provable in G⊃,∧,¬,∀i iff
Γ∗ − ¬(¬B∗1 ∧ . . . ∧ ¬B∗n)

is provable in G⊃,∧,¬,∀i iff
Γκ − ¬(¬Bκ

1 ∧ . . . ∧ ¬Bκ
n)

is provable. Furthermore, it is easily shown that A ≡ A◦, A ≡ A∗, and A ≡ Aκ, are provable
classically.

80

Theorem 13.12 For any sequent Γ − B1, . . . , Bn, if Γ − B1, . . . , Bn is provable in G⊃,∧,∨,¬,∀,∃c ,
then the sequents Γ◦ − ¬(¬B◦1∧ . . .∧¬B◦n), Γ∗ − ¬(¬B∗1∧ . . .∧¬B∗n), and Γκ − ¬(¬Bκ

1 ∧ . . .∧¬Bκ
n),

are provable in G⊃,∧,¬,∀i . In particular, if A is provable in G⊃,∧,∨,¬,∀,∃c , then A◦, A∗, and Aκ, are

provable in G⊃,∧,¬,∀i .

Proof. We simply have to observe that the translation ◦ is in fact the composition of two
functions: the first one • is defined as in Definition 13.11, except that atoms remain unchanged,
and the second function is just †. This translation has the property that A• only contains the
connectives ⊃,∧,¬, and ∀. Furthermore, it is easily shown that Γ − B1, . . . , Bn is provable in
G⊃,∧,∨,¬,∀,∃c iff Γ• − B•1 , . . . , B

•
n is (because A ≡ A• is easily provable in G⊃,∧,∨,¬,∀,∃c). Therefore,

Lemma 13.10 applies to Γ• − B•1 , . . . , B•n, and we obtain the desired result.

It is trivial that the converse of Theorem 13.12 holds.

We shall now discuss another translation of classical logic into intuitionistic logic due to Gi-
rard [14]. Girard has pointed out that the usual double-negation translations have some rather
undesirable properties:

(1) They are not compatible with substitution. Indeed, the translation A[B/P]∗ of A[B/P] is
not equal to A∗[B∗/P] in general, due to the application of double negations to atoms.

(2) Negation is not involutive. For instance, A[B/P]∗ and A∗[B∗/P] are related through the
erasing of certain double negations (passing from ¬¬¬P to ¬P), but this erasing is not harmless.

(3) Disjunction is not associative. For example, if A ∨ B is translated as ¬(¬A ∧ ¬B), then
(A ∨ B) ∨ C is translated as ¬(¬(¬(¬A ∧ ¬B)) ∧ ¬C), and A ∨ (B ∨ C) is translated as ¬(¬A ∧
¬(¬(¬B ∧ ¬C))).

Girard has discovered a translation which does not suffer from these defects, and this translation
also turns out to be quite economical in the number of negation signs introduced [14]. The main
idea is to assign a sign or polarity (+ or −) to every formula. Roughly speaking, a positive literal
P (where P is an atom) is a formula of polarity +, a negative literal ¬P is a formula of polarity
−, and to determine the polarity of a compound formula, we combine its polarities as if they were
truth values, except that + corresponds to false, − corresponds to true, existential formulae are
always positive, and universal formulae are always negative. Given a sequent Γ − ∆, the idea is
that right-rules have to be converted to left-rules, and in order to do this we need to move formulae
in ∆ to the lefthand side of the sequent. The new twist is that formulae in ∆ will be treated
differently according to their polarity. One of the key properties of polarities is that every formula
A of polarity − turns out to be equivalent to a formula of the form ¬B with B of polarity +. Then
every formula A ≡ ¬B in ∆ of polarity − will be transferred to the lefthand side as B (and not as
¬¬B), and every formula A in ∆ of polarity + will be transferred to the lefthand side as ¬A. The
translation is then completely determined if we add the obvious requirement that the translation of
a classically provable sequent should be intuitionistically provable, and that it should be as simple
as possible. Let us consider some typical cases.

