
Typing untyped λ-terms, or

Reducibility strikes again!

Jean Gallier∗

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St.
Philadelphia, PA 19104, USA

e-mail: jean@saul.cis.upenn.edu

December 17, 2010

Abstract. It was observed by Curry that when (untyped) λ-terms can be assigned types, for
example, simple types, these terms have nice properties (for example, they are strongly normal-
izing). Coppo, Dezani, and Veneri, introduced type systems using conjunctive types, and showed
that several important classes of (untyped) terms can be characterized according to the shape of
the types that can be assigned to these terms. For example, the strongly normalizable terms, the
normalizable terms, and the terms having head-normal forms, can be characterized in some sys-
tems D and DΩ. The proofs use variants of the method of reducibility. In this paper, we present a
uniform approach for proving several meta-theorems relating properties of λ-terms and their typa-
bility in the systems D and DΩ. Our proofs use a new and more modular version of the reducibility
method. As an application of our metatheorems, we show how the characterizations obtained by
Coppo, Dezani, Veneri, and Pottinger, can be easily rederived. We also characterize the terms
that have weak head-normal forms, which appears to be new. We conclude by stating a number of
challenging open problems regarding possible generalizations of the realizability method.

∗This research was partially supported by ONR Grant NOOO14-93-1-1217.

1

1 Introduction

In this paper, we present a uniform approach for proving some general metatheorems relating
properties of (pure) λ-terms and their typability in some type systems with conjunctive types DΩ
and D, due to Coppo, Dezani, and Venneri [2, 3, 4]. As applications, we give simple proofs of the
characterizations of the terms having head-normal forms, of the normalizable terms, and of the
strongly normalizing terms. Versions of these results were first obtained by Coppo, Dezani, and
Venneri [4], and Pottinger [17]. We are perfectly aware that many of the results of this paper are
not original, but what we claim to be original is our restructuration of the method of reducibility.
By separating sharply the conditions that a property of λ-terms needs to satisfy from the inductive
conditions required for the reducibility method to go through, we were able to obtain a more
modular version of the reducibility method. As a consequence, the proofs needed for the various
classes of terms only need minor incremental changes.

Thus, the novel aspect of this paper is really in the development of a new version of the reducibil-
ity method rather than in the applications of this method. However, we find these applications
particularly pretty, and thus, the paper can also be considered as a tutorial on conjunctive type sys-
tems and their use for studying properties of λ-terms. In this respect, we were very much inspired
by Krivine’s book [13]. As a matter of fact, at times, we follow Krivine’s presentation rather closely
[13], except that we use a new notion of reducibility, and that we prove more general meta-theorems
(see below). An excellent survey on Curry-style type assignment systems can be found in Coppo
and Cardone [1], where similar results are presented, and in some lecture notes on the λ-calculus
by Gérard Huet [10]. We also give a characterization of the terms having weak head-normal forms.
This last result appears to be new. The reducibility method presented in this paper is inspired
from a proof of the Church-Rosser property given by Georges Koletsos [12].

The situation is that we have a unary predicate P describing a property of (untyped) λ-terms,
and a type-inference system S. For example, P could be the property of being head-normalizable,
or normalizable, or strongly normalizing, and S could be the system DΩ of the next section, or
system D (see Krivine [13]). Our main goal is to find sufficient conditions on the predicate P so
that every term M that type-checks in S with some “nice” type σ satisfies the predicate P.

As an example of the above general schema, conditions (P1), (P2), (P3s) of definition 3.2
together with conditions (P4) and (P5n) of definition 3.6 are such conditions on P with respect to
system DΩ (see theorem 3.9). Since the property of being head-normalizable satisfies properties
(P1)-(P5n), as a corollary, we have that every term that type-checks in DΩ with a nontrivial
type (see definition 2.3) is head-normalizable (see theorem 3.11). Another example is given by
conditions (P1), (P2), (P3) of definition 5.2 together with conditions (P4) and (P5) of definition
5.6 with respect to system D (see theorem 5.9). Since the property of being strongly normalizing
satisfies properties (P1)-(P5), as a corollary, we have that every term that type-checks in D is
strongly normalizing.

The main technique involved is a kind of realizability argument known as reducibility . The
crux of the reducibility method is to interpret every type σ as a set [[σ]] of λ-terms having certain
closure properties (see Tait [18, 19], Girard [8, 9], Krivine [13], and Gallier [5, 6]). One of the
crucial properties is that for a “nice” type σ, the terms in [[σ]] satisfy the predicate P (but this
does not have to be the case for ugly types!). If the sets [[σ]] are defined right, then the following
“realizability property” holds (for example, see lemma 3.8):

2

If P is a predicate satisfying conditions (P1)-(P5n), then for every term M that type-checks in
DΩ with type σ, for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every y: γ ∈ FV (M), we have
M [ϕ] ∈ [[σ]].

Now, if the properties (P1)-(P5n) on the predicate P are right, every variable is in every [[σ]],
and thus, by chosing ϕ to be the identity substitution, we get that M ∈ [[σ]] whenever M type-
checks in DΩ with type σ. Furthermore, when σ is a nice type (for example, nontrivial), properties
(P1)-(P5n) imply that [[σ]] ⊆ P, and thus, we have shown that M satisfies the predicate P whenever
M type-checks in DΩ with a nice type σ.

Other examples of this schema are given by lemma 4.8 and lemma 5.8. In order for an argument
of this kind to go through, the sets [[σ]] must satisfy some inductive invariant. In the literature,
this is often referred to as being a candidate. Inspired by Koletsos [12], we use the notion of a
P-candidate defined in definition 3.3. This notion has the advantage of not requiring the terms
to be strongly normalizing (as in Girard [8, 9]), or to involve rather strange looking terms such
as M [N/x]N1 . . . Nk (as in Tait [19], Mitchell [15], or Krivine [13]). By isolating the dual notions
of I-terms and simple terms, we can give a definition that remains invariant no matter what the
definition of the sets [[σ]] is. Also, the definition of a P-candidate only requires that the predicate
P be satisfied, but nothing to do with the properties (P1)-(P5) on P. This separation is helpful in
understanding how to derive sufficient properties on P. In other presentations, properties of the
predicate P are often incorporated in the definition of a candidate, and this tends to obscure the
argument. Finally, our definition can be easily adapted to other type disciplines involving explicitly
typed terms, or to higher-order types. Also, nice proofs of confluence can be obtained (see Koletsos
[12], and Gallier [6]). We now proceed with the details.

2 Conjunctive Types and the System DΩ

The conjunctive types, due to Coppo, Dezani, and Venneri [2, 3, 4], are constructed from a countably
infinite set of base types and the undefined type ω, using the type constructors→ and ∧. We follow
Krivine [13] (the reader may also want to consult Coppo, Dezani, and Venneri [4], or Coppo and
Cardone [1], for additional background). Let T denote the set of conjunctive types. As usual, a
context (or type assignment) is a finite (possibly empty) set Γ = x1:σ1, . . . , xn:σn of pairs xi:σi,
where xi is a variable and σi is a type, and where xi 6= xj for i 6= j.

Definition 2.1 The system DΩ is defined by the following rules.

Γ, x:σ . x:σ,

Γ, x:σ .M : τ

Γ . (λx. M):σ → τ
(abstraction)

Γ . M :σ → τ Γ . N :σ

Γ . (MN): τ
(application)

Γ . M :σ Γ . M : τ

Γ . M :σ ∧ τ
(∧-intro)

3

Γ . M :σ ∧ τ
Γ . M :σ

(∧-elim)
Γ . M :σ ∧ τ

Γ . M : τ
(∧-elim)

Γ . M :ω,

where Γ and M are arbitrary.

We let Λ denote the set of all (untyped) λ-terms and Λσ denote the set of all λ-terms M such
that `DΩ Γ . M :σ for some type σ and some context Γ. In this section, the only reduction rule
considered is β-reduction:

(λx. M)N −→β M [N/x].

The system D, introduced by Coppo and Dezani [3], is obtained by restricting the types to be
ω-free, and by by deleting the axiom

Γ . M :ω

involving the special type ω from the system DΩ. We let SNΛσ denote the set of all λ-terms M
such that `D Γ . M :σ for some type σ and some context Γ.

Definition 2.2 Given a term M , we let FV (M) denote the set of free variables in M . We say
that M is closed iff FV (M) = ∅. If FV (M) = {x1, . . . , xm}, the closure of M is the (closed) term
λx1 . . . λxm. M .

We now define a class of types that will turn out to characterize the head-normalizable terms.

Definition 2.3 A type σ is nontrivial iff either σ is a base type and σ 6= ω, or σ = γ → τ where
τ is nontrivial and γ is arbitrary, or σ = σ1 ∧ σ2 where σ1 or σ2 is nontrivial. If a type is not
nontrivial, we call it trivial . A type σ is ω-free if ω does not occur in σ.

3 P-Candidates for Head-Normalizing λ-Terms

It turns out that the behavior of a term depends heavily on the nature of the last typing inference
rule used in typing this term. A term created by an introduction rule, or I-term, plays a crucial
role, because when combined with another term, a new redex is created. On the other hand, for
a term created by an elimination rule, or simple term, no new redex is created when this term
is combined with another term. It should be noted that the rules (∧-intro) and (∧-elim) do not
generate any new I-terms or simple terms, since the term M appearing in the conclusion is identical
to the term(s) appearing in the premise(s). This motivates the following definition.

Definition 3.1 An I-term is a term of the form λx.M . A simple term (or neutral term) is a term
that is not an I-term. Thus, a simple term is either a variable x or an application MN . A term M

is stubborn iff it is simple and, either M is irreducible, or M ′ is a simple term whenever M
+−→β M

′

(equivalently, M ′ is not an I-term).

Let P ⊆ Λ be a (nonempty) set of λ-terms. Actually, P is the set of λ-terms satisfying a given
unary predicate. Our goal is to give sufficient conditions on P so that this predicate holds for
certain sets of terms that type-check with types of a special form in system DΩ.

4

Definition 3.2 Properties (P1)-(P3s) are defined as follows:

(P1) x ∈ P, for every variable x.

(P2) If M ∈ P and M −→β N , then N ∈ P.

(P3s) If M is simple, M ∈ P, N ∈ Λ, and (λx. M ′)N ∈ P whenever M
+−→β λx. M ′, then

MN ∈ P.

From now on, we only consider sets P satisfying conditions (P1)-(P3s) of definition 3.2.

Definition 3.3 A nonempty set C of (untyped) λ-terms is a P-candidate iff it satisfies the following
conditions:

(S1) C ⊆ P.

(S2) If M ∈ C and M −→β N , then N ∈ C.

(S3) If M is simple, M ∈ P, and λx. M ′ ∈ C whenever M
+−→β λx. M

′, then M ∈ C.

(S3) implies that any P-candidate C contains all variables. More generally, (S3) implies that
C contains all stubborn terms in P, and (P1) guarantees that variables are stubborn terms in P.

By (P3s), if M ∈ P is a stubborn term and N ∈ Λ is any term, then MN ∈ P. Furthermore,
MN is also stubborn since it is a simple term and since it can only reduce to an I-term (a λ-
abstraction) if M itself reduces to a λ-abstraction, i.e. an I-term. Thus, if M ∈ P is a stubborn
term and N ∈ Λ is any term, then MN is a stubborn term in P. As a consequence, since variables
are stubborn, for any terms N1, . . . , Nk, for every variable x, the term xN1 . . . Nk is a stubborn
term in P (assuming appropriate types for x and N1, . . . , Nk). Instead of (S3), a condition that
occurs frequently in reducibility arguments is the following:

(S2n) If M [N/x]N1 . . . Nk ∈ C, then (λx. M)NN1 . . . Nk ∈ C.

It can be shown easily that (S2) and (S3) imply (S2n) (see the proof of lemma 3.7). Terms of
the form xN1 . . . Nk or M [N/x]N1 . . . Nk are known to play a role in reducibility arguments (for
example, by Tait, Mitchell, or Krivine), and it is no surprise that they crop up again. However, in
contrast with other presentations, we do not have to deal with them explicitly.

Given a set P, for every type σ, we define [[σ]] ⊆ Λ as follows.

Definition 3.4 The sets [[σ]] are defined as follows:

[[σ]] = P, where σ 6= ω is a base type,

[[σ]] = Λ, where σ is a trivial type,

[[σ → τ]] = {M | M ∈ P, and for all N , if N ∈ [[σ]] then MN ∈ [[τ]]},
where σ → τ is nontrivial,

[[σ ∧ τ]] = [[σ]] ∩ [[τ]],

where σ ∧ τ is nontrivial.

5

By definition 2.3, a type is trivial if either it is ω, or it is of the form σ → τ where τ is trivial,
or it is of the form σ∧ τ where both σ and τ are trivial. We could have defined [[σ]] by changing the
second clause to [[ω]] = Λ, and by dropping the conditions σ → τ nontrivial and σ ∧ τ nontrivial.
However, it would no longer be true that [[σ]] = Λ for every trivial type, and this would be a
serious obstacle to the proof of lemma 3.7. The following lemma shows that the property of being
a P-candidate is an inductive invariant.

Lemma 3.5 If P is a set satisfying conditions (P1)-(P3s), then the following properties hold for
every type σ: (1) [[σ]] contains all stubborn terms in P (and in particular, every variable); (2) [[σ]]
satisfies (S2) and (S3); (3) If σ is a nontrivial type, then [[σ]] also satisfies (S1), and thus it is a
P-candidate.

Proof . We proceed by induction on types. If σ is a base type, then by definition [[σ]] = P if
σ 6= ω, and [[ω]] = Λ. Then, (1) and (2) are clear by (P1) and by (P2) (note that (S3) is trivial). If
σ 6= ω, then (S1) is trivial since [[σ]] = P.

We now consider the induction step.

