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Chapter 1

Basics of Linear Algebra

1.1 Motivations: Linear Combinations, Linear Inde-
pendence and Rank

Consider the problem of solving the following system of
three linear equations in the three variables
1, %9, x3 € R:

1+ 219 — 23 =1
2$1+£U2—|—$3:2
561—2332—2333:3.

One way to approach this problem is introduce some
“column vectors.”
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Let u, v, w, and b, be the vectors given by

1 2 —1 1
u= 12 v=| 1 w=1[ 1 b= 12
1 —2 —2 3

and write our linear system as

T1U + ToU + x3w = b.

In the above equation, we used implicitly the fact that a
vector z can be multiplied by a scalar A € R, where

21 )\Zl
Az =\ 29 = )\22 ,
23 )\,2’3

and two vectors y and and z can be added, where

Y1 21 Y1+ 21
ytz=|p|t+|2]=|rt+*»
Y3 23 Y3 + 23
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The set of all vectors with three components is denoted
by R3x1

The reason for using the notation R**! rather than the
more conventional notation R® is that the elements of
R3*! are column vectors; they consist of three rows and
a single column, which explains the superscript 3 x 1.

On the other hand, R? = R x R x R consists of all triples
of the form (x1, xs, x3), with x1, 9,23 € R, and these
are row vectors.

For the sake of clarity, in this introduction, we will denote
the set of column vectors with n components by R™*!.
An expression such as

T1U + ToU + T3W

where u, v, w are vectors and the ;s are scalars (in R) is
called a linear combination.
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Using this notion, the problem of solving our linear sys-
tem
T1U + ToU + x3w = b

is equivalent to

determining whether b can be expressed as a linear
combination of u, v, w.

Now, if the vectors w,v,w are linearly independent,
which means that there is no triple (x1, 2, x3) # (0,0, 0)
such that

T1U + Tov + x3w = 03,

it can be shown that every vector in R**! can be written
as a linear combination of u, v, w.

Here, O3 is the zero vector

O3 =

o O O
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It is customary to abuse notation and to write 0 instead
of 03. This rarely causes a problem because in most cases,
whether 0 denotes the scalar zero or the zero vector can
be inferred from the context.

In fact, every vector z € R**! can be written in a unique
way as a linear combination

Z = X1U + ToU + T3W.
Then, our equation

T1U + ToU + 3w = b

has a unique solution, and indeed, we can check that

r1 = 1.4
X9 — —0.4
X3 = —0.4

1s the solution.

But then, how do we determine that some vectors are
linearly independent?

One answer is to compute the determinant det(u, v, w),
and to check that it is nonzero.
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In our case,
1 2 —1
det(u,v,w)=12 1 1 |=15,
1 —2 =2

which confirms that u, v, w are linearly independent.

Other methods consist of computing an LU-decomposition
or a QR~decomposition, or an SVD of the matriz con-
sisting of the three columns u, v, w,

then our linear combination ziu + zov + x3w can be
written in matrix form as
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1 2 -1 1
Tiu+ o0 +x3w= |2 1 1 T
1 =2 =2 3

So, our linear system is expressed by

12 —1\ [z 1
2 1 1 | =12].
1 -2 —2/) \aj 3

or more concisely as

Ax = b.

Now, what if the vectors u, v, w are
linearly dependent?
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For example, if we consider the vectors

1 2 —1
1 —1 2
we see that
u—v=w,

a nontrivial linear dependence.

[t can be verified that u and v are still linearly indepen-
dent.

Now, for our problem
T1U + ToU + 3w = b
to have a solution, it must be the case that b can be

expressed as linear combination of u and wv.

However, it turns out that u, v, b are linearly independent
(because det(u,v,b) = —6), so b cannot be expressed as
a linear combination of v and v and thus, our system has
no solution.
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If we change the vector b to

then
b=u+ v,
and so the system
iU+ 290 + 23w = b
has the solution

512'1:1, 1’2:1, 333:0.

Actually, since w = u — v, the above system is equivalent
to
(x1 + x3)u + (9 — 23)V =,

and because u and v are linearly independent, the unique
solution in x; + x3 and xy — 3 IS

T+ T3 = 1

X9 — I3 = 1,
which yields an infinite number of solutions parameter-
ized by x3, namely

X1 = 1 — T3

To =1+ x3.
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In summary, a 3 X 3 linear system may have a unique
solution, no solution, or an infinite number of solutions,
depending on the linear independence (and dependence)
or the vectors w, v, w, b.

This situation can be generalized to any nxXn system, and
even to any n X m system (n equations in m variables),
as we will see later.

The point of view where our linear system is expressed
in matrix form as Ax = b stresses the fact that the map
x +— Ax is a linear transformation.
This means that
A(Ax) = M(Ax)
for all z € R**! and all A € R, and that
Au + v) = Au + Awv,

for all u,v € R3*!.
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= 2

306 ¥ hanan;

Z apples
! < 47 apples 4 3.0 pescs

“IF oNWY HE coutD THINK |~
ABSTRACT TERQMS ™

Reproduced by special permission of Playboy Mag
Copyright € January 1970 by Plavboy.

Figure 1.1: The power of abstraction
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We can view the matrix A as a way of expressing a linear
map from R**! to R3*! and solving the system Az = b
amounts to determining whether b belongs to the image
(or range) of this linear map.

Yet another fruitful way of interpreting the resolution of
the system Az = b is to view this problem as an

intersection problem.

Indeed, each of the equations

1+ 209 — 23 =1
201 + x9 + 13 = 2
331—2332—25133:3

defines a subset of R? which is actually a plane.
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The first equation

$1+2$2—$3:1

defines the plane H; passing through the three points
(1,0,0),(0,1/2,0), (0,0, —1), on the coordinate axes, the
second equation

201 + Ty + x3 = 2

defines the plane Hs passing through the three points
(1,0,0),(0,2,0), (0,0, 2), on the coordinate axes, and the
third equation

261—2562—25133:3
defines the plane Hjs passing through the three points
(3,0,0),(0,—=3/2,0), (0,0, —3/2), on the coordinate axes.

The intersection H; N H; of any two distinct planes H;
and H; is a line, and the intersection H; N Hy M H3 of the
three planes consists of the single point (1.4, —0.4, —0.4).



22 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Under this interpretation, observe that we are focusing
on the rows of the matrix A, rather than on its columns,
as in the previous interpretations.

-
ENSTEN'S  [¢
| FirsT_Equarion J

Figure 1.2: Linear Equations
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Another great example of a real-world problem where lin-
ear algebra proves to be very effective is the problem of
data compression, that is, of representing a very large
data set using a much smaller amount of storage.

Typically the data set is represented as an m X n matrix
A where each row corresponds to an n-dimensional data
point and typically, m > n.

In most applications, the data are not independent so
the rank of A is a lot smaller than min{m,n}, and the
the goal of low-rank decomposition is to factor A as the
product of two matrices B and C', where B is a m X k
matrix and C is a k X n matrix, with k& < min{m, n}
(here, < means “much smaller than”):
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( Y ()

m X n m X k kxXn

\ )\ )

Now, it is generally too costly to find an exact factoriza-
tion as above, so we look for a low-rank matrix A" which
is a “good” approrimation of A.

In order to make this statement precise, we need to define
a mechanism to determine how close two matrices are.
This can be done using matriz norms, a notion discussed
in Chapter 4.

The norm of a matrix A is a nonnegative real number
| A|| which behaves a lot like the absolute value |z| of a
real number x.
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Then, our goal is to find some low-rank matrix A’ that
minimizes the norm

HA o A/HQ )

over all matrices A’ of rank at most k, for some given
k < min{m,n}.

Some advantages of a low-rank approximation are:

1. Fewer elements are required to represent A; namely,
k(m + n) instead of mn. Thus less storage and fewer
operations are needed to reconstruct A.

2. Often, the decomposition exposes the underlying struc-
ture of the data. Thus, it may turn out that “most”
of the significant data are concentrated along some
directions called principal directions.
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Low-rank decompositions of a set of data have a multi-
tude of applications in engineering, including computer
science (especially computer vision), statistics, and ma-
chine learning.

As we will see later in Chapter 13, the singular value de-
composition (SVD) provides a very satisfactory solution
to the low-rank approximation problem.

Still, in many cases, the data sets are so large that another
ingredient is needed: randomization. However, as a first
step, linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of opera-
tions are allowed on vectors.

In the early 1900, the notion of a wvector space emerged
as a convenient and unifying framework for working with
“linear” objects.
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1.2 Vector Spaces

A (real) vector space is a set E together with two op-
erations, +: £ x E — F and -: R x E — E. called
addition and scalar multiplication, that satisfy some
simple properties.

First of all, £ under addition has to be a commutative
(or abelian) group, a notion that we review next.

Howewver, keep in mind that vector spaces are not just
algebraic objects; they are also geometric objects.
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Definition 1.1. A group is a set G equipped with a bi-
nary operation -: G X G — G that associates an element
a-b € G to every pair of elements a,b € GG, and having
the following properties: - is associative, has an identity
element e € G, and every element in G is wnvertible
(w.r.t. ).

More explicitly, this means that the following equations
hold for all a, b, c € G:

(Gl)a-(b-¢c)=(a-b)-c (associativity);
(G2)a-e=e-a=ua. (identity);
(G3) For every a € G, there is some a! € G such that

a-at=ala=e (inverse).

A group G is abelian (or commutative) if
a-b=b-a
for all a,b € G.

A set M together with an operation -: M x M — M and
an element e satisfying only conditions (G1) and (G2) is
called a monoid.
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For example, the set N = {0,1,...,n,...} of natu-
ral numbers is a (commutative) monoid under addition.
However, it is not a group.

Example 1.1.

. Theset Z={...,—n,...,—1,0,1,...,n,...} of
integers is a group under addition, with identity ele-
ment 0. However, Z* = Z — {0} is not a group under
multiplication.

2. The set Q of rational numbers (fractions p/q with
p,q € Z and q # 0) is a group under addition, with
identity element 0. The set Q* = Q — {0} is also a
oroup under multiplication, with identity element 1.

3. Similarly, the sets R of real numbers and C of com-
plex numbers are groups under addition (with iden-
tity element 0), and R* = R — {0} and C* = C— {0}
are groups under multiplication (with identity element

1),
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. The sets R” and C" of n-tuples of real or complex

numbers are groups under componentwise addition:

(xlv"°7xn)+(y17°"7yn):(x1+y17"'7xn+yn>p

with identity element (0,...,0). All these groups are
abelian.

. Given any nonempty set S, the set of bijections

f: 5 — 5, also called permutations of S, is a group
under function composition (i.e., the multiplication
of f and g is the composition g o f), with identity
element the identity function idg. This group is not
abelian as soon as S has more than two elements.

. The set of n x n matrices with real (or complex) co-

efficients is a group under addition of matrices, with

identity element the null matrix. It is denoted by
M, (R) (or M, (C)).

. The set R[.X] of all polynomials in one variable with

real coefficients is a group under addition of polyno-
mials.
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. The set of n x n invertible matrices with real (or

complex) coefficients is a group under matrix mul-
tiplication, with identity element the identity matrix

I,,. This group is called the general linear group and
is usually denoted by GL(n,R) (or GL(n, C)).

. The set of n x n invertible matrices with real (or com-

plex) coefficients and determinant 41 is a group un-
der matrix multiplication, with identity element the
identity matrix [,,. This group is called the special

linear group and is usually denoted by SL(n,R) (or
SL(n,C)).

The set of n X n invertible matrices with real coeffi-
cients such that RR'" = I, and of determinant +1 is a
oroup called the special orthogonal group and is usu-
ally denoted by SO(n) (where R' is the transpose
of the matrix R, i.e., the rows of R' are the columns
of R). It corresponds to the rotations in R
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11. Given an open interval |a, b[, the set C(]a, b]) of con-
tinuous functions f: |a,b[— R is a group under the
operation f 4+ g defined such that

(f +9)(x) = f(x) + g(z)

for all x €la, b].

It is customary to denote the operation of an abelian
group G by +, in which case the inverse ¢! of an element
a € (G is denoted by —a.

Vector spaces are defined as follows.
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Definition 1.2. A real vector space is a set E (of vec-
tors) together with two operations +: X E — FE (called
vector addition)t and -: R x E — E (called scalar

multiplication) satisfying the following conditions for all
a,8 € Rand all u,v € E;

(VO) E' is an abelian group w.r.t. 4+, with identity element

In (V3), * denotes multiplication in R.

Given o € R and v € F, the element «-v is also denoted
by av. The field R is often called the field of scalars.

In definition 1.2, the field R may be replaced by the field
of complex numbers C, in which case we have a complex
vector space.

IThe symbol + is overloaded, since it denotes both addition in the field R and addition of vectors in E.
It is usually clear from the context which + is intended.

2The symbol 0 is also overloaded, since it represents both the zero in R (a scalar) and the identity element
of E (the zero vector). Confusion rarely arises, but one may prefer using 0 for the zero vector.
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It is even possible to replace R by the field of rational
numbers Q or by any other field K (for example Z/pZ,
where p is a prime number), in which case we have a

K -vector space (in (V3), * denotes multiplication in the
field K).

In most cases, the field K will be the field R of reals.

From (V0), a vector space always contains the null vector
0, and thus is nonempty.

From (V1), we get -0 =0, and o - (—v) = — (v - v).
From (V2), we get 0-v =0, and (—a) - v = —(a - v).

Another important consequence of the axioms is the fol-
lowing fact: For any v € F and any A € R, if A # 0 and
A-u =0, then u = 0.