Case 1. The last inference is
Γ − ¬C,¬D

Γ − ¬C ∨ ¬D

81

where C and D are positive. The sequent Γ − ¬C,¬D is translated as Γ, C,D −, and we have the
inference

Γ, C,D −
Γ, C ∧D −

It is thus natural to translate ¬C∨¬D as ¬(C∧D), since then C∧D will be placed on the lefthand
side (because ¬(C ∧D) is negative).

Case 2. The last inference is
Γ − C,D

Γ − C ∨D

where C and D are positive. The sequent Γ − C,D is translated as Γ,¬C,¬D −, and we have the
inference

Γ,¬C,¬D −
Γ,¬C ∧ ¬D −

This time, the simplest thing to do is to translate C ∨ D as C ∨ D (since C ∨ D is positive), so
that ¬(C ∨ D) is placed on the lefthand side of the sequent. This is indeed legitimate because
¬(C ∨D) ≡ ¬C ∧ ¬D is provable intuitionistically.

Case 3. The last inference is
Γ − C[y/x]

Γ − ∀xC

where C is positive. The sequent Γ − C[y/x] is translated as Γ,¬C[y/x] −, and we have the
inference

Γ,¬C[y/x] −
Γ,∃x¬C −

We translate ∀xC as ¬∃x¬C, so that ∃x¬C is placed on the lefthand side of the sequent.

Case 4. The last inference is
Γ − ¬C[y/x]

Γ − ∀x¬C

where C is positive. The sequent Γ − ¬C[y/x] is translated as Γ, C[y/x] −, and we have the
inference

Γ, C[y/x] −
Γ,∃xC −

We translate ∀x¬C as ¬∃xC, so that ∃xC is placed on the lefthand side of the sequent.

Case 5. The last inference is
Γ − C[t/x]

Γ − ∃xC

where C is positive. The sequent Γ − C[t/x] is translated as Γ,¬C[t/x] −, and we have the
inference

Γ,¬C[t/x] −
Γ,∀x¬C −

82

The simplest thing to do is to translate ∃xC as ∃xC, so that ¬∃xC is placed on the lefthand side
of the sequent. This is possible because ¬∃xC ≡ ∀x¬C is provable intuitionistically.

Case 6. The last inference is
Γ − ¬C[t/x]

Γ − ∃x¬C

where C is positive. The sequent Γ − ¬C[t/x] is translated as Γ, C[t/x] −. The simplest thing to
do is to translate ∃x¬C as ∃x¬C, so that ¬∃x¬C is placed on the lefthand side of the sequent.
This is possible because ¬∃x¬C ≡ ∀x¬¬C is provable intuitionistically, and we have the sequence
of inferences

Γ, C[t/x] −

Γ − ¬C[t/x]

Γ,¬¬C[t/x] −

Γ,∀x¬¬C[t/x] −

Note that it was necessary to first double-negate C[t/x]. This is because ¬∃x¬C ≡ ∀x¬¬C is
provable intuitionistically, but ¬∃x¬C ≡ ∀xC is not.

Case 7. The last inference is
Γ − C Γ − D

Γ − C ∧D
where C, D are positive. The sequents Γ − C and Γ − D are translated as Γ,¬C − and Γ,¬D −.
Since C ∧D is positive, the simplest thing to do is to translate C ∧D as C ∧D, so that ¬(C ∧D) is
placed on the lefthand side of the sequent. This is possible because ¬(¬¬C ∧ ¬¬D) ≡ ¬(C ∧D)
is provable intuitionistically, and we have the sequence of inferences

Γ,¬C −
Γ − ¬¬C

Γ,¬D −
Γ − ¬¬D

Γ − ¬¬C ∧ ¬¬D
Γ,¬(¬¬C ∧ ¬¬D) −

Case 8. The last inference is
Γ − ¬C Γ − D

Γ − ¬C ∧D
where C, D are positive. The sequents Γ − ¬C and Γ − D are translated as Γ, C − and Γ,¬D −.
Since ¬C∧D is positive, the simplest thing to do is to translate ¬C∧D as ¬C∧D, so that ¬(¬C∧D)
is placed on the lefthand side of the sequent. This is possible because ¬(¬C ∧¬¬D) ≡ ¬(¬C ∧D)
is provable intuitionistically, and we have the sequence of inferences