(3) We prove that (S1) holds for nontrivial types. If σ → τ is nontrivial, then τ is nontrivial,
and by the definition of [[σ → τ]], we have [[σ → τ]] ⊆ P. If σ = σ1∧σ2 is nontrivial, then σ1 or σ2 is
nontrivial. Assume σ1 is nontrivial, the case where σ2 is nontrivial being similar. By the induction
hypothesis, [[σ1]] ⊆ P, and since [[σ1 ∧ σ2]] = [[σ1]] ∩ [[σ2]], it is clear that [[σ1 ∧ σ2]] ⊆ P.

The verification of (1) and (2) is obvious for trivial types, since in this case, [[σ]] = Λ. Thus, in
the rest of this proof, we assume that we are considering nontrivial types.

(1) Given a type σ → τ , by the induction hypothesis, [[τ]] contains all the stubborn terms in P.
Let M ∈ P be a stubborn term. Given any N ∈ [[σ]], obviously, N ∈ Λ. Since we have shown that
MN is a stubborn term in P when M ∈ P is stubborn and N is arbitrary, we have MN ∈ [[τ]].
Thus, M ∈ [[σ → τ]]. If σ = σ1 ∧ σ2, by the induction hypothesis, all stubborn terms in P are in
[[σ1]] and in [[σ2]], and thus in [[σ1 ∧ σ2]] = [[σ1]] ∩ [[σ2]].

(2) We prove (S2) and (S3).

(S2). Let M ∈ [[σ → τ]] and assume that M −→β M
′. Since M ∈ P by (S1), we have M ′ ∈ P

by (P2). For any N ∈ [[σ]], since M ∈ [[σ → τ]] we have MN ∈ [[τ]], and since M −→β M
′ we have

MN −→β M
′N . Then, applying the induction hypothesis at type τ , (S2) holds for [[τ]], and thus

M ′N ∈ [[τ]]. Thus, we have shown that M ′ ∈ P and that if N ∈ [[σ]], then M ′N ∈ [[τ]]. By the
definition of [[σ → τ]], this shows that M ′ ∈ [[σ → τ]], and (S2) holds at type σ → τ .

If σ = σ1∧σ2, by the induction hypothesis, (S2) holds for [[σ1]] and [[σ2]], and thus for [[σ1∧σ2]] =
[[σ1]] ∩ [[σ2]].

(S3). Let M ∈ P be a simple term, and assume that λx.M ′ ∈ [[σ → τ]] whenever M
+−→β λx.M

′.
We prove that for every N , if N ∈ [[σ]], then MN ∈ [[τ]]. The case where M is stubborn has already
been covered in (1). Assume that M is not stubborn. First, we prove that MN ∈ P, and for this,

we use (P3s). If M
+−→β λx. M

′, then by assumption, λx. M ′ ∈ [[σ → τ]], and for any N ∈ [[σ]], we
have (λx. M ′)N ∈ [[τ]]. Recall that we assumed σ → τ nontrivial, and thus, τ is nontrivial. Then,
by (S1), (λx. M ′)N ∈ P, and by (P3s), we have MN ∈ P. Now, there are two cases.

If τ is a base type, then [[τ]] = P since τ 6= ω, and MN ∈ [[τ]] (since MN ∈ P).

6

If τ is not a base type, the term MN is simple. Thus, we prove that MN ∈ [[τ]] using (S3)
(which by induction, holds at type τ). The case where MN is stubborn is trivial. Otherwise,

observe that if MN
+−→β Q, where Q = λy. P is an I-term, then the reduction is necessarily of the

form
MN

+−→β (λx. M ′)N ′ −→β M
′[N ′/x]

∗−→β Q,

where M
+−→β λx. M ′ and N

∗−→β N ′. Since by assumption, λx. M ′ ∈ [[σ → τ]] whenever

M
+−→β λx.M

′, and by the induction hypothesis applied at type σ, by (S2), N ′ ∈ [[σ]], we conclude
that (λx:σ.M ′)N ′ ∈ [[τ]]. By the induction hypothesis applied at type τ , by (S2), we have Q ∈ [[τ]],
and by (S3), we have MN ∈ [[τ]].

Since M ∈ P and MN ∈ [[τ]] whenever N ∈ [[σ]], we conclude that M ∈ [[σ → τ]].

For the proof of the next lemma, we need to add two new conditions (P4) and (P5n) to (P1)-
(P3s).

Definition 3.6 Properties (P4) and (P5n) are defined as follows:

(P4) If M ∈ P, then λx. M ∈ P.

(P5n) If M [N/x] ∈ P, then (λx. M)N ∈ P.

Lemma 3.7 If P is a set satisfying conditions (P1)-(P3s)-(P5n), and M [N/x] ∈ [[τ]] for every
N ∈ Λ, then λx. M ∈ [[σ → τ]].

Proof . The lemma is obvious if σ → τ is trivial, since in this case, [[σ → τ]] = Λ. Thus, in the
rest of this proof, we assume that σ → τ is nontrivial. This implies that τ is nontrivial.

We prove that for every every N , if N ∈ [[σ]], then (λx. M)N ∈ [[τ]]. We will need the fact
that the sets of the form [[σ]] have the properties (S1)-(S3), but this follows from lemma 3.5, since
(P1)-(P3s) hold. First, we prove that λx. M ∈ P.

By the assumption of lemma 3.7, M [x/x] = M ∈ [[τ]] (by choosing N = x). Then, since τ is
nontrivial, by (S1), M ∈ P, and by (P4), we have λx. M ∈ P.

Next, we prove that for every every N , if N ∈ [[σ]], then (λx. M)N ∈ [[τ]]. Let us assume that
N ∈ [[σ]]. Then, by the assumption of lemma 3.7, M [N/x] ∈ [[τ]]. Since τ is nontrivial, by (S1), we
have M [N/x] ∈ P. By (P5n), we have (λx. M)N ∈ P. Now, there are two cases.

If τ is a nontrivial base type, then [[τ]] = P. Since we just showed that (λx.M)N ∈ P, we have
(λx. M)N ∈ [[τ]].

If τ is not a base type, then (λx. M)N is simple. Thus, we prove that (λx. M)N ∈ [[τ]] using

(S3). The case where (λx.M)N is stubborn is trivial. Otherwise, observe that if (λx.M)N
+−→β Q,

where Q = λy. P is an I-term, then the reduction is necessarily of the form

(λx. M)N
∗−→β (λx. M ′)N ′ −→β M

′[N ′/x]
∗−→β Q,

where M
∗−→β M

′ and N
∗−→β N

′. But M [N/x] ∈ [[τ]], and since

M [N/x]
∗−→β M

′[N ′/x]
∗−→β Q,

7

by (S2), we have Q ∈ [[τ]]. Since (λx.M)N ∈ P and Q ∈ [[τ]] whenever (λx.M)N
+−→β Q, by (S3),

we have (λx. M)N ∈ [[τ]].

We now have the following main “realizability lemma”.

Lemma 3.8 If P is a set satisfying conditions (P1)-(P3s)-(P5n), then for every term M ∈ Λσ,
for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every y: γ ∈ FV (M), we have M [ϕ] ∈ [[σ]].

Proof . We proceed by induction on the proof `DΩ Γ . M :σ. The lemma is obvious if σ is a
trivial type, since in this case, [[σ]] = Λ. Thus, in the rest of this proof, we assume that we are
considering nontrivial types.

In the case of an axiom Γ, x:σ . x:σ, we have M = x, and then x[ϕ] = ϕ(x) ∈ [[σ]] by the
assumption on ϕ.

If the last rule is an application, then M = M1N1, where M1 has type σ → τ and N1 has type
σ. By the induction hypothesis, M1[ϕ] ∈ [[σ → τ]] and N1[ϕ] ∈ [[σ]]. By the definition of [[σ → τ]],
we get M1[ϕ]N1[ϕ] ∈ [[τ]], which shows that (M1N1)[ϕ] ∈ [[τ]], since M1[ϕ]N1[ϕ] = (M1N1)[ϕ].

If the last rule is an abstraction, then M = λx:σ. M1. By (P1) and (S3), [[σ]] is nonempty
for every type σ. Consider any N ∈ [[σ]] and any substitution ϕ such that ϕ(y) ∈ [[γ]] for every
y: γ ∈ FV (λx:σ.M1). Thus, the substitution ϕ[x: = N] has the property that ϕ(y) ∈ [[γ]] for every
y: γ ∈ FV (M1). By suitable α-conversion, we can assume that x does not occur in any ϕ(y) for
every y ∈ dom(ϕ), and that N is substitutable for x in M1. Then, M1[ϕ[x: = N]] = M1[ϕ][N/x].
By the induction hypothesis applied to M1 and ϕ[x: = N], we have M1[ϕ[x: = N]] ∈ [[τ]], that is,
M1[ϕ][N/x] ∈ [[τ]]. Consequently, by lemma 3.7, (λx:σ.M1[ϕ]) ∈ [[σ → τ]], that is, (λx:σ.M1)[ϕ] ∈
[[σ → τ]], since (λx:σ. M1[ϕ]) = (λx:σ. M1)[ϕ].

If the last rule is (∧-intro), by the induction hypothesis, M [ϕ] ∈ [[σ]] and M [ϕ] ∈ [[τ]]. Since
σ ∧ τ is nontrivial, [[σ ∧ τ]] = [[σ]] ∩ [[τ]], and thus, M [ϕ] ∈ [[σ ∧ τ]].

If the last rule is (∧-elim), by the induction hypothesis, M [ϕ] ∈ [[σ ∧ τ]], and since σ ∧ τ is
nontrivial, [[σ ∧ τ]] = [[σ]] ∩ [[τ]], and we have M [ϕ] ∈ [[σ]] and M [ϕ] ∈ [[τ]].

As a corollary of lemma 3.8, we obtain the following general theorem for proving properties of
terms that type-check in DΩ.

Theorem 3.9 If P is a set of λ-terms satisfying conditions (P1)-(P3s)-(P5n), then Λσ ⊆ P for
every nontrivial type σ (in other words, every term typable in DΩ with a nontrivial type satisfies
the unary predicate defined by P).

Proof . Apply lemma 3.8 to every term M in Λσ and to the identity substitution, which is
legitimate since x ∈ [[σ]] for every variable of type σ (by lemma 3.5). Thus, M ∈ [[σ]] for every
term in Λσ, that is Λσ ⊆ [[σ]]. Finally, by lemma 3.5, if σ is nontrivial, (S1) holds for [[σ]], that is
Λσ ⊆ [[σ]] ⊆ P.

As a corollary of theorem 3.9, we show that if a term M is typable in DΩ with a nontrivial
type, then the head reduction of M is finite (and so, M has a head-normal form, i.e. it is a solvable
term (see definition 6.10)). This result was first shown by Coppo, Dezani, and Venneri [4]. Our
treatment is heavily inspired by Krivine [13], where we found the marvellous concept of a quasi-head
reduction (which is actually due to Barendregt).

8

Definition 3.10 Given a term M = λx1 . . . λxm. ((λy. P)Q)N1 . . . Nk, where m ≥ 0 and k ≥ 0,
the term (λy.P)Q is the head redex of M . A head reduction is a reduction sequence in which every
step reduces the head redex. A quasi-head reduction is a (finite or infinite) reduction sequence
s = 〈M0,M1, . . . ,Mi, . . .〉 such that, for every i ≥ 0, if Mi is not the last term in the sequence s,
there is some j ≥ i such that Mj −→β Mj+1 is a head-reduction step. A term is in head-normal
form iff it has no head redex, that is, it is of the form λx1 . . . λxm. yN1 . . . Nk, where m ≥ 0 and
k ≥ 0. The variable y is called the head variable. A term is head-normalizable iff the head reduction
from M is finite.

Note that the last step in a finite quasi-head reduction is necessarily a head-reduction step. Also,
any suffix of a quasi-head reduction is a quasi-head reduction. The main advantage of quasi-head
reductions over head-reductions is that (P2) obviously holds for terms for which every quasi-head
reduction is finite.

Theorem 3.11 If a term M is typable in DΩ with a nontrivial type, then every quasi-head
reduction from M is finite. As a corollary, the head reduction from M is finite (and so, M has a
head-normal form).

Proof . Let P be the set of λ-terms for which every quasi-head reduction is finite. To prove
theorem 3.11, we apply theorem 3.9, which requires showing that P satisfies the properties (P1)-
(P3s)-(P5n). First, we make the following observation that will simplify the proof. Since there is
only a finite number of redexes in any term, for any term M , the reduction tree1 for M is finitely
branching. Thus, if every quasi-head reduction sequence is finite, since the reduction tree is finite
branching, by König’s lemma, the subtree consisting of quasi-head reduction sequences is finite.
Thus, for any term M from which every quasi-head reduction sequence is finite, the length of a
longest quasi-head reduction path in the reduction tree from M is a natural number, and we will
denote it as l(M). Now, (P1) is trivial, and (P2) follows from the definition.

(P3s). Let M be simple, and assume that every quasi-head reduction from M is finite. We
prove that every quasi-head reduction from MN is finite by induction on l(M). Let MN −→β Q
be a reduction step. Because M is simple, MN is not a redex, and we must have M −→β M1 or
N −→β N1. If M1 is simple, since l(M1) < l(M), the induction hypothesis yields that every quasi-
head reduction from M1N is finite. If N −→β N1, because we are considering quasi-head reductions
from MN , there is a first step where a head reduction is applied, and it must be applied to M .
Thus, we must have MN −→β MN1

∗−→β MNi −→β M1Ni. Since l(M1) < l(M), the induction
hypothesis yields that every quasi-head reduction from MN1 is finite. Otherwise, M1 = λx. P ,
and by assumption, every quasi-head reduction from (λx. P)N is finite. Thus every quasi-head
reduction from MN is finite.

(P4). Assume that every quasi-head reduction from M is finite. It is immediate to prove by
induction on l(M) that every quasi-head reduction from λx. M is also finite.