The field R itself can be viewed as a vector space over
itself, addition of vectors being addition in the field, and
multiplication by a scalar being multiplication in the field.
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Example 1.2.

L.
2.

The fields R and C are vector spaces over R.

The groups R" and C" are vector spaces over R, and
C" is a vector space over C.

. The ring R[X],, of polynomials of degree at most n

with real coeflicients is a vector space over R, and the
ring C|X],, of polynomials of degree at most n with
complex coeflicients is a vector space over C.

. The ring R|X] of all polynomials with real coeflicients

is a vector space over R, and the ring C|X] of all
polynomials with complex coefficients is a vector space
over C.

. The ring of n x n matrices M, (R) is a vector space

over R.

. The ring of m x n matrices M, ,(R) is a vector space

over R.

. The ring C(]a, b]) of continuous functions f: |a, b|—

R is a vector space over R.
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Let E be a vector space. We would like to define the
important notions of linear combination and linear inde-
pendence.

These notions can be defined for sets of vectors in £, but
it will turn out to be more convenient to define them for
families (v;);er, where I is any arbitrary index set.
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1.3 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that
there possess bases.

What this means is that in every vector space, E, there is
some set of vectors, {eq, ..., e,}, such that every vector
v € E can be written as a linear combination,

v=Mer+ -+ e,

of the e;, for some scalars, A\1,..., A\, € R.
Furthermore, the n-tuple, (A1, ..., \,), as above is unique.

This description is fine when £ has a finite basis,
{e1,..., ey}, but this is not always the case!

For example, the vector space of real polynomials, R[X],
does not have a finite basis but instead it has an infinite
basis, namely

1, X, X? ..., X"

9 o oee
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For simplicity, in this chapter, we will restrict our atten-
tion to vector spaces that have a finite basis (we say that
they are finite-dimensional).

Given a set A, an [-indexed family (a;);er of elements
of A (for short, a family) is simply a function a: I — A.
Remark: When considering a family (a;);ez, there is no

reason to assume that I is ordered.

The crucial point is that every element of the family is
uniquely indexed by an element of 1.

Thus, unless specified otherwise, we do not assume that
the elements of an index set are ordered.

We agree that when I =0, (a;)ier = 0. A family (a;);es
is finite if  is finite.
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Given a family (u;);e; and any element v, we denote by
(ui)ier Uk (v)

the family (w;);erugr) defined such that, w; = v, if i € 1,
and wy = v, where k is any index such that k ¢ 1.

Given a family (u;);er, a subfamily of (u;);er is a family
(1) jes where J is any subset of .

In this chapter, unless specified otherwise, it is assumed
that all families of scalars are finite (i.e., their index set
is finite).
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Definition 1.3. Let E be a vector space. A vector
v € E is a linear combination of a family (u;),c; of
elements of F iff there is a family (\;);es of scalars in R

such that
U = Z )\z'uz'-
When I = (), we stipulate that v = 0.

We say that a family (u;);es is linearly independent ift
for every family ()\;);e; of scalars in R,

Z )\ZUZ =0 implies that )\z =0 forallz € I.

el
Equivalently, a family (u;);er is linearly dependent iff
there is some family ()\;);e; of scalars in R such that

Z)‘iui =0 and A; #0 for some j € I.

il
We agree that when I = (), the family () is linearly inde-
pendent.

A family (u;);es is linearly independent iff either I = 0,
or I consists of a single element ¢ and u; # 0, or |I| > 2
and no vector u; in the family can be expressed as a linear
combination of the other vectors in the family.
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A family (u;);es is linearly dependent iff either I consists
of a single element, say ¢, and u; = 0, or |I| > 2 and some
u; in the family can be expressed as a linear combination
of the other vectors in the family.

When [ is nonempty, if the family (u;);es is linearly in-
dependent, then u; # 0 for all ¢ € I. Furthermore, if
[I| > 2, then w; # u; for all 4, 5 € I with ¢ # 7.

Example 1.3.

1. Any two distinct scalars A\, u # 0 in R are linearly
dependent.

2. In R3, the vectors (1,0,0), (0,1,0), and (0,0,1) are
linearly independent.

3. In R*, the vectors (1,1,1,1), (0,1,1,1), (0,0,1,1),
and (0, 0,0, 1) are linearly independent.

4. In R?, the vectorsu = (1,1),v = (0,1) and w = (2, 3)
are linearly dependent, since

w=2u -+ .
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When I is finite, we often assume that it is the set [ =
{1,2,...,n}. In this case, we denote the family (u;);es
as (U, ..., Up).

The notion of a subspace of a vector space is defined as
follows.

Definition 1.4. Given a vector space F/, a subset F'of F
is a linear subspace (or subspace) of E iff F'is nonempty
and A\u + pv € F for all u,v € F, and all A\, u € R.

It is easy to see that a subspace F' of E is indeed a vector
space.

It is also easy to see that any intersection of subspaces
is a subspace.

Every subspace contains the vector 0.

For any nonempty finite index set I, one can show by
induction on the cardinality of I that if (u;);e; is any
family of vectors u; € F and (\;);es is any family of

scalars, then > ., \iu; € F.
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The subspace {0} will be denoted by (0), or even 0 (with
a mild abuse of notation).

Example 1.4.
1. In R?, the set of vectors u = (x, y) such that
x+y=0
is a subspace.
2. In R?, the set of vectors u = (z,y, 2) such that
r+y+z=0
is a subspace.

3. For any n > 0, the set of polynomials f(X) € R|.X]
of degree at most n is a subspace of R[.X].

4. The set of upper triangular n X n matrices is a sub-
space of the space of n x n matrices.

Proposition 1.1. Giwen any vector space E, if S 1s
any nonempty subset of E, then the smallest subspace
(S) (or Span(S)) of E containing S is the set of all
(finite) linear combinations of elements from S.



44 CHAPTER 1. BASICS OF LINEAR ALGEBRA

One might wonder what happens it we add extra condi-
tions to the coefficients involved in forming linear combi-
nations.

Here are three natural restrictions which turn out to be

important (as usual, we assume that our index sets are
finite):

(1) Consider combinations ) ., Aju; for which
d oA=L
iel

These are called affine combinations.

One should realize that every linear combination
> i Atk can be viewed as an affine combination.

However, we get new spaces. For example, in R?,
the set of all afline combinations of the three vectors
er = (1,0,0),e5 = (0,1,0), and e3 = (0,0, 1), is the
plane passing through these three points.

Since it does not contain 0 = (0, 0, 0), it is not a linear
subspace.
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(2) Consider combinations ) ., \ju; for which
A >0, forallzel.

These are called positive (or conic) combinations.

It turns out that positive combinations of families of
vectors are cones. They show up naturally in convex
optimization.

(3) Consider combinations )
(1) and (2), that is

.1 Ait; for which we require

d Ai=1, and \>0 foralicl.
These are called convexr combinations.

Given any finite family of vectors, the set of all convex
combinations of these vectors is a convex polyhedron.

Convex polyhedra play a very important role in
convex optimization.
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Figure 1.3: The right Tech
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1.4 Bases of a Vector Space

Definition 1.5. Given a vector space F and a subspace
V of E, a family (v;);e; of vectors v; € V' spans V' or
generates V iff for every v € V, there is some family
(A;)ier of scalars in R such that

(U Z )\ZUZ

We also say that the elements of (v;);e; are generators
of V' and that V is spanned by (v;)ics, or generated by

(Uz')iel-

If a subspace V of E is generated by a finite family (v;);er,
we say that V' is finitely generated.

A family (u;);er that spans V' and is linearly independent
is called a basis of V.
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Example 1.5.

1. In R3, the vectors (1,0,0), (0,1,0), and (0,0,1) form
a basis.

2. The vectors (1,1,1,1),(1,1,—1,—-1),(1,—1,0,0),
(0,0,1,—1) form a basis of R* known as the Haar
basis. This basis and its generalization to dimension
2" are crucial in wavelet theory:.

3. In the subspace of polynomials in R|X] of degree at
most n, the polynomials 1, X, X2, ..., X" form a ba-
SIS.

n

k

k =0,...,n, also form a basis of that space. These
polynomials play a major role in the theory of spline
curves.

(1 — X)X for

4. The Bernstein polynomaials

It is a standard result of linear algebra that every vector
space F has a basis, and that for any two bases (u;)er
and (v;);es, I and J have the same cardinality.

In particular, if £ has a finite basis of n elements, every
basis of E has n elements, and the integer n is called the
dimenston of the vector space F.
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We begin with a crucial lemma.

Lemma 1.2. Given a linearly independent family (u;);er
of elements of a vector space E, if v € E is not a lin-
ear combination of (u;);er, then the family (u;);crUr(v)
obtained by adding v to the family (u;)ier is linearly
independent (where k & I ).

The next theorem holds in general, but the proof is more
sophisticated for vector spaces that do not have a finite
set of generators.

Theorem 1.3. Given any finite family S = (u;)ier
generating a vector space E and any linearly indepen-
dent subfamily L = (u;);es of S (where J C 1), there
1s a basis B of B/ such that L C B C S.
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The following proposition giving useful properties charac-
terizing a basis is an immediate consequence of Theorem

1.3.

Proposition 1.4. Given a vector space E, for any
family B = (v;);er of vectors of E, the following prop-
erties are equivalent:

(1) B is a basis of E.
(2) B is a maximal linearly independent family of E.
(3) B is a minimal generating family of E.

The following replacement lemma due to Steinitz shows
the relationship between finite linearly independent fam-
ilies and finite families of generators of a vector space.
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Proposition 1.5. (Replacement lemma) Given a vec-
tor space E, let (u;);c; be any finite linearly indepen-
dent family in E, where |I| = m, and let (vj);c; be
any finite family such that every u; is a linear combi-
nation of (v;)jes, where |J| =n. Then, there exists a
set L and an injection p: L — J (a relabeling func-
tion) such that LNI =10, |L| =n —m, and the fam-
ilies (ui)ier U (Vo0))ier and (vj)jes generate the same
subspace of E. In particular, m < n.

The idea is that m of the vectors v; can be replaced by
the linearly independent u;’s in such a way that the same
subspace is still generated.

The purpose of the function p: L — J is to pick n—m el-
ements 71, ..., Jp—m of J and to relabel them {y,...,[,_,
in such a way that these new indices do not clash with the
indices in [; this way, the vectors v;,, ..., v;,_, who “sur-
vive” (i.e. are not replaced) are relabeled v;,...,v;, . |
and the other m vectors v; with j € J — {J1,..., Jn-m}

are replaced by the u;. The index set of this new family
is I UL.
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Actually, one can prove that Proposition 1.5 implies The-
orem 1.3 when the vector space is finitely generated.

Putting Theorem 1.3 and Proposition 1.5 together, we
obtain the following fundamental theorem.

Theorem 1.6. Let E be a finitely generated vector
space. Any family (u;)ie; generating E contains a
subfamily (u;) e which is a basis of E. Furthermore,
for every two bases (u;)ie; and (v;);e; of E, we have
I| = |J| =n for some fized integer n > 0.

Remark: Theorem 1.6 also holds for vector spaces that
are not finitely generated.

When FE is not finitely generated, we say that E is of
infinite dimension.

The dimension of a finitely generated vector space E' is
the common dimension n of all of its bases and is denoted

by dim(F).
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Clearly, if the field R itself is viewed as a vector space,
then every family (a) where a € R and a # 0 is a basis.
Thus dim(R) = 1.

Note that dim({0}) = 0.

If E is a vector space of dimension n > 1, for any sub-
space U of F,

if dim(U) = 1, then U is called a line;

if dim(U) = 2, then U is called a plane;

if dim(U) =n — 1, then U is called a hyperplane.

If dim(U) = k, then U is sometimes called a k-plane.
Let (u;);er be a basis of a vector space F.

For any vector v € F| since the family (u;);c; generates
E | there is a family (\;);es of scalars in R, such that

el
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A very important fact is that the family (\;);e; is unique.

Proposition 1.7. Given a vector space E, let (u;)ics
be a family of vectors in E. Let v € E, and assume
that v =) ..; \iwi. Then, the family (\;)icr of scalars
such that v =Y. A\ is unique iff (u;)ier is linearly
independent.

el

If (u;);er is a basis of a vector space E, for any vector
v € E. if (x;);er is the unique family of scalars in R such

that
UV = Z TilUy,

il
each x; is called the component (or coordinate) of index
i of v with respect to the basis (u;);er.

Many interesting mathematical structures are vector spaces.

A very important example is the set of linear maps be-
tween two vector spaces to be defined in the next section.
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Here is an example that will prepare us for the vector
space of linear maps.

Example 1.6. Let X be any nonempty set and let E
be a vector space. The set of all functions f: X — FE

can be made into a vector space as follows: Given any
two functions f: X — E and g: X — E, let
(f +g): X — E be defined such that

(f +9)(x) = f(z) + g(z)

for all x € X, and for every A € R, let Af: X — E be
defined such that

(Af)(x) = Af(z)
for all x € X.

The axioms of a vector space are easily verified.
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1.5 Linear Maps

A function between two vector spaces that preserves the
vector space structure is called a homomorphism of vector
spaces, or linear map.

Linear maps formalize the concept of linearity of a func-
tion.

Keep in maind that linear maps, which are
transformations of space, are usually far more
important than the spaces themselves.

In the rest of this section, we assume that all vector spaces
are real vector spaces.
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Definition 1.6. Given two vector spaces E and F'. a
linear map between E and F'is a function f: B — F
satisfying the following two conditions:

flea+y)=flz)+ fly) foralaz,yeE;
f(Ax) = Af(x) forall \e R, x € E.

Setting x = y = 0 in the first identity, we get f(0) = 0.

