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Chapter 1

Basics of Linear Algebra

1.1 Motivations: Linear Combinations, Linear Inde-
pendence and Rank

Consider the problem of solving the following system of
three linear equations in the three variables
x1, x2, x3 2 R:

x1 + 2x2 � x3 = 1

2x1 + x2 + x3 = 2

x1 � 2x2 � 2x3 = 3.

One way to approach this problem is introduce some
“column vectors.”

9
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Let u, v, w, and b, be the vectors given by

u =

0

@
1
2
1

1

A v =

0

@
2
1

�2

1

A w =

0

@
�1
1

�2

1

A b =

0

@
1
2
3

1

A

and write our linear system as

x1u + x2v + x3w = b.

In the above equation, we used implicitly the fact that a
vector z can be multiplied by a scalar � 2 R, where

�z = �

0

@
z1

z2

z3

1

A =

0

@
�z1

�z2

�z3

1

A ,

and two vectors y and and z can be added, where

y + z =

0

@
y1

y2

y3

1

A +

0

@
z1

z2

z3

1

A =

0

@
y1 + z1

y2 + z2

y3 + z3

1

A .
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The set of all vectors with three components is denoted
by R3⇥1.

The reason for using the notation R3⇥1 rather than the
more conventional notation R3 is that the elements of
R3⇥1 are column vectors ; they consist of three rows and
a single column, which explains the superscript 3 ⇥ 1.

On the other hand, R3 = R⇥R⇥R consists of all triples
of the form (x1, x2, x3), with x1, x2, x3 2 R, and these
are row vectors .

For the sake of clarity, in this introduction, we will denote
the set of column vectors with n components by Rn⇥1.

An expression such as

x1u + x2v + x3w

where u, v, w are vectors and the xis are scalars (in R) is
called a linear combination .
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Using this notion, the problem of solving our linear sys-
tem

x1u + x2v + x3w = b

is equivalent to

determining whether b can be expressed as a linear
combination of u, v, w.

Now, if the vectors u, v, w are linearly independent ,
which means that there is no triple (x1, x2, x3) 6= (0, 0, 0)
such that

x1u + x2v + x3w = 03,

it can be shown that every vector in R3⇥1 can be written
as a linear combination of u, v, w.

Here, 03 is the zero vector

03 =

0

@
0
0
0

1

A .
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It is customary to abuse notation and to write 0 instead
of 03. This rarely causes a problem because in most cases,
whether 0 denotes the scalar zero or the zero vector can
be inferred from the context.

In fact, every vector z 2 R3⇥1 can be written in a unique
way as a linear combination

z = x1u + x2v + x3w.

Then, our equation

x1u + x2v + x3w = b

has a unique solution , and indeed, we can check that

x1 = 1.4

x2 = �0.4

x3 = �0.4

is the solution.

But then, how do we determine that some vectors are
linearly independent?

One answer is to compute the determinant det(u, v, w),
and to check that it is nonzero.
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In our case,

det(u, v, w) =

������

1 2 �1
2 1 1
1 �2 �2

������
= 15,

which confirms that u, v, w are linearly independent.

Other methods consist of computing an LU-decomposition
or a QR-decomposition, or an SVD of the matrix con-
sisting of the three columns u, v, w,

A =
�
u v w

�
=

0

@
1 2 �1
2 1 1
1 �2 �2

1

A .

If we form the vector of unknowns

x =

0

@
x1

x2

x3

1

A ,

then our linear combination x1u + x2v + x3w can be
written in matrix form as
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x1u + x2v + x3w =

0

@
1 2 �1
2 1 1
1 �2 �2

1

A

0

@
x1

x2

x3

1

A .

So, our linear system is expressed by
0

@
1 2 �1
2 1 1
1 �2 �2

1

A

0

@
x1

x2

x3

1

A =

0

@
1
2
3

1

A ,

or more concisely as

Ax = b.

Now, what if the vectors u, v, w are
linearly dependent?
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For example, if we consider the vectors

u =

0

@
1
2
1

1

A v =

0

@
2
1

�1

1

A w =

0

@
�1
1
2

1

A ,

we see that
u � v = w,

a nontrivial linear dependence .

It can be verified that u and v are still linearly indepen-
dent.

Now, for our problem

x1u + x2v + x3w = b

to have a solution, it must be the case that b can be
expressed as linear combination of u and v.

However, it turns out that u, v, b are linearly independent
(because det(u, v, b) = �6), so b cannot be expressed as
a linear combination of u and v and thus, our system has
no solution.
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If we change the vector b to

b =

0

@
3
3
0

1

A ,

then
b = u + v,

and so the system

x1u + x2v + x3w = b

has the solution

x1 = 1, x2 = 1, x3 = 0.

Actually, since w = u�v, the above system is equivalent
to

(x1 + x3)u + (x2 � x3)v = b,

and because u and v are linearly independent, the unique
solution in x1 + x3 and x2 � x3 is

x1 + x3 = 1

x2 � x3 = 1,

which yields an infinite number of solutions parameter-
ized by x3, namely

x1 = 1 � x3

x2 = 1 + x3.
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In summary, a 3 ⇥ 3 linear system may have a unique
solution, no solution, or an infinite number of solutions,
depending on the linear independence (and dependence)
or the vectors u, v, w, b.

This situation can be generalized to any n⇥n system, and
even to any n ⇥ m system (n equations in m variables),
as we will see later.

The point of view where our linear system is expressed
in matrix form as Ax = b stresses the fact that the map
x 7! Ax is a linear transformation .

This means that

A(�x) = �(Ax)

for all x 2 R3⇥1 and all � 2 R, and that

A(u + v) = Au + Av,

for all u, v 2 R3⇥1.
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I'lr- ONL"( Hl::, c.oULQ IN 
ABs-H2.A'-'\ -"{"f::.RlV\s.'"  Reproduced by special permission 01 Playboy Ma\ 

Copyright © January 1970 by Playboy. 

Figure 1.1: The power of abstraction
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We can view the matrix A as a way of expressing a linear
map from R3⇥1 to R3⇥1 and solving the system Ax = b
amounts to determining whether b belongs to the image
(or range) of this linear map.

Yet another fruitful way of interpreting the resolution of
the system Ax = b is to view this problem as an
intersection problem .

Indeed, each of the equations

x1 + 2x2 � x3 = 1

2x1 + x2 + x3 = 2

x1 � 2x2 � 2x3 = 3

defines a subset of R3 which is actually a plane .
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The first equation

x1 + 2x2 � x3 = 1

defines the plane H1 passing through the three points
(1, 0, 0), (0, 1/2, 0), (0, 0, �1), on the coordinate axes, the
second equation

2x1 + x2 + x3 = 2

defines the plane H2 passing through the three points
(1, 0, 0), (0, 2, 0), (0, 0, 2), on the coordinate axes, and the
third equation

x1 � 2x2 � 2x3 = 3

defines the plane H3 passing through the three points
(3, 0, 0), (0, �3/2, 0), (0, 0, �3/2), on the coordinate axes.

The intersection Hi \ Hj of any two distinct planes Hi

and Hj is a line, and the intersection H1 \H2 \H3 of the
three planes consists of the single point (1.4, �0.4, �0.4).
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Under this interpretation, observe that we are focusing
on the rows of the matrix A, rather than on its columns ,
as in the previous interpretations.

£lrJSTE/N'S 
,_F/RS, 

Figure 1.2: Linear Equations
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Another great example of a real-world problem where lin-
ear algebra proves to be very e↵ective is the problem of
data compression, that is, of representing a very large
data set using a much smaller amount of storage.

Typically the data set is represented as an m ⇥ n matrix
A where each row corresponds to an n-dimensional data
point and typically, m � n.

In most applications, the data are not independent so
the rank of A is a lot smaller than min{m, n}, and the
the goal of low-rank decomposition is to factor A as the
product of two matrices B and C, where B is a m ⇥ k
matrix and C is a k ⇥ n matrix, with k ⌧ min{m, n}
(here, ⌧ means “much smaller than”):
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0

BBBBBBBB@

A
m ⇥ n

1

CCCCCCCCA

=

0

BBBBBBBB@

B
m ⇥ k

1

CCCCCCCCA

0

@ C
k ⇥ n

1

A

Now, it is generally too costly to find an exact factoriza-
tion as above, so we look for a low-rank matrix A0 which
is a “good” approximation of A.

In order to make this statement precise, we need to define
a mechanism to determine how close two matrices are.
This can be done usingmatrix norms , a notion discussed
in Chapter 4.

The norm of a matrix A is a nonnegative real number
kAk which behaves a lot like the absolute value |x| of a
real number x.
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Then, our goal is to find some low-rank matrix A0 that
minimizes the norm

kA � A0k2 ,

over all matrices A0 of rank at most k, for some given
k ⌧ min{m, n}.

Some advantages of a low-rank approximation are:

1. Fewer elements are required to represent A; namely,
k(m+ n) instead of mn. Thus less storage and fewer
operations are needed to reconstruct A.

2. Often, the decomposition exposes the underlying struc-
ture of the data. Thus, it may turn out that “most”
of the significant data are concentrated along some
directions called principal directions .
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Low-rank decompositions of a set of data have a multi-
tude of applications in engineering, including computer
science (especially computer vision), statistics, and ma-
chine learning.

As we will see later in Chapter 13, the singular value de-
composition (SVD) provides a very satisfactory solution
to the low-rank approximation problem.

Still, in many cases, the data sets are so large that another
ingredient is needed: randomization . However, as a first
step, linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of opera-
tions are allowed on vectors.

In the early 1900, the notion of a vector space emerged
as a convenient and unifying framework for working with
“linear” objects.
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1.2 Vector Spaces

A (real) vector space is a set E together with two op-
erations, +: E ⇥ E ! E and · : R ⇥ E ! E, called
addition and scalar multiplication, that satisfy some
simple properties.

First of all, E under addition has to be a commutative
(or abelian) group, a notion that we review next.

However, keep in mind that vector spaces are not just
algebraic objects; they are also geometric objects.
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Definition 1.1. A group is a set G equipped with a bi-
nary operation · : G⇥G ! G that associates an element
a · b 2 G to every pair of elements a, b 2 G, and having
the following properties: · is associative , has an identity
element e 2 G, and every element in G is invertible
(w.r.t. ·).

More explicitly, this means that the following equations
hold for all a, b, c 2 G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

(G3) For every a 2 G, there is some a�1 2 G such that
a · a�1 = a�1 · a = e (inverse).

A group G is abelian (or commutative) if

a · b = b · a

for all a, b 2 G.

A set M together with an operation · : M ⇥M ! M and
an element e satisfying only conditions (G1) and (G2) is
called a monoid .
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For example, the set N = {0, 1, . . . , n, . . .} of natu-
ral numbers is a (commutative) monoid under addition.
However, it is not a group.

Example 1.1.

1. The set Z = {. . . , �n, . . . ,�1, 0, 1, . . . , n, . . .} of
integers is a group under addition, with identity ele-
ment 0. However, Z⇤ = Z� {0} is not a group under
multiplication.

2. The set Q of rational numbers (fractions p/q with
p, q 2 Z and q 6= 0) is a group under addition, with
identity element 0. The set Q⇤ = Q � {0} is also a
group under multiplication, with identity element 1.

3. Similarly, the sets R of real numbers and C of com-
plex numbers are groups under addition (with iden-
tity element 0), and R⇤ = R�{0} and C⇤ = C�{0}
are groups under multiplication (with identity element
1).
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4. The sets Rn and Cn of n-tuples of real or complex
numbers are groups under componentwise addition:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

with identity element (0, . . . , 0). All these groups are
abelian.

5. Given any nonempty set S, the set of bijections
f : S ! S, also called permutations of S, is a group
under function composition (i.e., the multiplication
of f and g is the composition g � f ), with identity
element the identity function idS. This group is not
abelian as soon as S has more than two elements.

6. The set of n ⇥ n matrices with real (or complex) co-
e�cients is a group under addition of matrices, with
identity element the null matrix. It is denoted by
Mn(R) (or Mn(C)).

7. The set R[X ] of all polynomials in one variable with
real coe�cients is a group under addition of polyno-
mials.
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8. The set of n ⇥ n invertible matrices with real (or
complex) coe�cients is a group under matrix mul-
tiplication, with identity element the identity matrix
In. This group is called the general linear group and
is usually denoted by GL(n,R) (or GL(n,C)).

9. The set of n⇥n invertible matrices with real (or com-
plex) coe�cients and determinant +1 is a group un-
der matrix multiplication, with identity element the
identity matrix In. This group is called the special
linear group and is usually denoted by SL(n,R) (or
SL(n,C)).

10. The set of n ⇥ n invertible matrices with real coe�-
cients such that RR> = In and of determinant +1 is a
group called the special orthogonal group and is usu-
ally denoted by SO(n) (where R> is the transpose
of the matrix R, i.e., the rows of R> are the columns
of R). It corresponds to the rotations in Rn.
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11. Given an open interval ]a, b[, the set C(]a, b[) of con-
tinuous functions f : ]a, b[! R is a group under the
operation f + g defined such that

(f + g)(x) = f (x) + g(x)

for all x 2]a, b[.

It is customary to denote the operation of an abelian
group G by +, in which case the inverse a�1 of an element
a 2 G is denoted by �a.

Vector spaces are defined as follows.
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Definition 1.2. A real vector space is a set E (of vec-
tors) together with two operations +: E⇥E ! E (called
vector addition)1 and · : R ⇥ E ! E (called scalar
multiplication) satisfying the following conditions for all
↵, � 2 R and all u, v 2 E;

(V0) E is an abelian group w.r.t. +, with identity element
0;2

(V1) ↵ · (u + v) = (↵ · u) + (↵ · v);

(V2) (↵ + �) · u = (↵ · u) + (� · u);

(V3) (↵ ⇤ �) · u = ↵ · (� · u);

(V4) 1 · u = u.

In (V3), ⇤ denotes multiplication in R.

Given ↵ 2 R and v 2 E, the element ↵ ·v is also denoted
by ↵v. The field R is often called the field of scalars.

In definition 1.2, the field R may be replaced by the field
of complex numbers C, in which case we have a complex
vector space.

1
The symbol + is overloaded, since it denotes both addition in the field R and addition of vectors in E.

It is usually clear from the context which + is intended.

2
The symbol 0 is also overloaded, since it represents both the zero in R (a scalar) and the identity element

of E (the zero vector). Confusion rarely arises, but one may prefer using 0 for the zero vector.
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It is even possible to replace R by the field of rational
numbers Q or by any other field K (for example Z/pZ,
where p is a prime number), in which case we have a
K-vector space (in (V3), ⇤ denotes multiplication in the
field K).

In most cases, the field K will be the field R of reals.

From (V0), a vector space always contains the null vector
0, and thus is nonempty.

From (V1), we get ↵ · 0 = 0, and ↵ · (�v) = �(↵ · v).

From (V2), we get 0 · v = 0, and (�↵) · v = �(↵ · v).

Another important consequence of the axioms is the fol-
lowing fact: For any u 2 E and any � 2 R, if � 6= 0 and
� · u = 0, then u = 0.

The field R itself can be viewed as a vector space over
itself, addition of vectors being addition in the field, and
multiplication by a scalar being multiplication in the field.
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Example 1.2.

1. The fields R and C are vector spaces over R.
2. The groups Rn and Cn are vector spaces over R, and
Cn is a vector space over C.

3. The ring R[X ]n of polynomials of degree at most n
with real coe�cients is a vector space over R, and the
ring C[X ]n of polynomials of degree at most n with
complex coe�cients is a vector space over C.

4. The ring R[X ] of all polynomials with real coe�cients
is a vector space over R, and the ring C[X ] of all
polynomials with complex coe�cients is a vector space
over C.

5. The ring of n ⇥ n matrices Mn(R) is a vector space
over R.

6. The ring of m⇥n matrices Mm,n(R) is a vector space
over R.

7. The ring C(]a, b[) of continuous functions f : ]a, b[!
R is a vector space over R.
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Let E be a vector space. We would like to define the
important notions of linear combination and linear inde-
pendence.