(P5n). Let k be the index of the first head-reduction step in any quasi-head reduction from
(λx. M)N . We prove by induction on k that every quasi-head reduction from (λx. M)N is finite.
If k = 0, then (λx.M)N is a head-redex. However, by the assumption, every quasi-head reduction
from M [N/x] is finite. Now, consider any quasi-head reduction s from (λx. M)N of index k ≥ 1.

1the tree of reduction sequences from M

9

The first reduction step from (λx. M)N is either (λx. M)N −→β (λx. M1)N or (λx. M)N −→β

(λx. M)N1. In either case, the index of the first head-reduction step in the quasi-head reduction
tail(s) is k − 1, and by the induction hypothesis, we get the desired result.

Note that we could have proved directly that (P2) holds using the following simple lemma.

Lemma 3.12 If M is head-normalizable and M −→β M
′, then M ′ is head-normalizable.

Proof . We prove the following stronger property: If M is head-normalizable and M ′ is obtained
from M by reducing in parallel any set of independant redexes in M (where the reduction applied
to each redex is a one-step reduction), then M ′ is head-normalizable.

The above property is proved by induction on the length l(M) of the head reduction from
M . If l(M) = 0, then M = λx1 . . . λxm. yN1 . . . Nk, and M ′ = λx1 . . . λxm. yN

′
1 . . . N

′
k, where

N ′i is obtained from Ni by performing reductions on independant redexes. We are done since
M ′ = λx1 . . . λxm. yN

′
1 . . . N

′
k is a head-normal form. If M = λx1 . . . λxm. ((λy. P)Q)N1 . . . Nk,

then either M ′ = λx1 . . . λxm. ((λy. P ′)Q′)N ′1 . . . N
′
k, or M ′ = λx1 . . . λxm. (P [Q/x])N ′1 . . . N

′
k.

In the second case, letting M1 = λx1 . . . λxm. (P [Q/x])N1 . . . Nk be the result of reducing the
head redex in M , we have l(M1) < l(M), and since M ′ is obtained from M1 by reducing in-
dependant redexes, we conclude by applying the induction hypothesis. In the first case, letting
M ′1 = λx1 . . . λxm. (P

′[Q′/x])N ′1 . . . N
′
k be the result of reducing the head redex in M ′, since M ′1 is

obtained from M1 by reducing independant redexes, we also conclude by applying the induction
hypothesis.

The converse of theorem 3.11 is true: if a λ-term is head-normalizable, then it is typable in DΩ
with a nontrivial type σ. The proof requires a careful analysis of type-ckecking in system DΩ. For
the time being, we prove the following weaker result.

Lemma 3.13 Given a term M = λx1 . . . λxm. yN1 . . . Nk in head-normal form, there are non-
trivial types σ = σ1 → . . . σm → τ and γ, where τ is a base type, such that: if y 6= xi for all i, then
`DΩ y: γ . M :σ and the σi are arbitrary, else if y = xi, then `DΩ . M :σ, σi = γ, and the σj are
arbitrary for j 6= i.

Proof . Let γ = ω → . . . → ω → τ with k occurrences of ω. Let Γ = x1:σ1, . . . , xm:σm, y: τ if
y 6= xi. It is easy to see that we have

`DΩ Γ, y: γ . yN1 . . . Nk: τ,

and thus,
`DΩ y: γ . λx1 . . . λxm. yN1 . . . Nk:σ,

where the σi are arbitrary. If y = xi, let σi = γ and Γ = x1:σ1, . . . , xm:σm. It is easy to see that
we have

`DΩ Γ . yN1 . . . Nk: τ,

and thus,
`DΩ . λx1 . . . λxm. yN1 . . . Nk:σ,

where the σj are arbitrary for j 6= i.

Note that there are head-normalizable terms that are not normalizable. If δ = λx. xx, then
y(δδ) is in head-normal form, but it is not normalizable since δδ is not.

10

4 P-Candidates for Normalizable λ-Terms

In this section, we modify the definition of condition (P3s) in definition 3.2, so that our main
theorem applies to the normalizable λ-terms. Although definition 3.1 is unchanged, we repeat it
for the reader’s convenience.

Definition 4.1 An I-term is a term of the form λx.M . A simple term (or neutral term) is a term
that is not an I-term. Thus, a simple term is either a variable x or an application MN . A term M

is stubborn iff it is simple and, either M is irreducible, or M ′ is a simple term whenever M
+−→β M

′

(equivalently, M ′ is not an I-term).

Definition 4.2 Properties (P1)-(P3) are defined as follows:

(P1) x ∈ P, for every variable x.

(P2) If M ∈ P and M −→β N , then N ∈ P.

(P3) If M is simple, M ∈ P, N ∈ P, and (λx. M ′)N ∈ P whenever M
+−→β λx. M ′, then

MN ∈ P.

Note that the difference with (P3s) of definition 3.2 is that we now require that N ∈ P. From
now on, we only consider sets P satisfying conditions (P1)-(P3) of definition 4.2. Definition 3.3 is
also unchanged, but we repeat it for convenience.

Definition 4.3 A nonempty set C of (untyped) λ-terms is a P-candidate iff it satisfies the following
conditions:

(S1) C ⊆ P.

(S2) If M ∈ C and M −→β N , then N ∈ C.

(S3) If M is simple, M ∈ P, and λx. M ′ ∈ C whenever M
+−→β λx. M

′, then M ∈ C.

(S3) implies that any P-candidate C contains all variables. More generally, (S3) implies that
C contains all stubborn terms in P, and (P1) guarantees that variables are stubborn terms in P.

By (P3), if M ∈ P is a stubborn term and N ∈ P is any term, then MN ∈ P. Furthermore, MN
is also stubborn since it is a simple term and since it can only reduce to an I-term (a λ-abstraction)
if M itself reduces to a λ-abstraction, i.e. an I-term. Thus, if M ∈ P is a stubborn term and
N ∈ P is any term, then MN is a stubborn term in P. The difference with the previous section is
that N too must be in P for MN to be stubborn if M ∈ P is stubborn. As a consequence, since
variables are stubborn, for any terms N1, . . . , Nk ∈ P, for every variable x, the term xN1 . . . Nk is
a stubborn term in P (assuming appropriate types for x and N1, . . . , Nk).

Given a set P, for every type σ, we define [[σ]] ⊆ Λ as follows.

11

Definition 4.4 The sets [[σ]] are defined as follows:

[[σ]] = P, where σ 6= ω is a base type,

[[σ]] = Λ, where σ contains ω,

[[σ → τ]] = {M | M ∈ P, and for all N , if N ∈ [[σ]] then MN ∈ [[τ]]},
where σ → τ is ω-free,

[[σ ∧ τ]] = [[σ]] ∩ [[τ]],

where σ ∧ τ is ω-free.

Lemma 4.5 If P is a set satisfying conditions (P1)-(P3), then the following properties hold for
every type σ: (1) [[σ]] contains all stubborn terms in P (and in particular, every variable); (2) [[σ]]
satisfies (S2) and (S3); (3) If σ is ω-free, then [[σ]] also satisfies (S1), and thus it is a P-candidate.

Proof . We proceed by induction on types. The proof is identical to that given in lemma 3.5
when σ is a base type.

We now consider the induction step.

(3) We prove that (S1) holds for ω-free types. If σ → τ is ω-free, then by the definition of
[[σ → τ]], we have [[σ → τ]] ⊆ P. If σ = σ1 ∧ σ2 is ω-free, then σ1 and σ2 are ω-free. By the
induction hypothesis, [[σ1]] ⊆ P and [[σ2]] ⊆ P, and since [[σ1 ∧ σ2]] = [[σ1]] ∩ [[σ2]], it is clear that
[[σ1 ∧ σ2]] ⊆ P.

The verification of (1) and (2) is obvious for types containing ω, since in this case, [[σ]] = Λ.
Thus, in the rest of this proof, we assume that we are considering ω-free types.

(1) Given a type σ → τ , by the induction hypothesis, [[τ]] contains all the stubborn terms in
P. Let M ∈ P be a stubborn term. Given any N ∈ [[σ]], because σ → τ is ω-free, so is σ, and by
(S1), N ∈ P. Since we have shown that MN is a stubborn term in P when M ∈ P is stubborn
and N ∈ P, we have MN ∈ [[τ]]. Thus, M ∈ [[σ → τ]]. If σ = σ1 ∧ σ2, by the induction hypothesis,
all stubborn terms in P are in [[σ1]] and in [[σ2]], and thus in [[σ1 ∧ σ2]] = [[σ1]] ∩ [[σ2]].

(2) We prove (S2) and (S3).

(S2). The proof is identical to that given in lemma 3.5.

(S3). Let M ∈ P be a simple term, and assume that λx.M ′ ∈ [[σ → τ]] whenever M
+−→β λx.M

′.
We prove that for every N , if N ∈ [[σ]], then MN ∈ [[τ]]. The case where M is stubborn has already
been covered in (1). Assume that M is not stubborn. First, we prove that MN ∈ P, and for this,

we use (P3). If M
+−→β λx. M

′, then by assumption, λx. M ′ ∈ [[σ → τ]], and for any N ∈ [[σ]], we
have (λx. M ′)N ∈ [[τ]]. Recall that we assumed that σ → τ is ω-free, and thus, both σ and τ are
ω-free. Then, by (S1), N ∈ P and (λx. M ′)N ∈ P, and by (P3), we have MN ∈ P. The rest of
the proof is identical to that given in lemma 3.5.

Conditions (P4) and (P5n) of definition 3.6 are unchanged, but we repeat them for convenience.

Definition 4.6 Properties (P4) and (P5n) are defined as follows:

(P4) If M ∈ P, then λx. M ∈ P.

(P5n) If M [N/x] ∈ P, then (λx. M)N ∈ P.

12

Lemma 4.7 If P is a set satisfying conditions (P1)-(P3)-(P5n), and M [N/x] ∈ [[τ]] for every
N ∈ Λ, then λx. M ∈ [[σ → τ]].

Proof . The lemma is obvious if σ → τ contains ω, since in this case, [[σ → τ]] = Λ. Thus, in
the rest of this proof, we assume that σ → τ is ω-free. This implies that both σ and τ are ω-free.

We prove that for every every N , if N ∈ [[σ]], then (λx. M)N ∈ [[τ]]. We will need the fact
that the sets of the form [[σ]] have the properties (S1)-(S3), but this follows from lemma 4.5, since
(P1)-(P3) hold. First, we prove that λx. M ∈ P.

By the assumption of lemma 4.7, M [x/x] = M ∈ [[τ]] (by choosing N = x). Then, since τ is
ω-free, by (S1), M ∈ P, and by (P4), we have λx. M ∈ P.

Next, we prove that for every every N , if N ∈ [[σ]], then (λx. M)N ∈ [[τ]]. Let us assume that
N ∈ [[σ]]. Then, by the assumption of lemma 4.7, M [N/x] ∈ [[τ]]. Since τ is ω-free, by (S1), we
have M [N/x] ∈ P. By (P5n), we have (λx. M)N ∈ P. The rest of the proof is identical to that of
lemma 3.7.

Lemma 4.8 If P is a set satisfying conditions (P1)-(P3)-(P5n), then for every term M ∈ Λσ,
for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every y: γ ∈ FV (M), we have M [ϕ] ∈ [[σ]].

Proof . We proceed by induction on the proof `DΩ Γ . M :σ. This proof is identical to that of
lemma 3.8, with “nontrivial type” replaced by “ ω-free type”.

Theorem 4.9 If P is a set of λ-terms satisfying conditions (P1)-(P3)-(P5n), then Λσ ⊆ P for
every ω-free type σ (in other words, every term typable in DΩ with an ω-free type satisfies the unary
predicate defined by P).

Proof . Apply lemma 4.8 to every term M in Λσ and to the identity substitution, which is
legitimate since x ∈ [[σ]] for every variable of type σ (by lemma 4.5). Thus, M ∈ [[σ]] for every
term in Λσ, that is Λσ ⊆ [[σ]]. Finally, by lemma 4.5, if σ is ω-free, (S1) holds for [[σ]], that is
Λσ ⊆ [[σ]] ⊆ P.

As a consequence of theorem 4.9, if `DΩ ΓM :σ where σ and all the types in Γ are ω-free, then
M ∈ P.

As a corollary of theorem 4.9, we show that if a term M is typable in DΩ with an ω-free type,
then M is normalizable. A version of this theorem was first shown by Coppo, Dezani, and Venneri
[4]. Again, our treatment is heavily inspired by Krivine [13], where we found the concept of a
quasi-leftmost reduction (which is actually due to Barendregt).

Definition 4.10 Given a term M , the leftmost redex in M is either the head-redex (λy. P)Q of
M if M = λx1 . . . λxm. ((λy. P)Q)N1 . . . Nk, (where m ≥ 0 and k ≥ 0), or the leftmost redex in
the leftmost reducible subterm Ni in M if M = λx1 . . . λxm. yN1 . . . Nk, 1 ≤ i ≤ k (and thus,
N1, . . . , Ni−1 are irreducible). A leftmost reduction is a reduction sequence in which every step
reduces the leftmost redex. A quasi-leftmost reduction is a (finite or infinite) reduction sequence
s = 〈M0,M1, . . . ,Mi, . . .〉 such that, for every i ≥ 0, if Mi is not the last term in the sequence s,
there is some j ≥ i such that Mj −→β Mj+1 is a leftmost reduction step. A term is in normal
form (or irreducible) iff it has no redex. A term is normalizable iff the leftmost reduction from M
is finite.