The basic property of linear maps is that they transform
linear combinations into linear combinations.

Given any finite family (u;);e; of vectors in E. given any
family (\;);er of scalars in R, we have

f(z i) = ) Nif (w),

el el

The above identity is shown by induction on |I| using the
properties of Definition 1.6.
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Example 1.7.
1. The map f: R? — R? defined such that

/
T =T —Yy
/

y =x+y
is a linear map.

2. For any vector space E, the identity map id: £ — E
given by
idiu) =u forallu e E

is a linear map. When we want to be more precise,
we write id g instead of id.

3. The map D: R|X] — R[X] defined such that

D(f(X)) = f1(X),

where f'(X) is the derivative of the polynomial f(X),
is a linear map
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Definition 1.7. Given a linear map f: £ — F, we
define its image (or range) Im f = f(F), as the set

Im f={y € F| 3z € E)(y = flx))},
and its Kernel (or nullspace) Ker f = f~1(0), as the set

Ker f ={x € F| f(x) =0}.

Proposition 1.8. Giwen a linear map f: E — F,
the set Im f is a subspace of F' and the set Ker f is a
subspace of . The linear map f: E — F' is injective
iff Ker f =0 (where 0 is the trivial subspace {0}).

Since by Proposition 1.8, the image Im f of a linear map
f is a subspace of F', we can define the rank rk(f) of f
as the dimension of Im f.
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A fundamental property of bases in a vector space is that
they allow the definition of linear maps as unique homo-
morphic extensions, as shown in the following proposi-
tion.

Proposition 1.9. Given any two vector spaces E and
F, given any basis (u;)ic; of E, given any other family
of vectors (v;)ier in F', there is a unique linear map
f: E — F such that f(u;) = v; for alli € I.

Furthermore, f is injective iff (v;)ier is linearly inde-
pendent, and f is surjective iff (v;);e; generates F.

By the second part of Proposition 1.9, an injective linear
map f: E — F sends a basis (u;);c; to a linearly inde-
pendent family (f(w;));er of F', which is also a basis when
f is bijective.

Also, when E and F' have the same finite dimension n,
(u;)ier is a basis of E, and f: E — F is injective, then
(f(u;))ier is a basis of F' (by Proposition 1.4).
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The following simple proposition is also usetul.

Proposition 1.10. Given any two vector spaces E
and F, with F' nontrivial, given any family (u;);e; of
vectors in E, the following properties hold:

(1) The family (u;);e; generates E iff for every family
of vectors (v;);er in F, there is at most one linear
map f: E — F such that f(u;) = v; for alli € 1.

(2) The family (u;)ier is linearly independent iff for
every family of vectors (v;);er in F', there is some
linear map f: E — F such that f(u;) = v; for all
1€ 1.
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Given vector spaces E, F'. and GG, and linear maps
f: E — Fand g: FF — @G, it is easily verified that the
composition go f: £ — G of f and g is a linear map.

A linear map f: E — F' is an 1somorphism iff there is
a linear map g: F' — E, such that

gof:idE and ng:idF. <>I<>
[t is immediately verified that such a map ¢ is unique.

The map g is called the tnverse of f and it is also denoted

by =1,

Proposition 1.9 shows that it F© = R", then we get an
isomorphism between any vector space E of dimension
|J| = n and R".

One can verify that if f: £ — F'is a bijective linear
map, then its inverse f~': F — E is also a linear map,
and thus f is an isomorphism.
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Another useful corollary of Proposition 1.9 is this:

Proposition 1.11. Let E be a vector space of finite
dimension n > 1 and let f: E — E be any linear
map. The following properties hold:

(1) If f has a left inverse g, that is, if g is a linear
map such that go f = id, then f is an isomorphism
and f~!=g.

(2) If f has a right inverse h, that is, if h is a linear
map such that foh =1id, then f is an isomorphism

and f~1 =h.

The set of all linear maps between two vector spaces
E and F is denoted by Hom(FE, F').
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When we wish to be more precise and specify the field
K over which the vector spaces E' and F' are defined we

write Homy (E, F).

The set Hom(FE, F') is a vector space under the operations
defined at the end of Section 1.1, namely

(f +9)(x) = f(z) + g(z)

for all z € E, and

(Af)() = Af(z)

for all x € F.

When E and F' have finite dimensions, the vector space
Hom(F, F') also has finite dimension, as we shall see
shortly.

When E = F', a linear map f: £ — FE is also called an
endomorphism. The space Hom(E, E) is also denoted

by End(FE).
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It is also important to note that composition confers to
Hom(FE, E) a ring structure.

Indeed, composition is an operation

o: Hom(FE, E) x Hom(F, EF) — Hom(FE, E), which is
associative and has an identity idg, and the distributivity
properties hold:

(g1 +g2)of=giof+gaof;
go(fi+fo)=gofitgofo

The ring Hom(FE, E) is an example of a noncommutative
ring.

It is easily seen that the set of bijective linear maps
f: B — FEisa group under composition. Bijective linear
maps are also called automorphisms.

The group of automorphisms of E is called the general
linear group (of F), and it is denoted by GL(E), or
by Aut(FE), or when E = R", by GL(n,R), or even by
GL(n).
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Figure 1.5: Hitting Power
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1.6 Matrices

Proposition 1.9 shows that given two vector spaces ' and
F and a basis (u;)jes of E, every linear map f: B — F
is uniquely determined by the family (f(u;));es of the
images under f of the vectors in the basis (u;);e.

If we also have a basis (v;);e; of F, then every vector
f(u;) can be written in a unique way as

flug) =) aiju,
il
where j € J, for a family of scalars (a; j)ier.
Thus, with respect to the two bases (u;);e; of E and

(v;)ier of F', the linear map f is completely determined
by a “I x J-matrix’

M(f)= (%‘j)iel, jed-
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Remark: Note that we intentionally assigned the index
set J to the basis (u;);es of E, and the index I to the
basis (v;);e; of F', so that the rows of the matrix M (f)
associated with f: E — F' are indexed by I, and the
columns of the matrix M (f) are indexed by J.

Obviously, this causes a mildly unpleasant reversal. If we
had considered the bases (u;)ier of E and (vj);es of F,
we would obtain a J x I-matrix M (f) = (a;i)jes, icI-

No matter what we do, there will be a reversall We de-
cided to stick to the bases (u;);es of E and (v;)ier of F,
so that we get an [ x J-matrix M (f), knowing that we
may occasionally suffer from this decision!
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When I and J are finite, and say, when |I| = m and |J| =
n, the linear map f is determined by the matrix M (f)
whose entries in the j-th column are the components of
the vector f(u;) over the basis (vy,...,v,), that is, the
matrix

a1 a12 ... Ain
as1 Ao29 ... a9
M<f>: . . In

aAmi1 Am2 ... Amn

whose entry on row ¢ and column j is a;; (1 <@ < m,
1 <j5<n).
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We will now show that when E and F' have finite dimen-
sion, linear maps can be very conveniently represented
by matrices, and that composition of linear maps corre-
sponds to matrix multiplication.

We will follow rather closely an elegant presentation method
due to Emil Artin.

Let E and F' be two vector spaces, and assume that E
has a finite basis (ug,...,u,) and that F' has a finite
basis (v1, ..., vy). Recall that we have shown that every
vector x € E can be written in a unique way as

r=21U1 + -+ Tpupy,

and similarly every vector y € F' can be written in a
unique way as

Y =y101+ -+ YmUn

Let f: E — F' be a linear map between £ and F'.
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Then, for every x = z1u1 + - - - + x,u, in E, by linearity,
we have
fla) =a1f(w) + -+ f(un).
Let
flu;) = a1 01+ -+ QU

or more concisely,

f(uj) — Z a; jU;,

1=1

for every 5,1 < 75 <n.

This can be expressed by writing the coeflicients
a1j,a2j, - - ., am; of f(u;) over the basis (vy,...,vy), as
the jth column of a matrix, as shown below:

flur) flug) .. flun)
(o] ail a9 AT
(%) as ar»p ... A9y

Um Am1  Am2 ... OGmp
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Then, substituting the right-hand side of each f(u;) into
the expression for f(x), we get

m m

f(x) = xl(z a;1v;) + -+ xn(z ainV;),

i=1 i=1
which, by regrouping terms to obtain a linear combination
of the v;, yields

n n

f(x) — (Z Cllj%‘)?h + e+ (Z amjxj)vm.

j=1 j=1

Thus, letting f(x) =y = y1v1 + + - - + YU, We have

n

Yi = Zaz‘j%‘ (1)

j=1
forall 7, 1 <7 <m.

To make things more concrete, let us treat the case where
n =3 and m = 2.
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In this case,

f(uy) = ayyvy + anve
f(ug) = ayovy + axvs
f(us) = a13v1 + asgvo,

which in matrix form is expressed by

flur) fluz) f(us)
(%] aii ai2 a13
vy \ a1 ax  ags )’
and for any x = x1uq + xous + x3u3, We have

f(x) = f(xrur + xous + 3U3)
= o1 f(u1) + xo f(ug) + w3 f(us)
= z1(anvi + aznvz) + T2(a1201 + a2v2)
+ x3(a13v1 + agsvo)
= (a1121 + a12x2 + a1373)v1
+ (ag171 + ag9xs + agzws)vs.

Consequently, since

Y = Y11 + YaU2,
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we have

Y1 = a11T1 + A12T9 + 1373
Y2 = G211 + A22T2 + A23T3.

This agrees with the matrix equation

X1
Y1\ [ an a2 ais
Y2 a1 Q22 A23

X3

Let us now consider how the composition of linear maps
is expressed in terms of bases.

Let E, F', and G, be three vectors spaces with respec-
tive bases (uy,...,up,) for E, (vi,...,v,) for F, and
(w1, ..., wy,) for G.

Let g: E — F and f: F — G be linear maps.

As explained earlier, g: £ — F'is determined by the im-
ages of the basis vectors u;, and f: F' — G is determined
by the images of the basis vectors vy.
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We would like to understand how fog: £ — G is de-
termined by the images of the basis vectors u;.

Remark: Note that we are considering linear maps

g: F — Fand f: FF — G, instead of f: £ — F and
g: F — G, which yields the composition fog: £ — G
instead of go f: B — G.

Our perhaps unusual choice is motivated by the fact that
if f is represented by a matrix M(f) = (a;x) and g is
represented by a matrix M (g) = (b ), then

fog: E — G is represented by the product AB of the
matrices A and B.

If we had adopted the other choice where f: F — F' and

g: FF— G, then go f: E — G would be represented by
the product BA.

Obviously, this is a matter of tastel We will have to live
with our perhaps unorthodox choice.
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Thus, let

m

f(%) — Z a; Wy,
i=1
for every k, 1 < k < n, and let

glu) = bejur,
k=1

for every 7,1 < 5 <.

Also if

T = T1U1 + =+ Tply,
let

y = g()

and

2= fly)=(fog)(z),
with

Y =1y01+ -+ Yplp
and

7
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After some calculations, we get

Z Z a; kbkj
j=1

Thus, defining ¢; ; such that

n
Cij — E az’kbkzj>
k=1

for 1 <7 <m,and 1 <7 < p, we have

p
5=y (4)
j=1

Identity (4) suggests defining a multiplication operation
on matrices, and we proceed to do so.
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Definition 1.8. If K =R or K = C, an m X n-matrix
over K is a family (a; j)1<i<m. 1<j<n Of scalars in K, rep-
resented by an array

a1 ar2 ... Ain
as1 A9 ... Q9n
aAm1 Am2 ... Amn

In the special case where m = 1, we have a row vector,
represented by

(Cl11 Clln)

and in the special case where n = 1, we have a column
vector, represented by

aii
am 1

In these last two cases, we usually omit the constant index
1 (first index in case of a row, second index in case of a
column).
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The set of all m x n-matrices is denoted by M,, ,,(K) or
Mn.

An n X n-matrix is called a square matriz of dimension
n.

The set of all square matrices of dimension n is denoted
by M,(K), or M,,.

Remark: As defined, a matrix A = (a;;)1<i<m. 1<j<n
is a famaly, that is, a function from {1,2,...,m} x
{1,2,...,n} to K.

As such, there is no reason to assume an ordering on the
indices. Thus, the matrix A can be represented in many
different ways as an array, by adopting different orders
for the rows or the columns.

However, it is customary (and usually convenient) to as-
sume the natural ordering on the sets {1,2,...,m} and
{1,2,...,n}, and to represent A as an array according
to this ordering of the rows and columns.
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We also define some operations on matrices as follows.

Definition 1.9. Given two m X n matrices A = (a; ;)
and B = (b;;), we define their sum A + B as the matrix
C' = (c;;) such that ¢;; = a;; + b;j; that is,

appr a2 ... dinp bi1 b2 ... bip
as1 aA929 ... Q9n 1 bgl bgg bgn
Am1 Gmo «.. Qmn b1 bmo ... boyn
a11+bll CL12—|—1912 a1n+b1n
. a21—|—b21 a22+b22 a2n+b2n
am1+bm1 am2+bm2 amn+bmn

We define the matrix —A as the matrix (—a; ;).