Γ, C −
Γ − ¬C

Γ,¬D −
Γ − ¬¬D

Γ − ¬C ∧ ¬¬D
Γ,¬(¬C ∧ ¬¬D) −

83

Case 9. The last inference is
Γ − ¬C Γ − ¬D

Γ − ¬C ∧ ¬D

where C, D are positive. The sequents Γ − ¬C and Γ − ¬D are translated as Γ, C − and Γ, D −,
and we have the inference

Γ, C − Γ, D −
Γ, C ∨D −

We translate ¬C ∧ ¬D as ¬(C ∨D), so that C ∨D is placed on the lefthand side of the sequent.

Considering all the cases, we arrive at the following tables defining the Girard-translation Â of
a formula.

Definition 13.13 Given any formula A, its sign (polarity) and its Girard-translation Â are given
by the following tables:

If A = P where P is an atom, including the constants > (true) and ⊥ (false), then sign(A) = +
and Â = A, and if A is a compound formula then Â is given by the following tables:

Girard’s ¬¬-Translation

A B A ∧B A ∨B A ⊃ B

+, C +, D +, C ∧D +, C ∨D −,¬(C ∧ ¬D)

+, C −,¬D +, C ∧ ¬D −,¬(¬C ∧D) −,¬(C ∧D)

−,¬C +, D +,¬C ∧D −,¬(C ∧ ¬D) +, C ∨D
−,¬C −,¬D −,¬(C ∨D) −,¬(C ∧D) −,¬(¬C ∧D)

Girard’s ¬¬-Translation

A ∀xA ∃xA ¬A

+, C −,¬∃x¬C +, ∃xC −,¬C
−,¬C −,¬∃xC +, ∃x¬C +, C

In order to state the main property of the Girard-translation, we need one more definition.
Given a formula A, we define its translation A as follows:

A =

{
¬Â if sign(A) = +,
B if sign(A) = − and Â = ¬B.

Given ∆ = B1, . . . , Bn, we let ∆ = B1, . . . , Bn. Then, a sequent Γ − ∆ is translated into the
sequent Γ,∆ −.

We have the following theorem due du Girard [14].

84

Theorem 13.14 Given any sequent Γ − ∆, if Γ − ∆ is provable classically (in G⊃,∧,∨,¬,∀,∃c), then

its translation Γ,∆ − is provable intuitionistically (in G⊃,∧,∨,¬,∀,∃i).

Proof. By induction on the structure of proofs. We have already considered a number of cases
in the discussion leading to the tables of Definition 13.13. As an auxiliary result, we need to show
that the following formulae are provable intuitionistically (in fact, the top four follow from lemma
13.4, lemma 13.9, and the fact that ¬¬¬A ≡ ¬A is provable intuitionistically):

¬(C ∨D) ≡ ¬C ∧ ¬D,
¬(¬¬C ∧ ¬¬D) ≡ ¬(C ∧D),

¬(¬C ∧ ¬¬D) ≡ ¬(¬C ∧D),

¬(¬¬C ∧ ¬D) ≡ ¬(C ∧ ¬D),

¬∃xC ≡ ∀x¬C,
¬∃x¬C ≡ ∀x¬¬C.

We leave the remaining cases as an exercise.

Observe that a formula A of any polarity can be made into an equivalent formula of polarity
+, namely A+ = A ∧ >, or an equivalent formula of polarity −, namely A− = A ∨ ¬>. The
Girard-translation has some nice properties, and the following lemma lists some of them [14].

Lemma 13.15 The translation A 7→ Â given in Definition 13.13 is compatible with substitutions
respecting polarities. Furthermore, it satisfies a number of remarkable identities (in the equivalences
below, it is assumed that we are considering the Girard-translations of the formulae involved. For
example, in (i), we really mean ¬̂¬A ≡ Â. To unclutter the notation, hats will be omitted):

(i) Negation is involutive: ¬¬A ≡ A.