13

It is immediate that M is in normal form iff it is of the form λx1 . . . λxm. yN1 . . . Nk, where
N1, . . . , Nk are also in normal form (m ≥ 0 and k ≥ 0). Note that the last step in a finite quasi-
leftmost reduction is necessarily a leftmost reduction step. Also, any suffix of a quasi-leftmost
reduction is a quasi-leftmost reduction. The main advantage of quasi-leftmost reductions over
leftmost reductions is that (P2) obviously holds for terms for which every quasi-leftmost reduction
is finite.

Theorem 4.11 If a term M is typable in DΩ with an ω-free type, then every quasi-leftmost
reduction from M in finite. As a corollary, the leftmost reduction from M is finite (and so, M has
a normal form).

Proof . Let P be the set of λ-terms for which every quasi-leftmost reduction is finite. To
prove theorem 3.11, we apply theorem 3.9, which requires showing that P satisfies the properties
(P1)-(P5n). First, note that the observation made at the beginning of the proof of lemma 3.11
also applies. If every quasi-leftmost reduction sequence is finite, since the reduction tree is finite
branching, by König’s lemma, the subtree consisting of quasi-leftmost reduction sequences is finite.
Thus, for any term M from which every quasi-leftmost reduction sequence is finite, the length of
a longest quasi-leftmost reduction path in the reduction tree from M is a natural number, and we
will denote it as l(M). Now, (P1) is trivial, and (P2) follows from the definition.

(P3). Let M be simple, and assume that every quasi-leftmost reduction from M or N is finite.
We prove that every quasi-leftmost reduction from MN is finite by induction on l(M) + l(N). Let
MN −→β Q be a reduction step. Because M is simple, MN is not a redex, and we must have
M −→β M1 or N −→β N1. If M1 is simple, since l(M1) + l(N) < l(M) + l(N), the induction
hypothesis yields that every quasi-leftmost reduction from M1N is finite. If N −→β N1, since
l(M) + l(N1) < l(M) + l(N), the induction hypothesis yields that every quasi-leftmost reduction
from MN1 is finite. Otherwise, M1 = λx. P , and by assumption, every quasi-leftmost reduction
from (λx. P)N is finite. Thus every quasi-leftmost reduction from MN is finite.

(P4). Assume that every quasi-leftmost reduction from M is finite. It is immediate to prove by
induction on l(M) that every quasi-leftmost reduction from λx. M is also finite.

(P5n). Let k be the index of the first leftmost reduction step in any quasi-leftmost reduction
from (λx.M)N . We prove by induction on k that every quasi-leftmost reduction from (λx.M)N is
finite. If k = 0, then (λx.M)N is a head-redex. However, by the assumption, every quasi-leftmost
reduction from M [N/x] is finite. Now, consider any quasi-leftmost reduction s from (λx. M)N
of index k ≥ 1. The first reduction step from (λx. M)N is either (λx. M)N −→β (λx. M1)N or
(λx. M)N −→β (λx. M)N1. In either case, the index of the first leftmost reduction step in the
quasi-leftmost reduction tail(s) is k−1, and by the induction hypothesis, we get the desired result.

Actually, it is possible to prove directly that (P2) holds for leftmost reductions.

Lemma 4.12 If M is normalizable and M −→β M
′, then M ′ is normalizable.

Proof . We prove the following stronger property: If M is normalizable and M ′ is obtained from
M by reducing in parallel any set of independant redexes in M (where the reduction applied to
each redex is a one-step reduction), then M ′ is normalizable.

14

The above property is proved by induction on the length l(M) of the leftmost reduction from
M . If l(M) = 0, then M is in normal form and the lemma is trivial. If M = C[(λy. P)Q] where
(λy. P)Q is the leftmost redex in M , then either M ′ = C ′[(λy. P ′)Q′], or M ′ = C ′[P [Q/x]]. In the
second case, letting M1 = C[P [Q/x]] be the result of reducing the leftmost redex in M , we have
l(M1) < l(M), and since M ′ is obtained from M1 by reducing independant redexes, we conclude
by applying the induction hypothesis. In the first case, letting M ′1 = C ′[P ′[Q′/x]] be the result of
reducing the leftmost redex in M ′, since M ′1 is obtained from M1 by reducing independant redexes,
we also conclude by applying the induction hypothesis.

The converse of theorem 4.11 is true: if a λ-term M is normalizable, then `DΩ Γ . M :σ where
σ and all the types in Γ are ω-free. For the time being, we prove that every term in normal form is
typable in system D. First, observe that because the first axiom in both systems DΩ and D is of
the form Γ, x:σ.x:σ, for any two contexts Γ and ∆, if Γ ⊆ ∆ and `DΩ Γ.M :σ, then `DΩ ∆.M :σ
(and similarly for `D).

Lemma 4.13 If `DΩ x:σ1,Γ .M :σ, then for any type τ1, `DΩ x:σ1∧ τ1,Γ .M :σ (and similarly
for `D).

Proof . We proceed by induction on the proof. The only nonobvious case is the case where
x:σ1,Γ .M :σ is an axiom, with M = x and σ = σ1. In this case, x:σ1 ∧ τ1,Γ . x:σ1 ∧ τ1 is also an
axiom, and by (∧-elim), we get `DΩ x:σ1 ∧ τ1,Γ . x:σ1.

Lemma 4.14 If `DΩ Γ1 . M :σ and `DΩ Γ2 . N : τ , then there is a context Γ1 ∧ Γ2 such that,
`DΩ Γ1 ∧ Γ2 . M :σ and `DΩ Γ1 ∧ Γ2 . N : τ (and similarly for `D).

Proof . By the remark before lemma 4.13, Γ1 and Γ2 can be extended to contexts Γ′1 and
Γ′2 which are of the form Γ′1 = x1:σ1, . . . , xm:σm and Γ′2 = x1: τ1, . . . , xm: τm. Then, letting
Γ1∧Γ2 = x1:σ1∧τ1, . . . , xm:σm∧τm, by lemma 4.13 (applied m times), we have `DΩ Γ1∧Γ2 .M :σ
and `DΩ Γ1 ∧ Γ2 . N : τ

We can now prove the desired result.

Lemma 4.15 If M is in normal form, then there is a context Γ and a type σ (both ω-free) such
that `D Γ . M :σ. Furthermore, if M is not a λ-abstraction, the type σ can be chosen arbitrarily.

Proof . We proceed by induction on M . If M = x is a variable, for every ω-free type σ, and any
ω-free Γ, x:σ,Γ . x:σ is an axiom.

If M = λx.M1, by the induction hypothesis, there is a context Γ and a type τ (both ω-free) such
that `D Γ .M1: τ . If x /∈ dom(Γ), we can pick any ω-free type σ and extend Γ so that we still have
`D x:σ,Γ.M1: τ . Thus, we assume that we are in the second case. But then, `D Γ.λx.M1:σ → τ .

If M = M1M2, because M is in normal form, M1 cannot be a λ-abstraction. By the induction
hypothesis, there is a context Γ2 and a type τ (both ω-free) such that `D Γ2 . M2: τ , and for any
arbitrary ω-free type σ, there is some ω-free context Γ1 such that `D Γ1 . M1: τ → σ. By lemma
4.14, we have `D Γ1 ∧ Γ2 . M1: τ → σ and `D Γ1 ∧ Γ2 . M2: τ , and thus, `D Γ1 ∧ Γ2 . M1M2:σ.

Note that there are normalizable terms that are not strongly normalizing. If δ = λx. xx, then
M = (λx. y)(δδ) is normalizable since M −→β y, but it is not strongly normalizing since δδ is not.
There are even normalizable terms such that every subterm is SN that are not SN! For example,
M = [λx. ((λy. z)(xδ))]δ is such a term.

15

5 P-Candidates for Strongly Normalizing λ-Terms

Although definition 4.1 is unchanged, we repeat it for convenience.

Definition 5.1 An I-term is a term of the form λx.M . A simple term (or neutral term) is a term
that is not an I-term. Thus, a simple term is either a variable x or an application MN . A term M

is stubborn iff it is simple and, either M is irreducible, or M ′ is a simple term whenever M
+−→β M

′

(equivalently, M ′ is not an I-term).

Similarly, although definition 4.2 is unchanged, we repeat it for convenience.

Definition 5.2 Properties (P1)-(P3) are defined as follows:

(P1) x ∈ P, for every variable x.

(P2) If M ∈ P and M −→β N , then N ∈ P.

(P3) If M is simple, M ∈ P, N ∈ P, and (λx. M ′)N ∈ P whenever M
+−→β λx. M ′, then

MN ∈ P.

From now on, we only consider sets P satisfying conditions (P1)-(P3) of definition 5.2. Definition
4.3 is also unchanged, but we repeat it for convenience.

Definition 5.3 A nonempty set C of (untyped) λ-terms is a P-candidate iff it satisfies the following
conditions:

(S1) C ⊆ P.

(S2) If M ∈ C and M −→β N , then N ∈ C.

(S3) If M is simple, M ∈ P, and λx. M ′ ∈ C whenever M
+−→β λx. M

′, then M ∈ C.

The remarks following definition 4.3 apply here too. Thus, (S3) implies that C contains all
stubborn terms in P, and (P1) guarantees that variables are stubborn terms in P. Also, by (P3),
if M ∈ P is a stubborn term and N ∈ P is any term, then MN ∈ P is stubborn. Instead of (S3),
a condition that occurs frequently in reducibility arguments is the following:

(S2sn) If N ∈ P and M [N/x]N1 . . . Nk ∈ C, then (λx. M)NN1 . . . Nk ∈ C.

It can be shown easily that (S2) and (S3) imply (S2sn) (see the proof of lemma 5.7).

Given a set P, for every type σ, we define [[σ]] ⊆ Λ as follows.

Definition 5.4 The sets [[σ]] are defined as follows:

[[σ]] = P, where σ is a base type,

[[σ → τ]] = {M | M ∈ P, and for all N , if N ∈ [[σ]] then MN ∈ [[τ]]},
[[σ ∧ τ]] = [[σ]] ∩ [[τ]].

16

Lemma 5.5 If P is a set satisfying conditions (P1)-(P3), then the following properties hold for
every type σ: (1) [[σ]] contains all stubborn terms in P (and in particular, every variable); (2) [[σ]]
satisfies (S1), (S2), and (S3), and thus it is a P-candidate.

Proof . We proceed by induction on types. If σ is a base type, then by definition [[σ]] = P.
Then, (1) and (2) are clear by (P1) and by (P2) (note that (S1) and (S3) are trivial).

We now consider the induction step.

(1) Given a type σ → τ , by the induction hypothesis, [[τ]] contains all the stubborn terms in P.
Let M ∈ P be a stubborn term. Given any N ∈ [[σ]], by (S1), N ∈ P. Since we have shown that
MN is a stubborn term in P when M ∈ P is stubborn and N ∈ P, we have MN ∈ [[τ]]. Thus,
M ∈ [[σ → τ]]. If σ = σ1 ∧ σ2, by the induction hypothesis, all stubborn terms in P are in [[σ1]] and
in [[σ2]], and thus in [[σ1 ∧ σ2]] = [[σ1]] ∩ [[σ2]].

(S1). By the definition of [[σ → τ]], we have [[σ → τ]] ⊆ P. If σ = σ1 ∧ σ2, by the induction
hypothesis, [[σ1]] ⊆ P and [[σ2]] ⊆ P, and since [[σ1 ∧σ2]] = [[σ1]]∩ [[σ2]], it is clear that [[σ1 ∧σ2]] ⊆ P.

(S2). The proof is identical to that of lemma 4.5.

(S3). Let M ∈ P be a simple term, and assume that λx.M ′ ∈ [[σ → τ]] whenever M
+−→β λx.M

′.
We prove that for every N , if N ∈ [[σ]], then MN ∈ [[τ]]. The case where M is stubborn has already
been covered in (1). Assume that M is not stubborn. First, we prove that MN ∈ P, and for this,

we use (P3). If M
+−→β λx. M

′, then by assumption, λx. M ′ ∈ [[σ → τ]], and for any N ∈ [[σ]], we
have (λx. M ′)N ∈ [[τ]]. By (S1), N ∈ P and (λx. M ′)N ∈ P, and by (P3), we have MN ∈ P. The
rest of the proof is identical to that of lemma 4.5.

Condition (P5n) of definition 4.6 is modified so that our main theorem applies to strongly
normalizing terms.

Definition 5.6 Properties (P4) and (P5) are defined as follows:

(P4) If M ∈ P, then λx. M ∈ P.

(P5) If N ∈ P and M [N/x] ∈ P, then (λx. M)N ∈ P.

Note that the difference between (P5n) of definition 4.6 and (P5) is that we are now requiring
that N ∈ P.

Lemma 5.7 If P is a set satisfying conditions (P1)-(P3)-(P5) and for every N , (N ∈ [[σ]] implies
M [N/x] ∈ [[τ]]), then λx. M ∈ [[σ → τ]].

Proof . We prove that for every every N , if N ∈ [[σ]], then (λx. M)N ∈ [[τ]]. We will need the
fact that the sets of the form [[σ]] have the properties (S1)-(S3), but this follows from lemma 5.5,
since (P1)-(P3) hold. First, we prove that λx. M ∈ P.

By the assumption of lemma 5.7, M [x/x] = M ∈ [[τ]], since by lemma 5.5, x ∈ [[σ]]. Then, by
(S1), M ∈ P, and by (P4), we have λx. M ∈ P.

Next, we prove that for every every N , if N ∈ [[σ]], then (λx. M)N ∈ [[τ]]. Let us assume that
N ∈ [[σ]]. Then, by the assumption of lemma 5.7, M [N/x] ∈ [[τ]]. By (S1), we have N ∈ P and
M [N/x] ∈ P. By (P5), we have (λx.M)N ∈ P. The rest of the proof is identical to that of lemma
4.7.

17

Lemma 5.8 If P is a set satisfying conditions (P1)-(P3)-(P5), then for every term M ∈ SNΛσ,
for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every y: γ ∈ FV (M), we have M [ϕ] ∈ [[σ]].