These notions can be defined for sets of vectors in E, but
it will turn out to be more convenient to define them for
families (vi)i2I , where I is any arbitrary index set.
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1.3 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that
there possess bases.

What this means is that in every vector space, E, there is
some set of vectors, {e1, . . . , en}, such that every vector
v 2 E can be written as a linear combination,

v = �1e1 + · · · + �nen,

of the ei, for some scalars, �1, . . . ,�n 2 R.

Furthermore, the n-tuple, (�1, . . . ,�n), as above is unique .

This description is fine when E has a finite basis,
{e1, . . . , en}, but this is not always the case!

For example, the vector space of real polynomials, R[X ],
does not have a finite basis but instead it has an infinite
basis, namely

1, X, X2, . . . , Xn, . . .
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For simplicity, in this chapter, we will restrict our atten-
tion to vector spaces that have a finite basis (we say that
they are finite-dimensional).

Given a set A, an I-indexed family (ai)i2I of elements
of A (for short, a family) is simply a function a : I ! A.

Remark: When considering a family (ai)i2I , there is no
reason to assume that I is ordered.

The crucial point is that every element of the family is
uniquely indexed by an element of I .

Thus, unless specified otherwise, we do not assume that
the elements of an index set are ordered.

We agree that when I = ;, (ai)i2I = ;. A family (ai)i2I

is finite if I is finite.
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Given a family (ui)i2I and any element v, we denote by

(ui)i2I [k (v)

the family (wi)i2I[{k} defined such that, wi = ui if i 2 I ,
and wk = v, where k is any index such that k /2 I .

Given a family (ui)i2I , a subfamily of (ui)i2I is a family
(uj)j2J where J is any subset of I .

In this chapter, unless specified otherwise, it is assumed
that all families of scalars are finite (i.e., their index set
is finite).
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Definition 1.3. Let E be a vector space. A vector
v 2 E is a linear combination of a family (ui)i2I of
elements of E i↵ there is a family (�i)i2I of scalars in R
such that

v =
X

i2I

�iui.

When I = ;, we stipulate that v = 0.

We say that a family (ui)i2I is linearly independent i↵
for every family (�i)i2I of scalars in R,

X

i2I

�iui = 0 implies that �i = 0 for all i 2 I.

Equivalently, a family (ui)i2I is linearly dependent i↵
there is some family (�i)i2I of scalars in R such that

X

i2I

�iui = 0 and �j 6= 0 for some j 2 I.

We agree that when I = ;, the family ; is linearly inde-
pendent.

A family (ui)i2I is linearly independent i↵ either I = ;,
or I consists of a single element i and ui 6= 0, or |I| � 2
and no vector uj in the family can be expressed as a linear
combination of the other vectors in the family.
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A family (ui)i2I is linearly dependent i↵ either I consists
of a single element, say i, and ui = 0, or |I| � 2 and some
uj in the family can be expressed as a linear combination
of the other vectors in the family.

When I is nonempty, if the family (ui)i2I is linearly in-
dependent, then ui 6= 0 for all i 2 I . Furthermore, if
|I| � 2, then ui 6= uj for all i, j 2 I with i 6= j.

Example 1.3.

1. Any two distinct scalars �, µ 6= 0 in R are linearly
dependent.

2. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are
linearly independent.

3. In R4, the vectors (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1),
and (0, 0, 0, 1) are linearly independent.

4. InR2, the vectors u = (1, 1), v = (0, 1) andw = (2, 3)
are linearly dependent, since

w = 2u + v.
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When I is finite, we often assume that it is the set I =
{1, 2, . . . , n}. In this case, we denote the family (ui)i2I

as (u1, . . . , un).

The notion of a subspace of a vector space is defined as
follows.

Definition 1.4.Given a vector space E, a subset F of E
is a linear subspace (or subspace) of E i↵ F is nonempty
and �u + µv 2 F for all u, v 2 F , and all �, µ 2 R.

It is easy to see that a subspace F of E is indeed a vector
space.

It is also easy to see that any intersection of subspaces
is a subspace.

Every subspace contains the vector 0.

For any nonempty finite index set I , one can show by
induction on the cardinality of I that if (ui)i2I is any
family of vectors ui 2 F and (�i)i2I is any family of
scalars, then

P
i2I �iui 2 F .
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The subspace {0} will be denoted by (0), or even 0 (with
a mild abuse of notation).

Example 1.4.

1. In R2, the set of vectors u = (x, y) such that

x + y = 0

is a subspace.

2. In R3, the set of vectors u = (x, y, z) such that

x + y + z = 0

is a subspace.

3. For any n � 0, the set of polynomials f (X) 2 R[X ]
of degree at most n is a subspace of R[X ].

4. The set of upper triangular n ⇥ n matrices is a sub-
space of the space of n ⇥ n matrices.

Proposition 1.1. Given any vector space E, if S is
any nonempty subset of E, then the smallest subspace
hSi (or Span(S)) of E containing S is the set of all
(finite) linear combinations of elements from S.
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One might wonder what happens if we add extra condi-
tions to the coe�cients involved in forming linear combi-
nations.

Here are three natural restrictions which turn out to be
important (as usual, we assume that our index sets are
finite):

(1) Consider combinations
P

i2I �iui for which
X

i2I

�i = 1.

These are called a�ne combinations .

One should realize that every linear combinationP
i2I �iui can be viewed as an a�ne combination.

However, we get new spaces. For example, in R3,
the set of all a�ne combinations of the three vectors
e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), is the
plane passing through these three points.

Since it does not contain 0 = (0, 0, 0), it is not a linear
subspace.
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(2) Consider combinations
P

i2I �iui for which

�i � 0, for all i 2 I.

These are called positive (or conic) combinations .

It turns out that positive combinations of families of
vectors are cones . They show up naturally in convex
optimization.

(3) Consider combinations
P

i2I �iui for which we require
(1) and (2), that is

X

i2I

�i = 1, and �i � 0 for all i 2 I.

These are called convex combinations .

Given any finite family of vectors, the set of all convex
combinations of these vectors is a convex polyhedron .

Convex polyhedra play a very important role in
convex optimization .
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----
,- I 

Figure 1.3: The right Tech
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1.4 Bases of a Vector Space

Definition 1.5. Given a vector space E and a subspace
V of E, a family (vi)i2I of vectors vi 2 V spans V or
generates V i↵ for every v 2 V , there is some family
(�i)i2I of scalars in R such that

v =
X

i2I

�ivi.

We also say that the elements of (vi)i2I are generators
of V and that V is spanned by (vi)i2I , or generated by
(vi)i2I .

If a subspace V of E is generated by a finite family (vi)i2I ,
we say that V is finitely generated .

A family (ui)i2I that spans V and is linearly independent
is called a basis of V .
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Example 1.5.

1. In R3, the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) form
a basis.

2. The vectors (1, 1, 1, 1), (1, 1, �1, �1), (1, �1, 0, 0),
(0, 0, 1, �1) form a basis of R4 known as the Haar
basis . This basis and its generalization to dimension
2n are crucial in wavelet theory.

3. In the subspace of polynomials in R[X ] of degree at
most n, the polynomials 1, X, X2, . . . , Xn form a ba-
sis.

4. The Bernstein polynomials

✓
n
k

◆
(1 � X)kXn�k for

k = 0, . . . , n, also form a basis of that space. These
polynomials play a major role in the theory of spline
curves .

It is a standard result of linear algebra that every vector
space E has a basis, and that for any two bases (ui)i2I

and (vj)j2J , I and J have the same cardinality.

In particular, if E has a finite basis of n elements, every
basis of E has n elements, and the integer n is called the
dimension of the vector space E.
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We begin with a crucial lemma.

Lemma 1.2.Given a linearly independent family (ui)i2I

of elements of a vector space E, if v 2 E is not a lin-
ear combination of (ui)i2I, then the family (ui)i2I[k(v)
obtained by adding v to the family (ui)i2I is linearly
independent (where k /2 I).

The next theorem holds in general, but the proof is more
sophisticated for vector spaces that do not have a finite
set of generators.

Theorem 1.3. Given any finite family S = (ui)i2I

generating a vector space E and any linearly indepen-
dent subfamily L = (uj)j2J of S (where J ✓ I), there
is a basis B of E such that L ✓ B ✓ S.
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The following proposition giving useful properties charac-
terizing a basis is an immediate consequence of Theorem
1.3.

Proposition 1.4. Given a vector space E, for any
family B = (vi)i2I of vectors of E, the following prop-
erties are equivalent:

(1) B is a basis of E.

(2) B is a maximal linearly independent family of E.

(3) B is a minimal generating family of E.

The following replacement lemma due to Steinitz shows
the relationship between finite linearly independent fam-
ilies and finite families of generators of a vector space.



1.4. BASES OF A VECTOR SPACE 51

Proposition 1.5. (Replacement lemma) Given a vec-
tor space E, let (ui)i2I be any finite linearly indepen-
dent family in E, where |I| = m, and let (vj)j2J be
any finite family such that every ui is a linear combi-
nation of (vj)j2J, where |J | = n. Then, there exists a
set L and an injection ⇢ : L ! J (a relabeling func-
tion) such that L \ I = ;, |L| = n � m, and the fam-
ilies (ui)i2I [ (v⇢(l))l2L and (vj)j2J generate the same
subspace of E. In particular, m  n.

The idea is that m of the vectors vj can be replaced by
the linearly independent ui’s in such a way that the same
subspace is still generated.

The purpose of the function ⇢ : L ! J is to pick n�m el-
ements j1, . . . , jn�m of J and to relabel them l1, . . . , ln�m

in such a way that these new indices do not clash with the
indices in I ; this way, the vectors vj1, . . . , vjn�m who “sur-
vive” (i.e. are not replaced) are relabeled vl1, . . . , vln�m,
and the other m vectors vj with j 2 J � {j1, . . . , jn�m}
are replaced by the ui. The index set of this new family
is I [ L.
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Actually, one can prove that Proposition 1.5 implies The-
orem 1.3 when the vector space is finitely generated.

Putting Theorem 1.3 and Proposition 1.5 together, we
obtain the following fundamental theorem.

Theorem 1.6. Let E be a finitely generated vector
space. Any family (ui)i2I generating E contains a
subfamily (uj)j2J which is a basis of E. Furthermore,
for every two bases (ui)i2I and (vj)j2J of E, we have
|I| = |J | = n for some fixed integer n � 0.

Remark: Theorem 1.6 also holds for vector spaces that
are not finitely generated.

When E is not finitely generated, we say that E is of
infinite dimension .

The dimension of a finitely generated vector space E is
the common dimension n of all of its bases and is denoted
by dim(E).
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Clearly, if the field R itself is viewed as a vector space,
then every family (a) where a 2 R and a 6= 0 is a basis.
Thus dim(R) = 1.

Note that dim({0}) = 0.

If E is a vector space of dimension n � 1, for any sub-
space U of E,

if dim(U) = 1, then U is called a line ;

if dim(U) = 2, then U is called a plane ;

if dim(U) = n � 1, then U is called a hyperplane .

If dim(U) = k, then U is sometimes called a k-plane .

Let (ui)i2I be a basis of a vector space E.

For any vector v 2 E, since the family (ui)i2I generates
E, there is a family (�i)i2I of scalars in R, such that

v =
X

i2I

�iui.
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A very important fact is that the family (�i)i2I is unique.

Proposition 1.7. Given a vector space E, let (ui)i2I

be a family of vectors in E. Let v 2 E, and assume
that v =

P
i2I �iui. Then, the family (�i)i2I of scalars

such that v =
P

i2I �iui is unique i↵ (ui)i2I is linearly
independent.

If (ui)i2I is a basis of a vector space E, for any vector
v 2 E, if (xi)i2I is the unique family of scalars in R such
that

v =
X

i2I

xiui,

each xi is called the component (or coordinate) of index
i of v with respect to the basis (ui)i2I .

Many interesting mathematical structures are vector spaces.

A very important example is the set of linear maps be-
tween two vector spaces to be defined in the next section.
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Here is an example that will prepare us for the vector
space of linear maps.

Example 1.6. Let X be any nonempty set and let E
be a vector space. The set of all functions f : X ! E
can be made into a vector space as follows: Given any
two functions f : X ! E and g : X ! E, let
(f + g) : X ! E be defined such that

(f + g)(x) = f (x) + g(x)

for all x 2 X , and for every � 2 R, let �f : X ! E be
defined such that

(�f )(x) = �f (x)

for all x 2 X .

The axioms of a vector space are easily verified.
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Figure 1.4: Early Traveling
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1.5 Linear Maps

A function between two vector spaces that preserves the
vector space structure is called a homomorphism of vector
spaces, or linear map.

Linear maps formalize the concept of linearity of a func-
tion.

Keep in mind that linear maps, which are
transformations of space, are usually far more

important than the spaces themselves.

In the rest of this section, we assume that all vector spaces
are real vector spaces.
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Definition 1.6. Given two vector spaces E and F , a
linear map between E and F is a function f : E ! F
satisfying the following two conditions:

f (x + y) = f (x) + f (y) for all x, y 2 E;

f (�x) = �f (x) for all � 2 R, x 2 E.

Setting x = y = 0 in the first identity, we get f (0) = 0.

The basic property of linear maps is that they transform
linear combinations into linear combinations.

Given any finite family (ui)i2I of vectors in E, given any
family (�i)i2I of scalars in R, we have

f (
X

i2I

�iui) =
X

i2I

�if (ui).

The above identity is shown by induction on |I| using the
properties of Definition 1.6.



1.5. LINEAR MAPS 59

Example 1.7.

1. The map f : R2 ! R2 defined such that

x0 = x � y

y0 = x + y

is a linear map.

2. For any vector space E, the identity map id : E ! E
given by

id(u) = u for all u 2 E

is a linear map. When we want to be more precise,
we write idE instead of id.

3. The map D : R[X ] ! R[X ] defined such that

D(f (X)) = f 0(X),

where f 0(X) is the derivative of the polynomial f (X),
is a linear map
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Definition 1.7. Given a linear map f : E ! F , we
define its image (or range) Im f = f (E), as the set

Im f = {y 2 F | (9x 2 E)(y = f (x))},

and its Kernel (or nullspace) Ker f = f�1(0), as the set

Ker f = {x 2 E | f (x) = 0}.

Proposition 1.8. Given a linear map f : E ! F ,
the set Im f is a subspace of F and the set Ker f is a
subspace of E. The linear map f : E ! F is injective
i↵ Ker f = 0 (where 0 is the trivial subspace {0}).

Since by Proposition 1.8, the image Im f of a linear map
f is a subspace of F , we can define the rank rk(f ) of f
as the dimension of Im f .
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A fundamental property of bases in a vector space is that
they allow the definition of linear maps as unique homo-
morphic extensions, as shown in the following proposi-
tion.

Proposition 1.9.Given any two vector spaces E and
F , given any basis (ui)i2I of E, given any other family
of vectors (vi)i2I in F , there is a unique linear map
f : E ! F such that f (ui) = vi for all i 2 I.

Furthermore, f is injective i↵ (vi)i2I is linearly inde-
pendent, and f is surjective i↵ (vi)i2I generates F .

By the second part of Proposition 1.9, an injective linear
map f : E ! F sends a basis (ui)i2I to a linearly inde-
pendent family (f (ui))i2I of F , which is also a basis when
f is bijective.

Also, when E and F have the same finite dimension n,
(ui)i2I is a basis of E, and f : E ! F is injective, then
(f (ui))i2I is a basis of F (by Proposition 1.4).
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The following simple proposition is also useful.

Proposition 1.10. Given any two vector spaces E
and F , with F nontrivial, given any family (ui)i2I of
vectors in E, the following properties hold:

(1) The family (ui)i2I generates E i↵ for every family
of vectors (vi)i2I in F , there is at most one linear
map f : E ! F such that f (ui) = vi for all i 2 I.

(2) The family (ui)i2I is linearly independent i↵ for
every family of vectors (vi)i2I in F , there is some
linear map f : E ! F such that f (ui) = vi for all
i 2 I.
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Given vector spaces E, F , and G, and linear maps
f : E ! F and g : F ! G, it is easily verified that the
composition g � f : E ! G of f and g is a linear map.