Given a scalar A € K, we define the matrix A\A as the
matrix C' = (¢;;) such that ¢;; = Aa; j; that is

a1 a12 ... Ain )\&11 )\alg )\aln
A as1 aA29 ... Aon )\&21 )\&22 )\&gn

Am1 Am2 - .. Qmn A1 NG9 ... AN,



82 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Given an m x n matrices A = (a;1) and an n X p matrices
B = (bg;), we define their product AB as the m X p
matrix C' = (¢; ;) such that

n
Cij — g az’kbkj>
k=1

for 1 <7 <m,and 1 <7 <p. In the product AB=C
shown below

a1 ar2 ... Ain b11 b12 c. blp
as1 a292 ... A9n b21 b22 c. bgp
Am1 Am?2 .. Amn bnl bng ce bnp
Ci1 €12 ... Cip

C21 C22 ... C2y

Cm1 Cm2 --- Cmp
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note that the entry of index ¢ and 5 of the matrix AB ob-
tained by multiplying the matrices A and B can be iden-
tified with the product of the row matrix corresponding
to the i-th row of A with the column matriz corre-
sponding to the j-column of B:

blj n

(ai1 -+ ain) 5 :Zaz’kbkj-

The square matrix I, of dimension n containing 1 on
the diagonal and 0 everywhere else is called the identity
matriz. It is denoted by

10 ...0
00 ...1

Given an m X n matrix A = (a;;), its transpose A" =
(ajTZ-), is the n X m-matrix such that ajTZ- = a;;, for all 7,
I1<t<m,andall 5,1 <5 <n.

The transpose of a matrix A is sometimes denoted by A?,
or even by 'A.
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Note that the transpose A' of a matrix A has the prop-
erty that the j-th row of A" is the j-th column of A.

In other words, transposition exchanges the rows and the
columns of a matrix.

The following observation will be useful later on when we
discuss the SVD. Given any m xXn matrix A and any n xp
matrix B, if we denote the columns of A by A, ... A"
and the rows of B by By, ..., B,, then we have

AB = A'Bi+---+ A"B,,.

For every square matrix A of dimension n, it is immedi-

ately verified that Al, = [,,A = A.

If a matrix B such that AB = BA = I, exists, then it is
unique, and it is called the inverse of A. The matrix B
is also denoted by A~!.

An invertible matrix is also called a nonsingular matrix,
and a matrix that is not invertible is called a singular
matrix.
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Proposition 1.11 shows that if a square matrix A has a
left inverse, that is a matrix B such that BA = I, or a
right inverse, that is a matrix C' such that AC' = I, then
A is actually invertible; so B = A~ and C = A~!. This
also follows from Proposition 1.25.

[t is immediately verified that the set M,, ,(K) of m xn
matrices is a vector space under addition of matrices and
multiplication of a matrix by a scalar.

Consider the m x n-matrices E; ; = (epr), defined such
that e;; =1, and ey, = 0,if h # 1 or k # .

[t is clear that every matrix A = (a;;) € M, »(K) can
be written in a unique way as

A= Z Z CLUE@’]‘.

i=1 j=1

Thus, the family (E; j)1<i<m.1<j<n 1S & basis of the vector
space M, ,(K), which has dimension mn.
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Square matrices provide a natural example of a noncom-
mutative ring with zero divisors.

Example 1.8. For example, letting A, B be the 2 x 2-
matrices

then

and

= (L) (00 (0).
- ()00

We now formalize the representation of linear maps by
maftrices.
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Definition 1.10. Let E and F' be two vector spaces,
and let (ug,...,u,) be abasis for E, and (vy,...,v,) be
a basis for F'. Each vector x € E expressed in the basis
(U1, ..., uy) as * = xyug + -+ - - + Ty, is represented by
the column matrix

X1

and similarly for each vector y € F' expressed in the basis
(v1,...,vy). Every linear map f: F — F is represented
by the matrix M (f) = (a;;), where a; ; is the ¢-th compo-
nent of the vector f(u;) over the basis (v1, ..., vy,), ie.,
where

flu;) = Zaijvi, for every 7,1 < j <n,.
i=1
The coeflicients ay;, agj, ..., am; of f(u;) over the basis
(v1,...,vy) form the jth column of the matrix M(f)
shown below:

fur) fluz) ... flug)
(] ail a19 ... Qin
(%) a1 a2 ... Qop

Um Am1 Am2 .. Qmn
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The matrix M (f) associated with the linear map
f: E — Fis called the matriz of f with respect to the
bases (U1, ..., u,) and (vy,..., V).

When E = F and the basis (vq,...,v,,) is identical to
the basis (uq, ..., u,) of E, the matrix M (f) associated
with f: E — FE (as above) is called the matriz of f with
respect to the basis (uy, ..., uy,).

Remark: As in the remark after Definition 1.8, there
is no reason to assume that the vectors in the bases
(w1, ...,u,) and (v, ..., v,) are ordered in any particu-
lar way:.

However, it is often convenient to assume the natural or-
dering. When this is so, authors sometimes refer to the

matrix M (f) as the matrix of f with respect to the
ordered bases (uy,...,u,) and (vq, ..., vy).



1.6. MATRICES 89

Then, given a linear map f: E — [F' represented by the
matrix M(f) = (a;;) w.r.t. the bases (uy,...,u,) and

(v1, ..., Un), by equations (1) and the definition of matrix
multlphcatlon the equatzon y f(x) corresponds to
the matrix equation M (y (f)M (x), that is,

Y1 L1

Ym Ln

Recall that

a1 ar2 ... Ain I
as1 aA292 ... A9n i)
Am1 Am2 ... Amn In
11 12 A1n
a2 1 a2 92 a9 n
=T —l‘ﬂfg + - —|—33'n
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Sometimes, it is necessary to incoporate the bases

(U, ..., u,) and (vy, ..., vy) in the notation for the ma-
trix M (f) expressing f with respect to these bases. This
turns out to be a messy enterprise!

We propose the following course of action: write
U = (up,...,u,) and V = (vy,...,vy,) for the bases of
E and F', and denote by

My y(f)
the matriz of f with respect to the bases U and V.

Furthermore, write x;, for the coordinates

M(z) = (x1,...,2,) of x € E w.r.t. the basis U and
write gy for the coordinates M (y) = (y1, ..., Ym) of

y € F w.r.t. the basis V . Then,

y = f(z)

is expressed in matrix form by

yy = My y(f) zy.

When U =V, we abbreviate My y(f) as My(f).
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The above notation seems reasonable, but it has the slight
disadvantage that in the expression My y( f)xy, the input
argument x;; which is fed to the matrix My, y(f) does not
appear next to the subscript U in My y(f).

We could have used the notation My ( f), and some peo-
ple do that. But then, we find a bit confusing that V
comes before U when f maps from the space £ with the
basis U to the space F' with the basis V.

So, we prefer to use the notation My y(f).
Be aware that other authors such as Meyer [25] use the
notation |f|yy, and others such as Dummit and Foote

[13] use the notation MY (f), instead of My y(f).

This gets worse! You may find the notation MY (f) (as
in Lang [21]), or 4[f]y, or other strange notations.
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Let us illustrate the representation of a linear map by a
matrix i a concrete situation.

Let E be the vector space R| X, of polynomials of degree
at most 4, let F' be the vector space R|X]3 of polynomi-
als of degree at most 3, and let the linear map be the
derivative map d: that is,

d(P+ Q) =dP+dQ
d(\P) = \dP,

with A € R.

We choose (1, z, 2%, 23, 2*) as a basis of E and (1, z, 22, 2°)

as a basis of F'.

Then, the 4 x 5 matrix D associated with d is obtained
by expressing the derivative dx’ of each basis vector
for i = 0,1,2,3,4 over the basis (1, z, 2%, 2°).



1.6. MATRICES 93

We find

01000
00200
b= 00030
00004

Then, if P denotes the polynomial
P =3z" — 5z + 2% — Tx + 5,

we have
dP = 122° — 1522 + 22 — 7,

the polynomial P is represented by the vector
(5, —7,1,—5,3) and dP is represented by the vector
(—7,2,—15,12), and we have

()

o O O O
o O O

o O NN O
oW o O
- o O O

|

—_

&

\_35 ) 12

as expected!



94 CHAPTER 1. BASICS OF LINEAR ALGEBRA

The kernel (nullspace) of d consists of the polynomials of
degree 0, that is, the constant polynomials.

Therefore dim(Kerd) = 1, and from
dim(FE) = dim(Ker d) + dim(Im d)

(see Theorem 1.22), we get dim(Imd) = 4
(since dim(FE) = 5).

For fun, let us figure out the linear map from the vector
space R X3 to the vector space R[X], given by integra-
tion (finding the primitive, or anti-derivative) of z*, for
i=0,1,2,3).

The 5 x 4 matrix S representing [ with respect to the
same bases as before is
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We verify that DS = Iy,

01000 /? 8 8 8 N /1000
0 0 1/3 0
00004/ \y o 75 1) 00O

as it should!

The equation DS = I, show that S is injective and has
D as a left inverse. However, SD # I5, and instead

00200
8 1é2 133 8 00030/ 8 8 é | 8 |
0000 4
\0 0 0 1/4) \0 000 1)

because constant polynomials (polynomials of degree 0)
belong to the kernel of D.
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The function that associates to a linear map

f: E — F thematrix M (f) w.r.t. the bases (uq, ..., u,)
and (vy, ..., ;) has the property that matrix multipli-
cation corresponds to composition of linear maps.

This allows us to transfer properties of linear maps to
matrices.
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Proposition 1.12. (1) Given any matrices
A e Mun(K), Be M,,(K), and C € M, ,(K), we
have

(AB)C = A(BC);
that 1s, matriz multiplication is associative.

(2) Given any matrices A, B € M,,, ,(K), and
C,D e M, ,(K), for all \ € K, we have

(A+ B)C = AC + BC
A(C + D)= AC + AD
(AA)C = \(AC)
ANC) = MAC),

so that matriz multiplication
-t My () X My, o (K) = My, ,(K) is bilinear.

Note that Proposition 1.12 implies that the vector space
M, (K) of square matrices is a (noncommutative) ring
with unit 1,.
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The following proposition states the main properties of
the mapping f — M (f) between Hom(E, F') and M,,, ,,.

In short, it is an isomorphism of vector spaces.

Proposition 1.13. Given three vector spaces E, F,
G, with respective bases (uq, ..., uy,), (V1,...,v,), and
(w1, ..., wy), the mapping M : Hom(E, F') — M,,, that
associates the matriz M(g) to a linear map g: E — F

satisfies the following properties for all x € E, all
g, h: E— F,and all f: FF — G-

M(g(z)) = M(g)M(x)

M(g +h) = M(g) + M(h)
M(Ag) = AM (g)

M(fog)=M(f)M(g).

Thus, M: Hom(E, F) — M, , is an isomorphism of
vector spaces, and when p = n and the basis (vy, ..., vy,)
is identical to the basis (u, ..., uy),

M : Hom(E, E) — M, is an isomorphism of rings.
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In view of Proposition 1.13, it seems preferable to rep-
resent vectors from a vector space of finite dimension as
column vectors rather than row vectors.

Thus, from now on, we will denote vectors of R” (or more
generally, of K™) as columm vectors.

[t is important to observe that the isomorphism

M: Hom(E, F) — M, given by Proposition 1.13 de-
pends on the choice of the bases (uy, ..., u,) and

(v1, ..., v,), and similarly for the isomorphism

M : Hom(E, E) — M, which depends on the choice of

the basis (u1, ..., uy,).

Thus, it would be useful to know how a change of basis
affects the representation of a linear map f: E — F' as
a matrix.



100 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Proposition 1.14. Let E be a vector space, and let

(w1, ...,u,) be a basis of E. For every family (vq, ..., v,),
let P = (a;j) be the matriz defined such that v; =
> o aiu;. The matriz P is invertible iff (vy, ..., v,)

s a basis of E.

Definition 1.11. Given a vector space E of dimension
n, for any two bases (uq,...,u,) and (vy,...,v,) of E,
let P = (a;;) be the invertible matrix defined such that

n
vj = E W Ui,
i=1

which is also the matrix of the identity id: £/ — E with
respect to the bases (vy,...,v,) and (uq, ..., u,), in that
order. Indeed, we express each id(v;) = v; over the basis
(U1, ...,up). The coefficients ay;, asj, ..., an; of v; over
the basis (uq, ..., u,) form the jth column of the matrix
P shown below:

V1 V2 ... Up
Ui aip a2 ... Qip

Uz a1 Q22 ... Q2p

U, Apl Ap2 ... App
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The matrix P is called the change of basis matriz from
(Ugy .-y Up) to (U1, ..., 0p).

Clearly, the change of basis matrix from (vq,...,v,) to
(ur, ..., uy,)is P71

Since P = (a; ;) is the matrix of the identity id: F — E

with respect to the bases (vq,...,v,) and (uq, ..., uy,),
given any vector x € E, it x = xyuy + - - - + x,u,, Over
the basis (uq, ..., u,) and © = zjv; + - - - + 2] v, over the
basis (v1, ..., v,), from Proposition 1.13, we have

L1 a1 A1n 51?'1

Ln ap1 - Upn ZC;I
showing that the old coordinates (x;) of x (over (uy, ..., uy))

are expressed in terms of the new coordinates (z}) of x
(over (v1,...,v,)).

Now we face the painful task of assigning a “good” nota-
tion incorporating the bases U = (uq, ..., u,) and

YV = (v1,...,v,) into the notation for the change of basis
matrix from U to V.
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Because the change of basis matrix from U to V is the
matrix of the identity map idg with respect to the bases
V and U in that order, we could denote it by My 14(id)
(Meyer |25] uses the notation [I]y ).

We prefer to use an abbreviation for My ,(id) and we will
use the notation

Pyy

for the change of basis matrix from U to V.
Note that

—1
Fuy = Py

Then, if we write xy = (w1,...,x,) for the old co-
ordinates of x with respect to the basis U and xy =
(x}, ..., x)) for the new coordinates of x with respect to
the basis V, we have

—1
Ty = iju Ty, Ty = PV,Z/{ Ty -
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The above may look backward, but remember that the
matrix My y(f) takes input expressed over the basis U
to output expressed over the basis V.