Proof . We proceed by induction on the proof `D Γ . M :σ. The proof is actually identical to
that of lemma 4.8, except that we don’t even have to bother with types containing ω.

Theorem 5.9 If P is a set of λ-terms satisfying conditions (P1)-(P3)-(P5), then SNΛσ ⊆ P
for every type σ (in other words, every term typable in D satisfies the unary predicate defined by
P).

Proof . Apply lemma 5.8 to every term M in SNΛσ and to the identity substitution, which
is legitimate since x ∈ [[σ]] for every variable of type σ (by lemma 5.5). Thus, M ∈ [[σ]] for
every term in SNΛσ, that is SNΛσ ⊆ [[σ]]. Since by lemma 5.5, (S1) also holds for [[σ]], we have
SNΛσ ⊆ [[σ]] ⊆ P.

As a corollary of theorem 5.9, we show that if a term M is typable in D, then M is strongly
normalizing. This result was first proved by Pottinger [17].

Definition 5.10 A term M is strongly normalizing (or SN) iff every reduction sequence from M
(w.r.t. −→β) is finite. The reduction relation −→β is strongly normalizing (or SN) iff every term
is normalizing (w.r.t. −→β).

Theorem 5.11 If a term M is typable in D, then M is strongly normalizing.

Proof . Let P be the set of λ-terms that are strongly normalizing. To prove theorem 5.11, we
apply theorem 5.9, which requires showing that P satisfies the properties (P1)-(P5). First, note
that the observation made at the beginning of the proof of lemma 3.11 also applies. If M is any
strongly normalizing term, every path in its reduction tree is finite, and since this tree is finite
branching, by König’s lemma, this reduction tree is finite. Thus, for any SN term M , the depth2 of
its reduction tree is a natural number, and we will denote it as d(M). We now check the conditions
(P1)-(P5). (P1) and (P2) are obvious.

(P3) Since M and N are SN, d(M) and d(N) are finite. We prove by induction on d(M)+d(N)
that MN is SN. We consider all possible ways that MN −→β P . Since M is simple, MN itself is
not a redex, and so P = M1N1 where either N = N1 and M −→β M1, or M = M1 and N −→β N1.

If M1 is simple or M1 = M , d(M1) + d(N1) < d(M) + d(N), and by the induction hypothesis,
P = M1N1 is SN. Otherwise, M1 = λx. M ′, N1 = N . By assumption, (λx. M ′)N is SN, and so P
is SN. Thus, P = M1N1 is SN in all cases, and MN is SN.

(P4) Any reduction from λx. M must be of the form λx. M
+−→β λx. M

′ where M
+−→β M

′.
We use a simple induction on d(M).

(P5) Since N and M [N/x] are SN, the term M itself is SN. Thus, d(M) and d(N) are finite.
We prove by induction on d(M) + d(N) that (λx. M)N is SN. We consider all possible ways that
(λx.M)N −→β P . Either P = (λx.M1)N where M −→β M1, or P = (λx.M)N1 where N −→β N1,

2the length of a longest path in the tree, counting the number of edges

18

or P = M [N/x]. In the first two cases, d(M1)+d(N) < d(M)+d(N), d(M)+d(N1) < d(M)+d(N),
and by the induction hypothesis, P is SN. In the third case, by assumption M [N/x] is SN. But
then, P is SN in all cases, and so (λx. M)N is SN.

The converse of theorem 5.11 is true: if a λ-term M is strongly normalizing, then `D Γ . M :σ
for some Γ and some type σ.

6 Typability in DΩ and D
We now prove the converse of each of the theorems 3.11, 4.11, and 5.11. Versions of these results
were first obtained by Coppo, Dezani, and Venneri [4], and Pottinger [17]. Our treatment is
basically that of Krivine [13]. The crucial property of system DΩ, and this is where essential use of
conjunctive types and of the type ω is made, is the following: if `DΩ Γ .N :σ and M −→β N , then
we also have `DΩ Γ . M :σ. This property fails in general for system D, but holds in the special
case where `D Γ .M [N/x]:σ and `D Γ . N :σ1 for some σ1. In that case, `D Γ . (λx.M)N :σ. We
will need a number of preliminary results. First, we have the usual substitution lemma.

Lemma 6.1 Let S ∈ {DΩ,D}. If `S Γ, x:σ . M : τ and `S Γ . N :σ, then `S Γ . M [N/x]: τ . In
particular, if x /∈ FV (M), then `DΩ Γ . M : τ .

Proof . An easy induction on typing derivations.

We say that a type σ is prime iff σ 6= ω and σ is not of the form σ1 ∧ σ2. A type σ is a prime
factor of a type τ iff it is a subtype of τ and it is prime and maximal. The following permutation
lemma is technically very important.

Lemma 6.2 Let S ∈ {DΩ,D}, and let σ be a prime type. (1) If `S Γ . x:σ, then there is a
type σ′ such that x:σ′ ∈ Γ and σ is a prime factor of σ′. (2) If `S Γ . MN :σ, then either the last
rule used in the proof is (application), or there is a type σ′ such that σ is a prime factor of σ′,
`S Γ.MN :σ′, and the last rule used in the proof is (application). (3) Given a proof `S Γ.λx.M :σ
then there is a proof in which the last rule is (abstraction), and given a proof `S Γ .λx.M :σ1∧σ2,
then there is a proof in which the last rule applied is (∧-intro).

Proof . (1) We prove the slightly more general fact that (1) holds for any type σ, where σ is a
factor of σ′, provided that the last step in the proof is not (∧-intro), by induction on the depth k
of the derivation. Since σ is prime, the last rule in `S Γ . x:σ cannot be (∧-intro). If `S Γ . x:σ is
not an axiom, then the last rule must be (∧-elim) and either `S Γ . x: τ ∧ σ or `S Γ . x:σ ∧ τ is a
proof of depth k − 1. If the last step is (∧-intro), then we have a proof `S Γ . x:σ of depth k − 2,
and we conclude by applying the induction hypothesis. Otherwise, by the induction hypothesis,
there is some σ′ such that either τ ∧ σ is a factor of σ′ or σ ∧ τ is a factor of σ′, and x:σ′ ∈ Γ. In
either case, σ is a prime factor of σ′.

(2) We prove the slightly more general fact that (2) holds for any type σ, where σ is a factor
of σ′, provided that the last step in the proof is not (∧-intro), by induction on the depth k of the
derivation. Since σ is prime, the last rule in in `S Γ . MN :σ cannot be (∧-intro). If the last
rule in `S Γ . MN :σ is not (application), it must be (∧-elim), and either `S Γ . MN :σ ∧ τ1 or
`S Γ . MN : τ1 ∧ σ is a proof of depth k − 1. If the last step is (∧-intro), then we have a proof
`S Γ.MN :σ of depth k−2, and we conclude by applying the induction hypothesis. Otherwise, by

19

the induction hypothesis, there is some σ′ such that either σ∧τ1 is a factor of σ′ and `S Γ.MN :σ′,
or τ1 ∧ σ is a factor of σ′ and `S Γ . MN :σ′, and the last rule applied is (application). In either
case, σ is a prime factor of σ′.

(3) We prove that given a proof `S Γ . λx. M :σ of depth k, then there is a proof of depth at
most k in which the last rule is (abstraction), and given a proof `S Γ . λx. M :σ1 ∧ σ2 of depth
k, then there is a proof of depth at most k in which the last rule applied is (∧-intro). Since σ is
prime, the last rule in `S Γ . λx. M :σ cannot be (∧-intro). If the last rule in `S Γ . λx. M :σ is
not (abstraction), then it must be (∧-elim), and either `S Γ . λx.M :σ ∧ τ1 or `S Γ . λx.M : τ1 ∧ σ
is a proof of depth k − 1. By the induction hypothesis, there is a proof of depth at most k − 1 in
which the last rule is (∧-intro). But then, we have a proof `S Γ . λx.M :σ of depth at most k− 2,
and we conclude by applying the induction hypothesis.

If the last rule in `S Γ . λx. M :σ1 ∧ σ2 is not (∧-intro), then it must be (∧-elim). So, either
`S Γ.λx.M : τ1∧ (σ1∧σ2) or `S Γ.λx.M : (σ1∧σ2)∧τ1 is a proof of depth k−1. By the induction
hypothesis, there is a proof of depth at most k − 1 in which the last rule in (∧-intro). But then,
we have a proof `S Γ . λx. M : (σ1 ∧ σ2) of depth at most k − 2, and we conclude by applying the
induction hypothesis.

We can now prove that β-reduction preserves typing. This property is often known as “subject-
reduction” property.

Lemma 6.3 Let S ∈ {DΩ,D}. If `S Γ .M :σ and M −→β N , then `S Γ .N :σ. As a corollary,

if `S Γ . M :σ and M
∗−→β N , then `S Γ . N :σ.

Proof . We proceed by induction on the typing derivation. Since M −→β N , the last rule used
in the proof `S Γ . M :σ cannot be an axiom.

If the last rule is (abstraction), then M = λx.M1 and N = λx. N1, where M1 −→β N1, and we
have

`S Γ, x: γ . M1: δ

with γ → δ = σ. By the induction hypothesis, we have

`S Γ, x: γ . N1: δ,

and thus `S Γ . λx. N1: γ → δ.

If the last rule is (application), then M = M1M2 and we have

`S Γ . M1: γ → σ and `S Γ . M2: γ.

There are three cases depending on the reduction M −→β N .

If M = M1M2 and N = N1M2, where M1 −→β N1, then by the induction hypothesis, we have

`S Γ . N1: γ → σ,

and thus, `S Γ . N1M2:σ.

If M = M1M2 and N = M1N2, where M2 −→β N2, then by the induction hypothesis, we have

`S Γ . N2: γ,

20

and thus, `S Γ . M1N2:σ.

If M = (λx. M1)N1 and N = M1[N1/x], since

`S Γ . λx. M1: γ → σ,

by lemma 6.2 (3), we have
`S Γ, x: γ . M1:σ.

Since we also have `S Γ . N1: γ, by lemma 6.1, we have

`S Γ . M1[N1/x]:σ.

The cases where the last rule is (∧-intro) or (∧-elim) are trivial. The corollary is obtained by
induction on the number of steps in the reduction M

∗−→β N .

We now show a crucial lemma about type-checking in the systems DΩ and D. It is in this
lemma that the power of conjunctive types is really used. Again, we follow Krivine [13].

Lemma 6.4 (1) If `DΩ Γ . M [N/x]: τ , then there is a type σ such that `DΩ Γ, x:σ . M : τ and
`DΩ Γ . N :σ.

(2) If `D Γ . M [N/x]: τ and `D Γ . N : γ, then there is a type σ that `D Γ, x:σ . M : τ and
`D Γ . N :σ.

Proof . We proceed by induction on 〈|M |, |τ |〉, where |M | is the size of M and |τ | is the size of
τ .

(1) The case where τ = ω is trivial, we take σ = ω.

If τ = τ1 ∧ τ2, since `DΩ Γ . M [N/x]: τ1 ∧ τ2, by (∧-elim), we have

`DΩ Γ . M [N/x]: τ1 and `DΩ Γ . M [N/x]: τ2.

Since |τ1| < |τ | and |τ2| < |τ |, by the induction hypothesis, there are types σ1 and σ2 such that
`DΩ Γ, x:σ1 . M : τ1 and `DΩ Γ . N :σ1, and `DΩ Γ, x:σ2 . M : τ2 and `DΩ Γ . N :σ2. Taking
σ = σ1 ∧ σ2, by lemma 4.13, we have `DΩ Γ, x:σ .M : τ1 and `DΩ Γ, x:σ .M : τ2, and by (∧-intro),
we get `DΩ Γ, x:σ . M : τ1 ∧ τ2. From `DΩ Γ . N :σ1 and `DΩ Γ . N :σ2, by (∧-intro), we get
`DΩ Γ . N :σ.

From now on, we can assume that τ is prime.

If M = x, then M [N/x] = x[N/x] = N , and `DΩ Γ.N : τ . Take σ = τ , and then `DΩ Γ, x: τ .x: τ
is an axiom.

If M = y with y 6= x, then M [N/x] = y[N/x] = y, and `DΩ Γ . y: τ . Take σ = ω, and then
`DΩ Γ, x:ω . y: τ and `DΩ Γ . N :ω.

If M = M1M2, then M [N/x] = (M1M2)[N/x] = M1[N/x]M2[N/x], and we have `DΩ Γ .
M1[N/x]M2[N/x]: τ where τ is prime. By lemma 6.2 (2), there is a type τ ′ such that τ is a prime
factor of τ ′, `DΩ Γ.M1[N/x]M2[N/x]: τ ′, and the last rule used in the proof is (application). Then,

21

we have `DΩ Γ .M1[N/x]: γ → τ ′, and `DΩ Γ .M2[N/x]: γ, for some type γ. Since |M1| < |M | and
|M2| < |M |, by the induction hypothesis, there are types σ1 and σ2 such that,

`DΩ Γ, x:σ1 . M1: γ → τ ′, `DΩ Γ . N :σ1,

`DΩ Γ, x:σ2 . M2: γ, and `DΩ Γ . N :σ2.

Then, taking σ = σ1 ∧ σ2, by lemma 4.13, we have `DΩ Γ, x:σ . M1: γ → τ ′ and `DΩ Γ, x:σ .
M2: γ. Then, by (application), we have `DΩ Γ, x:σ . M1M2: τ ′. Since σ is a prime factor of τ ′, by
application(s) of (∧-elim), we have `DΩ Γ, x:σ .M1M2: τ . Since `DΩ Γ . N :σ1 and `DΩ Γ . N :σ2,
by (∧-intro), we also have `DΩ Γ . N :σ. This concludes this case.