A linear map f : E ! F is an isomorphism i↵ there is
a linear map g : F ! E, such that

g � f = idE and f � g = idF . (⇤)

It is immediately verified that such a map g is unique.

The map g is called the inverse of f and it is also denoted
by f�1.

Proposition 1.9 shows that if F = Rn, then we get an
isomorphism between any vector space E of dimension
|J | = n and Rn.

One can verify that if f : E ! F is a bijective linear
map, then its inverse f�1 : F ! E is also a linear map,
and thus f is an isomorphism.
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Another useful corollary of Proposition 1.9 is this:

Proposition 1.11. Let E be a vector space of finite
dimension n � 1 and let f : E ! E be any linear
map. The following properties hold:

(1) If f has a left inverse g, that is, if g is a linear
map such that g�f = id, then f is an isomorphism
and f�1 = g.

(2) If f has a right inverse h, that is, if h is a linear
map such that f �h = id, then f is an isomorphism
and f�1 = h.

The set of all linear maps between two vector spaces
E and F is denoted by Hom(E, F ).
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When we wish to be more precise and specify the field
K over which the vector spaces E and F are defined we
write HomK(E, F ).

The set Hom(E, F ) is a vector space under the operations
defined at the end of Section 1.1, namely

(f + g)(x) = f (x) + g(x)

for all x 2 E, and

(�f )(x) = �f (x)

for all x 2 E.

When E and F have finite dimensions, the vector space
Hom(E, F ) also has finite dimension, as we shall see
shortly.

When E = F , a linear map f : E ! E is also called an
endomorphism . The space Hom(E, E) is also denoted
by End(E).
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It is also important to note that composition confers to
Hom(E, E) a ring structure.

Indeed, composition is an operation
� : Hom(E, E) ⇥ Hom(E, E) ! Hom(E, E), which is
associative and has an identity idE, and the distributivity
properties hold:

(g1 + g2) � f = g1 � f + g2 � f ;

g � (f1 + f2) = g � f1 + g � f2.

The ring Hom(E, E) is an example of a noncommutative
ring.

It is easily seen that the set of bijective linear maps
f : E ! E is a group under composition. Bijective linear
maps are also called automorphisms .

The group of automorphisms of E is called the general
linear group (of E), and it is denoted by GL(E), or
by Aut(E), or when E = Rn, by GL(n,R), or even by
GL(n).
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Figure 1.5: Hitting Power
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1.6 Matrices

Proposition 1.9 shows that given two vector spaces E and
F and a basis (uj)j2J of E, every linear map f : E ! F
is uniquely determined by the family (f (uj))j2J of the
images under f of the vectors in the basis (uj)j2J .

If we also have a basis (vi)i2I of F , then every vector
f (uj) can be written in a unique way as

f (uj) =
X

i2I

ai jvi,

where j 2 J , for a family of scalars (ai j)i2I .

Thus, with respect to the two bases (uj)j2J of E and
(vi)i2I of F , the linear map f is completely determined
by a “I ⇥ J -matrix”

M(f ) = (ai j)i2I, j2J.
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Remark: Note that we intentionally assigned the index
set J to the basis (uj)j2J of E, and the index I to the
basis (vi)i2I of F , so that the rows of the matrix M(f )
associated with f : E ! F are indexed by I , and the
columns of the matrix M(f ) are indexed by J .

Obviously, this causes a mildly unpleasant reversal. If we
had considered the bases (ui)i2I of E and (vj)j2J of F ,
we would obtain a J ⇥ I-matrix M(f ) = (aj i)j2J, i2I .

No matter what we do, there will be a reversal! We de-
cided to stick to the bases (uj)j2J of E and (vi)i2I of F ,
so that we get an I ⇥ J -matrix M(f ), knowing that we
may occasionally su↵er from this decision!
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When I and J are finite, and say, when |I| = m and |J | =
n, the linear map f is determined by the matrix M(f )
whose entries in the j-th column are the components of
the vector f (uj) over the basis (v1, . . . , vm), that is, the
matrix

M(f ) =

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA

whose entry on row i and column j is ai j (1  i  m,
1  j  n).
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We will now show that when E and F have finite dimen-
sion, linear maps can be very conveniently represented
by matrices, and that composition of linear maps corre-
sponds to matrix multiplication.

We will follow rather closely an elegant presentation method
due to Emil Artin.

Let E and F be two vector spaces, and assume that E
has a finite basis (u1, . . . , un) and that F has a finite
basis (v1, . . . , vm). Recall that we have shown that every
vector x 2 E can be written in a unique way as

x = x1u1 + · · · + xnun,

and similarly every vector y 2 F can be written in a
unique way as

y = y1v1 + · · · + ymvm.

Let f : E ! F be a linear map between E and F .
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Then, for every x = x1u1 + · · ·+ xnun in E, by linearity,
we have

f (x) = x1f (u1) + · · · + xnf (un).

Let
f (uj) = a1 jv1 + · · · + am jvm,

or more concisely,

f (uj) =
mX

i=1

ai jvi,

for every j, 1  j  n.

This can be expressed by writing the coe�cients
a1j, a2j, . . . , amj of f (uj) over the basis (v1, . . . , vm), as
the jth column of a matrix, as shown below:

f (u1) f (u2) . . . f (un)

v1

v2
...

vm

0

BB@

a11 a12 . . . a1n

a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn

1

CCA
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Then, substituting the right-hand side of each f (uj) into
the expression for f (x), we get

f (x) = x1(
mX

i=1

ai 1vi) + · · · + xn(
mX

i=1

ai nvi),

which, by regrouping terms to obtain a linear combination
of the vi, yields

f (x) = (
nX

j=1

a1 jxj)v1 + · · · + (
nX

j=1

am jxj)vm.

Thus, letting f (x) = y = y1v1 + · · · + ymvm, we have

yi =
nX

j=1

ai jxj (1)

for all i, 1  i  m.

To make things more concrete, let us treat the case where
n = 3 and m = 2.
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In this case,

f (u1) = a11v1 + a21v2

f (u2) = a12v1 + a22v2

f (u3) = a13v1 + a23v2,

which in matrix form is expressed by

f (u1) f (u2) f (u3)

v1

v2

✓
a11 a12 a13

a21 a22 a23

◆
,

and for any x = x1u1 + x2u2 + x3u3, we have

f (x) = f (x1u1 + x2u2 + x3u3)

= x1f (u1) + x2f (u2) + x3f (u3)

= x1(a11v1 + a21v2) + x2(a12v1 + a22v2)

+ x3(a13v1 + a23v2)

= (a11x1 + a12x2 + a13x3)v1

+ (a21x1 + a22x2 + a23x3)v2.

Consequently, since

y = y1v1 + y2v2,
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we have

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3.

This agrees with the matrix equation

✓
y1

y2

◆
=

✓
a11 a12 a13

a21 a22 a23

◆0

@
x1

x2

x3

1

A .

Let us now consider how the composition of linear maps
is expressed in terms of bases.

Let E, F , and G, be three vectors spaces with respec-
tive bases (u1, . . . , up) for E, (v1, . . . , vn) for F , and
(w1, . . . , wm) for G.

Let g : E ! F and f : F ! G be linear maps.

As explained earlier, g : E ! F is determined by the im-
ages of the basis vectors uj, and f : F ! G is determined
by the images of the basis vectors vk.



76 CHAPTER 1. BASICS OF LINEAR ALGEBRA

We would like to understand how f � g : E ! G is de-
termined by the images of the basis vectors uj.

Remark: Note that we are considering linear maps
g : E ! F and f : F ! G, instead of f : E ! F and
g : F ! G, which yields the composition f � g : E ! G
instead of g � f : E ! G.

Our perhaps unusual choice is motivated by the fact that
if f is represented by a matrix M(f ) = (ai k) and g is
represented by a matrix M(g) = (bk j), then
f � g : E ! G is represented by the product AB of the
matrices A and B.

If we had adopted the other choice where f : E ! F and
g : F ! G, then g � f : E ! G would be represented by
the product BA.

Obviously, this is a matter of taste! We will have to live
with our perhaps unorthodox choice.
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Thus, let

f (vk) =
mX

i=1

ai kwi,

for every k, 1  k  n, and let

g(uj) =
nX

k=1

bk jvk,

for every j, 1  j  p.

Also if
x = x1u1 + · · · + xpup,

let
y = g(x)

and
z = f (y) = (f � g)(x),

with
y = y1v1 + · · · + ynvn

and
z = z1w1 + · · · + zmwm.
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After some calculations, we get

zi =
pX

j=1

(
nX

k=1

ai kbk j)xj.

Thus, defining ci j such that

ci j =
nX

k=1

ai kbk j,

for 1  i  m, and 1  j  p, we have

zi =
pX

j=1

ci jxj (4)

Identity (4) suggests defining a multiplication operation
on matrices, and we proceed to do so.
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Definition 1.8. If K = R or K = C, an m⇥n-matrix
over K is a family (ai j)1im, 1jn of scalars in K, rep-
resented by an array

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA

In the special case where m = 1, we have a row vector ,
represented by

(a1 1 · · · a1 n)

and in the special case where n = 1, we have a column
vector , represented by

0

@
a1 1
...

am 1

1

A

In these last two cases, we usually omit the constant index
1 (first index in case of a row, second index in case of a
column).
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The set of all m ⇥ n-matrices is denoted by Mm,n(K) or
Mm,n.

An n⇥n-matrix is called a square matrix of dimension
n.

The set of all square matrices of dimension n is denoted
by Mn(K), or Mn.

Remark: As defined, a matrix A = (ai j)1im, 1jn

is a family , that is, a function from {1, 2, . . . , m} ⇥
{1, 2, . . . , n} to K.

As such, there is no reason to assume an ordering on the
indices. Thus, the matrix A can be represented in many
di↵erent ways as an array, by adopting di↵erent orders
for the rows or the columns.

However, it is customary (and usually convenient) to as-
sume the natural ordering on the sets {1, 2, . . . , m} and
{1, 2, . . . , n}, and to represent A as an array according
to this ordering of the rows and columns.



1.6. MATRICES 81

We also define some operations on matrices as follows.

Definition 1.9. Given two m ⇥ n matrices A = (ai j)
and B = (bi j), we define their sum A+B as the matrix
C = (ci j) such that ci j = ai j + bi j; that is,

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA +

0

BB@

b1 1 b1 2 . . . b1 n

b2 1 b2 2 . . . b2 n
... ... . . . ...

bm 1 bm 2 . . . bm n

1

CCA

=

0

BB@

a1 1 + b1 1 a1 2 + b1 2 . . . a1 n + b1 n

a2 1 + b2 1 a2 2 + b2 2 . . . a2 n + b2 n
... ... . . . ...

am 1 + bm 1 am 2 + bm 2 . . . am n + bm n

1

CCA .

We define the matrix �A as the matrix (�ai j).

Given a scalar � 2 K, we define the matrix �A as the
matrix C = (ci j) such that ci j = �ai j; that is

�

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA =

0

BB@

�a1 1 �a1 2 . . . �a1 n

�a2 1 �a2 2 . . . �a2 n
... ... . . . ...

�am 1 �am 2 . . . �am n

1

CCA .
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Given an m⇥n matrices A = (ai k) and an n⇥p matrices
B = (bk j), we define their product AB as the m ⇥ p
matrix C = (ci j) such that

ci j =
nX

k=1

ai kbk j,

for 1  i  m, and 1  j  p. In the product AB = C
shown below

0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA

0

BB@

b1 1 b1 2 . . . b1 p

b2 1 b2 2 . . . b2 p
... ... . . . ...

bn 1 bn 2 . . . bn p

1

CCA

=

0

BB@

c1 1 c1 2 . . . c1 p

c2 1 c2 2 . . . c2 p
... ... . . . ...

cm 1 cm 2 . . . cm p

1

CCA
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note that the entry of index i and j of the matrix AB ob-
tained by multiplying the matrices A and B can be iden-
tified with the product of the row matrix corresponding
to the i-th row of A with the column matrix corre-
sponding to the j-column of B:

(ai 1 · · · ai n)

0

@
b1 j
...

bn j

1

A =
nX

k=1

ai kbk j.

The square matrix In of dimension n containing 1 on
the diagonal and 0 everywhere else is called the identity
matrix . It is denoted by

In =

0

BB@

1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1

1

CCA

Given an m ⇥ n matrix A = (ai j), its transpose A> =
(a>

j i), is the n ⇥ m-matrix such that a>
j i = ai j, for all i,

1  i  m, and all j, 1  j  n.

The transpose of a matrix A is sometimes denoted by At,
or even by tA.
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Note that the transpose A> of a matrix A has the prop-
erty that the j-th row of A> is the j-th column of A.

In other words, transposition exchanges the rows and the
columns of a matrix.

The following observation will be useful later on when we
discuss the SVD. Given any m⇥n matrix A and any n⇥p
matrix B, if we denote the columns of A by A1, . . . , An

and the rows of B by B1, . . . , Bn, then we have

AB = A1B1 + · · · + AnBn.

For every square matrix A of dimension n, it is immedi-
ately verified that AIn = InA = A.

If a matrix B such that AB = BA = In exists, then it is
unique, and it is called the inverse of A. The matrix B
is also denoted by A�1.

An invertible matrix is also called a nonsingular matrix,
and a matrix that is not invertible is called a singular
matrix.



1.6. MATRICES 85

Proposition 1.11 shows that if a square matrix A has a
left inverse, that is a matrix B such that BA = I , or a
right inverse, that is a matrix C such that AC = I , then
A is actually invertible; so B = A�1 and C = A�1. This
also follows from Proposition 1.25.

It is immediately verified that the set Mm,n(K) of m ⇥ n
matrices is a vector space under addition of matrices and
multiplication of a matrix by a scalar.

Consider the m ⇥ n-matrices Ei,j = (eh k), defined such
that ei j = 1, and eh k = 0, if h 6= i or k 6= j.

It is clear that every matrix A = (ai j) 2 Mm,n(K) can
be written in a unique way as

A =
mX

i=1

nX

j=1

ai jEi,j.

Thus, the family (Ei,j)1im,1jn is a basis of the vector
space Mm,n(K), which has dimension mn.
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Square matrices provide a natural example of a noncom-
mutative ring with zero divisors.

Example 1.8. For example, letting A, B be the 2 ⇥ 2-
matrices

A =

✓
1 0
0 0

◆
, B =

✓
0 0
1 0

◆
,

then

AB =

✓
1 0
0 0

◆✓
0 0
1 0

◆
=

✓
0 0
0 0

◆
,

and

BA =

✓
0 0
1 0

◆✓
1 0
0 0

◆
=

✓
0 0
1 0

◆
.

We now formalize the representation of linear maps by
matrices.
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Definition 1.10. Let E and F be two vector spaces,
and let (u1, . . . , un) be a basis for E, and (v1, . . . , vm) be
a basis for F . Each vector x 2 E expressed in the basis
(u1, . . . , un) as x = x1u1 + · · · + xnun is represented by
the column matrix

M(x) =

0

@
x1
...

xn

1

A

and similarly for each vector y 2 F expressed in the basis
(v1, . . . , vm). Every linear map f : E ! F is represented
by the matrix M(f ) = (ai j), where ai j is the i-th compo-
nent of the vector f (uj) over the basis (v1, . . . , vm), i.e.,
where

f (uj) =
mX

i=1

ai jvi, for every j, 1  j  n.

The coe�cients a1j, a2j, . . . , amj of f (uj) over the basis
(v1, . . . , vm) form the jth column of the matrix M(f )
shown below:

f (u1) f (u2) . . . f (un)

v1

v2
...

vm

0

BB@

a11 a12 . . . a1n

a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn

1

CCA .
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The matrix M(f ) associated with the linear map
f : E ! F is called the matrix of f with respect to the
bases (u1, . . . , un) and (v1, . . . , vm).

When E = F and the basis (v1, . . . , vm) is identical to
the basis (u1, . . . , un) of E, the matrix M(f ) associated
with f : E ! E (as above) is called thematrix of f with
respect to the basis (u1, . . . , un).