Consequently, Py, takes input expressed over the basis V
to output expressed over the basis U, and xyy = Py vy
matches this point of view!

& Beware that some authors (such as Artin [1]) define the

change of basis matrix from U to V as Byy = P), é{

Under this point of view, the old basis U is expressed in
terms of the new basis V. We find this a bit unnatural.

Also, in practice, it seems that the new basis is often
expressed in terms of the old basis, rather than the other
way around.

Since the matrix P = Py expresses the new basis
(v1,...,v,) in terms of the old basis (uq,..., u,), we
observe that the coordinates (z;) of a vector x vary in
the opposite direction of the change of basis.
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For this reason, vectors are sometimes said to be con-
travariant.

However, this expression does not make sense! Indeed, a
vector in an intrinsic quantity that does not depend on a
specific basis.

What makes sense is that the coordinates of a vector
vary in a contravariant fashion.

Let us consider some concrete examples of change of bases.

Example 1.9. Let £ = F = R? with u; = (1,0),
U9 = (O, 1), V1 — (1, 1) and Vo) — <—1, 1)

The change of basis matrix P from the basis U = (uy, us)
to the basis V = (vy, v9) is

P=(i )

= (5 0)

and 1ts 1nverse 1S
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The old coordinates (z1, x2) with respect to (uq,us) are
expressed in terms of the new coordinates (x7, x5) with
respect to (vy, vg) by

1\ 1 —1 CC’l
o) \1 1 xh )’
and the new coordinates (x}, x5) with respect to (vq, vo)

are expressed in terms of the old coordinates (1, x2) with
respect to (u1,us) by

()= (1) ()
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Example 1.10. Let EF = F' = R|X]3 be the set of poly-
nomials of degree at most 3, and consider the bases U =
(1, z, 2%, 2%) and V = (Bj(z), Bi(x), B3(x), Bj(x)), where
Bi(z), Bi(z), B3(x), B3(x) are the Bernstein polynomi-
als of degree 3, given by

By expanding the Bernstein polynomials, we find that the
change of basis matrix Py, is given by

1 0 0 0
33 0 0
Pru=1 35 5 3
~1 3 =31

We also find that the inverse of Py, is

1 0 0 0
b1 _[11/3 0 0
YU = 112/31/30

1 1 1 1
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Therefore, the coordinates of the polynomial 22° — x + 1
over the basis V are

1 1 0 0 0\ /1
231 [11/3 0 0] | -1
1/3 12/31/30f ] 0 |

2 11 1 1) \2

and so

2 1
20° —x +1 = Bj(z) + §Bi’(:ﬁ) + gBS(CC) +2B3(x).

Our next example is the Haar wavelets, a fundamental
tool in signal processing.
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1.7 Haar Basis Vectors and a Glimpse at Wavelets

We begin by considering Haar wavelets in R*.

Wavelets play an important role in audio and video signal
processing, especially for compressing long signals into
much smaller ones than still retain enough information
so that when they are played, we can’t see or hear any
difference.

Consider the four vectors wy, ws, w3, wy given by

1 1 1 0

1 | —1 0
w1 = 1 Wy = _1 W3 = 0 Wy = 1

1 —1 0 —1

Note that these vectors are pairwise orthogonal, so they
are indeed linearly independent (we will see this in a later
chapter).

Let W = {wy, ws, w3, wy} be the Haar basis, and let
U = {e1, €9, 3,4} be the canonical basis of R*.
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The change of basis matrix W = Py from U to W is
given by

I 1 1 0

I 1 =1 0
W= 1 -1 0 1]’

I -1 0 -1

/40 0 0\ /11 1 1
B 0 1/4 0 0 |[1 1 -1 -1
1o 0120 |]1-10 o0
0 0 0 1/2/ \0o 0 1 -1

So, the vector v = (6,4,5,1) over the basis U becomes
c = (c1,c9,c3,¢4) = (4,1,1,2) over the Haar basis W,
with

1 1/4 0 0 0\ /11 1 1Y\ /6
1] (o0 140 0o]f11 —1-1]][4
1~ 1o0o o012 0fl1-10 0]]5
2 0 0 0 12/ \0o o0 1 -1/ \1
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Given a signal v = (vq, V9, v3,v4), we first transform v
into its coefficients ¢ = (c1, 9, €3, ¢4) over the Haar basis
by computing ¢ = W ~tv. Observe that

V1 + Uy + U3+ Uy
C1 — 1

is the overall average value of the signal v. The coeflicient
c1 corresponds to the background of the image (or of the
sound).

Then, ¢y gives the coarse details of v, whereas, c3 gives
the details in the first part of v, and ¢4 gives the details
in the second half of v.

Reconstruction of the signal consists in computing

v = We.
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The trick for good compression is to throw away some
of the coefficients of ¢ (set them to zero), obtaining a
compressed signal ¢, and still retain enough crucial in-
formation so that the reconstructed signal v = We
looks almost as good as the original signal v.

Thus, the steps are:

inputv — coefficients ¢ = W v — compressed ¢
— compressed v = We.

This kind of compression scheme makes modern video
conferencing possible.

It turns out that there is a faster way to find ¢ = W1,
without actually using W ~!. This has to do with the
multiscale nature of Haar wavelets.
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Given the original signal v = (6,4, 5, 1) shown in Figure
1.6, we compute averages and half differences obtaining

6 4 5 1
I

Figure 1.6: The original signal v

Figure 1.7: We get the coefficients c3 = 1 and ¢4 = 2.

2

1
3 ) l
3 3 | I

-1

Figure 1.7: First averages and first half differences

Note that the original signal v can be reconstruced from
the two signals in Figure 1.7.

Then, again we compute averages and half differences ob-
taining Figure 1.8.

-1 -1

Figure 1.8: Second averages and second half differences

We get the coeflicients ¢; = 4 and ¢y = 1.
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Again, the signal on the left of Figure 1.7 can be recon-
structed from the two signals in Figure 1.8.

This method can be generalized to signals of any length
2". The previous case corresponds to n = 2.

Let us consider the case n = 3.

The Haar basis (wq, we, w3, wy, ws, we, w7, wg) 18 given
by the matrix

(11101000\
11 1 0 —=10 0 0
11 =10 0 1 0 0
11 =10 0 =10 0
=11 10 1 0 0 1 o0
1-10 1 0 0 —1 0
1-10 -1 0 0 0 1
\1—10—1000—1)
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The columns of this matrix are orthogonal and it is easy
to see that

Wl = diag(1/8,1/8,1/4,1/4,1/2,1/2,1/2,1/2)W .

A pattern is begining to emerge. It looks like the second
Haar basis vector ws 1s the “mother” of all the other
basis vectors, except the first, whose purpose is to perform
averaging.

Indeed, in general, given

wo = (1,...,1,—1,...,—1),

G 7
TV
2n

the other Haar basis vectors are obtained by a “scaling
and shifting process.”
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Starting from ws, the scaling process generates the vec-
tors

w3, W5, Wy, . . . ,w2j+1, Ce ,an—l_H,

such that wyj+1, is obtained from w,y;,; by forming two
consecutive blocks of 1 and —1 of half the size of the
blocks in wy;, ¢, and setting all other entries to zero. Ob-
serve that wy;,; has 27 blocks of 2"/ elements.

The shifting process, consists in shifting the blocks of
1 and —1 in wy;, to the right by inserting a block of
(k — 1)2"77 zeros from the left, with 0 < j <n — 1 and
1< k<2

Thus, we obtain the following formula for wy; ;.

w2j+k<i> =

(0 1<i<(k—1)27

1 (k=127 +1<i<(k—1)2"7 y2n71
—1 (k—=1)2"7 42741 <4 < k2"

0 Eon) 41 <q < 2",

with0<j<n—-land1<k<2,
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Of course

The above formulae look a little better if we change our
indexing slightly by letting & vary from 0 to 2/ — 1 and
using the index j instead of 2.

In this case, the Haar basis is denoted by
wi, by, ho, hi, ha b2 k3 b3, ... bl ... B

2n—1_17

and

0 1<i< kv

W) = 4 1 /c2”—f{ +1<i< f2n7 4 2nmid |
—1 k2" m Il 1 < < (k4 1)2"

0 (k+1)2"74+1<i<2",

with0<j<n—-1land0<k<2 —1.
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It turns out that there is a way to understand these for-
mulae better if we interpret a vector u = (uq, ..., Uy,) as
a piecewise linear function over the interval [0, 1).

We define the function plf(u) such that

-y .
plf (u)(x) = u;, ! <z< i, 1<i<m.
m m

In words, the function plf(u) has the value u; on the
interval [0,1/m), the value us on [1/m,2/m), etc., and
the value u,, on the interval [(m — 1)/m,1).

For example, the piecewise linear function associated with
the vector

u=(24,2.2,2.15,2.05,6.8,2.8, —1.1, —1.3)

is shown in Figure 1.9.

Figure 1.9: The piecewise linear function plf(u)
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Then, each basis vector hi corresponds to the function

i = plf(hy).

In particular, for all n, the Haar basis vectors

hy=wy=(1,...,1,—1,...,—1)

AL

yield the same piecewise linear function 1) given by
I if 0<e<1/2
Pr)=< -1 if 1/2<z<1

0  otherwise,

i

\

whose graph is shown in Figure 1.10.

1

—1

Figure 1.10: The Haar wavelet ¢
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Then, it is easy to see that %Z: is given by the simple
expression

i) =v@z—k), 0<j<n—-10<k<2 -1

The above formula makes it clear that w; is obtained from
1 by scaling and shifting.

The function ¢y = plf (wy ) is the piecewise linear function
with the constant value 1 on [0, 1), and the functions
together with ) are known as the Haar wavelets.

Rather than using W™ to convert a vector u to a vec-
tor ¢ of coeflicients over the Haar basis, and the matrix
W to reconstruct the vector u from its Haar coefficients
c, we can use faster algorithms that use averaging and
differencing.
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If ¢ is a vector of Haar coeflicients of dimension 2", we

compute the sequence of vectors ug, ug, . . ., u, as follows:
Uy = C
Ujr1 = Uy

wiy1(2 — 1) = u;(i) + u; (27 + 1)
wi1(29) = u;(7) — ui(2 + 1),
for j=0,...,.n—landi=1,...,2.

The reconstructed vector (signal) is u = .

If u is a vector of dimension 2", we compute the sequence

of vectors ¢, ¢,,—1, . . ., co as follows:
Cp = 1U
Cj = Cj+1

¢j(t) = (¢ (20 = 1) + ¢;1(21))/2
¢j(2) +1) = (¢j1(20 = 1) — ¢;41(24)) /2,
forj=n—1,...,0andi=1,...,2/.

The vector over the Haar basis is ¢ = ¢.
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Here is an example of the conversion of a vector to its
Haar coefficients for n = 3.

Given the sequence u = (31,29,23,17, —6, —8, —2, —4),
we get the sequence

c3 = (31,29,23,17, —6, —8, —2, —4)
(30,20, —-7,—-3,1,3,1,1)
(25, —5,5,—-2,1,3,1,1)
(10,15,5,-2,1,3,1, 1),

so ¢ = (10,15,5,—2,1,3,1,1).

Co
C1
Co

Conversely, given ¢ = (10, 15,5, —-2,1,3,1, 1), we get the
sequence

o = (10,15,5,—2,1,3,1,1)

wp = (25,-5,5,-2,1,3,1,1)

us = (30,20, —7,-3,1,3,1,1)

uz = (31,29,23,17, —6, —8, —2, —4),

which gives back v = (31,29, 23,17, —6, —8, —2, —4).
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An important and attractive feature of the Haar basis is
that it provides a multiresolution analysis of a signal.

Indeed, given a signal u, if ¢ = (¢q, .. ., con) is the vector
of its Haar coefficients, the coefficients with low index give
coarse information about u, and the coeflicients with high
index represent fine information.

This multiresolution feature of wavelets can be exploited
to compress a signal, that is, to use fewer coeflicients to
represent it. Here is an example.

Consider the signal
u = (2.4,2.2,2.15,2.05,6.8,2.8, —1.1, —1.3),
whose Haar transform is
c=1(2,0.2,0.1,3,0.1,0.05,2,0.1).
The piecewise-linear curves corresponding to u and c are

shown in Figure 1.11.

Since some of the coefficients in ¢ are small (smaller than

or equal to 0.2) we can compress ¢ by replacing them by
0.
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]

1

2 L L L L L L L L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9

L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1.11: A signal and its Haar transform

We get

¢ = (2,0,0,3,0,0,2,0),

and the reconstructed signal is

u = (2,2,2,2,7,3, -1, —1).

The piecewise-linear curves corresponding to us and ¢

are shown in Figure 1.12.

L L L L L L L L
0 0.1 0.2 03 04 05 06 0.7 08 0.9

Figure 1.12: A compressed signal and its compressed Haar transform
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An interesting (and amusing) application of the Haar
wavelets is to the compression of audio signals.

[t turns out that if your type load handel in Matlab
an audio file will be loaded in a vector denoted by vy, and
if you type sound(y), the computer will play this piece
of music.

You can convert y to its vector of Haar coefficients, c.
The length of y is 73113, so first tuncate the tail of y to
get a vector of length 65536 = 219

A plot of the signals corresponding to y and c¢ is shown
in Figure 1.13.

Figure 1.13: The signal “handel” and its Haar transform
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Then, run a program that sets all coeflicients of ¢ whose
absolute value is less that 0.05 to zero. This sets 37272
coefficients to 0.

The resulting vector co is converted to a signal ys. A
plot of the signals corresponding to 45 and ¢y is shown in

Figure 1.14.