If M = λy. M1, by suitable α-renaming, we can assume that y /∈ FV (N). Then, M [N/x] =
(λy. M1)[N/x] = λy. M1[N/x], and `DΩ Γ . λy. M1[N/x]: τ where τ is prime. By lemma 6.2 (3),
there is a proof `DΩ Γ . λy. M1[N/x]: τ where the last rule used is (abstraction). Then, we have
`DΩ Γ, y: γ . M1[N/x]: δ for some types γ and δ such that τ = γ → δ. Since |M1| < |M |, by the
induction hypothesis, there is some type σ such that

`DΩ Γ, y: γ, x:σ .M1: δ and `DΩ Γ, y: γ . N :σ.

Since y /∈ FV (N), by lemma 6.1, we have `DΩ Γ . N :σ. Since `DΩ Γ, y: γ, x:σ . M1: δ, we have
`DΩ Γ, x:σ . λy. M1: γ → δ, that is, `DΩ Γ, x:σ . λy. M1: τ . This concludes the proof of (1).

(2) The proof is similar to that of (1), but we have to be careful not to use any type containing
ω. A careful inspection reveals that this only happens when τ = ω, which is ruled out in system D,
or in the case where M = y and y 6= x. But in the second case, since we assumed that `D Γ .N : γ,
we can take σ = γ.

As a consequence of lemma 6.4 we obtain the following important lemma.

Lemma 6.5 (1) If `DΩ Γ . M [N/x]: τ , then `DΩ Γ . (λx. M)N : τ .

(2) If `D Γ . M [N/x]: τ and `D Γ . N : γ, then `D Γ . (λx. M)N : τ .

Proof . (1) By lemma 6.4 (1), if `DΩ Γ . M [N/x]: τ , then there is a type σ such that

`DΩ Γ, x:σ .M : τ and `DΩ Γ . N :σ.

Then, by (abstraction), we have `DΩ Γ . (λx.M):σ → τ , and since `DΩ Γ .N :σ, by (application),
we get

`DΩ Γ . (λx. M)N : τ.

(2) By lemma 6.4 (2), if `D Γ . M [N/x]: τ and `D Γ . N : γ, then there is a type σ that
`D Γ, x:σ .M : τ and `D Γ . N :σ. The rest of the proof is as in (1).

The following lemma generalizes lemma 6.5, and will be needed to prove that every strongly
normalizing term is typable in system D.

Lemma 6.6 (1) If `DΩ Γ . M [N/x]N1 . . . Nk: τ , then `DΩ Γ . ((λx. M)N)N1 . . . Nk: τ .

(2) If `D Γ . M [N/x]N1 . . . Nk: τ and `D Γ . N : γ, then `D Γ . ((λx. M)N)N1 . . . Nk: τ .

22

Proof . We proceed by induction on 〈k, |τ |〉.

(1) If k = 0, we conclude by lemma 6.5 (1). If τ = τ1 ∧ τ2, by (∧-elim), we have

`DΩ Γ . M [N/x]N1 . . . Nk: τ1 and `DΩ Γ . M [N/x]N1 . . . Nk: τ2.

By the induction hypothesis, we have

`DΩ Γ . ((λx. M)N)N1 . . . Nk: τ1 and `DΩ Γ . ((λx. M)N)N1 . . . Nk: τ2,

and thus, `DΩ Γ . ((λx. M)N)N1 . . . Nk: τ .

We can now assume that τ is prime and k ≥ 1. Since `DΩ Γ . M [N/x]N1 . . . Nk: τ , by lemma
6.2 (2), there are types γ and τ ′ where τ is a prime factor of τ ′ such that,

`DΩ Γ . M [N/x]N1 . . . Nk−1: γ → τ ′ and `DΩ Γ . Nk: γ.

By the induction hypothesis, we have

`DΩ Γ . ((λx. M)N)N1 . . . Nk−1: γ → τ ′,

and thus, `DΩ Γ . ((λx. M)N)N1 . . . Nk: τ
′. Since τ is a prime factor of τ ′, by application(s) of

(∧-elim), we have `DΩ Γ . ((λx. M)N)N1 . . . Nk: τ .

(2) In the base case k = 0, we use lemma 6.5 (2). The rest of the proof is identical to that of
(1).

The following lemma will be needed in showing that a term has a head-normal form iff it is
solvable (see definition 6.10).

Lemma 6.7 If the term M = λx. M1 or the term M = M1N1 is typable in system DΩ with a
nontrivial type, then M1 itself is typable in system DΩ with a nontrivial type.

Proof . Assume `DΩ Γ . λx.M1:σ or `DΩ Γ .M1N1:σ. We proceed by induction on the typing
derivation. The last rule cannot be an axiom since the terms involved are not variables and σ 6= ω.

If the last rule is (abstraction), then we must have

`DΩ Γ, x: γ . M1: δ,

with σ = γ → δ, and since σ is nontrivial, δ is nontrivial.

If the last rule is (application), then we must have

`DΩ Γ . M1: γ → σ and `DΩ Γ . N1: γ.

Since σ is nontrivial, γ → σ is nontrivial.

If the last rule is (∧-intro), we have

`DΩ Γ . M :σ1 and `DΩ Γ . M :σ2,

and σ = σ1 ∧ σ2. Since σ is nontrivial, either σ1 or σ2 is nontrivial. The result follows from the
induction hypothesis.

23

If the last rule is (∧-elim), we have

`DΩ Γ . M :σ1 ∧ σ2,

and either σ = σ1 or σ = σ2. Since σ is nontrivial, in either case, σ1 ∧ σ2 is nontrivial. The result
follows from the induction hypothesis.

We can now prove the following fundamental theorem about type-checking in system DΩ. It
is a dual of lemma 6.3, in the sense that it shows that in system DΩ, typing is preserved under
reverse β-reduction. This theorem first proved by Coppo, Dezani, and Venneri [4], also appears in
Krivine [13].

Theorem 6.8 (1) If `DΩ Γ . N : τ and M −→β N , then `DΩ Γ . M : τ .

(2) If `DΩ Γ . M : τ and M
∗←→β N , then `DΩ Γ . N : τ .

Proof . Assume that M −→β N and `DΩ Γ.N : τ . We proceed by induction on 〈|M |, |τ |〉, where
|M | is the size of M and |τ | is the size of τ .

(1) The case where τ = ω is trivial.

If τ = τ1 ∧ τ2, since `DΩ Γ . N : τ1 ∧ τ2, by (∧-elim), we have

`DΩ Γ . N : τ1 and `DΩ Γ . N : τ2.

Since |τ1| < |τ | and |τ2| < |τ |, by the induction hypothesis,

`DΩ Γ . M : τ1 and `DΩ Γ . M : τ2,

and by (∧-intro), we have `DΩ Γ . M : τ1 ∧ τ2.

Thus, from now on, we can assume that τ is prime. The case where M is a variable is impossible.

If M = λx.M1, then we must have N = λx.N1 where M1 −→β N1, and `DΩ Γ.λx.N1: τ where
τ is prime. By lemma 6.2 (3), there are some types γ and δ such that τ = γ → δ, and we have

`DΩ Γ, x: γ . N1: δ.

Since |M1| < |M |, by the induction hypothesis, we have

`DΩ Γ, x: γ . M1: δ,

and by (abstraction), we get `DΩ Γ . λx. M1: γ → δ, that is, `DΩ Γ . M : τ .

If M = M1M2, there are three cases. Either N = N1M2 where M1 −→β N1, or N = M1N2

where M2 −→β N2, or M = (λx. M1)N1 and N = M1[N1/x].

If N = N1M2 where M1 −→β N1, we have `DΩ Γ . N1M2: τ where τ is prime. By lemma 6.2
(2), there are some types γ and τ ′ where τ is a prime factor of τ ′ such that

`DΩ Γ . N1: γ → τ ′ and `DΩ Γ . M2: γ.

Since |M1| < |M |, by the induction hypothesis, we have

`DΩ Γ . M1: γ → τ ′,

24

and since `DΩ Γ . M2: γ, we get
`DΩ Γ . M1M2: τ ′.

Since τ is a prime factor of τ ′, by application(s) of (∧-elim), we get

`DΩ Γ . M1M2: τ.

The case where N = M1N2 and M2 −→β N2 is similar to the previous case.

If M = (λx.M1)N1 and N = M1[N1/x], since `DΩ Γ .M1[N1/x]: τ , by lemma 6.5 (1), we have

`DΩ Γ . (λx. M1)N1: τ.

(2) is obtained by induction on the number of steps in M
∗←→β N using lemma 6.3 and theorem

6.8 (1).

Theorem 6.8 fails for system D, even for terms M that type-check in D, as shown next. Let
M = λy. ((λx. y)(yy)). We have M −→β N = λy. y, and clearly N = λy. y type-checks in D with
type τ → τ , where τ is a base type. However, we prove that M does not type-check in D with
the type τ → τ , even though M type-checks in D with type σ ∧ (σ → τ)→ σ ∧ (σ → τ).

Indeed, if `D . λy. ((λx. y)(yy)): τ → τ , by lemma 6.2 (3), we must have

`D y: τ . (λx. y)(yy): τ.

Since τ is prime, by lemma 6.2 (2), we must have

`D y: τ . (yy):σ

for some type σ. Now, σ is not necessarily prime, but since σ is a type in D, σ is a conjunction
of prime types different from ω, and thus, by application(s) of (∧-elim), we can assume that
`D y: τ . (yy):σ where σ is prime. Again, by lemma 6.2 (3), we must have

`D y: τ . y: γ → σ′

where σ is a prime factor of σ′. But now, γ → σ′ is not a prime factor of τ since τ is a base type,
which contradicts lemma 6.2 (1). Thus, M does not type-check in D with the type τ → τ .

We now prove that every strongly normalizing term M is typable in system D. This theorem
first proved by Pottinger [17], also appears in Krivine [13].

Lemma 6.9 If a term M is strongly normalizing, then it is typable in system D.

Proof . We proceed by induction on 〈d(M), |M |〉, where d(M) is the depth of the reduction tree
from M and |M | is the size of M . There are two cases, the first one being the case where M is in
head-normal form, the second one where it is not.

If M is in head-normal form, it is of the form M = λx1 . . . λxm. yN1 . . . Nk, and the proof is
similar to that of lemma 3.13. Since |Ni| < |M | and d(Ni) ≤ d(M), by the induction hypothesis,

25

each Ni is typable in D, and by lemma 4.14, we can assume that they are typable in the same
context, that is,

`D Γ, x1:σ1, . . . , xm:σm, y: γ . Ni: τi,

if y 6= xi for all i, or
`D Γ, x1:σ1, . . . , xm:σm . Ni: τi,

if y = xi. Now, letting
σ = γ ∧ (τ1 → . . .→ τk → δ),

for any base type δ, with γ = σi if y = xi, it is immediate (using lemma 4.13) that we have

`D Γ, y:σ . λx1 . . . λxm. yN1 . . . Nk: τ,

with τ = (σ1 → . . .→ σm → δ) if y 6= xi for all i, or

`D Γ . λx1 . . . λxm. yN1 . . . Nk: τ,

with τ = (σ1 → . . .→ σm → δ) and σi = σ if y = xi.

If M = λx1 . . . λxm. ((λy. P)Q)N1 . . . Nk has head-redex (λy. P)Q, then

N = λx1 . . . λxm. P [Q/x]N1 . . . Nk

is such that d(N) < d(M), and clearly we also have d(P [Q/x]N1 . . . Nk) ≤ d(N) and d(Q) ≤ d(N).
By the induction hypothesis,

`D Γ′, x1:σ′1, . . . , xm:σ′m . P [Q/x]N1 . . . Nk: δ,

and
`D Γ′′, x1:σ′′1 , . . . , xm:σ′′m . Q: γ,

and by lemma 4.14, letting σi = σ′i ∧ σ′′i , there is a context Γ such that

`D Γ, x1:σ1, . . . , xm:σm . P [Q/x]N1 . . . Nk: δ,

and
`D Γ, x1:σ1, . . . , xm:σm . Q: γ.

By lemma 6.6 (2), we have

`D Γ, x1:σ1, . . . , xm:σm . ((λy. P)Q)N1 . . . Nk: δ,

and thus,
`D Γ . λx1 . . . λxm. ((λy. P)Q)N1 . . . Nk: τ,

with τ = (σ1 → . . .→ σm → δ).

We are now ready to prove the fundamental theorems characterizing the terms that have head-
normal forms, the terms that are normalizable, and the terms that are strongly normalizing, in
terms of typability in the systems DΩ and D. These theorems are proved in Krivine [13]. Before
we do so, we define the notion of a solvable term, a notion that turns out to be equivalent to the
property of having a head-normal form (a result due to Wadsworth).

26

Definition 6.10 A closed term M is solvable iff there are terms N1, . . . , Nk, where k ≥ 0, such
that, MN1 . . . Nk

∗←→β λx. x. A nonclosed term M is solvable iff its closure is solvable.

If a term M is not closed and FV (M) = {x1, . . . , xm}, its closure is λx1 . . . λxm. M , and M
solvable means that there are terms N1, . . . , Nk such that

(λx1 . . . λxm. M)N1 . . . Nk
∗←→β λx. x.

Thus, if k < m, this means that

λxk+1 . . . λxm. M [N1/x1, . . . , Nk/xk]
∗←→β λx. x,

and if k ≥ m, this means that

M [N1/x1, . . . , Nm/xm]Nm+1 . . . Nk
∗←→β λx. x.

Thus, solvability can also be defined by saying that a term (closed or open) is solvable iff there
is a substitution ϕ for some of the free variables of M and some terms N1, . . . , Nk such that,
M [ϕ]N1 . . . Nk

∗←→β λx. x.