(ii) De Morgan identities: ¬(A ∧B) ≡ ¬A ∨ ¬B; ¬(A ∨B) ≡ ¬A ∧ ¬B; A ⊃ B ≡ ¬A ∨B;
¬∀xA ≡ ∃x¬A; ¬∃xA ≡ ∀x¬A.

(iii) Associativity of ∧ and ∨; as a consequence, (A ∧ B) ⊃ C ≡ A ⊃ (B ⊃ C), and A ⊃
(B ∨ C) ≡ (A ⊃ B) ∨ C.

(iv) Neutrality identities: A∨ ⊥ ≡ A; A ∧ ¬ ⊥ ≡ A.

(v) Commutativity of ∧ and ∨ (as a consequence, A ⊃ B ≡ ¬B ⊃ ¬A).

(vi) Distributivity identities with restriction on polarities: A ∧ (P ∨ Q) ≡ (A ∧ P) ∨ (A ∧ Q);
A ∨ (L ∧M) ≡ (A ∨ L) ∧ (A ∨M) (where P,Q are positive, and L,M negative).

(vii) Idempotency identities: P+ ≡ P where P is positive; N− ≡ N where N is negative; as a
consequence, A++ ≡ A+ and A−− ≡ A−.

(viii) Quantifier isomorphisms: A ∧ ∃xP ≡ ∃x(A ∧ P) if x is not free in A and P is positive;
A ∨ ∀xN ≡ ∀x(A ∨N) if x is not free in A and N is negative.

Proof. The proof is quite straightforward, but somewhat tedious. Because of the polarities,
many cases have to be considered. Some cases are checked in Girard [14], and the others can be
easily verified.

85

Acknowledgement. I wish to thank Hassan Aı̈t-Kaci, Val Breazu-Tannen, Jin Choi, Philippe
de Groote, Andreas Podelski, Andre Scedrov, and Ascánder Suárez, for their comments. Special
thanks to Peter Baumann, Kathleen Milsted, Marcin Skubiszewski, and Jean-Christophe Patat, for
proofreading earlier versions very carefully, and to Jean Yves Girard who has been and remains
a constant source of inspiration (and invented the “Girardian turnstile” −). I am particularly
grateful to Peter Baumann who was relentless in debugging this paper. Not only did he read the
entire paper with the eyes of an eagle, but he suggested many improvements, discovered errors,
and helped me fix them. Finally, I wish to thank the Digital Equipment Corporation for offering
me an ideal environment to spend a sabbatical year in 1991-1992, and where 99% of this research
was accomplished.

References

[1] S. Abramsky. Computational interpretation of linear logic. Technical Report DOC 90/20,
Imperial College, London SW7 2BZ, October 1990. To appear in Theor. Comp. Sci.

[2] H.P. Barendregt. The Lambda Calculus, volume 103 of Studies in Logic. North-Holland, second
edition, 1984.

[3] H.B. Curry and R. Feys. Combinatory Logic, Vol. I. Studies in Logic. North-Holland, third
edition, 1974.

[4] A.G. Dragalin. Mathematical intuitionism – introduction to proof theory, volume 67 of Trans-
lations of Mathematical Monographs. Amer. Math. Soc., Providence (RI), 1988.

[5] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J. Symbolic Logic,
57(3):795–807, 1992.

[6] Jean H. Gallier. Logic for Computer Science. Harper and Row, New York, 1986.

[7] Jean H. Gallier. On Girard’s “candidats de reductibilité”. In P. Odifreddi, editor, Logic And
Computer Science, pages 123–203. Academic Press, London, New York, May 1990.

[8] G. Gentzen. Investigations into logical deduction. In M.E. Szabo, editor, The Collected Papers
of Gerhard Gentzen. North-Holland, 1969.

[9] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

[10] Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application à
l’élimination des coupures dans l’analyse et la théorie des types. In J.E. Fenstad, editor, Proc.
2nd Scand. Log. Symp., pages 63–92. North-Holland, 1971.