Remark: As in the remark after Definition 1.8, there
is no reason to assume that the vectors in the bases
(u1, . . . , un) and (v1, . . . , vm) are ordered in any particu-
lar way.

However, it is often convenient to assume the natural or-
dering. When this is so, authors sometimes refer to the
matrix M(f ) as the matrix of f with respect to the
ordered bases (u1, . . . , un) and (v1, . . . , vm).
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Then, given a linear map f : E ! F represented by the
matrix M(f ) = (ai j) w.r.t. the bases (u1, . . . , un) and
(v1, . . . , vm), by equations (1) and the definition of matrix
multiplication, the equation y = f (x) corresponds to
the matrix equation M(y) = M(f )M(x), that is,

0

@
y1
...

ym

1

A =

0

@
a1 1 . . . a1 n
... . . . ...

am 1 . . . am n

1

A

0

@
x1
...

xn

1

A .

Recall that
0

BB@

a1 1 a1 2 . . . a1 n

a2 1 a2 2 . . . a2 n
... ... . . . ...

am 1 am 2 . . . am n

1

CCA

0

BB@

x1

x2
...

xn

1

CCA

= x1

0

BB@

a1 1

a2 1
...

am 1

1

CCA + x2

0

BB@

a1 2

a2 2
...

am 2

1

CCA + · · · + xn

0

BB@

a1 n

a2 n
...

am n

1

CCA .
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Sometimes, it is necessary to incoporate the bases
(u1, . . . , un) and (v1, . . . , vm) in the notation for the ma-
trix M(f ) expressing f with respect to these bases. This
turns out to be a messy enterprise!

We propose the following course of action: write
U = (u1, . . . , un) and V = (v1, . . . , vm) for the bases of
E and F , and denote by

MU ,V(f )

the matrix of f with respect to the bases U and V .

Furthermore, write xU for the coordinates
M(x) = (x1, . . . , xn) of x 2 E w.r.t. the basis U and
write yV for the coordinates M(y) = (y1, . . . , ym) of
y 2 F w.r.t. the basis V . Then,

y = f (x)

is expressed in matrix form by

yV = MU ,V(f )xU .

When U = V , we abbreviate MU ,V(f ) as MU(f ).
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The above notation seems reasonable, but it has the slight
disadvantage that in the expression MU ,V(f )xU , the input
argument xU which is fed to the matrix MU ,V(f ) does not
appear next to the subscript U in MU ,V(f ).

We could have used the notation MV ,U(f ), and some peo-
ple do that. But then, we find a bit confusing that V
comes before U when f maps from the space E with the
basis U to the space F with the basis V .

So, we prefer to use the notation MU ,V(f ).

Be aware that other authors such as Meyer [25] use the
notation [f ]U ,V , and others such as Dummit and Foote
[13] use the notation MV

U (f ), instead of MU ,V(f ).

This gets worse! You may find the notation MU
V (f ) (as

in Lang [21]), or U [f ]V , or other strange notations.
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Let us illustrate the representation of a linear map by a
matrix in a concrete situation.

Let E be the vector space R[X ]4 of polynomials of degree
at most 4, let F be the vector space R[X ]3 of polynomi-
als of degree at most 3, and let the linear map be the
derivative map d: that is,

d(P + Q) = dP + dQ

d(�P ) = �dP,

with � 2 R.

We choose (1, x, x2, x3, x4) as a basis ofE and (1, x, x2, x3)
as a basis of F .

Then, the 4 ⇥ 5 matrix D associated with d is obtained
by expressing the derivative dxi of each basis vector xi

for i = 0, 1, 2, 3, 4 over the basis (1, x, x2, x3).
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We find

D =

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA .

Then, if P denotes the polynomial

P = 3x4 � 5x3 + x2 � 7x + 5,

we have
dP = 12x3 � 15x2 + 2x � 7,

the polynomial P is represented by the vector
(5, �7, 1, �5, 3) and dP is represented by the vector
(�7, 2, �15, 12), and we have

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA

0

BBBB@

5
�7
1

�5
3

1

CCCCA
=

0

BB@

�7
2

�15
12

1

CCA ,

as expected!
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The kernel (nullspace) of d consists of the polynomials of
degree 0, that is, the constant polynomials.

Therefore dim(Ker d) = 1, and from

dim(E) = dim(Ker d) + dim(Im d)

(see Theorem 1.22), we get dim(Im d) = 4
(since dim(E) = 5).

For fun, let us figure out the linear map from the vector
space R[X ]3 to the vector space R[X ]4 given by integra-
tion (finding the primitive, or anti-derivative) of xi, for
i = 0, 1, 2, 3).

The 5 ⇥ 4 matrix S representing
R

with respect to the
same bases as before is

S =

0

BBBB@

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

1

CCCCA
.
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We verify that DS = I4,

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA

0

BBBB@

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

1

CCCCA
=

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA ,

as it should!

The equation DS = I4 show that S is injective and has
D as a left inverse. However, SD 6= I5, and instead

0

BBBB@

0 0 0 0
1 0 0 0
0 1/2 0 0
0 0 1/3 0
0 0 0 1/4

1

CCCCA

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA =

0

BBBB@

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1

CCCCA
,

because constant polynomials (polynomials of degree 0)
belong to the kernel of D.
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The function that associates to a linear map
f : E ! F the matrix M(f ) w.r.t. the bases (u1, . . . , un)
and (v1, . . . , vm) has the property that matrix multipli-
cation corresponds to composition of linear maps.

This allows us to transfer properties of linear maps to
matrices.
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Proposition 1.12. (1) Given any matrices
A 2 Mm,n(K), B 2 Mn,p(K), and C 2 Mp,q(K), we
have

(AB)C = A(BC);

that is, matrix multiplication is associative.

(2) Given any matrices A, B 2 Mm,n(K), and
C, D 2 Mn,p(K), for all � 2 K, we have

(A + B)C = AC + BC

A(C + D) = AC + AD

(�A)C = �(AC)

A(�C) = �(AC),

so that matrix multiplication
· : Mm,n(K) ⇥ Mn,p(K) ! Mm,p(K) is bilinear.

Note that Proposition 1.12 implies that the vector space
Mn(K) of square matrices is a (noncommutative) ring
with unit In.
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The following proposition states the main properties of
the mapping f 7! M(f ) between Hom(E, F ) and Mm,n.

In short, it is an isomorphism of vector spaces.

Proposition 1.13. Given three vector spaces E, F ,
G, with respective bases (u1, . . . , up), (v1, . . . , vn), and
(w1, . . . , wm), the mapping M : Hom(E, F ) ! Mn,p that
associates the matrix M(g) to a linear map g : E ! F
satisfies the following properties for all x 2 E, all
g, h : E ! F , and all f : F ! G:

M(g(x)) = M(g)M(x)

M(g + h) = M(g) + M(h)

M(�g) = �M(g)

M(f � g) = M(f )M(g).

Thus, M : Hom(E, F ) ! Mn,p is an isomorphism of
vector spaces, and when p = n and the basis (v1, . . . , vn)
is identical to the basis (u1, . . . , up),
M : Hom(E, E) ! Mn is an isomorphism of rings.
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In view of Proposition 1.13, it seems preferable to rep-
resent vectors from a vector space of finite dimension as
column vectors rather than row vectors.

Thus, from now on, we will denote vectors of Rn (or more
generally, of Kn) as columm vectors.

It is important to observe that the isomorphism
M : Hom(E, F ) ! Mn,p given by Proposition 1.13 de-
pends on the choice of the bases (u1, . . . , up) and
(v1, . . . , vn), and similarly for the isomorphism
M : Hom(E, E) ! Mn, which depends on the choice of
the basis (u1, . . . , un).

Thus, it would be useful to know how a change of basis
a↵ects the representation of a linear map f : E ! F as
a matrix.
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Proposition 1.14. Let E be a vector space, and let
(u1, . . . , un) be a basis of E. For every family (v1, . . . , vn),
let P = (ai j) be the matrix defined such that vj =Pn

i=1 ai jui. The matrix P is invertible i↵ (v1, . . . , vn)
is a basis of E.

Definition 1.11. Given a vector space E of dimension
n, for any two bases (u1, . . . , un) and (v1, . . . , vn) of E,
let P = (ai j) be the invertible matrix defined such that

vj =
nX

i=1

ai jui,

which is also the matrix of the identity id : E ! E with
respect to the bases (v1, . . . , vn) and (u1, . . . , un), in that
order . Indeed, we express each id(vj) = vj over the basis
(u1, . . . , un). The coe�cients a1j, a2j, . . . , anj of vj over
the basis (u1, . . . , un) form the jth column of the matrix
P shown below:

v1 v2 . . . vn

u1

u2
...

un

0

BB@

a11 a12 . . . a1n

a21 a22 . . . a2n
... ... . . . ...

an1 an2 . . . ann

1

CCA .
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The matrix P is called the change of basis matrix from
(u1, . . . , un) to (v1, . . . , vn).

Clearly, the change of basis matrix from (v1, . . . , vn) to
(u1, . . . , un) is P�1.

Since P = (ai j) is the matrix of the identity id : E ! E
with respect to the bases (v1, . . . , vn) and (u1, . . . , un),
given any vector x 2 E, if x = x1u1 + · · · + xnun over
the basis (u1, . . . , un) and x = x0

1v1+ · · ·+x0
nvn over the

basis (v1, . . . , vn), from Proposition 1.13, we have
0

@
x1
...

xn

1

A =

0

@
a1 1 . . . a1 n
... . . . ...

an 1 . . . an n

1

A

0

@
x0

1
...

x0
n

1

A

showing that the old coordinates (xi) of x (over (u1, . . . , un))
are expressed in terms of the new coordinates (x0

i) of x
(over (v1, . . . , vn)).

Now we face the painful task of assigning a “good” nota-
tion incorporating the bases U = (u1, . . . , un) and
V = (v1, . . . , vn) into the notation for the change of basis
matrix from U to V .
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Because the change of basis matrix from U to V is the
matrix of the identity map idE with respect to the bases
V and U in that order , we could denote it by MV ,U(id)
(Meyer [25] uses the notation [I ]V ,U).

We prefer to use an abbreviation for MV ,U(id) and we will
use the notation

PV ,U

for the change of basis matrix from U to V .

Note that

PU ,V = P�1
V ,U .

Then, if we write xU = (x1, . . . , xn) for the old co-
ordinates of x with respect to the basis U and xV =
(x0

1, . . . , x
0
n) for the new coordinates of x with respect to

the basis V , we have

xU = PV ,U xV , xV = P�1
V ,U xU .
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The above may look backward, but remember that the
matrix MU ,V(f ) takes input expressed over the basis U
to output expressed over the basis V .

Consequently, PV ,U takes input expressed over the basis V
to output expressed over the basis U , and xU = PV ,U xV
matches this point of view!

� Beware that some authors (such as Artin [1]) define the
change of basis matrix from U to V as PU ,V = P�1

V ,U .
Under this point of view, the old basis U is expressed in
terms of the new basis V . We find this a bit unnatural.

Also, in practice, it seems that the new basis is often
expressed in terms of the old basis, rather than the other
way around.

Since the matrix P = PV ,U expresses the new basis
(v1, . . . , vn) in terms of the old basis (u1, . . ., un), we
observe that the coordinates (xi) of a vector x vary in
the opposite direction of the change of basis.
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For this reason, vectors are sometimes said to be con-
travariant .

However, this expression does not make sense! Indeed, a
vector in an intrinsic quantity that does not depend on a
specific basis.

What makes sense is that the coordinates of a vector
vary in a contravariant fashion.

Let us consider some concrete examples of change of bases.

Example 1.9. Let E = F = R2, with u1 = (1, 0),
u2 = (0, 1), v1 = (1, 1) and v2 = (�1, 1).

The change of basis matrix P from the basis U = (u1, u2)
to the basis V = (v1, v2) is

P =

✓
1 �1
1 1

◆

and its inverse is

P�1 =

✓
1/2 1/2

�1/2 1/2

◆
.
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The old coordinates (x1, x2) with respect to (u1, u2) are
expressed in terms of the new coordinates (x0

1, x
0
2) with

respect to (v1, v2) by
✓

x1

x2

◆
=

✓
1 �1
1 1

◆✓
x0

1

x0
2

◆
,

and the new coordinates (x0
1, x

0
2) with respect to (v1, v2)

are expressed in terms of the old coordinates (x1, x2) with
respect to (u1, u2) by

✓
x0

1

x0
2

◆
=

✓
1/2 1/2

�1/2 1/2

◆✓
x1

x2

◆
.
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Example 1.10. Let E = F = R[X ]3 be the set of poly-
nomials of degree at most 3, and consider the bases U =
(1, x, x2, x3) and V = (B3

0(x), B
3
1(x), B

3
2(x), B

3
3(x)), where

B3
0(x), B

3
1(x), B

3
2(x), B

3
3(x) are theBernstein polynomi-

als of degree 3, given by

B3
0(x) = (1 � x)3 B3

1(x) = 3(1 � x)2x

B3
2(x) = 3(1 � x)x2 B3

3(x) = x3.

By expanding the Bernstein polynomials, we find that the
change of basis matrix PV ,U is given by

PV ,U =

0

BB@

1 0 0 0
�3 3 0 0
3 �6 3 0

�1 3 �3 1

1

CCA .

We also find that the inverse of PV ,U is

P�1
V ,U =

0

BB@

1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1

1

CCA .
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Therefore, the coordinates of the polynomial 2x3 � x+ 1
over the basis V are

0

BB@

1
2/3
1/3
2

1

CCA =

0

BB@

1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1

1

CCA

0

BB@

1
�1
0
2

1

CCA ,

and so

2x3 � x + 1 = B3
0(x) +

2

3
B3

1(x) +
1

3
B3

2(x) + 2B3
3(x).

Our next example is the Haar wavelets, a fundamental
tool in signal processing.
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1.7 Haar Basis Vectors and a Glimpse at Wavelets

We begin by considering Haar wavelets in R4.

Wavelets play an important role in audio and video signal
processing, especially for compressing long signals into
much smaller ones than still retain enough information
so that when they are played, we can’t see or hear any
di↵erence.

Consider the four vectors w1, w2, w3, w4 given by

w1 =

0

BB@

1
1
1
1

1

CCA w2 =

0

BB@

1
1

�1
�1

1

CCA w3 =

0

BB@

1
�1
0
0

1

CCA w4 =

0

BB@

0
0
1

�1

1

CCA .

Note that these vectors are pairwise orthogonal, so they
are indeed linearly independent (we will see this in a later
chapter).

Let W = {w1, w2, w3, w4} be the Haar basis , and let
U = {e1, e2, e3, e4} be the canonical basis of R4.
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The change of basis matrix W = PW ,U from U to W is
given by

W =

0

BB@

1 1 1 0
1 1 �1 0
1 �1 0 1
1 �1 0 �1

1

CCA ,

and we easily find that the inverse of W is given by

W�1 =

0

BB@

1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2

1

CCA

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 0 0
0 0 1 �1

1

CCA .

So, the vector v = (6, 4, 5, 1) over the basis U becomes
c = (c1, c2, c3, c4) = (4, 1, 1, 2) over the Haar basis W ,
with

0

BB@

4
1
1
2

1

CCA =

0

BB@

1/4 0 0 0
0 1/4 0 0
0 0 1/2 0
0 0 0 1/2

1

CCA

0

BB@

1 1 1 1
1 1 �1 �1
1 �1 0 0
0 0 1 �1

1

CCA

0

BB@

6
4
5
1

1

CCA .
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Given a signal v = (v1, v2, v3, v4), we first transform v
into its coe�cients c = (c1, c2, c3, c4) over the Haar basis
by computing c = W�1v. Observe that

c1 =
v1 + v2 + v3 + v4

4

is the overall average value of the signal v. The coe�cient
c1 corresponds to the background of the image (or of the
sound).

Then, c2 gives the coarse details of v, whereas, c3 gives
the details in the first part of v, and c4 gives the details
in the second half of v.

Reconstruction of the signal consists in computing
v = Wc.
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The trick for good compression is to throw away some
of the coe�cients of c (set them to zero), obtaining a
compressed signal bc, and still retain enough crucial in-
formation so that the reconstructed signal bv = Wbc
looks almost as good as the original signal v.