It is also easy to see that M is solvable iff for every term Q, there is a substitution ϕ for some of
the free variables in M and some terms N1, . . . , Nk such that, M [ϕ]N1 . . . Nk

∗←→β Q. Indeed, this

second definition implies the first by picking Q = λx. x. Conversely, if M [ϕ]N1 . . . Nk
∗←→β λx. x,

then M [ϕ]N1 . . . NkQ
∗←→β Q. Finally, we prove our three major theorems. A version of the next

theorem was first obtained by Coppo, Dezani, and Venneri [4].

Theorem 6.11 For any term M of the (untyped) λ-calculus, the following properties are equiv-
alent.

(1) M is solvable;

(2) M has a head-normal form (i.e., there is some head-normal form N such that M
∗←→β N).

(3) M is typable in system DΩ with a nontrivial type;

(4) Every quasi-head reduction from M is finite. In particular, the head-reduction from M is
finite.

Proof . (1)⇒ (3). If M is solvable, then there are terms N1, . . . , Nk such that

(λx1 . . . λxm. M)N1 . . . Nk
∗←→β λx. x,

where m = 0 if M is closed. Since λx. x is typable with the type τ → τ where τ is any nontrivial
type, by theorem 6.8, (λx1 . . . λxm. M)N1 . . . Nk is also typable in DΩ with the nontrivial type
τ → τ . Then, by application(s) of lemma 6.7, M itself is typable in DΩ with a nontrivial type.

(3)⇒ (4). This follows from theorem 3.11.

(4)⇒ (2). This is trivial.

(2) ⇒ (1). If M is equivalent to a head-normal form, clearly its closure is equivalent to a
head-normal form, and thus we assume that M is closed. By assumption,

M
∗←→β λx1 . . . λxm. xiQ1 . . . Qk,

27

where λx1 . . . λxm. xiQ1 . . . Qk is a closed head-normal form. Let

Ni = λy1 . . . λykλz. z,

and Nj any arbitrary term for j 6= i, 1 ≤ j ≤ m. Then, it is immediate that MN1 . . . Nm
∗←→β λz.z,

and M is solvable.

It should be noted that the implication (2)⇒ (3) follows directly from lemma 3.13 and theorem
6.8, and no detour via the solvable terms is necessary. Furthermore, this implication shows that
every head-normalizable term is typable in DΩ with a nontrivial type of a rather special kind (since
the types arising in lemma 3.13 are quite special). Next we consider normalizable terms. A version
of the next theorem was first obtained by Coppo, Dezani, and Venneri [4].

Theorem 6.12 For any term M of the (untyped) λ-calculus, the following properties are equiv-
alent.

(1) M is normalizable;

(2) There exist a context Γ and a type σ, both ω-free, such that `DΩ Γ . M :σ;

(3) Every quasi-leftmost reduction from M is finite. In particular, the leftmost reduction from
M is finite.

Proof . (1)⇒ (2). This follows from lemma 4.15 and theorem 6.8.

(2)⇒ (3). This follows from theorem 4.11.

(3)⇒ (1). This is trivial.

The implication (1)⇒ (2) shows that every normalizable term is typable in DΩ with an ω-free
(context and) type of a rather special kind (since the types arising in lemma 4.15 are quite special).
Finally, we consider strongly normalizing terms. A version of the next theorem was first obtained
by Pottinger [17].

Theorem 6.13 For any term M of the (untyped) λ-calculus, the following properties are equiv-
alent.

(1) M is strongly normalizing;

(2) M is typable in system D.

Proof . (1)⇒ (2). This follows from lemma 6.9.

(2)⇒ (1). This follows from theorem 5.11.

Other interesting results can be obtained, for example the finite developments theorem (see
Krivine [13]). In the next section, we characterize the terms that have a weak head-normal form.
This result appears to be new.

28

7 P-Candidates for Weakly Head-Normalizing λ-Terms

In this section, we generalize theorem 3.9 and theorem 6.11 to the terms that are weakly head-
normalizable. First, we need to adapt definition 2.3 so that our results apply to weakly head-
normalizable λ-terms. We thank Mariangiola Dezani for suggesting a simplification in the definition
of a weakly nontrivial type. The difference between head-normalizable λ-terms and weakly head-
normalizable λ-terms is that any λ-abstraction λx.M is considered a weak head-normal form, even
if M has a head redex.

Definition 7.1 A type σ is ω-free iff ω does not occur in σ. A type is weakly nontrivial iff either
σ is a base type and σ 6= ω, or σ = γ → τ where τ is weakly nontrivial and γ is arbitrary, or
σ = σ1 ∧ σ2 where σ1 or σ2 is weakly nontrivial, or σ = ω → ω. A type is weakly trivial iff it is not
weakly nontrivial.3

Definition 3.1 remains unchanged, as well as definition 3.2, but we repeat definition 3.2 for
convenience.

Definition 7.2 Properties (P1)-(P3s) are defined as follows:

(P1) x ∈ P, for every variable x.

(P2) If M ∈ P and M −→β N , then N ∈ P.

(P3s) If M is simple, M ∈ P, N ∈ Λ, and (λx. M ′)N ∈ P whenever M
+−→β λx. M ′, then

MN ∈ P.

From now on, we only consider sets P satisfying conditions (P1)-(P3s) of definition 7.2. Defi-
nition 3.3 remains unchanged, as well as the remarks on stubborn terms following this definition.
However, we need to modify definition 3.4. Given a set P, for every type σ, we define [[σ]] ⊆ Λ as
follows.

Definition 7.3 The sets [[σ]] are defined as follows:

[[σ]] = P, where σ 6= ω is a base type,

[[σ]] = Λ, where σ is a weakly trivial type,

[[σ → τ]] = {M | M ∈ P, and for all N , if N ∈ [[σ]] then MN ∈ [[τ]]},
where σ → τ is weakly nontrivial,

[[σ ∧ τ]] = [[σ]] ∩ [[τ]],

where σ ∧ τ is weakly nontrivial.

By definition 7.1, a type is weakly trivial if either it is ω, or it is of the form σ → τ where τ
is weakly trivial (except for ω → ω), or it is of the form σ ∧ τ where both σ and τ are weakly
trivial. We could have defined [[σ]] by changing the second clause to [[ω]] = Λ, and by dropping the

3In an earlier version, we were also considering types σ → ω where σ is ω-free, among the weakly nontrivial types.
However, as suggested by Mariangiola Dezani, it is simpler to use the type ω → ω.

29

conditions σ → τ weakly nontrivial and σ ∧ τ weakly nontrivial. However, it would no longer be
true that [[σ]] = Λ for every weakly trivial type, and this would be a serious obstacle to the proof
of lemma 7.6. The following lemma shows that the property of being a P-candidate is an inductive
invariant.

Lemma 7.4 If P is a set satisfying conditions (P1)-(P3s), then the following properties hold for
every type σ: (1) [[σ]] contains all stubborn terms in P (and in particular, every variable); (2) [[σ]]
satisfies (S2) and (S3); (3) If σ is weakly nontrivial, then [[σ]] also satisfies (S1), and thus it is a
P-candidate.

Proof . We proceed by induction on types. If σ is a base type, then by definition [[σ]] = P if
σ 6= ω, and [[ω]] = Λ. Then, (1) and (2) are clear by (P1) and by (P2) (note that (S3) is trivial). If
σ 6= ω, then (S1) is trivial since [[σ]] = P.

We now consider the induction step.

(3) We prove that (S1) holds for weakly nontrivial types. If σ → τ is weakly nontrivial, then
there are two cases: (a) the type τ is weakly nontrivial, and by the definition of [[σ → τ]], we have
[[σ → τ]] ⊆ P. (b) σ = ω → ω. In this case, since [[ω]] = Λ, it is clear from definition 7.3 that
[[ω → ω]] = P.

If σ = σ1 ∧ σ2 is weakly nontrivial, then σ1 or σ2 is weakly nontrivial. Assume σ1 is weakly
nontrivial, the case where σ2 is weakly nontrivial being similar. By the induction hypothesis,
[[σ1]] ⊆ P, and since [[σ1 ∧ σ2]] = [[σ1]] ∩ [[σ2]], it is clear that [[σ1 ∧ σ2]] ⊆ P.

The verification of (1) and (2) is obvious for weakly trivial types, since in this case, [[σ]] = Λ.
Thus, in the rest of this proof, we assume that we are considering weakly nontrivial types.

(1) Given a type σ → τ , by the induction hypothesis, [[τ]] contains all the stubborn terms in P.
Let M ∈ P be a stubborn term. Given any N ∈ [[σ]], obviously, N ∈ Λ. Since we have shown that
MN is a stubborn term in P when M ∈ P is stubborn and N is arbitrary, we have MN ∈ [[τ]].
Thus, M ∈ [[σ → τ]]. If σ = σ1 ∧ σ2, by the induction hypothesis, all stubborn terms in P are in
[[σ1]] and in [[σ2]], and thus in [[σ1 ∧ σ2]] = [[σ1]] ∩ [[σ2]].

(2) We prove (S2) and (S3).

(S2). Let M ∈ [[σ → τ]] and assume that M −→β M
′. Since M ∈ P by (S1), we have M ′ ∈ P

by (P2). For any N ∈ [[σ]], since M ∈ [[σ → τ]] we have MN ∈ [[τ]], and since M −→β M
′ we have

MN −→β M
′N . Then, applying the induction hypothesis at type τ , (S2) holds for [[τ]], and thus

M ′N ∈ [[τ]]. Thus, we have shown that M ′ ∈ P and that if N ∈ [[σ]], then M ′N ∈ [[τ]]. By the
definition of [[σ → τ]], this shows that M ′ ∈ [[σ → τ]], and (S2) holds at type σ → τ .

If σ = σ1∧σ2, by the induction hypothesis, (S2) holds for [[σ1]] and [[σ2]], and thus for [[σ1∧σ2]] =
[[σ1]] ∩ [[σ2]].

(S3). Let M ∈ P be a simple term, and assume that λx.M ′ ∈ [[σ → τ]] whenever M
+−→β λx.M

′.
If σ → τ = ω → ω, then we saw that [[ω → ω]] = P. In this case, (S3) is trivial. Thus, we now
assume that σ → τ is weakly nontrivial and not ω → ω.

We prove that for every N , if N ∈ [[σ]], then MN ∈ [[τ]]. The case where M is stubborn has
already been covered in (1). Assume that M is not stubborn. First, we prove that MN ∈ P, and

30

for this, we use (P3s). If M
+−→β λx. M

′, then by assumption, λx. M ′ ∈ [[σ → τ]], and for any
N ∈ [[σ]], we have (λx. M ′)N ∈ [[τ]]. Recall that we assumed that σ → τ is weakly nontrivial and
not ω → ω. This implies that τ is weakly nontrivial. Then, by (S1), (λx.M ′)N ∈ P, and by (P3s),
we have MN ∈ P. Now, there are two cases.

If τ is a base type, then [[τ]] = P since τ 6= ω, and MN ∈ [[τ]] (since MN ∈ P).

If τ is not a base type, the term MN is simple. Thus, we prove that MN ∈ [[τ]] using (S3)
(which by induction, holds at type τ). The case where MN is stubborn is trivial. Otherwise,

observe that if MN
+−→β Q, where Q = λy. P is an I-term, then the reduction is necessarily of the

form
MN

+−→β (λx. M ′)N ′ −→β M
′[N ′/x]

∗−→β Q,

where M
+−→β λx. M ′ and N

∗−→β N ′. Since by assumption, λx. M ′ ∈ [[σ → τ]] whenever

M
+−→β λx.M

′, and by the induction hypothesis applied at type σ, by (S2), N ′ ∈ [[σ]], we conclude
that (λx:σ.M ′)N ′ ∈ [[τ]]. By the induction hypothesis applied at type τ , by (S2), we have Q ∈ [[τ]],
and by (S3), we have MN ∈ [[τ]].

Since M ∈ P and MN ∈ [[τ]] whenever N ∈ [[σ]], we conclude that M ∈ [[σ → τ]].

For the proof of the next lemma, we need to add two new conditions (P4w) and (P5n) to
(P1)-(P3s).

Definition 7.5 Properties (P4w) and (P5n) are defined as follows:

(P4w) If M ∈ Λ, then λx. M ∈ P.

(P5n) If M [N/x] ∈ P, then (λx. M)N ∈ P.

Note that by (P4w), terms of the form λx. M are automatically in P, no matter what M is.

Lemma 7.6 If P is a set satisfying conditions (P1)-(P3s)(P4w)(P5n), and M [N/x] ∈ [[τ]] for
every N ∈ Λ, then λx. M ∈ [[σ → τ]].

Proof . The lemma is obvious if σ → τ is weakly trivial, since in this case, [[σ → τ]] = Λ. If
σ → τ = ω → ω, by (P4w), λx. M ∈ P, and since [[ω → ω]] = P, the result holds. Thus, in the
rest of this proof, we assume that σ → τ is weakly nontrivial and not ω → ω. This implies that τ
is weakly nontrivial.

We prove that for every every N , if N ∈ [[σ]], then (λx. M)N ∈ [[τ]]. We will need the fact
that the sets of the form [[σ]] have the properties (S1)-(S3), but this follows from lemma 7.4, since
(P1)-(P3s) hold. By (P4w), we have λx. M ∈ P.

Next, we prove that for every every N , if N ∈ [[σ]], then (λx. M)N ∈ [[τ]]. Let us assume that
N ∈ [[σ]]. Then, by the assumption of lemma 7.6, M [N/x] ∈ [[τ]]. Since τ is weakly nontrivial, by
(S1), we have M [N/x] ∈ P. By (P5n), we have (λx. M)N ∈ P. The rest of the proof is identical
to that of lemma 3.7.

Lemma 7.7 If P is a set satisfying conditions (P1)-(P3s)(P4w)(P5n), then for every term
M ∈ Λσ, for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every y: γ ∈ FV (M), we have M [ϕ] ∈ [[σ]].