Figure 1.14: The compressed signal “handel” and its Haar transform

When you type sound(y2), you find that the music
doesn’t differ much from the original, although it sounds
less crisp.
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Another neat property of the Haar transform is that it can
be instantly generalized to matrices (even rectangular)
without any extra effort!

This allows for the compression of digital images. But
first, we address the issue of normalization of the Haar
coefficients.

As we observed earlier, the 2" x 2" matrix W,, of Haar
basis vectors has orthogonal columns, but its columns do
not have unit length.

As a consequence, W, is not the inverse of T,,, but rather
the matrix

w-t=DW/'
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Therefore, we define the orthogonal matrix
1
H, =W,Dj

whose columns are the normalized Haar basis vectors,
with

22 on—1
We call H,, the normalized Haar transform matriz.
Because H,, is orthogonal, H 1 = H .

Given a vector (signal) u, we call ¢ = H'u the normal-
wzed Haar coefficients of u.
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When computing the sequence of u;s, use

uji1(20 — 1) = (u;(7) + Uj@j. +1))/v2
wj1(20) = (u;(i) — u;(2) + 1)) /V/2,

and when computing the sequence of ¢;s, use

i) = (¢j(2i — 1) + ¢j+1(2))/V2
cj(2 +14) = (eja(2i = 1) = ¢ja(20))/ V2.

Note that things are now more symmetric, at the expense
of a division by v/2. However, for long vectors, it turns
out that these algorithms are numerically more stable.
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Let us now explain the 2D version of the Haar transform.

We describe the version using the matrix W,,, the method
using H, being identical (except that H ' = H !, but
this does not hold for W 1),

Given a 2™ x 2" matrix A, we can first convert the
rows of A to their Haar coefficients using the Haar trans-

form W1 obtaining a matrix B, and then convert the

columns of B to their Haar coefficients, using the matrix

Wt

Because columns and rows are exchanged in the first step,
B=AW,")",
and in the second step C' = W !B, thus, we have

C=W 1AW Y =D,W' AW, D,.
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In the other direction, given a matrix C' of Haar coeffi-
cients, we reconstruct the matrix A (the image) by first
applying W,,, to the columns of (', obtaining B, and then
W, to the rows of B. Therefore

A=W,CW/ .

Of course, we dont actually have to invert W,, and W,
and perform matrix multiplications. We just have to use
our algorithms using averaging and differencing.

Here is an example. If the data matrix (the image) is the
8 X 8 matrix

(61 2 3 6160 6 T 57)
9 55 54 12 13 51 50 16
17 47 46 20 21 43 42 24
40 26 27 37 36 30 31 33
32 34 35 20 28 38 39 25 |
41 23 22 44 45 19 18 48
49 15 14 52 53 11 10 56
\8 5859 5 4 6263 1)

then applying our algorithms, we find that
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(3250 0 0 0 0 0 0
000 0 0 0 0 0
00 0 0 4 —4 4 —4
I N
“ 0o 005 05 27 —25 23 -2
0 0—05-05-11 9 —7 5
0 005 05 =5 7 —9 1
\ 0 0 -05-05 21 —23 25 —27)

As we can see, C' has a more zero entries than A; it is
a compressed version of A. We can further compress C
by setting to 0 all entries of absolute value at most 0.5.
Then, we get

(32.5000 0 0 0 o\
0 000 0 O 0 O
0 000 4 —4 4 —4
. 0 000 4 —4 4 —4
=1 0 000 27 —25 23 —21
0 000 —11 9 -7 5
0 000 =5 7 -9 11
\ 0 000 21 —23 25 —27)
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We find that the reconstructed image is

(63.5 1.5 3.5 61.5 59.5 5.5 7.5 57.5

9.5 55.5 53.5 11.5 13.5 51.5 49.5 15.5
17.5 47.5 45.5 19.5 21.5 43.5 41.5 23.5
39.5 25.5 27.5 37.5 35.5 29.5 31.5 33.5
31.5 33.5 35.5 29.5 27.5 37.5 39.5 25.5 |’
41.5 23.5 21.5 43.5 45.5 19.5 17.5 47.5
49.5 15.5 13.5 51.5 53.5 11.5 9.5 55.5
\7.5 57.5 59.5 5.5 3.5 61.5 63.5 1.5)

which is pretty close to the original image matrix A.

[t turns out that Matlab has a wonderful command,
image (X), which displays the matrix X has an image.

The images corresponding to A and C' are shown in Fig-
ure 1.15. The compressed images corresponding to Ao
and C5 are shown in Figure 1.16.

The compressed versions appear to be indistinguishable
from the originals!
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Figure 1.16: Compressed image and its Haar transform
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If we use the normalized matrices H,, and H,, then the
equations relating the image matrix A and its normalized
Haar transform C' are

C=H AH,
A=H,CH, .

The Haar transform can also be used to send large images
progressively over the internet.

Observe that instead of performing all rounds of averaging
and differencing on each row and each column, we can
perform partial encoding (and decoding).

For example, we can perform a single round of averaging
and differencing for each row and each column.

The result is an image consisting of four subimages, where
the top left quarter is a coarser version of the original,
and the rest (consisting of three pieces) contain the finest
detail coefficients.
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We can also perform two rounds of averaging and differ-
encing, or three rounds, etc. This process is illustrated on
the image shown in Figure 1.17. The result of performing

Figure 1.17: Original drawing by Durer

one round, two rounds, three rounds, and nine rounds of
averaging is shown in Figure 1.18.
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Since our images have size 512 x 512, nine rounds of av-
eraging yields the Haar transform, displayed as the image
on the bottom right. The original image has completely
disappeared!

o0 150 00 250 00 3s0 400 450 500 50 o0 150 200 250 500 350 400 450 S00

50 o0 150 o0 250 00 3s0 400 450 500 50 o0 150 200 250 500 350 400 450 s00

Figure 1.18: Haar tranforms after one, two, three, and nine rounds of averaging
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We can find easily a basis of 2" x 2" = 2% vectors wj; for
the linear map that reconstructs an image from its Haar
coefficients, in the sense that for any matrix C' of Haar
coefficients, the image matrix A is given by

2 2n

A= Z Z CijWij.

i=1 j=1

Indeed, the matrix w; is given by the so-called outer prod-
uct
wl-j = wi(w]-)T.

Similarly, there is a basis of 2" x 2" = 2*" vectors h;; for
the 2D Haar transform, in the sense that for any matrix
A, its matrix C of Haar coeflicients is given by

on gn
C- S
i=1 j=1
fFw-1t= (wigl), then

h@'j = w;l(w;1>T.
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1.8 The Effect of a Change of Bases on Matrices

The effect of a change of bases on the representation of a
linear map is described in the following proposition.

Proposition 1.15. Let E and F' be vector spaces, let

U = (u1,...,u,) and U = (ul,...,u)) be two bases
of E, and let V = (v1,...,v,) and V' = (v},... v])

be two bases of F'. Let P = Py be the change of
basis matriz from U to U', and let () = Py be the
change of basis matriz from V to V'. For any lin-
ear map f: E — F, let M(f) = Myy(f) be the ma-
trixz associated to [ w.r.t. the bases U and )V, and let
M'(f) = My \(f) be the matriz associated to f w.r.t.
the bases U' and V'. We have

M'(f) = Q"'M(f)P,

or more explicitly

My y(f) = PV_/}VMM,V(f)PL{’,U = PyyMyuv(f)Buwu
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As a corollary, we get the following result.

Corollary 1.16. Let E/ be a vector space, and let

U = (u1,...,uy) and U = (ul,...,u)) be two bases
of E. Let P = By be the change of basis matriz
from U to U'. For any linear map f: E — E, let
M(f) = My(f) be the matriz associated to [ w.r.t.
the basis U, and let M'(f) = My(f) be the matriz
associated to f w.r.t. the basisU'. We have

M'(f)=P'M(f)P,
or more explicitly,

My (f) = By Mu(f) Pyt = Puge Mu(f) P
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Example 1.11. Let £ = R* U = (e, e3) where ¢; =
(1,0) and es = (0, 1) are the canonical basis vectors, let
V = (v1,v9) = (e1,e1 — e3), and let

21
A= (O 1) |
The change of basis matrix P = Py from U to V is
1 1
P=(o4):
and we check that P~1 = P.

Therefore, in the basis V), the matrix representing the
linear map f defined by A is

A =P 1AP = PAP = (

b_\
|
—_
N—
(G V)
—_ =
N—
VR
o =
=
'—L
N

a diagonal matrix.
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Therefore, in the basis V, it is clear what the action of f
is: it is a stretch by a factor of 2 in the v; direction and
it is the identity in the vy direction.

Observe that v; and vy are not orthogonal.
What happened is that we diagonalized the matrix A.

The diagonal entries 2 and 1 are the eigenvalues of A
(and f) and v; and vy are corresponding eigenvectors.

The above example showed that the same linear map can
be represented by different matrices. This suggests mak-
ing the following definition:

Definition 1.12. Two n X n matrices A and B are said
to be similar iff there is some invertible matrix P such
that

B =P AP

It is easily checked that similarity is an equivalence rela-
tion.
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From our previous considerations, two n X n matrices A
and B are similar iff they represent the same linear map
with respect to two different bases.

The following surprising fact can be shown: Fvery square
matriz A is similar to its transpose A'.

The proof requires advanced concepts than we will not
discuss in these notes (the Jordan form, or similarity in-
variants).
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fU = (ug,...,u,) and V = (vy,...,v,) are two bases
of E, the change of basis matrix

aipz a2 -+ Qip
a21 Q22 *-* Q2n
P — PV’U — : : .. :
Ap1 Ap2 - Adpp
from (uy,...,u,) to (vy,...,v,) is the matrix whose jth
column consists of the coordinates of vj over the basis
(w1, ..., uy,), which means that

n
?}j: E CLZ']"LLZ'.
1=1
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It is natural to extend the matrix notation and to express

the vector (vy,...,v,) in E™ as the product of a matrix
times the vector (uq, ..., u,) in E" namely as
U1 aip a1 -+ Apl Uy
U2 a2 Az -+ Ap2 U2
T . . )
Un A1p A2n - App Unp,

but notice that the matriz involved is not P, but its
transpose P!

This observation has the following consequence: if

U= (uy,...,u,) and V = (vq,...,v,) are two bases of
E and if
(o] (A}
=Al : |,
/Un un
that is,



1.8. THE EFFECT OF A CHANGE OF BASES ON MATRICES

for any vector w € E, if

T n
w = g TU; = E YU,
i=1 k=1

then
I Y1
— AT | :
Tn UYUn
and so
Y1 T
: _ (AT>—1
Un Ln

It is easy to see that (A")™t = (471",

145
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Also, it U = (uq,...,up), V= (v1,...,v,), and
W = (wy, ..., w,) are three bases of E, and if the change
of basis matrix from U to V is P = Py and the change
of basis matrix from V to W is () = Py y, then

V1 U1 w1 U1
T . T
=P , : — Q )
Un Un Wn Un
SO
w1 U1 U1
T pl . T .
— Q P : — (PQ) : ,
Wn Un Un

which means that the change of basis matrix Py from

U to W is PQ.

This proves that

Pyy=PyyuPwy.
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Even though matrices are indispensable since they are the
major tool in applications of linear algebra, one should
not lose track of the fact that

linear maps are more fundamental, because they are
intrinsic objects that do not depend on the choice of
bases. Consequently, we advise the reader to try to
think in terms of linear maps rather than reduce
everthing to matrices.

In our experience, this is particularly effective when it
comes to proving results about linear maps and matri-
ces, where proofs involving linear maps are often more
“conceptual.”
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Also, instead of thinking of a matrix decomposition, as a
purely algebraic operation, it is often illuminating to view
it as a geometric decomposition.

After all, a

a matriz is a representation of a linear map

and most decompositions of a matrix reflect the fact that
with a suitable choice of a basis (or bases), the linear
map is a represented by a matrix having a special shape.

The problem is then to find such bases.

Also, always try to keep in mind that

linear maps are geometric in nature; they act on
space.
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1.9 Affine Maps

We showed in Section 1.5 that every linear map f must
send the zero vector to the zero vector, that is,

£(0) = 0.

Yet, for any fixed nonzero vector u € E (where F is any
vector space), the function ¢, given by

tu(x)=x+wu, for all x € F

shows up in pratice (for example, in robotics).

Functions of this type are called translations. They are
not linear for u # 0, since t,(0) = 0+ u = w.

More generally, functions combining linear maps and trans-
lations occur naturally in many applications (robotics,
computer vision, etc.), so it is necessary to understand
some basic properties of these functions.
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For this, the notion of affine combination turns out to
play a key role.

Recall from Section 1.5 that for any vector space E, given
any family (u;);er of vectors u; € E, an affine combina-
tion of the family (u;);es is an expression of the form

icl icl
where (\;);er is a family of scalars.

A linear combination is always an affine combination, but
an affine combination is a linear combination, with the
restriction that the scalars \; must add up to 1.

Affine combinations are also called barycentric combina-
t1ons.

Although this is not obvious at first glance, the condi-
tion that the scalars A\; add up to 1 ensures that affine
combinations are preserved under translations.
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To make this precise, consider functions f: £ — F
where E and F' are two vector spaces, such that there
is some linear map h: E — F and some fixed vector
b € F (a translation vector), such that

f(z)=h(x)+b, foral ze€F.

The map f given by

1 8/5 —6/5 I 1
<x2> ~ (3/10 2/5 ) \an) T\
is an example of the composition of a linear map with a

translation.