Thus, the steps are:

inputv �! coe�cients c = W�1v �! compressed bc
�! compressed bv = Wbc.

This kind of compression scheme makes modern video
conferencing possible.

It turns out that there is a faster way to find c = W�1v,
without actually using W�1. This has to do with the
multiscale nature of Haar wavelets.
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Given the original signal v = (6, 4, 5, 1) shown in Figure
1.6, we compute averages and half di↵erences obtaining

6 4 5 1

Figure 1.6: The original signal v

Figure 1.7: We get the coe�cients c3 = 1 and c4 = 2.

5 5 3 3

1

�1

2

�2

Figure 1.7: First averages and first half di↵erences

Note that the original signal v can be reconstruced from
the two signals in Figure 1.7.

Then, again we compute averages and half di↵erences ob-
taining Figure 1.8.

4 4 4 4
1 1

�1 �1

Figure 1.8: Second averages and second half di↵erences

We get the coe�cients c1 = 4 and c2 = 1.
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Again, the signal on the left of Figure 1.7 can be recon-
structed from the two signals in Figure 1.8.

This method can be generalized to signals of any length
2n. The previous case corresponds to n = 2.

Let us consider the case n = 3.

The Haar basis (w1, w2, w3, w4, w5, w6, w7, w8) is given
by the matrix

W =

0

BBBBBBBBBB@

1 1 1 0 1 0 0 0
1 1 1 0 �1 0 0 0
1 1 �1 0 0 1 0 0
1 1 �1 0 0 �1 0 0
1 �1 0 1 0 0 1 0
1 �1 0 1 0 0 �1 0
1 �1 0 �1 0 0 0 1
1 �1 0 �1 0 0 0 �1

1

CCCCCCCCCCA
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The columns of this matrix are orthogonal and it is easy
to see that

W�1 = diag(1/8, 1/8, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2)W>.

A pattern is begining to emerge. It looks like the second
Haar basis vector w2 is the “mother” of all the other
basis vectors, except the first, whose purpose is to perform
averaging.

Indeed, in general, given

w2 = (1, . . . , 1, �1, . . . , �1)| {z }
2n

,

the other Haar basis vectors are obtained by a “scaling
and shifting process.”
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Starting from w2, the scaling process generates the vec-
tors

w3, w5, w9, . . . , w2j+1, . . . , w2n�1+1,

such that w2j+1+1 is obtained from w2j+1 by forming two
consecutive blocks of 1 and �1 of half the size of the
blocks in w2j+1, and setting all other entries to zero. Ob-
serve that w2j+1 has 2

j blocks of 2n�j elements.

The shifting process, consists in shifting the blocks of
1 and �1 in w2j+1 to the right by inserting a block of
(k � 1)2n�j zeros from the left, with 0  j  n � 1 and
1  k  2j.

Thus, we obtain the following formula for w2j+k:

w2j+k(i) =8
>>>><

>>>>:

0 1  i  (k � 1)2n�j

1 (k � 1)2n�j + 1  i  (k � 1)2n�j + 2n�j�1

�1 (k � 1)2n�j + 2n�j�1 + 1  i  k2n�j

0 k2n�j + 1  i  2n,

with 0  j  n � 1 and 1  k  2j.
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Of course
w1 = (1, . . . , 1)| {z }

2n

.

The above formulae look a little better if we change our
indexing slightly by letting k vary from 0 to 2j � 1 and
using the index j instead of 2j.

In this case, the Haar basis is denoted by

w1, h
0
0, h

1
0, h

1
1, h

2
0, h

2
1, h

2
2, h

2
3, . . . , h

j
k, . . . , h

n�1
2n�1�1

,

and

hj
k(i) =

8
>>>><

>>>>:

0 1  i  k2n�j

1 k2n�j + 1  i  k2n�j + 2n�j�1

�1 k2n�j + 2n�j�1 + 1  i  (k + 1)2n�j

0 (k + 1)2n�j + 1  i  2n,

with 0  j  n � 1 and 0  k  2j � 1.
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It turns out that there is a way to understand these for-
mulae better if we interpret a vector u = (u1, . . . , um) as
a piecewise linear function over the interval [0, 1).

We define the function plf(u) such that

plf(u)(x) = ui,
i � 1

m
 x <

i

m
, 1  i  m.

In words, the function plf(u) has the value u1 on the
interval [0, 1/m), the value u2 on [1/m, 2/m), etc., and
the value um on the interval [(m � 1)/m, 1).

For example, the piecewise linear function associated with
the vector

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, �1.1, �1.3)

is shown in Figure 1.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

5

6

7

Figure 1.9: The piecewise linear function plf(u)



118 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Then, each basis vector hj
k corresponds to the function

 j
k = plf(hj

k).

In particular, for all n, the Haar basis vectors

h0
0 = w2 = (1, . . . , 1, �1, . . . , �1)| {z }

2n

yield the same piecewise linear function  given by

 (x) =

8
><

>:

1 if 0  x < 1/2

�1 if 1/2  x < 1

0 otherwise,

whose graph is shown in Figure 1.10.

1

1

�1

0

Figure 1.10: The Haar wavelet  
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Then, it is easy to see that  j
k is given by the simple

expression

 j
k(x) =  (2jx � k), 0  j  n � 1, 0  k  2j � 1.

The above formula makes it clear that  j
k is obtained from

 by scaling and shifting.

The function �0
0 = plf(w1) is the piecewise linear function

with the constant value 1 on [0, 1), and the functions  j
k

together with '0
0 are known as the Haar wavelets .

Rather than using W�1 to convert a vector u to a vec-
tor c of coe�cients over the Haar basis, and the matrix
W to reconstruct the vector u from its Haar coe�cients
c, we can use faster algorithms that use averaging and
di↵erencing.
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If c is a vector of Haar coe�cients of dimension 2n, we
compute the sequence of vectors u0, u1, . . ., un as follows:

u0 = c

uj+1 = uj

uj+1(2i � 1) = uj(i) + uj(2
j + i)

uj+1(2i) = uj(i) � uj(2
j + i),

for j = 0, . . . , n � 1 and i = 1, . . . , 2j.

The reconstructed vector (signal) is u = un.

If u is a vector of dimension 2n, we compute the sequence
of vectors cn, cn�1, . . . , c0 as follows:

cn = u

cj = cj+1

cj(i) = (cj+1(2i � 1) + cj+1(2i))/2

cj(2
j + i) = (cj+1(2i � 1) � cj+1(2i))/2,

for j = n � 1, . . . , 0 and i = 1, . . . , 2j.

The vector over the Haar basis is c = c0.



1.7. HAAR BASIS VECTORS; A GLIMPSE AT WAVELETS 121

Here is an example of the conversion of a vector to its
Haar coe�cients for n = 3.

Given the sequence u = (31, 29, 23, 17, �6, �8, �2, �4),
we get the sequence

c3 = (31, 29, 23, 17, �6, �8, �2, �4)

c2 = (30, 20, �7, �3, 1, 3, 1, 1)

c1 = (25, �5, 5, �2, 1, 3, 1, 1)

c0 = (10, 15, 5, �2, 1, 3, 1, 1),

so c = (10, 15, 5, �2, 1, 3, 1, 1).

Conversely, given c = (10, 15, 5, �2, 1, 3, 1, 1), we get the
sequence

u0 = (10, 15, 5, �2, 1, 3, 1, 1)

u1 = (25, �5, 5, �2, 1, 3, 1, 1)

u2 = (30, 20, �7, �3, 1, 3, 1, 1)

u3 = (31, 29, 23, 17, �6, �8, �2, �4),

which gives back u = (31, 29, 23, 17, �6, �8, �2, �4).
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An important and attractive feature of the Haar basis is
that it provides a multiresolution analysis of a signal.

Indeed, given a signal u, if c = (c1, . . . , c2n) is the vector
of its Haar coe�cients, the coe�cients with low index give
coarse information about u, and the coe�cients with high
index represent fine information.

This multiresolution feature of wavelets can be exploited
to compress a signal, that is, to use fewer coe�cients to
represent it. Here is an example.

Consider the signal

u = (2.4, 2.2, 2.15, 2.05, 6.8, 2.8, �1.1, �1.3),

whose Haar transform is

c = (2, 0.2, 0.1, 3, 0.1, 0.05, 2, 0.1).

The piecewise-linear curves corresponding to u and c are
shown in Figure 1.11.

Since some of the coe�cients in c are small (smaller than
or equal to 0.2) we can compress c by replacing them by
0.
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Figure 1.11: A signal and its Haar transform

We get
c2 = (2, 0, 0, 3, 0, 0, 2, 0),

and the reconstructed signal is

u2 = (2, 2, 2, 2, 7, 3, �1, �1).

The piecewise-linear curves corresponding to u2 and c2

are shown in Figure 1.12.
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Figure 1.12: A compressed signal and its compressed Haar transform
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An interesting (and amusing) application of the Haar
wavelets is to the compression of audio signals.

It turns out that if your type load handel in Matlab

an audio file will be loaded in a vector denoted by y, and
if you type sound(y), the computer will play this piece
of music.

You can convert y to its vector of Haar coe�cients, c.
The length of y is 73113, so first tuncate the tail of y to
get a vector of length 65536 = 216.

A plot of the signals corresponding to y and c is shown
in Figure 1.13.
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Figure 1.13: The signal “handel” and its Haar transform
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Then, run a program that sets all coe�cients of c whose
absolute value is less that 0.05 to zero. This sets 37272
coe�cients to 0.

The resulting vector c2 is converted to a signal y2. A
plot of the signals corresponding to y2 and c2 is shown in
Figure 1.14.
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Figure 1.14: The compressed signal “handel” and its Haar transform

When you type sound(y2), you find that the music
doesn’t di↵er much from the original, although it sounds
less crisp.
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Another neat property of the Haar transform is that it can
be instantly generalized to matrices (even rectangular)
without any extra e↵ort!

This allows for the compression of digital images. But
first, we address the issue of normalization of the Haar
coe�cients.

As we observed earlier, the 2n ⇥ 2n matrix Wn of Haar
basis vectors has orthogonal columns, but its columns do
not have unit length.

As a consequence, W>
n is not the inverse of Wn, but rather

the matrix
W�1

n = DnW
>
n

with

Dn = diag
⇣
2�n, 2�n|{z}

20

, 2�(n�1), 2�(n�1)
| {z }

21

,

2�(n�2), . . . , 2�(n�2)
| {z }

22

, . . . , 2�1, . . . , 2�1
| {z }

2n�1

⌘
.
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Therefore, we define the orthogonal matrix

Hn = WnD
1
2
n

whose columns are the normalized Haar basis vectors,
with

D
1
2
n = diag

⇣
2�n

2 , 2�n
2|{z}

20

, 2�n�1
2 , 2�n�1

2| {z }
21

,

2�n�2
2 , . . . , 2�n�2

2| {z }
22

, . . . , 2�1
2 , . . . , 2�1

2| {z }
2n�1

⌘
.

We call Hn the normalized Haar transform matrix.

Because Hn is orthogonal, H�1
n = H>

n .

Given a vector (signal) u, we call c = H>
n u the normal-

ized Haar coe�cients of u.
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When computing the sequence of ujs, use

uj+1(2i � 1) = (uj(i) + uj(2
j + i))/

p
2

uj+1(2i) = (uj(i) � uj(2
j + i))/

p
2,

and when computing the sequence of cjs, use

cj(i) = (cj+1(2i � 1) + cj+1(2i))/
p
2

cj(2
j + i) = (cj+1(2i � 1) � cj+1(2i))/

p
2.

Note that things are now more symmetric, at the expense
of a division by

p
2. However, for long vectors, it turns

out that these algorithms are numerically more stable.
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Let us now explain the 2D version of the Haar transform.

We describe the version using the matrix Wn, the method
using Hn being identical (except that H�1

n = H>
n , but

this does not hold for W�1
n ).

Given a 2m ⇥ 2n matrix A, we can first convert the
rows of A to their Haar coe�cients using the Haar trans-
form W�1

n , obtaining a matrix B, and then convert the
columns of B to their Haar coe�cients, using the matrix
W�1

m .

Because columns and rows are exchanged in the first step,

B = A(W�1
n )>,

and in the second step C = W�1
m B, thus, we have

C = W�1
m A(W�1

n )> = DmW>
mAWn Dn.
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In the other direction, given a matrix C of Haar coe�-
cients, we reconstruct the matrix A (the image) by first
applying Wm to the columns of C, obtaining B, and then
W>

n to the rows of B. Therefore

A = WmCW>
n .

Of course, we dont actually have to invert Wm and Wn

and perform matrix multiplications. We just have to use
our algorithms using averaging and di↵erencing.

Here is an example. If the data matrix (the image) is the
8 ⇥ 8 matrix

A =

0

BBBBBBBBBB@

64 2 3 61 60 6 7 57
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
8 58 59 5 4 62 63 1

1

CCCCCCCCCCA

,

then applying our algorithms, we find that
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C =

0

BBBBBBBBBB@

32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 �4 4 �4
0 0 0 0 4 �4 4 �4
0 0 0.5 0.5 27 �25 23 �21
0 0 �0.5 �0.5 �11 9 �7 5
0 0 0.5 0.5 �5 7 �9 11
0 0 �0.5 �0.5 21 �23 25 �27

1

CCCCCCCCCCA

.

As we can see, C has a more zero entries than A; it is
a compressed version of A. We can further compress C
by setting to 0 all entries of absolute value at most 0.5.
Then, we get

C2 =

0

BBBBBBBBBB@

32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 �4 4 �4
0 0 0 0 4 �4 4 �4
0 0 0 0 27 �25 23 �21
0 0 0 0 �11 9 �7 5
0 0 0 0 �5 7 �9 11
0 0 0 0 21 �23 25 �27

1

CCCCCCCCCCA

.
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We find that the reconstructed image is

A2 =

0

BBBBBBBBBB@

63.5 1.5 3.5 61.5 59.5 5.5 7.5 57.5
9.5 55.5 53.5 11.5 13.5 51.5 49.5 15.5
17.5 47.5 45.5 19.5 21.5 43.5 41.5 23.5
39.5 25.5 27.5 37.5 35.5 29.5 31.5 33.5
31.5 33.5 35.5 29.5 27.5 37.5 39.5 25.5
41.5 23.5 21.5 43.5 45.5 19.5 17.5 47.5
49.5 15.5 13.5 51.5 53.5 11.5 9.5 55.5
7.5 57.5 59.5 5.5 3.5 61.5 63.5 1.5

1

CCCCCCCCCCA

,

which is pretty close to the original image matrix A.

It turns out that Matlab has a wonderful command,
image(X), which displays the matrix X has an image.

The images corresponding to A and C are shown in Fig-
ure 1.15. The compressed images corresponding to A2

and C2 are shown in Figure 1.16.

The compressed versions appear to be indistinguishable
from the originals!
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Figure 1.15: An image and its Haar transform

Figure 1.16: Compressed image and its Haar transform
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If we use the normalized matrices Hm and Hn, then the
equations relating the image matrix A and its normalized
Haar transform C are

C = H>
mAHn

A = HmCH>
n .

The Haar transform can also be used to send large images
progressively over the internet.

Observe that instead of performing all rounds of averaging
and di↵erencing on each row and each column, we can
perform partial encoding (and decoding).

For example, we can perform a single round of averaging
and di↵erencing for each row and each column.

The result is an image consisting of four subimages, where
the top left quarter is a coarser version of the original,
and the rest (consisting of three pieces) contain the finest
detail coe�cients.
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We can also perform two rounds of averaging and di↵er-
encing, or three rounds, etc. This process is illustrated on
the image shown in Figure 1.17. The result of performing

Figure 1.17: Original drawing by Durer

one round, two rounds, three rounds, and nine rounds of
averaging is shown in Figure 1.18.



136 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Since our images have size 512 ⇥ 512, nine rounds of av-
eraging yields the Haar transform, displayed as the image
on the bottom right. The original image has completely
disappeared!