31

Proof . We proceed by induction on the proof `DΩ Γ . M :σ. The lemma is obvious if σ is a
weakly trivial type, since in this case, [[σ]] = Λ. Thus, in the rest of this proof, we assume that
we are considering weakly nontrivial types. The rest of the proof is identical to that of lemma 3.8,
with “nontrivial” replaced by “weakly nontrivial”.

Theorem 7.8 If P is a set of λ-terms satisfying conditions (P1)-(P3s)(P4w)(P5n), then Λσ ⊆ P
for every weakly nontrivial type σ (in other words, every term typable in DΩ with a weakly nontrivial
type satisfies the unary predicate defined by P).

Proof . Apply lemma 7.7 to every term M in Λσ and to the identity substitution, which is
legitimate since x ∈ [[σ]] for every variable of type σ (by lemma 7.4). Thus, M ∈ [[σ]] for every term
in Λσ, that is Λσ ⊆ [[σ]]. Finally, by lemma 7.4, if σ is weakly nontrivial, (S1) holds for [[σ]], that is
Λσ ⊆ [[σ]] ⊆ P.

As a corollary of theorem 7.8, we show that if a term M is typable in DΩ with a weakly
nontrivial type, then the weak head reduction from M is finite (and so, M has a weak head-normal
form).

Definition 7.9 Given a term M = ((λy.P)Q)N1 . . . Nk, where m ≥ 0 and k ≥ 0, the term (λy.P)Q
is the weak head redex of M . A weak head reduction is a reduction sequence in which every step
reduces the weak head redex. A weak quasi-head reduction is a (finite or infinite) reduction sequence
s = 〈M0,M1, . . . ,Mi, . . .〉 such that, for every i ≥ 0, if Mi is not the last term in the sequence s,
there is some j ≥ i such that Mj −→β Mj+1 is a weak head-reduction step. A term is in weak
head-normal form iff it has no weak head redex, that is, either it is a λ-abstraction λx. M1, or it
is of the form yN1 . . . Nk, where k ≥ 0. The variable y is called the head variable. A term is weak
head-normalizable iff the weak head reduction from M is finite.

Note that the last step in a finite weak quasi-head reduction is necessarily a weak head-reduction
step. Also, any suffix of a weak quasi-head reduction is a weak quasi-head reduction. The main
advantage of weak quasi-head reductions over weak head-reductions is that (P2) obviously holds
for terms for which every weak quasi-head reduction is finite.

Theorem 7.10 If a term M is typable in DΩ with a weakly nontrivial type, then every weak
quasi-head reduction from M is finite. As a corollary, the weak head reduction from M is finite
(and so, M has a weak head-normal form).

Proof . Let P be the set of λ-terms for which every weak quasi-head reduction is finite. To prove
theorem 7.10, we apply theorem 7.8, which requires showing that P satisfies the properties (P1)-
(P3s)(P4w)(P5n). The remark made at the beginning of the proof of lemma 3.11 also applies here.
If every weak quasi-head reduction sequence is finite, since the reduction tree is finite branching,
by König’s lemma, the subtree consisting of weak quasi-head reduction sequences is finite. Thus,
for any term M from which every weak quasi-head reduction sequence is finite, the length of a
longest weak quasi-head reduction path in the reduction tree from M is a natural number, and we
will denote it as l(M). Now, (P1) is trivial, and (P2) follows from the definition.

(P3s). Let M be simple, and assume that every weak quasi-head reduction from M is finite.
We prove that every weak quasi-head reduction from MN is finite by induction on l(M). Let

32

MN −→β Q be a reduction step. Because M is simple, MN is not a redex, and we must have
M −→β M1 or N −→β N1. If M1 is simple, since l(M1) < l(M), the induction hypothesis yields
that every weak quasi-head reduction from M1N is finite. If N −→β N1, because we are considering
weak quasi-head reductions from MN , there is a first step where a weak head reduction is applied,
and it must be applied to M . Thus, we must have MN −→β MN1

∗−→β MNi −→β M1Ni. Since
l(M1) < l(M), the induction hypothesis yields that every weak quasi-head reduction from MN1 is
finite. Otherwise, M1 = λx.P , and by assumption, every weak quasi-head reduction from (λx.P)N
is finite. Thus every weak quasi-head reduction from MN is finite.

(P4w). Assume that every weak quasi-head reduction from M is finite. By definition, λx.M is
a weak head normal form, and the result is trivial.

(P5n). Let k be the index of the first weak head-reduction step in any weak quasi-head reduction
from (λx.M)N . We prove by induction on k that every weak quasi-head reduction from (λx.M)N
is finite. If k = 0, then (λx. M)N is a weak head-redex. However, by the assumption, every
weak quasi-head reduction from M [N/x] is finite. Now, consider any weak quasi-head reduction s
from (λx. M)N of index k ≥ 1. The first reduction step from (λx. M)N is either (λx. M)N −→β

(λx.M1)N or (λx.M)N −→β (λx.M)N1. In either case, the index of the first weak head-reduction
step in the weak quasi-head reduction tail(s) is k− 1, and by the induction hypothesis, we get the
desired result.

The converse of theorem 7.10 is true: if a λ-term is weak head-normalizable, then it is typable
in DΩ with a weakly nontrivial type σ. First, we prove the following weaker result.

Lemma 7.11 Given a term M = yN1 . . . Nk, there are nontrivial types σ and γ, where σ is
a base type, such that `DΩ y: γ . M :σ. Given a term M = λx. M1, for any type σ, we have
`DΩ . M :σ → ω.

Proof . Let γ = ω → . . .→ ω → σ with k occurrences of ω. It is easy to see that we have

`DΩ y: γ . yN1 . . . Nk:σ.

If M = λx. M1, for any type σ, by the ω-axiom, we have

`DΩ x:σ .M1:ω,

and thus `DΩ . λx. M1:σ → ω.

Note that there are weakly head-normalizable terms that are not head-normalizable. If δ =
λx. xx, then λx. (δδ) is in weak head-normal form, but it is not head normalizable since δδ is not.

We are now ready to prove the theorem characterizing the λ-terms that are weakly head-
normalizable in terms of type-checking in DΩ. However, we do not have a notion of “weak solv-
ability”.

Theorem 7.12 For any term M of the (untyped) λ-calculus, the following properties are equiv-
alent.

(1) M has a weak head-normal form (i.e., there is some weak head-normal form N such that
M

∗←→β N).

33

(2) M is typable in system DΩ with a weakly nontrivial type;

(3) Every weak quasi-head reduction from M is finite. In particular, the weak head-reduction
from M is finite.

Proof . (1)⇒ (2). This follows from lemma 7.11 and theorem 6.8.

(2)⇒ (3). This follows from theorem 7.10.

(3)⇒ (1). This is trivial.

It should be noted that the implication (1) ⇒ (2) shows that every weakly head-normalizable
term is typable in DΩ with a weakly nontrivial type of a rather special kind (since the types arising
in lemma 7.11 are quite special).

8 Conclusion, Open Problems, and Challenges

We have shown four metatheorems (theorems 3.9, 4.9, 5.9, and 7.8) about interesting classes of λ-
terms, using a fairly generic version the reducibility method. Obviously, the proofs do not differ very
much, but even though we have made some progress in isolating some of their common ingredients
(for example, the P-candidate conditions (S1), (S2), (S3)), we have not yet succeeded in extracting
what they really share in common. Thus, we have our first challenge:

Challenge 1: Find a common generalization of the four proofs of the theorems 3.9, 4.9, 5.9,
and 7.8.

The method of P-candidates can also be applied to various typed λ-calculi, including system
F, and we worked out a generalized version of reducibility for such typed calculi (see Gallier [6]
and [7]). To define this version of realizability, it was necessary to define a new class of applicative
structures, called pre-applicative structures, in which the carriers are equipped with preorders, and
the various inductive conditions on candidates of reducibility can be viewed as sheaf conditions.
Families of realizers are sheaves w.r.t. a suitable notion of cover (see Gallier [7]). It is worth noting
that pre-applicative structures are models of reduction rather than models of convertibility . There
is a preorder � on each carrier, to model reduction. Although models of convertibility have been
studied extensively (starting with some seminal work of Dana Scott and Gordon Plotkin), we feel
that the surface has been barely scratched when it comes to models of reduction.

Our work seems to indicate that the notion of cover is very robust. In the next paragraphs,
which assume some familiarity with Gallier [7], we clarify this previous statement. Given a pre-
applicative structure A = (Aσ)σ∈T (with preorder �), given a family S = (Sσ)σ∈T , where Sσ ⊆ Aσ,
the family S is a P-sheaf iff

(S1) Sσ ⊆ Pσ.

(S2) If M ∈ Sσ and M � N , then N ∈ Sσ.

(S3) If Covσ(C,M), and C ⊆ Sσ, then M ∈ Sσ.

The family S = (Sσ)σ∈T can be viewed as a functor

S:Aop → Sets,

34

by letting S(M) = {σ | M ∈ Sσ}. Then, (S3) can be written as:

(S3) If Covσ(C,M), and σ ∈ S(N) for every N ∈ C, then σ ∈ S(M).

It can be verified that S is a sheaf with respect to the cover algebra Cov on A (see Gallier [7]).

This brings us to our second challenge:

Challenge 2: Is there a notion of pre-applicative structure applying to both untyped terms
and typed terms?

Close examination of the approach in this paper and in Gallier [7], shows that there seems to
be six parameters in reducibility proofs:

(1) The class of λ-terms

(2) The type system T

(3) The property P to be proved.

(4) The class of pre-applicative structures A.

(5) The notion Cov of cover.

(6) The definition of realizability (the sets of realizers [[σ]]).

We now come to our bigest challenge:

Main Challenge 3: Is there a generalization of the reducibility method applying to untyped
terms and typed terms, and to various type systems and properties?

We conjecture that covers will play a central role, but their definition may need adjustements.
Finally, as if we did not have enough trouble already, one more nagging questions remains:

What about dependent types? (this seems hard!)

In a recent paper, McAllester, Kučan, and Otth [14], prove various strong normalization results
using another variation of the reducibility method. Although we see their approach as much less
fundamental and too restrictive (it only seems to deal with strong normalization), it would be
interesting to understand how this method relates to the method presented in this paper or in
Gallier [7]. The papers by Hyland and Ong [11] and by Michel Parigot [16], also present proofs of
strong normalization, using new variants of the reducibility method. The technical details are very
different, and we are unable to make a precise comparison at this point. Clearly, further work is
needed to clarify the connection between these approaches and ours.

Acknowledgment . We thank Mariangiola Dezani for some very incisive comments, as well as
Philippe de Groote and Jim Lipton.

References

[1] M. Coppo and F. Cardone. Two extensions of Curry’s type inference system. In P. Odifreddi,
editor, Logic And Computer Science, pages 19–75. Academic Press, London, New York, May
1990.

35

[2] M. Coppo and M. Dezani. A new type-assignment for λ-terms. Archiv. Math. Logik, 19:139–
156, 1978.

[3] M. Coppo and M. Dezani. An extension of basic functionality theory for lambda-calculus.
Notre Dame J. Formal Log., 21:685–693, 1980.

[4] M. Coppo, M. Dezani, and B. Venneri. Functional characters of solvable terms. Z. Math. Log.
Grund. Math., 27:45–58, 1981.

[5] Jean H. Gallier. On Girard’s “candidats de reductibilité”. In P. Odifreddi, editor, Logic And
Computer Science, pages 123–203. Academic Press, London, New York, May 1990.

[6] Jean H. Gallier. On the correspondence between proofs and λ-terms. In P. DeGroote, ed-
itor, The Curry-Howard Isomorphism, Cahiers du Centre de Logique, No. 8, pages 55–138.
Université Catholique de Louvain, 1995.

[7] Jean H. Gallier. Proving properties of typed λ-terms using realizability, covers, and sheaves.
Theoretical Computer Science, 142:299–368, 1995.

[8] Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application à
l’élimination des coupures dans l’analyse et la théorie des types. In J.E. Fenstad, editor, Proc.
2nd Scand. Log. Symp., pages 63–92. North-Holland, 1971.

[9] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université de Paris VII, June 1972. Thèse de Doctorat d’Etat.

[10] Gérard Huet. Initiation au λ-calcul. Technical report, Université Paris VII, Paris, 1991.
Lectures Notes.

[11] J. M. E. Hyland and C.-H. L. Ong. Modified realizability topos and strong normalization
proofs. In M Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications, volume
664 of Lecture Notes in Computer Science, pages 179–194. Springer Verlag, 1993.

[12] G. Koletsos. Church-Rosser theorem for typed functional systems. J. Symbolic Logic,
50(3):782–790, 1985.

[13] J.L. Krivine. Lambda-Calcul, types et modèles. Etudes et recherches en informatique. Masson,
1990.

[14] D. McAllester, J. Kučan, and D. F. Otth. A proof of strong normalization for F2, Fω, and
beyond. Technical report, MIT, Boston, Mass, 1993. Draft.

[15] J. C. Mitchell. A type-inference approach to reduction properties and semantics of polymorphic
expressions. In ACM Conference on LISP and Functional Programming, pages 308–319. ACM,
1986. Reprinted in Logical Foundations of Functional Programming, G. Huet, Ed., Addison
Wesley, 1990, 195-212.

[16] M. Parigot. Strong normalization for second-order classical natural deduction. In Eighth
Annual IEEE Symposium on Logic In Computer Science, pages 39–46. IEEE, 1993.

36

[17] G. Pottinger. A type assignment to the strongly normalizable λ-terms. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 561–577, London, 1980. Academic Press.

[18] W.W. Tait. Intensional interpretation of functionals of finite type I. J. Symbolic Logic, 32:198–
212, 1967.

[19] W.W. Tait. A realizability interpretation of the theory of species. In R. Parikh, editor, Logic
Colloquium, volume 453 of Lecture Notes in Math., pages 240–251. Springer Verlag, 1975.

37