[11] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université de Paris VII, June 1972. Thèse de Doctorat d’Etat.

[12] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[13] Jean-Yves Girard. Proof Theory and Logical Complexity. Bibliopolis, 1987.

86

[14] Jean-Yves Girard. A new constructive logic: classical logic. Math. Struc. in Comp. Sci., pages
255–296, 1991.

[15] J.R. Hindley and J.P. Seldin. Introduction to Combinators and λ-Calculus, volume 1 of London
Mathematical Society Student texts. Cambridge University Press, 1986.

[16] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pages 479–490. Academic Press, London, 1980. Reprint of manuscript first published in 1969.

[17] J. Hudelmaier. Bounds for cut-elimination in intuitionistic propositional logic. PhD thesis,
University of Tübingen, 1989. Dissertation.

[18] S. Kleene. Introduction to Metamathematics. North-Holland, seventh edition, 1952.

[19] J.L. Krivine. Lambda-Calcul, types et modèles. Etudes et recherches en informatique. Masson,
1990.

[20] P. Lincoln, A. Scedrov, and N. Shankar. Linearizing intuitionistic implication. In G. Kahn,
editor, Sixth IEEE LICS Symposium, pages 51–62, Vrije University, Amsterdam, July 1991.
IEEE.

[21] P. Martin-Löf. An intuitionistic theory of types. Technical report, University of Stokholm,
Stockholm, Sweden, 1972. Privately circulated manuscript.

[22] A.M. Pitts. On an interpretation of second-order quantification in first-order intuitionistic
propositional logic. J. Symbolic Logic, 57:33–52, 1992.

[23] D. Prawitz. Natural deduction, a proof-theoretical study. Almquist & Wiksell, Stockholm,
1965.

[24] D. Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Proc. 2nd Scand. Log.
Symp., pages 235–307. North-Holland, 1971.

[25] P. Rozière. Règles admissibles en calcul propositionnel intuitionniste. PhD thesis, Université
de Paris VII, May 1992. Thèse de Doctorat.

[26] H. Schwichtenberg. Proof theory: some applications of cut-elimination. In J. Barwise, editor,
Handbook of Mathematical Logic, volume 90 of Studies in Logic, pages 867–895. North Holland,
Amsterdam, 1977.

[27] S. Stenlund. Combinators, Lambda Terms, and Proof Theory. D. Reidel, Dordrecht, Holland,
1972.

[28] W.W. Tait. Intensional interpretation of functionals of finite type I. J. Symbolic Logic, 32:198–
212, 1967.

[29] W.W. Tait. Normal derivability in classical logic. In J. Barwise, editor, The Syntax and Se-
mantics of Infinitary Languages, volume 72 of Lecture Notes in Math., pages 204–236. Springer
Verlag, 1968.

87

[30] W.W. Tait. A realizability interpretation of the theory of species. In R. Parikh, editor, Logic
Colloquium, volume 453 of Lecture Notes in Math., pages 240–251. Springer Verlag, 1975.

[31] G. Takeuti. Proof Theory, volume 81 of Studies in Logic. North-Holland, 1975.

[32] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction, Vol. I and
II, volume 123 of Studies in Logic. North-Holland, 1988.

[33] A.M. Ungar. Normalization, cut-elimination and the theory of proofs, volume 28 of CSLI
Lecture Notes. CSLI, 1992.

[34] D. van Dalen. Logic and Structure. Universitext. Springer Verlag, second edition, 1980.

[35] N.N. Vorob’ev. The derivability problem in the constructive propositional calculus with strong
negation. Doklady Akademii Nauk SSSR, 85:689–692, 1952. in Russian.

[36] N.N. Vorob’ev. A new algorithm for derivability in the constructive propositional calculus.
Amer. Math. Soc., (2) 94:37–71, 1970. English Translation.

[37] Jeff Zucker. The correspondence between cut-elimination and normalization. Annals of Math-
ematical Logic, 7:1–112, 1974.

88