Figure 1.18: Haar tranforms after one, two, three, and nine rounds of averaging
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We can find easily a basis of 2n ⇥ 2n = 22n vectors wij for
the linear map that reconstructs an image from its Haar
coe�cients, in the sense that for any matrix C of Haar
coe�cients, the image matrix A is given by

A =
2nX

i=1

2nX

j=1

cijwij.

Indeed, the matrix wj is given by the so-called outer prod-
uct

wij = wi(wj)
>.

Similarly, there is a basis of 2n ⇥ 2n = 22n vectors hij for
the 2D Haar transform, in the sense that for any matrix
A, its matrix C of Haar coe�cients is given by

C =
2nX

i=1

2nX

j=1

aijhij.

If W�1 = (w�1
ij ), then

hij = w�1
i (w�1

j )>.
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1.8 The E↵ect of a Change of Bases on Matrices

The e↵ect of a change of bases on the representation of a
linear map is described in the following proposition.

Proposition 1.15. Let E and F be vector spaces, let
U = (u1, . . . , un) and U 0 = (u0

1, . . . , u
0
n) be two bases

of E, and let V = (v1, . . . , vm) and V 0 = (v0
1, . . . , v

0
m)

be two bases of F . Let P = PU 0,U be the change of
basis matrix from U to U 0, and let Q = PV 0,V be the
change of basis matrix from V to V 0. For any lin-
ear map f : E ! F , let M(f ) = MU ,V(f ) be the ma-
trix associated to f w.r.t. the bases U and V, and let
M 0(f ) = MU 0,V 0(f ) be the matrix associated to f w.r.t.
the bases U 0 and V 0. We have

M 0(f ) = Q�1M(f )P,

or more explicitly

MU 0,V 0(f ) = P�1
V 0,VMU ,V(f )PU 0,U = PV ,V 0MU ,V(f )PU 0,U .



1.8. THE EFFECT OF A CHANGE OF BASES ON MATRICES 139

As a corollary, we get the following result.

Corollary 1.16. Let E be a vector space, and let
U = (u1, . . . , un) and U 0 = (u0

1, . . . , u
0
n) be two bases

of E. Let P = PU 0,U be the change of basis matrix
from U to U 0. For any linear map f : E ! E, let
M(f ) = MU(f ) be the matrix associated to f w.r.t.
the basis U , and let M 0(f ) = MU 0(f ) be the matrix
associated to f w.r.t. the basis U 0. We have

M 0(f ) = P�1M(f )P,

or more explicitly,

MU 0(f ) = P�1
U 0,UMU(f )PU 0,U = PU ,U 0MU(f )PU 0,U .
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Example 1.11. Let E = R2, U = (e1, e2) where e1 =
(1, 0) and e2 = (0, 1) are the canonical basis vectors, let
V = (v1, v2) = (e1, e1 � e2), and let

A =

✓
2 1
0 1

◆
.

The change of basis matrix P = PV ,U from U to V is

P =

✓
1 1
0 �1

◆
,

and we check that P�1 = P .

Therefore, in the basis V , the matrix representing the
linear map f defined by A is

A0 = P�1AP = PAP =

✓
1 1
0 �1

◆✓
2 1
0 1

◆✓
1 1
0 �1

◆

=

✓
2 0
0 1

◆
= D,

a diagonal matrix.
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Therefore, in the basis V , it is clear what the action of f
is: it is a stretch by a factor of 2 in the v1 direction and
it is the identity in the v2 direction.

Observe that v1 and v2 are not orthogonal.

What happened is that we diagonalized the matrix A.

The diagonal entries 2 and 1 are the eigenvalues of A
(and f ) and v1 and v2 are corresponding eigenvectors .

The above example showed that the same linear map can
be represented by di↵erent matrices. This suggests mak-
ing the following definition:

Definition 1.12. Two n⇥n matrices A and B are said
to be similar i↵ there is some invertible matrix P such
that

B = P�1AP.

It is easily checked that similarity is an equivalence rela-
tion.
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From our previous considerations, two n ⇥ n matrices A
and B are similar i↵ they represent the same linear map
with respect to two di↵erent bases.

The following surprising fact can be shown: Every square
matrix A is similar to its transpose A>.

The proof requires advanced concepts than we will not
discuss in these notes (the Jordan form, or similarity in-
variants).
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If U = (u1, . . . , un) and V = (v1, . . . , vn) are two bases
of E, the change of basis matrix

P = PV ,U =

0

BB@

a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann

1

CCA

from (u1, . . . , un) to (v1, . . . , vn) is the matrix whose jth
column consists of the coordinates of vj over the basis
(u1, . . . , un), which means that

vj =
nX

i=1

aijui.
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It is natural to extend the matrix notation and to express
the vector (v1, . . . , vn) in En as the product of a matrix
times the vector (u1, . . . , un) in En, namely as

0

BB@

v1

v2
...
vn

1

CCA =

0

BB@

a11 a21 · · · an1

a12 a22 · · · an2
... ... . . . ...

a1n a2n · · · ann

1

CCA

0

BB@

u1

u2
...

un

1

CCA ,

but notice that the matrix involved is not P , but its
transpose P>.

This observation has the following consequence: if
U = (u1, . . . , un) and V = (v1, . . . , vn) are two bases of
E and if

0

@
v1
...
vn

1

A = A

0

@
u1
...

un

1

A ,

that is,

vi =
nX

j=1

aijuj,
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for any vector w 2 E, if

w =
nX

i=1

xiui =
nX

k=1

ykvk,

then
0

@
x1
...

xn

1

A = A>

0

@
y1
...
yn

1

A ,

and so
0

@
y1
...
yn

1

A = (A>)�1

0

@
x1
...

xn

1

A .

It is easy to see that (A>)�1 = (A�1)>.
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Also, if U = (u1, . . . , un), V = (v1, . . . , vn), and
W = (w1, . . . , wn) are three bases of E, and if the change
of basis matrix from U to V is P = PV ,U and the change
of basis matrix from V to W is Q = PW ,V , then

0

@
v1
...
vn

1

A = P>

0

@
u1
...

un

1

A ,

0

@
w1
...

wn

1

A = Q>

0

@
v1
...
vn

1

A ,

so
0

@
w1
...

wn

1

A = Q>P>

0

@
u1
...

un

1

A = (PQ)>

0

@
u1
...

un

1

A ,

which means that the change of basis matrix PW ,U from
U to W is PQ.

This proves that

PW ,U = PV ,UPW ,V .
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Even though matrices are indispensable since they are the
major tool in applications of linear algebra, one should
not lose track of the fact that

linear maps are more fundamental, because they are
intrinsic objects that do not depend on the choice of
bases. Consequently, we advise the reader to try to
think in terms of linear maps rather than reduce

everthing to matrices.

In our experience, this is particularly e↵ective when it
comes to proving results about linear maps and matri-
ces, where proofs involving linear maps are often more
“conceptual.”
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Also, instead of thinking of a matrix decomposition, as a
purely algebraic operation, it is often illuminating to view
it as a geometric decomposition .

After all, a

a matrix is a representation of a linear map

and most decompositions of a matrix reflect the fact that
with a suitable choice of a basis (or bases), the linear
map is a represented by a matrix having a special shape.

The problem is then to find such bases.

Also, always try to keep in mind that

linear maps are geometric in nature; they act on
space.
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1.9 A�ne Maps

We showed in Section 1.5 that every linear map f must
send the zero vector to the zero vector, that is,

f (0) = 0.

Yet, for any fixed nonzero vector u 2 E (where E is any
vector space), the function tu given by

tu(x) = x + u, for all x 2 E

shows up in pratice (for example, in robotics).

Functions of this type are called translations . They are
not linear for u 6= 0, since tu(0) = 0 + u = u.

More generally, functions combining linear maps and trans-
lations occur naturally in many applications (robotics,
computer vision, etc.), so it is necessary to understand
some basic properties of these functions.
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For this, the notion of a�ne combination turns out to
play a key role.

Recall from Section 1.5 that for any vector space E, given
any family (ui)i2I of vectors ui 2 E, an a�ne combina-
tion of the family (ui)i2I is an expression of the form

X

i2I

�iui with
X

i2I

�i = 1,

where (�i)i2I is a family of scalars.

A linear combination is always an a�ne combination, but
an a�ne combination is a linear combination, with the
restriction that the scalars �i must add up to 1.

A�ne combinations are also called barycentric combina-
tions .

Although this is not obvious at first glance, the condi-
tion that the scalars �i add up to 1 ensures that a�ne
combinations are preserved under translations.
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To make this precise, consider functions f : E ! F ,
where E and F are two vector spaces, such that there
is some linear map h : E ! F and some fixed vector
b 2 F (a translation vector ), such that

f (x) = h(x) + b, for all x 2 E.

The map f given by
✓

x1

x2

◆
7!

✓
8/5 �6/5
3/10 2/5

◆✓
x1

x2

◆
+

✓
1
1

◆

is an example of the composition of a linear map with a
translation.

We claim that functions of this type preserve a�ne com-
binations.
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Proposition 1.17. For any two vector spaces E and
F , given any function f : E ! F defined such that

f (x) = h(x) + b, for all x 2 E,

where h : E ! F is a linear map and b is some fixed
vector in F , for every a�ne combination

P
i2I �iui

(with
P

i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if (ui).

In other words, f preserves a�ne combinations.

Surprisingly, the converse of Proposition 1.17 also holds.
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Proposition 1.18. For any two vector spaces E and
F , let f : E ! F be any function that preserves a�ne
combinations, i.e., for every a�ne combinationP

i2I �iui (with
P

i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if (ui).

Then, for any a 2 E, the function h : E ! F given
by

h(x) = f (a + x) � f (a)

is a linear map independent of a, and

f (a + x) = f (a) + h(x), for all x 2 E.

In particular, for a = 0, if we let c = f (0), then

f (x) = c + h(x), for all x 2 E.
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We should think of a as a chosen origin in E.

The function f maps the origin a in E to the origin f (a)
in F .

Proposition 1.18 shows that the definition of h does not
depend on the origin chosen in E. Also, since

f (x) = c + h(x), for all x 2 E

for some fixed vector c 2 F , we see that f is the com-
position of the linear map h with the translation tc (in
F ).

The unique linear map h as above is called the linear
map associated with f and it is sometimes denoted by
�!
f .

Observe that the linear map associated with a pure trans-
lation is the identity.

In view of Propositions 1.17 and 1.18, it is natural to
make the following definition.
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Definition 1.13. For any two vector spaces E and F , a
function f : E ! F is an a�ne map if f preserves a�ne
combinations, i.e., for every a�ne combination

P
i2I �iui

(with
P

i2I �i = 1), we have

f

✓X

i2I

�iui

◆
=
X

i2I

�if (ui).

Equivalently, a function f : E ! F is an a�ne map if

there is some linear map h : E ! F (also denoted by
�!
f )

and some fixed vector c 2 F such that

f (x) = c + h(x), for all x 2 E.

Note that a linear map always maps the standard origin
0 in E to the standard origin 0 in F .

However an a�ne map usually maps 0 to a nonzero vector
c = f (0). This is the “translation component” of the
a�ne map.
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When we deal with a�ne maps, it is often fruitful to think
of the elements of E and F not only as vectors but also
as points .

In this point of view, points can only be combined using
a�ne combinations , but vectors can be combined in an
unrestricted fashion using linear combinations.

We can also think of u + v as the result of translating
the point u by the translation tv.

These ideas lead to the definition of a�ne spaces , but
this would lead us to far afield, and for our purposes, it
is enough to stick to vector spaces.

Still, one should be aware that a�ne combinations really
apply to points, and that points are not vectors!

If E and F are finite dimensional vector spaces, with
dim(E) = n and dim(F ) = m, then it is useful to repre-
sent an a�ne map with respect to bases in E in F .
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However, the translation part c of the a�ne map must be
somewhow incorporated.

There is a standard trick to do this which amounts to
viewing an a�ne map as a linear map between spaces of
dimension n + 1 and m + 1.

We also have the extra flexibility of choosing origins,
a 2 E and b 2 F .

Let (u1, . . . , un) be a basis of E, (v1, . . . , vm) be a basis
of F , and let a 2 E and b 2 F be any two fixed vectors
viewed as origins .

Our a�ne map f has the property that

f (a + x) = c + h(x), x 2 E.

Thus, using our origins a and b, we can write

f (a + x) � b = c � b + h(x), x 2 E.
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Over the basis (u1, . . . , un), we write

x = x1u1 + · · · + xnun,

and over the basis (v1, . . . , vm), we write

y = y1v1 + · · · + ymvm.

We also write

d = c � b = d1v1 + · · · + dmvm.

Then, with y = f (a + x) � b, we have

y = h(x) + d.

If we let A be the m ⇥ n matrix representing the linear
map h, that is, the jth column of A consists of the coor-
dinates of h(uj) over the basis (v1, . . . , vm), then we can
write

y = Ax + d, x 2 Rn.

This is the matrix representation of our a�ne map f .
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The reason for using the origins a and b is that it gives
us more flexibility.

In particular, when E = F , if there is some a 2 E such
that f (a) = a (a is a fixed point of f ), then we can pick
b = a.

Then, because f (a) = a, we get

v = f (u) = f (a+u�a) = f (a)+h(u�a) = a+h(u�a),

that is
v � a = h(u � a).

With respect to the new origin a, if we define x and y by

x = u � a

y = v � a,

then we get
y = h(x).

Then, f really behaves like a linear map, but with respect
to the new origin a (not the standard origin 0). This is
the case of a rotation around an axis that does not pass
through the origin.
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Remark: A pair (a, (u1, . . . , un)) where (u1, . . . , un) is
a basis of E and a is an origin chosen in E is called an
a�ne frame .

We now describe the trick which allows us to incorporate
the translation part d into the matrix A.

We define the (m+1)⇥(n+1) matrix A0 obtained by first
adding d as the (n + 1)th column, and then (0, . . . , 0| {z }

n

, 1)

as the (m + 1)th row:

A0 =

✓
A d
0n 1

◆
.

Then, it is clear that
✓

y
1

◆
=

✓
A d
0n 1

◆✓
x
1

◆

i↵

y = Ax + d.
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This amounts to considering a point x 2 Rn as a point
(x, 1) in the (a�ne) hyperplane Hn+1 in Rn+1 of equa-
tion xn+1 = 1.

Then, an a�ne map is the restriction to the hyperplane
Hn+1 of the linear map bf from Rn+1 to Rm+1 corre-
sponding to the matrix A0, which maps Hn+1 into Hm+1

( bf (Hn+1) ✓ Hm+1).

Figure 1.19 illustrates this process for n = 2.

x1

x2

x3

(x1, x2, 1)

H3 : x3 = 1

x = (x1, x2)

Figure 1.19: Viewing Rn as a hyperplane in Rn+1 (n = 2)
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For example, the map
✓

x1

x2

◆
7!

✓
1 1
1 3

◆✓
x1

x2

◆
+

✓
3
0

◆

defines an a�ne map f which is represented in R3 by
0

@
x1

x2

1

1

A 7!

0

@
1 1 3
1 3 0
0 0 1

1

A

0

@
x1

x2

1

1

A .

It is easy to check that the point a = (6, �3) is fixed
by f , which means that f (a) = a, so by translating the
coordinate frame to the origin a, the a�ne map behaves
like a linear map.

The idea of considering Rn as an hyperplane in Rn+1 can
be used to define projective maps .
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Al\ cal<) have +,ov( lejs.
1h'O..{e -ro\.l( '). 

I OJ¥' q cat 

Figure 1.20: Dog Logic
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1.10 Direct Products, Sums, and Direct Sums

There are some useful ways of forming new vector spaces
from older ones.

Definition 1.14.Given p � 2 vector spacesE1, . . . , Ep,
the product F = E1⇥ · · ·⇥Ep can be made into a vector
space by defining addition and scalar multiplication as
follows:

(u1, . . . , up) + (v1, . . . , vp) = (u1 + v1, . . . , up + vp)

�(u1, . . . , up) = (�u1, . . . ,�up),

for all ui, vi 2 Ei and all � 2 R.