We claim that functions of this type preserve affine com-
binations.
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Proposition 1.17. For any two vector spaces E and
F', given any function f: E — F defined such that

f(z)=h(x)+b, forall xe€F,

where h: E — F' 1s a linear map and b is some fized

vector in F', for every affine combination > _._: \u;
(with > ..; i = 1), we have

f ( > )\Z-uZ) =3 N (w).

el el

el

In other words, | preserves affine combinations.

Surprisingly, the converse of Proposition 1.17 also holds.
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Proposition 1.18. For any two vector spaces E and
F,let f: E — F be any function that preserves affine
combinations, 1.e., for every affine combination

Zz’e] i (with Zie[ Ai = 1), we have

f ( > )\Z-uz-) =3 N (w).

el 1el

Then, for any a € E, the function h: E — F qiven
by

W) = fla+x) = fla)

1S a linear map independent of a, and

fla+z)= f(a)+ h(x), forall xe€F.

In particular, for a =0, if we let ¢ = f(0), then

f(x)=c+ h(zx), forall x€F.
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We should think of a as a chosen origin in E.

The function f maps the origin a in E to the origin f(a)
in F'.

Proposition 1.18 shows that the definition of h does not
depend on the origin chosen in E. Also, since

f(x)=c+h(x), forall z€FE

for some fixed vector ¢ € F', we see that f is the com-
position of the linear map h with the translation ¢, (in

F).

The unique linear map h as above is called the linear

map associated with f and it is sometimes denoted by
%

f.

Observe that the linear map associated with a pure trans-
lation is the identity.

In view of Propositions 1.17 and 1.18, it is natural to
make the following definition.
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Definition 1.13. For any two vector spaces £ and F', a
function f: £ — F'is an affine map if f preserves affine
combinations, i.e., for every affine combination » . A\ju;

(with > ,.; A; = 1), we have

f ( > )\Z-uz-) =3 N (w).

el 1el

el

Equivalently, a function f: £ — F'is an affine map if

%
there is some linear map h: £ — F' (also denoted by f )
and some fixed vector ¢ € F' such that

f(z)=c+ h(zx), foral ze€F.

Note that a linear map always maps the standard origin
0 in E to the standard origin 0 in £

However an affine map usually maps 0 to a nonzero vector
¢ = f(0). This is the “translation component” of the
affine map.
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When we deal with affine maps, it is often fruitful to think
of the elements of £/ and F' not only as vectors but also
as points.

In this point of view, points can only be combined using
affine combinations, but vectors can be combined in an
unrestricted fashion using linear combinations.

We can also think of u + v as the result of translating
the point u by the translation t,.

These ideas lead to the definition of affine spaces, but
this would lead us to far afield, and for our purposes, it
is enough to stick to vector spaces.

Still, one should be aware that affine combinations really
apply to points, and that points are not vectors!

If £ and F' are finite dimensional vector spaces, with
dim(FE) = n and dim(F") = m, then it is useful to repre-
sent an affine map with respect to bases in £ in F'.
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However, the translation part c of the affine map must be
somewhow incorporated.

There 1s a standard trick to do this which amounts to
viewing an affine map as a linear map between spaces of
dimension n + 1 and m + 1.

We also have the extra flexibility of choosing origins,
ac Fandbe F.

Let (u1,...,u,) be a basis of E, (v1,...,v,) be a basis
of F', and let @ € E and b € F' be any two fixed vectors

viewed as origins.

Our affine map f has the property that

fla+x)=c+h(x), €k

Thus, using our origins a and b, we can write

fla+x)—b=c—b+h(z), x€F.
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Over the basis (u1, ..., u,), we write

T =T1U1 + -+ TpUy,
and over the basis (vq, ..., v,,), we write

Y =1y101 + -+ YnUn-
We also write

d=c—b=dyvy+---+d,,v,.
Then, with y = f(a + x) — b, we have
y = h(x) +d.

If we let A be the m X n matrix representing the linear
map h, that is, the jth column of A consists of the coor-

dinates of h(u;) over the basis (vy, ..., vy), then we can
write

y=Ax+d, xe€R"

This is the matrix representation of our affine map f.
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The reason for using the origins a and b is that it gives
us more flexibility.

In particular, when E = F', if there is some a € E such
that f(a) = a (a is a fized point of f), then we can pick
b=a.

Then, because f(a) = a, we get

v = f(u) = flatu—a) = f(a)+h(u—a) = a+h(u—a),

that is
v—a=h(u—a).

With respect to the new origin a, if we define x and y by

r=u-—a

Yy—=—7vv—a,
then we get

y = h(x).

Then, f really behaves like a linear map, but with respect
to the new origin a (not the standard origin 0). This is
the case of a rotation around an axis that does not pass
through the origin.
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Remark: A pair (a, (u1,...,u,)) where (uq,...,uy,) is
a basis of £ and a is an origin chosen in £ is called an
affine frame.

We now describe the trick which allows us to incorporate
the translation part d into the matrix A.

We define the (m+1) x (n+1) matrix A" obtained by first
adding d as the (n + 1)th column, and then (0,...,0,1)
N ——

n

as the (m + 1)th row:

, (A d
A_<On1>.

Then, it is clear that
y\ (A d\ [z
1/ \o, 1 1

y = Ax + d.

iff
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This amounts to considering a point x € R" as a point
(z,1) in the (affine) hyperplane H, 1 in R"™ of equa-
tion x,1 = 1.

Then, an affine map is the restriction to the hyperplane
H,.; of the lincar map f from R"™! to R™"! corre-
sponding to the matrix A’, which maps H,, 1 into H, 1

(f(HnJrl) C Hm+1>'

Figure 1.19 illustrates this process for n = 2.

Figure 1.19: Viewing R" as a hyperplane in R"™! (n = 2)
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For example, the map

(=)= () () + ()

defines an affine map f which is represented in R? by

1 113 1
zol — 130 X9
1 001 1

[t is easy to check that the point a = (6, —3) is fixed
by f, which means that f(a) = a, so by translating the
coordinate frame to the origin a, the affine map behaves
like a linear map.

The idea of considering R" as an hyperplane in R"*! can
be used to define projective maps.
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AN cals have Lo )eg,
[ hak foor /egs.
- Thetho, [ am @ cdl

Figure 1.20: Dog Logic
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1.10 Direct Products, Sums, and Direct Sums

There are some usetul ways of forming new vector spaces
from older ones.

Definition 1.14. Given p > 2 vector spaces £y, ..., B,
the product I’ = I; X - - - X E),, can be made into a vector
space by defining addition and scalar multiplication as
follows:

(Uy ey ty) + (V1,0 0p) = (U F U1, .00, Uy + V)

Mgy ..o up) = (Aug, ...y Auy),
for all u;,v; € E; and all A € R.
With the above addition and multiplication, the vector

space [ = By X -+ x B, is called the direct product of
the vector spaces Ly, ..., B,
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The projection maps pr;: By X --- X k), — E; given by
pri(ug, ..., upy) = u;

are clearly linear.

Similarly, the maps in;: E; — Ey X -+ X L, given by
mz(u@) = <O,...,O,UZ’,O,...,O>

are injective and linear.

It can be shown (using bases) that

dim(Ey X -+ x E,) =dim(E}) + - - - + dim(E,).

Let us now consider a vector space E and p subspaces
Ul,...,Up of F.
We have a map

a: Uy x---xU,—E

given by
a(Uy ..., Up) = Ul + -+ Up,

with w; € U; fort=1,...,p.
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It is clear that this map is linear, and so its image is a
subspace of E' denoted by

Ui+ +U,
and called the sum of the subspaces Uy, ..., U,.

By definition,

U1+---+Up:{u1+---+up\uZ-EUZ-, 1§Z§p},
and it is immediately verified that U; + --- + U, is the
smallest subspace of £ containing Uy, ..., U),.

If the map a is injective, then Kera = 0, which means
that if u; € U; forv=1,...,p and if

U+ -+ Up = 0
then uy = --- = u, = 0.
In this case, every u € Uy + --- + U, has a unique ex-
pression as a sum

U= U= Up,

with u; € U;, forv=1,...,p.
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It is also clear that for any p nonzero vectors u;, € U,
Ui, ..., u, are linearly independent.

Definition 1.15. For any vector space £ and any p > 2
subspaces Uy, ..., U, of I, if the map a defined above is
injective, then the sum Uy + --- + U, 1s called a direct
sum and it is denoted by

U®---dU,.
The space F is the direct sum of the subspaces U; if

Observe that when the map a is injective, then it is a
linear isomorphism between Uy X --- x U, and
U@ - DU,

The difference is that U; x --- x U, is defined even if
the spaces U; are not assumed to be subspaces of some
common space.

There are natural injections from each U; to E denoted
by in;: U; — E.
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Now, if p = 2, it is easy to determine the kernel of the
map a: Uy X Uy — E. We have

CL(ul,UQ) =u +uy =0iff u; = —us, ug € Uy, uy € Uy,
which implies that
Kera = {(u, —u) | u € Uy NUs}.

Now, Uy N Us is a subspace of E' and the linear map
u — (u, —u) is clearly an isomorphism, so Ker a is iso-
morphic to Uy N Us.

As a consequence, we get the following result:

Proposition 1.19. Given any vector space E and any
two subspaces Uy and Usy, the sum Uy + Uy 1s a direct

sum iff Uy N Uy = 0.

Because of the isomorphism
U x---xU~=U®@&: - dU,
we have

dim(Uy & --- @ U,) = dim(Uy) + - - - + dim(U,)).
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If £ is a direct sum
E=U&- - --®U,
since every u € E can be written in a unique way as
U=ULF -+ Uy

for some u; € U; fort =1...,p, we can define the maps
mi. B — U, called projections, by

7TZ<U) = 7TZ'(’LL1 + -+ Up) = U;.

[t is easy to check that these maps are linear and satisty
the following properties:

m ifi =
Ty oM = e
0 ifi+# 7,

M+, =idp.

A function f such that fof = fissaid to be idempotent.
Thus, the projections m; are idempotent.

Conversely, the following proposition can be shown:
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Proposition 1.20. Let E be a vector space. For any
p > 2 linear maps f;: E — E, if

;afi =
fjof@'—{g Z;Héj
Ji+-+ fp=idg,
then if we let U; = fi(F), we have a direct sum
E=U®- - -®U,.

We also have the following proposition characterizing idem-
potent linear maps whose proof is also left as an exercise.

Proposition 1.21. For every vector space E, if
f: B — E is an idempotent linear map, i.e., fof = f,
then we have a direct sum

E=Kerf®Imf,

so that f 1is the projection onto its image Im f.

We are now ready to prove a very crucial result relating
the rank and the dimension of the kernel of a linear map.
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Theorem 1.22. Let f: E — F be a linear map. For
any choice of a basis (f1,..., f;) of Im f, let (uy, ..., u,)
be any wvectors in E such that f; = f(w;), for i =
L,...,r. If s: Im f — E 1s the unique linear map de-
fined by s(f;) =w;, fori =1,...,r, then s is injective,
fos=1id, and we have a direct sum

E=Kerf®Ilms

as illustrated by the following diagram:

f
Ker f— FE=Kerf®Ims_ Imf CF

As a consequence,

dim(F) = dim(Ker f)+dim(Im f) = dim(Ker f)+1k(f).

Remark: The dimension dim(Ker f) of the kernel of a
linear map f is often called the nullity of f.

We now derive some important results using Theorem
1.22.
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Proposition 1.23. Given a vector space E, if U and
V' are any two subspaces of E, then

dim(U) + dim(V) = dim(U + V) + dim(U N V),

an equation known as Grassmann’s relation.

The Grassmann relation can be very useful to figure out
whether two subspace have a nontrivial intersection in
spaces of dimension > 3.

For example, it is easy to see that in R, there are sub-
spaces U and V' with dim(U) = 3 and dim (V') = 2 such
that UNV =0

However, we can show that if dim(U) = 3 and dim(V') =
3, then dim(UNV) > 1.

As another consequence of Proposition 1.23, if U and V
are two hyperplanes in a vector space of dimension n, so

that dim(U) =n — 1 and dim(V') = n — 1, we have
dim(UNV)>n—2,

and so, if U # V| then
dim(UNV)=n—2.
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Proposition 1.24. If Uy, ..., U, are any subspaces of
a finite dimensional vector space E, then

dim(Uy + - - -+ U,) < dim(Uy) + - - - + dim(U,,),
and

dim(Uy + - - -+ U,) = dim(Uy) + - - - + dim(U,)
iff the U;s form a direct sum Uy @ --- @ U,.

Another important corollary of Theorem 1.22 is the fol-
lowing result:

Proposition 1.25. Let E and F' be two vector spaces
with the same finite dimension dim(FE) = dim(F') =
n. For every linear map f: E — F, the following
properties are equivalent:

(a) f is bijective.

(b) [ is surjective.
(c) [ is injective.

(d) Ker f = 0.
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One should be warned that Proposition 1.25 fails in infi-
nite dimension.

We also have the following basic proposition about injec-
tive or surjective linear maps.

Proposition 1.26. Let E and F' be vector spaces, and
let f: E — F be a linear map. If f: E — F 1s
injective, then there is a surjective linear map r: F' —
E called a retraction, such thatrof =idg. If f: E —
F' 1s surjective, then there is an injective linear map
s: F'— E called a section, such that f os =1idp.

The notion of rank of a linear map or of a matrix impor-
tant, both theoretically and practically, since it is the key
to the solvability of linear equations.

Proposition 1.27. Giwen a linear map f: E — F,
the following properties hold:

(1) tk(f) + dim(Ker f) = dim(F).
(i) tk(f) < min(dim(E), dim(F)).
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The rank of a matrix is defined as follows.