With the above addition and multiplication, the vector
space F = E1 ⇥ · · · ⇥ Ep is called the direct product of
the vector spaces E1, . . . , Ep.
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The projection maps pri : E1 ⇥ · · · ⇥ Ep ! Ei given by

pri(u1, . . . , up) = ui

are clearly linear.

Similarly, the maps ini : Ei ! E1 ⇥ · · · ⇥ Ep given by

ini(ui) = (0, . . . , 0, ui, 0, . . . , 0)

are injective and linear.

It can be shown (using bases) that

dim(E1 ⇥ · · · ⇥ Ep) = dim(E1) + · · · + dim(Ep).

Let us now consider a vector space E and p subspaces
U1, . . . , Up of E.

We have a map

a : U1 ⇥ · · · ⇥ Up ! E

given by
a(u1, . . . , up) = u1 + · · · + up,

with ui 2 Ui for i = 1, . . . , p.
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It is clear that this map is linear, and so its image is a
subspace of E denoted by

U1 + · · · + Up

and called the sum of the subspaces U1, . . . , Up.

By definition,

U1 + · · · + Up = {u1 + · · · + up | ui 2 Ui, 1  i  p},

and it is immediately verified that U1 + · · · + Up is the
smallest subspace of E containing U1, . . . , Up.

If the map a is injective, then Ker a = 0, which means
that if ui 2 Ui for i = 1, . . . , p and if

u1 + · · · + up = 0

then u1 = · · · = up = 0.

In this case, every u 2 U1 + · · · + Up has a unique ex-
pression as a sum

u = u1 + · · · + up,

with ui 2 Ui, for i = 1, . . . , p.
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It is also clear that for any p nonzero vectors ui 2 Ui,
u1, . . . , up are linearly independent.

Definition 1.15. For any vector space E and any p � 2
subspaces U1, . . . , Up of E, if the map a defined above is
injective, then the sum U1 + · · · + Up is called a direct
sum and it is denoted by

U1 � · · · � Up.

The space E is the direct sum of the subspaces Ui if

E = U1 � · · · � Up.

Observe that when the map a is injective, then it is a
linear isomorphism between U1 ⇥ · · · ⇥ Up and
U1 � · · · � Up.

The di↵erence is that U1 ⇥ · · · ⇥ Up is defined even if
the spaces Ui are not assumed to be subspaces of some
common space.

There are natural injections from each Ui to E denoted
by ini : Ui ! E.
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Now, if p = 2, it is easy to determine the kernel of the
map a : U1 ⇥ U2 ! E. We have

a(u1, u2) = u1 + u2 = 0 i↵ u1 = �u2, u1 2 U1, u2 2 U2,

which implies that

Ker a = {(u, �u) | u 2 U1 \ U2}.

Now, U1 \ U2 is a subspace of E and the linear map
u 7! (u, �u) is clearly an isomorphism, so Ker a is iso-
morphic to U1 \ U2.

As a consequence, we get the following result:

Proposition 1.19.Given any vector space E and any
two subspaces U1 and U2, the sum U1 + U2 is a direct
sum i↵ U1 \ U2 = 0.

Because of the isomorphism

U1 ⇥ · · · ⇥ Up ⇡ U1 � · · · � Up,

we have

dim(U1 � · · · � Up) = dim(U1) + · · · + dim(Up).
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If E is a direct sum

E = U1 � · · · � Up,

since every u 2 E can be written in a unique way as

u = u1 + · · · + up

for some ui 2 Ui for i = 1 . . . , p, we can define the maps
⇡i : E ! Ui, called projections , by

⇡i(u) = ⇡i(u1 + · · · + up) = ui.

It is easy to check that these maps are linear and satisfy
the following properties:

⇡j � ⇡i =

(
⇡i if i = j

0 if i 6= j,

⇡1 + · · · + ⇡p = idE.

A function f such that f�f = f is said to be idempotent .
Thus, the projections ⇡i are idempotent.

Conversely, the following proposition can be shown:
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Proposition 1.20. Let E be a vector space. For any
p � 2 linear maps fi : E ! E, if

fj � fi =

(
fi if i = j

0 if i 6= j,

f1 + · · · + fp = idE,

then if we let Ui = fi(E), we have a direct sum

E = U1 � · · · � Up.

We also have the following proposition characterizing idem-
potent linear maps whose proof is also left as an exercise.

Proposition 1.21. For every vector space E, if
f : E ! E is an idempotent linear map, i.e., f�f = f ,
then we have a direct sum

E = Ker f � Im f,

so that f is the projection onto its image Im f .

We are now ready to prove a very crucial result relating
the rank and the dimension of the kernel of a linear map.
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Theorem 1.22. Let f : E ! F be a linear map. For
any choice of a basis (f1, . . . , fr) of Im f , let (u1, . . . , ur)
be any vectors in E such that fi = f (ui), for i =
1, . . . , r. If s : Im f ! E is the unique linear map de-
fined by s(fi) = ui, for i = 1, . . . , r, then s is injective,
f � s = id, and we have a direct sum

E = Ker f � Im s

as illustrated by the following diagram:

Ker f // E = Ker f � Im s
f
//

Im f ✓ F.
s
oo

As a consequence,

dim(E) = dim(Ker f )+dim(Im f ) = dim(Ker f )+rk(f ).

Remark: The dimension dim(Ker f ) of the kernel of a
linear map f is often called the nullity of f .

We now derive some important results using Theorem
1.22.
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Proposition 1.23. Given a vector space E, if U and
V are any two subspaces of E, then

dim(U) + dim(V ) = dim(U + V ) + dim(U \ V ),

an equation known as Grassmann’s relation.

The Grassmann relation can be very useful to figure out
whether two subspace have a nontrivial intersection in
spaces of dimension > 3.

For example, it is easy to see that in R5, there are sub-
spaces U and V with dim(U) = 3 and dim(V ) = 2 such
that U \ V = 0

However, we can show that if dim(U) = 3 and dim(V ) =
3, then dim(U \ V ) � 1.

As another consequence of Proposition 1.23, if U and V
are two hyperplanes in a vector space of dimension n, so
that dim(U) = n � 1 and dim(V ) = n � 1, we have

dim(U \ V ) � n � 2,

and so, if U 6= V , then

dim(U \ V ) = n � 2.
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Proposition 1.24. If U1, . . . , Up are any subspaces of
a finite dimensional vector space E, then

dim(U1 + · · · + Up)  dim(U1) + · · · + dim(Up),

and

dim(U1 + · · · + Up) = dim(U1) + · · · + dim(Up)

i↵ the Uis form a direct sum U1 � · · · � Up.

Another important corollary of Theorem 1.22 is the fol-
lowing result:

Proposition 1.25. Let E and F be two vector spaces
with the same finite dimension dim(E) = dim(F ) =
n. For every linear map f : E ! F , the following
properties are equivalent:

(a) f is bijective.

(b) f is surjective.

(c) f is injective.

(d) Ker f = 0.
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One should be warned that Proposition 1.25 fails in infi-
nite dimension.

We also have the following basic proposition about injec-
tive or surjective linear maps.

Proposition 1.26. Let E and F be vector spaces, and
let f : E ! F be a linear map. If f : E ! F is
injective, then there is a surjective linear map r : F !
E called a retraction, such that r�f = idE. If f : E !
F is surjective, then there is an injective linear map
s : F ! E called a section, such that f � s = idF .

The notion of rank of a linear map or of a matrix impor-
tant, both theoretically and practically, since it is the key
to the solvability of linear equations.

Proposition 1.27. Given a linear map f : E ! F ,
the following properties hold:

(i) rk(f ) + dim(Ker f ) = dim(E).

(ii) rk(f )  min(dim(E), dim(F )).
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The rank of a matrix is defined as follows.

Definition 1.16. Given a m ⇥ n-matrix A = (ai j), the
rank rk(A) of the matrix A is the maximum number of
linearly independent columns of A (viewed as vectors in
Rm).

In view of Proposition 1.4, the rank of a matrix A is
the dimension of the subspace of Rm generated by the
columns of A.

Let E and F be two vector spaces, and let (u1, . . . , un) be
a basis of E, and (v1, . . . , vm) a basis of F . Let f : E !
F be a linear map, and let M(f ) be its matrix w.r.t. the
bases (u1, . . . , un) and (v1, . . . , vm).
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Since the rank rk(f ) of f is the dimension of Im f , which
is generated by (f (u1), . . . , f (un)), the rank of f is the
maximum number of linearly independent vectors in
(f (u1), . . . , f (un)), which is equal to the number of lin-
early independent columns of M(f ), since F and Rm are
isomorphic.

Thus, we have rk(f ) = rk(M(f )), for every matrix rep-
resenting f .

We will see later, using duality, that the rank of a ma-
trix A is also equal to the maximal number of linearly
independent rows of A.
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Figure 1.21: How did Newton start a business
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1.11 The Dual Space E⇤ and Linear Forms

We already observed that the field K itself (K = R or
K = C) is a vector space (over itself).

The vector space Hom(E, K) of linear maps from E to
the field K, the linear forms , plays a particular role.

We take a quick look at the connection between E and
E⇤ = Hom(E, K), its dual space .

As we will see shortly, every linear map f : E ! F gives
rise to a linear map f> : F ⇤ ! E⇤, and it turns out that
in a suitable basis, the matrix of f> is the transpose of
the matrix of f .

Thus, the notion of dual space provides a conceptual ex-
planation of the phenomena associated with transposi-
tion.

But it does more, because it allows us to view subspaces
as solutions of sets of linear equations and vice-versa.



1.11. THE DUAL SPACE E⇤ AND LINEAR FORMS 179

Consider the following set of two “linear equations” in
R3,

x � y + z = 0

x � y � z = 0,

and let us find out what is their set V of common solutions
(x, y, z) 2 R3.

By subtracting the second equation from the first, we get
2z = 0, and by adding the two equations, we find that
2(x � y) = 0, so the set V of solutions is given by

y = x

z = 0.

This is a one dimensional subspace of R3. Geometrically,
this is the line of equation y = x in the plane z = 0.
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Now, why did we say that the above equations are linear?

This is because, as functions of (x, y, z), both maps
f1 : (x, y, z) 7! x � y + z and f2 : (x, y, z) 7! x � y � z
are linear.

The set of all such linear functions fromR3 toR is a vector
space; we used this fact to form linear combinations of the
“equations” f1 and f2.

Observe that the dimension of the subspace V is 1.

The ambient space has dimension n = 3 and there are
two “independent” equations f1, f2, so it appears that
the dimension dim(V ) of the subspace V defined by m
independent equations is

dim(V ) = n � m,

which is indeed a general fact.
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More generally, in Rn, a linear equation is determined by
an n-tuple (a1, . . . , an) 2 Rn, and the solutions of this
linear equation are given by the n-tuples (x1, . . . , xn) 2
Rn such that

a1x1 + · · · + anxn = 0;

these solutions constitute the kernel of the linear map
(x1, . . . , xn) 7! a1x1 + · · · + anxn.

The above considerations assume that we are working in
the canonical basis (e1, . . . , en) of Rn, but we can define
“linear equations” independently of bases and in any di-
mension, by viewing them as elements of the vector space
Hom(E, K) of linear maps from E to the field K.
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Definition 1.17. Given a vector space E, the vector
space Hom(E, K) of linear maps from E to K is called
the dual space (or dual) of E. The space Hom(E, K) is
also denoted by E⇤, and the linear maps in E⇤ are called
the linear forms , or covectors . The dual space E⇤⇤ of
the space E⇤ is called the bidual of E.

As a matter of notation, linear forms f : E ! K will also
be denoted by starred symbol, such as u⇤, x⇤, etc.

IfE is a vector space of finite dimension n and (u1, . . . , un)
is a basis of E, for any linear form f ⇤ 2 E⇤, for every
x = x1u1 + · · · + xnun 2 E, we have

f ⇤(x) = �1x1 + · · · + �nxn,

where �i = f ⇤(ui) 2 K, for every i, 1  i  n.

Thus, with respect to the basis (u1, . . . , un), f ⇤(x) is a
linear combination of the coordinates of x, and we can
view a linear form as a linear equation .
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Given a linear form u⇤ 2 E⇤ and a vector v 2 E, the
result u⇤(v) of applying u⇤ to v is also denoted by hu⇤, vi.

This defines a binary operation h�, �i : E⇤ ⇥ E ! K
satisfying the following properties:

hu⇤
1 + u⇤

2, vi = hu⇤
1, vi + hu⇤

2, vi
hu⇤, v1 + v2i = hu⇤, v1i + hu⇤, v2i

h�u⇤, vi = �hu⇤, vi
hu⇤,�vi = �hu⇤, vi.

The above identities mean that h�, �i is a bilinear map,
since it is linear in each argument.

It is often called the canonical pairing between E⇤ and
E.
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In view of the above identities, given any fixed vector v 2
E, the map evalv : E⇤ ! K (evaluation at v) defined
such that

evalv(u
⇤) = hu⇤, vi = u⇤(v) for every u⇤ 2 E⇤

is a linear map from E⇤ to K, that is, evalv is a linear
form in E⇤⇤.

Again from the above identities, the map
evalE : E ! E⇤⇤, defined such that

evalE(v) = evalv for every v 2 E,

is a linear map.

We shall see that it is injective, and that it is an isomor-
phism when E has finite dimension.
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We now formalize the notion of the set V 0 of linear equa-
tions vanishing on all vectors in a given subspace V ✓ E,
and the notion of the set U 0 of common solutions of a
given set U ✓ E⇤ of linear equations.

The duality theorem (Theorem 1.28) shows that the di-
mensions of V and V 0, and the dimensions of U and U 0,
are related in a crucial way.

It also shows that, in finite dimension, the maps V 7! V 0

and U 7! U 0 are inverse bijections from subspaces of E
to subspaces of E⇤.



186 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Definition 1.18. Given a vector space E and its dual
E⇤, we say that a vector v 2 E and a linear form u⇤ 2 E⇤

are orthogonal i↵ hu⇤, vi = 0. Given a subspace V of
E and a subspace U of E⇤, we say that V and U are
orthogonal i↵ hu⇤, vi = 0 for every u⇤ 2 U and every
v 2 V . Given a subset V of E (resp. a subset U of E⇤),
the orthogonal V 0 of V is the subspace V 0 of E⇤ defined
such that

V 0 = {u⇤ 2 E⇤ | hu⇤, vi = 0, for every v 2 V }

(resp. the orthogonal U 0 of U is the subspace U 0 of E
defined such that

U 0 = {v 2 E | hu⇤, vi = 0, for every u⇤ 2 U}).

The subspace V 0 ✓ E⇤ is also called the annihilator of
V .
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The subspace U 0 ✓ E annihilated by U ✓ E⇤ does not
have a special name. It seems reasonable to call it the
linear subspace (or linear variety) defined by U .

Informally, V 0 is the set of linear equations that vanish
on V , and U 0 is the set of common zeros of all linear
equations in U . We can also define V 0 by

V 0 = {u⇤ 2 E⇤ | V ✓ Keru⇤}

and U 0 by

U 0 =
\

u⇤2U

Keru⇤.

Observe that E0 = 0, and {0}0 = E⇤.

Furthermore, if V1 ✓ V2 ✓ E, then V 0
2 ✓ V 0

1 ✓ E⇤, and
if U1 ✓ U2 ✓ E⇤, then U 0

2 ✓ U 0
1 ✓ E.
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It can also be shown that that V ✓ V 00 for every sub-
space V of E, and that U ✓ U 00 for every subspace U of
E⇤.

We will see shortly that in finite dimension, we have

V = V 00 and U = U 00.

Given a vector space E and any basis (ui)i2I for E, we
can associate to each ui a linear form u⇤

i 2 E⇤, and the
u⇤

i have some remarkable properties.

Definition 1.19. Given a vector space E and any basis
(ui)i2I for E, by Proposition 1.9, for every i 2 I , there is
a unique linear form u⇤

i such that

u⇤
i (uj) =

⇢
1 if i = j
0 if i 6= j,

for every j 2 I . The linear form u⇤
i is called the coordi-

nate form of index i w.r.t. the basis (ui)i2I .
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Remark: Given an index set I , authors often define the
so called Kronecker symbol �i j, such that

�i j =

⇢
1 if i = j
0 if i 6= j,

for all i, j 2 I .

Then,
u⇤

i (uj) = �i j.

The reason for the terminology coordinate form is as
follows: If E has finite dimension and if (u1, . . . , un) is a
basis of E, for any vector

v = �1u1 + · · · + �nun,

we have

u⇤
i (v) = �i.

Therefore, u⇤
i is the linear function that returns the ith co-

ordinate of a vector expressed over the basis (u1, . . . , un).

We have the following important duality theorem.
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Theorem 1.28. (Duality theorem) Let E be a vector
space of dimension n. The following properties hold:

(a) For every basis (u1, . . . , un) of E, the family of co-
ordinate forms (u⇤

1, . . . , u
⇤
n) is a basis of E⇤.

(b) For every subspace V of E, we have V 00 = V .

(c) For every pair of subspaces V and W of E such
that E = V �W , with V of dimension m, for every
basis (u1, . . . , un) of E such that (u1, . . . , um) is a
basis of V and (um+1, . . . , un) is a basis of W , the
family (u⇤

1, . . . , u
⇤
m) is a basis of the orthogonal W 0

of W in E⇤. Furthermore, we have W 00 = W , and

dim(W ) + dim(W 0) = dim(E).

(d) For every subspace U of E⇤, we have

dim(U) + dim(U 0) = dim(E),

where U 0 is the orthogonal of U in E, and
U 00 = U .



1.11. THE DUAL SPACE E⇤ AND LINEAR FORMS 191

Part (a) of Theorem 1.28 shows that

dim(E) = dim(E⇤),

and if (u1, . . . , un) is a basis of E, then (u⇤
1, . . . , u

⇤
n) is

a basis of the dual space E⇤ called the dual basis of
(u1, . . . , un).

By part (c) and (d) of theorem 1.28, the maps V 7! V 0

and U 7! U 0, where V is a subspace of E and U is a
subspace of E⇤, are inverse bijections.

These maps set up a duality between subspaces of E, and
subspaces of E⇤.

� One should be careful that this bijection does not hold
if E has infinite dimension. Some restrictions on the

dimensions of U and V are needed.
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When E is of finite dimension n and (u1, . . . , un) is a
basis of E, we noted that the family (u⇤

1, . . . , u
⇤
n) is a

basis of the dual space E⇤,

Let us see how the coordinates of a linear form '⇤ 2 E⇤

over the basis (u⇤
1, . . . , u

⇤
n) vary under a change of basis.

Let (u1, . . . , un) and (v1, . . . , vn) be two bases of E, and
let P = (ai j) be the change of basis matrix from (u1, . . . , un)
to (v1, . . . , vn), so that

vj =
nX

i=1

ai jui.

If

'⇤ =
nX

i=1

'iu
⇤
i =

nX

i=1

'0
iv

⇤
i ,

after some algebra, we get

'0
j =

nX

i=1

ai j'i.
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Comparing with the change of basis

vj =
nX

i=1

ai jui,

we note that this time, the coordinates ('i) of the linear
form '⇤ change in the same direction as the change of
basis.

For this reason, we say that the coordinates of linear forms
are covariant .

By abuse of language, it is often said that linear forms
are covariant , which explains why the term covector is
also used for a linear form.

Observe that if (e1, . . . , en) is a basis of the vector space
E, then, as a linear map from E to K, every linear form
f 2 E⇤ is represented by a 1 ⇥ n matrix, that is, by a
row vector

(�1 · · · �n),

with respect to the basis (e1, . . . , en) of E, and 1 of K,
where f (ei) = �i.
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A vector u =
Pn

i=1 uiei 2 E is represented by a n ⇥ 1
matrix, that is, by a column vector

0

@
u1
...

un

1

A ,

and the action of f on u, namely f (u), is represented by
the matrix product

�
�1 · · · �n

�
0

@
u1
...

un

1

A = �1u1 + · · · + �nun.

On the other hand, with respect to the dual basis (e⇤
1, . . . , e

⇤
n)

of E⇤, the linear form f is represented by the column vec-
tor

0

@
�1
...
�n

1

A .
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We will now pin down the relationship between a vector
space E and its bidual E⇤⇤.

Proposition 1.29. Let E be a vector space. The fol-
lowing properties hold:

(a) The linear map evalE : E ! E⇤⇤ defined such that

evalE(v) = evalv, for all v 2 E,

that is, evalE(v)(u⇤) = hu⇤, vi = u⇤(v) for every
u⇤ 2 E⇤, is injective.

(b) When E is of finite dimension n, the linear map
evalE : E ! E⇤⇤ is an isomorphism (called the
canonical isomorphism).

When E is of finite dimension and (u1, . . . , un) is a basis
of E, in view of the canonical isomorphism
evalE : E ! E⇤⇤, the basis (u⇤⇤

1 , . . . , u⇤⇤
n ) of the bidual is

identified with (u1, . . . , un).

Proposition 1.29 can be reformulated very fruitfully in
terms of pairings.
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Definition 1.20.Given two vector spaces E and F over
K, a pairing between E and F is a bilinear map
' : E ⇥ F ! K. Such a pairing is nondegenerate i↵

(1) for every u 2 E, if '(u, v) = 0 for all v 2 F , then
u = 0, and

(2) for every v 2 F , if '(u, v) = 0 for all u 2 E, then
v = 0.

A pairing ' : E ⇥ F ! K is often denoted by
h�, �i : E ⇥ F ! K.

For example, the map h�, �i : E⇤ ⇥ E ! K defined
earlier is a nondegenerate pairing (use the proof of (a) in
Proposition 1.29).

Given a pairing ' : E ⇥F ! K, we can define two maps
l' : E ! F ⇤ and r' : F ! E⇤ as follows:
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For every u 2 E, we define the linear form l'(u) in F ⇤

such that

l'(u)(y) = '(u, y) for every y 2 F ,

and for every v 2 F , we define the linear form r'(v) in
E⇤ such that

r'(v)(x) = '(x, v) for every x 2 E.

Proposition 1.30.Given two vector spaces E and F
over K, for every nondegenerate pairing
' : E ⇥ F ! K between E and F , the maps
l' : E ! F ⇤ and r' : F ! E⇤ are linear and injec-
tive. Furthermore, if E and F have finite dimension,
then this dimension is the same and l' : E ! F ⇤ and
r' : F ! E⇤ are bijections.

When E has finite dimension, the nondegenerate pair-
ing h�, �i : E⇤ ⇥ E ! K yields another proof of the
existence of a natural isomorphism between E and E⇤⇤.

Interesting nondegenerate pairings arise in exterior alge-
bra.
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ME,-rt< Ie. C l-OCK 

Figure 1.22: Metric Clock
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1.12 Hyperplanes and Linear Forms

Actually, Proposition 1.31 below follows from parts (c)
and (d) of Theorem 1.28, but we feel that it is also inter-
esting to give a more direct proof.

Proposition 1.31. Let E be a vector space. The fol-
lowing properties hold:

(a) Given any nonnull linear form f ⇤ 2 E⇤, its kernel
H = Ker f ⇤ is a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull)
linear form f ⇤ 2 E⇤ such that H = Ker f ⇤.

(c) Given any hyperplane H in E and any (nonnull)
linear form f ⇤ 2 E⇤ such that H = Ker f ⇤, for
every linear form g⇤ 2 E⇤, H = Ker g⇤ i↵ g⇤ = �f ⇤

for some � 6= 0 in K.

We leave as an exercise the fact that every subspace
V 6= E of a vector space E, is the intersection of all
hyperplanes that contain V .

We now consider the notion of transpose of a linear map
and of a matrix.
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1.13 Transpose of a Linear Map and of a Matrix

Given a linear map f : E ! F , it is possible to define a
map f> : F ⇤ ! E⇤ which has some interesting proper-
ties.

Definition 1.21. Given a linear map f : E ! F , the
transpose f> : F ⇤ ! E⇤ of f is the linear map defined
such that

f>(v⇤) = v⇤ � f,

for every v⇤ 2 F ⇤.

Equivalently, the linear map f> : F ⇤ ! E⇤ is defined
such that

hv⇤, f (u)i = hf>(v⇤), ui,

for all u 2 E and all v⇤ 2 F ⇤.
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It is easy to verify that the following properties hold:

(f + g)> = f> + g>

(g � f )> = f> � g>

id>
E = idE⇤.

� Note the reversal of composition on the right-hand side
of (g � f )> = f> � g>.

We also have the following property showing the natural-
ity of the eval map.

Proposition 1.32. For any linear map f : E ! F ,
we have

f>> � evalE = evalF � f,

or equivalently, the following diagram commutes:

E⇤⇤ f>>
//F ⇤⇤

E

evalE

OO

f
//F.

evalF

OO
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If E and F are finite-dimensional, then evalE and evalF
are isomorphisms, and if we identify E with its bidual
E⇤⇤ and F with its bidual F ⇤⇤, then

(f>)> = f.

Proposition 1.33. Given a linear map f : E ! F ,
for any subspace V of E, we have

f (V )0 = (f>)�1(V 0) = {w⇤ 2 F ⇤ | f>(w⇤) 2 V 0}.

As a consequence,

Ker f> = (Im f )0 and Ker f = (Im f>)0.
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The following theorem shows the relationship between the
rank of f and the rank of f>.

Theorem 1.34. Given a linear map f : E ! F , the
following properties hold.

(a) The dual (Im f )⇤ of Im f is isomorphic to
Im f> = f>(F ⇤); that is,

(Im f )⇤ ⇡ Im f>.

(b) If F is finite dimensional, then rk(f ) = rk(f>).

The following proposition can be shown, but it requires a
generalization of the duality theorem.

Proposition 1.35. If f : E ! F is any linear map,
then the following identities hold:

Im f> = (Ker (f ))0

Ker (f>) = (Im f )0

Im f = (Ker (f>)0

Ker (f ) = (Im f>)0.
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The following proposition shows the relationship between
the matrix representing a linear map f : E ! F and the
matrix representing its transpose f> : F ⇤ ! E⇤.

Proposition 1.36. Let E and F be two vector spaces,
and let (u1, . . . , un) be a basis for E, and (v1, . . . , vm)
be a basis for F . Given any linear map f : E ! F ,
if M(f ) is the m ⇥ n-matrix representing f w.r.t.
the bases (u1, . . . , un) and (v1, . . . , vm), the n ⇥ m-
matrix M(f>) representing f> : F ⇤ ! E⇤ w.r.t. the
dual bases (v⇤

1, . . . , v
⇤
m) and (u⇤

1, . . . , u
⇤
n) is the trans-

pose M(f )> of M(f ).

We now can give a very short proof of the fact that the
rank of a matrix is equal to the rank of its transpose.

Proposition 1.37. Given a m ⇥ n matrix A over a
field K, we have rk(A) = rk(A>).

Thus, given an m ⇥ n-matrix A, the maximum number
of linearly independent columns is equal to the maximum
number of linearly independent rows.
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Proposition 1.38.Given any m⇥n matrix A over a
field K (typically K = R or K = C), the rank of A is
the maximum natural number r such that there is an
invertible r ⇥ r submatrix of A obtained by selecting
r rows and r columns of A.

For example, the 3 ⇥ 2 matrix

A =

0

@
a11 a12

a21 a22

a31 a32

1

A

has rank 2 i↵ one of the three 2 ⇥ 2 matrices
✓

a11 a12

a21 a22

◆ ✓
a11 a12

a31 a32

◆ ✓
a21 a22

a31 a32

◆

is invertible. We will see in Chapter 3 that this is equiv-
alent to the fact the determinant of one of the above
matrices is nonzero.

This is not a very e�cient way of finding the rank of
a matrix. We will see that there are better ways using
various decompositions such as LU, QR, or SVD.
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1.14 The Four Fundamental Subspaces

Given a linear map f : E ! F (where E and F are
finite-dimensional), Proposition 1.33 revealed that the
four spaces

Im f, Im f>, Ker f, Ker f>

play a special role. They are often called the fundamental
subspaces associated with f .

These spaces are related in an intimate manner, since
Proposition 1.33 shows that

Ker f = (Im f>)0

Ker f> = (Im f )0,

and Theorem 1.34 shows that

rk(f ) = rk(f>).
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It is instructive to translate these relations in terms of
matrices (actually, certain linear algebra books make a
big deal about this!).

If dim(E) = n and dim(F ) = m, given any basis (u1, . . .,
un) of E and a basis (v1, . . . , vm) of F , we know that f is
represented by an m⇥n matrix A = (ai j), where the jth
column of A is equal to f (uj) over the basis (v1, . . . , vm).

Furthermore, the transpose map f> is represented by the
n ⇥ m matrix A> (with respect to the dual bases).

Consequently, the four fundamental spaces

Im f, Im f>, Ker f, Ker f>

correspond to
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(1) The column space of A, denoted by ImA or R(A);
this is the subspace of Rm spanned by the columns of
A, which corresponds to the image Im f of f .

(2) The kernel or nullspace of A, denoted by KerA or
N (A); this is the subspace of Rn consisting of all
vectors x 2 Rn such that Ax = 0.

(3) The row space of A, denoted by ImA> or R(A>);
this is the subspace of Rn spanned by the rows of A,
or equivalently, spanned by the columns of A>, which
corresponds to the image Im f> of f>.

(4) The left kernel or left nullspace of A denoted by
KerA> orN (A>); this is the kernel (nullspace) ofA>,
the subspace of Rm consisting of all vectors y 2 Rm

such that A>y = 0, or equivalently, y>A = 0.

Recall that the dimension r of Im f , which is also equal
to the dimension of the column space ImA = R(A), is
the rank of A (and f ).
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Then, some our previous results can be reformulated as
follows:

1. The column space R(A) of A has dimension r.

2. The nullspace N (A) of A has dimension n � r.

3. The row space R(A>) has dimension r.

4. The left nullspace N (A>) of A has dimension m � r.

The above statements constitute what Strang calls the
Fundamental Theorem of Linear Algebra, Part I (see
Strang [30]).
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The two statements

Ker f = (Im f>)0

Ker f> = (Im f )0

translate to

(1) The nullspace of A is the orthogonal of the row space
of A.

(2) The left nullspace of A is the orthogonal of the column
space of A.

The above statements constitute what Strang calls the
Fundamental Theorem of Linear Algebra, Part II (see
Strang [30]).

Since vectors are represented by column vectors and linear
forms by row vectors (over a basis in E or F ), a vector
x 2 Rn is orthogonal to a linear form y if

yx = 0.
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Then, a vector x 2 Rn is orthogonal to the row space of
A i↵ x is orthogonal to every row of A, namely
Ax = 0, which is equivalent to the fact that x belong to
the nullspace of A.

Similarly, the column vector y 2 Rm (representing a
linear form over the dual basis of F ⇤) belongs to the
nullspace of A> i↵ A>y = 0, i↵ y>A = 0, which means
that the linear form given by y> (over the basis in F ) is
orthogonal to the column space of A.

Since (2) is equivalent to the fact that the column space
of A is equal to the orthogonal of the left nullspace of
A, we get the following criterion for the solvability of an
equation of the form Ax = b:

The equation Ax = b has a solution i↵ for all y 2 Rm, if
A>y = 0, then y>b = 0.
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Indeed, the condition on the right-hand side says that b
is orthogonal to the left nullspace of A, that is, that b
belongs to the column space of A.

This criterion can be cheaper to check that checking di-
rectly that b is spanned by the columns of A. For exam-
ple, if we consider the system

x1 � x2 = b1

x2 � x3 = b2

x3 � x1 = b3

which, in matrix form, is written Ax = b as below:
0

@
1 �1 0
0 1 �1

�1 0 1

1

A

0

@
x1

x2

x3

1

A =

0

@
b1

b2

b3

1

A ,

we see that the rows of the matrix A add up to 0.
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In fact, it is easy to convince ourselves that the left nullspace
of A is spanned by y = (1, 1, 1), and so the system is solv-
able i↵ y>b = 0, namely

b1 + b2 + b3 = 0.

Note that the above criterion can also be stated negatively
as follows:

The equation Ax = b has no solution i↵ there is some
y 2 Rm such that A>y = 0 and y>b 6= 0.
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