Definition 1.16. Given a m x n-matrix A = (a; ), the
rank tk(A) of the matrix A is the maximum number of
linearly independent columns of A (viewed as vectors in

R™).

In view of Proposition 1.4, the rank of a matrix A is
the dimension of the subspace of R™ generated by the
columns of A.

Let E and F' be two vector spaces, and let (uy, ..., u,) be
a basis of F/, and (vy,...,v,) a basisof F. Let f: £ —
F' be a linear map, and let M (f) be its matrix w.r.t. the
bases (U1, ..., u,) and (v, ..., V).
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Since the rank rk(f) of f is the dimension of Im f, which
is generated by (f(u1),..., f(uy,)), the rank of f is the
maximum number of linearly independent vectors in
(f(uy), ..., f(uy,)), which is equal to the number of lin-
early independent columns of M (f), since F and R™ are
isomorphic.

Thus, we have rk(f) = rk(M(f)), for every matrix rep-
resenting f.

We will see later, using duality, that the rank of a ma-
trix A is also equal to the maximal number of linearly
independent rows of A.
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F’

Figure 1.21: How did Newton start a business
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1.11 The Dual Space E£* and Linear Forms

We already observed that the field K itself (K = R or
K = C) is a vector space (over itself).

The vector space Hom(F, K) of linear maps from E to
the field K, the linear forms, plays a particular role.

We take a quick look at the connection between E and
E* = Hom(F, K), its dual space.

As we will see shortly, every linear map f: E — F gives
rise to a linear map f': F* — E*, and it turns out that
in a suitable basis, the matrix of f' is the transpose of
the matrix of f.

Thus, the notion of dual space provides a conceptual ex-
planation of the phenomena associated with transposi-
tion.

But it does more, because it allows us to view subspaces
as solutions of sets of linear equations and vice-versa.
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Consider the following set of two “linear equations” in
RS,

r—y+z=0
r—y—z2=0,

and let us find out what is their set V' of common solutions
(z,y,2) € R>.

By subtracting the second equation from the first, we get
2z = 0, and by adding the two equations, we find that
2(x —y) = 0, so the set V' of solutions is given by

y=x
z = 0.

This is a one dimensional subspace of R?. Geometrically,
this is the line of equation y = x in the plane z = 0.
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Now, why did we say that the above equations are linear?

This is because, as functions of (z,y, z), both maps
flz (Ilf,y,Z) =T — Y+ =z and f2: (ZIZ,y,Z) =T —Yy—=z
are linear.

The set of all such linear functions from R? to R is a vector
space; we used this fact to form linear combinations of the
“equations” f; and fs.

Observe that the dimension of the subspace V' is 1.

The ambient space has dimension n = 3 and there are
two “independent” equations fi, fo, so it appears that

the dimension dim(V) of the subspace V' defined by m
independent equations is

dim(V) =n — m,

which is indeed a general fact.
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More generally, in R", a linear equation is determined by
an n-tuple (ai,...,a,) € R", and the solutions of this
linear equation are given by the n-tuples (z1,...,x,) €
R" such that

these solutions constitute the kernel of the linear map
(T1,...,Tp) — @121 + -+ + apxy.

The above considerations assume that we are working in
the canonical basis (eq, ..., e,) of R”, but we can define
“linear equations” independently of bases and in any di-
mension, by viewing them as elements of the vector space

Hom(FE, K) of linear maps from E to the field K.
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Definition 1.17. Given a vector space E. the vector
space Hom(F, K) of linear maps from F to K is called
the dual space (or dual) of E. The space Hom(E, K) is
also denoted by E*, and the linear maps in £* are called

the linear forms, or covectors. The dual space E** of
the space E* is called the bidual of E.

As a matter of notation, linear forms f: £ — K will also
be denoted by starred symbol, such as u*, x*, etc.

If E is a vector space of finite dimension n and (uq, . . . , uy,)
is a basis of E. for any linear form f* € E*, for every
r=xuU+ -+ U, €F, we have

fr(@) =Mz + -+ Ay,
where \; = f*(u;) € K, for every i, 1 <1 < n.
Thus, with respect to the basis (uq,...,u,), f*(z) is a

linear combination of the coordinates of z, and we can
view a linear form as a linear equation.
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Given a linear form u* € E* and a vector v € E, the
result u*(v) of applying u* to v is also denoted by (u*, v).

This defines a binary operation (—, —): E* x F — K
satistying the following properties:

<u1 + u27 > <u17 > <u;> U>
(u*, v +vg) = (u™, v1) + (u*, v9)
(Au”,v) = AMu*, v)

(u*, Av) = Au™, v).

The above identities mean that (—, —) is a bilinear map,
since it is linear in each argument.

It is often called the canonical pairing between E* and

E.
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In view of the above identities, given any fixed vector v €
E, the map eval,: E* — K (evaluation at v) defined
such that

eval,(u*) = (u*,v) = u*(v) for every u* € E*

is a linear map from E* to K, that is, eval, is a linear
form in E™**.

Again from the above identities, the map
evalp: B — E** defined such that

evalp(v) = eval, for every v € E,

is a linear map.

We shall see that it is injective, and that it is an isomor-
phism when E has finite dimension.
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We now formalize the notion of the set V' of linear equa-
tions vanishing on all vectors in a given subspace V' C E,
and the notion of the set U of common solutions of a
given set U C E* of linear equations.

The duality theorem (Theorem 1.28) shows that the di-
mensions of V and V', and the dimensions of U and U",
are related in a crucial way:.

[t also shows that, in finite dimension, the maps V +— V!
and U +— U" are inverse bijections from subspaces of E
to subspaces of E*.
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Definition 1.18. Given a vector space E and its dual
E* we say that a vector v € E and a linear form u* € E*
are orthogonal ift (u*,v) = 0. Given a subspace V of
E and a subspace U of E*, we say that V' and U are
orthogonal iff (u*,v) = 0 for every u* € U and every
v € V. Given a subset V' of F (resp. a subset U of E*),
the orthogonal V° of V is the subspace V' of E* defined
such that

VY= {u* € B | (u*,v) =0, for every v € V'}

(resp. the orthogonal U" of U is the subspace U’ of E
defined such that

U’ ={veE|{u,v)=0, for every u* € U}).

The subspace V' C E* is also called the annihilator of
V.
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The subspace U C E annihilated by U C E* does not
have a special name. It seems reasonable to call it the
linear subspace (or linear variety) defined by U.

Informally, V' is the set of linear equations that vanish
on V, and UV is the set of common zeros of all linear
equations in U. We can also define V' by

VY={u* € E*|V C Keru*}
and U by

U’ = ﬂ Ker u*.

u*elU
Observe that £ =0, and {0}° = E*.

Furthermore, if V; C V5, C E. then VQO C Vlo C E*, and
if U} CUy C E* then UY CUY C E.
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It can also be shown that that V' C V% for every sub-
space V of E, and that U C U for every subspace U of
E*.

We will see shortly that in finite dimension, we have

V=V" and U=UY,

Given a vector space F and any basis (u;);e; for E, we
can associate to each u; a linear form u; € E*, and the
u; have some remarkable properties.

Definition 1.19. Given a vector space F/ and any basis
(u;)ier for E, by Proposition 1.9, for every ¢ € I, there is
a unique linear form u; such that

oo 1=
“i(uﬂ)_{o if § £ 7,

for every j € I. The linear form wu; is called the coordi-
nate form of index i w.r.t. the basis (u;);es.
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Remark: Given an index set I, authors often define the
so called Kronecker symbol o; ;, such that

5 1 ifi=
Y10 ifd g,
for all 7,7 € I.

Then,
u; (us) = 4.

The reason for the terminology coordinate form is as
follows: If E has finite dimension and if (uq,...,u,) is a
basis of E, for any vector

v =AU+ -+ AUy,

we have

Therefore, u; is the linear function that returns the sth co-
ordinate of a vector expressed over the basis (ug, ..., u,).

We have the following important duality theorem.
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Theorem 1.28. (Duality theorem) Let E be a vector
space of dimension n. The following properties hold:

(a) For every basis (uq,...,u,) of E, the family of co-

ordinate forms (ui,...,u’) is a basis of E*.

(b) For every subspace V of E, we have V' =V .

(c) For every pair of subspaces V. and W of E such
that E = VW, with V' of dimension m, for every
basis (ui,...,u,) of E such that (ui,...,uy) 1S a
basis of V. and (U1, ..., Uy) 1S a basis of W, the

family (uf, ... u*) is a basis of the orthogonal W

of W in E*. Furthermore, we have W = W, and
dim(W) + dim(W") = dim(E).
(d) For every subspace U of E*, we have
dim(U) + dim(U") = dim(E),

where U is the orthogonal of U in E, and
UV ="U.
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Part (a) of Theorem 1.28 shows that
dim(F) = dim(E"),

and if (uq,...,u,) is a basis of E, then (uj,...,u}) is

a basis of the dual space E* called the dual basis of
(Ul, Ce ,un).

By part (c) and (d) of theorem 1.28, the maps V' + V!
and U +— UY, where V is a subspace of E and U is a
subspace of E*, are inverse bijections.

These maps set up a duality between subspaces of E, and
subspaces of £*.

& One should be careful that this bijection does not hold
if £ has infinite dimension. Some restrictions on the
dimensions of U and V' are needed.
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When F is of finite dimension n and (uq,...,u,) is a
basis of E, we noted that the family (uj,...,u}) is a
basis of the dual space E*,

Let us see how the coordinates of a linear form ¢* € E*
over the basis (uf,...,u’) vary under a change of basis.

Let (u1,...,uy,) and (vy,...,v,) be two bases of E, and
let P = (a; ;) be the change of basis matrix from (uy, . . . , u,)
to (v1,...,v,), so that

n
vj = E Qg jUsj.
1=1
If
n n
* P /%
Y = E piu; = E P07
1=1 1=1

after some algebra, we get

n

90;' = Z Qi jPi-

1=1
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Comparing with the change of basis

n
vy = E g Uy,
i=1

we note that this time, the coordinates (¢;) of the linear
form * change in the same direction as the change of
basis.

For this reason, we say that the coordinates of linear forms
are covariant.

By abuse of language, it is often said that linear forms
are covartant, which explains why the term covector is
also used for a linear form.

Observe that if (eq, ..., e,) is a basis of the vector space
E, then, as a linear map from F to K, every linear form
f € E™ is represented by a 1 X n matrix, that is, by a
row vector

()\1 ce An);

with respect to the basis (eq,...,¢e,) of £, and 1 of K|
where f(e;) = M.
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A vector u = > ue; € F is represented by a n x 1
matrix, that is, by a column vector

Uj

Up

and the action of f on u, namely f(u), is represented by
the matrix product

Uy
()\1 )\n) : = \Nuyp+ -+ A\u,.
Up,

On the other hand, with respect to the dual basis (e7, . .., e¥)

n
of £*, the linear form f is represented by the column vec-

tor
A1

An
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We will now pin down the relationship between a vector
space F/ and its bidual E**.

Proposition 1.29. Let E be a vector space. The fol-
lowing properties hold:

(a) The linear map evalg: E — E** defined such that
evalp(v) = eval,, forallv € E,

that is, evalg(v)(u*) = (u*,v) = u*(v) for every
u* € B*, is injective.
(b) When E is of finite dimension n, the linear map

evalg: B — E** is an isomorphism (called the
canonical isomorphism).

When F is of finite dimension and (ug, . . ., u,) is a basis
of E/, in view of the canonical isomorphism

evalg: K — E** the basis (uj*, ..., u}") of the bidual is
identified with (w1, ..., u,).

Proposition 1.29 can be reformulated very fruitfully in
terms of pairings.
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Definition 1.20. Given two vector spaces E and F' over
K, a pairing between E and F' is a bilinear map
w: Ex F — K. Such a pairing is nondegenerate ift

(1) for every u € E, if p(u,v) = 0 for all v € F, then
u =0, and

(2) for every v € F, if p(u,v) = 0 for all w € F, then
v = 0.

A pairing ¢: EF X F' — K is often denoted by
(—,—): ExXF — K.

For example, the map (—, —): E* x £ — K defined
earlier is a nondegenerate pairing (use the proof of (a) in
Proposition 1.29).

Given a pairing ¢: E x F' — K, we can define two maps
l,: B — F*and r,: F' — E* as follows:
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For every w € E, we define the linear form I,(u) in F*
such that

lo(u)(y) = p(u,y) foreveryy € F,

and for every v € F, we define the linear form r,(v) in
E* such that

T¢<v><x> = @(x,v) forevery x € F.

Proposition 1.30. Given two vector spaces E and F
over K, for every nondegenerate pairing

o: ExX F — K between E and F', the maps

l,: B — F* and rp,: ' — E* are linear and injec-
tive. Furthermore, if E and F' have finite dimension,
then this dimension is the same and l,: E — F* and
r,: F'— E* are bijections.

When E has finite dimension, the nondegenerate pair-
ing (—,—): B* x E — K yields another proof of the
existence of a natural isomorphism between £ and E**.

Interesting nondegenerate pairings arise in exterior alge-
bra.
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J Memic CLOCQ

Figure 1.22: Metric Clock
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1.12 Hyperplanes and Linear Forms

Actually, Proposition 1.31 below follows from parts (c)
and (d) of Theorem 1.28, but we feel that it is also inter-
esting to give a more direct proof.

Proposition 1.31. Let E be a vector space. The fol-
lowing properties hold:

(a) Given any nonnull linear form f* € E*, its kernel
H = Ker f* 1s a hyperplane.

(b) For any hyperplane H in E, there is a (nonnull)
linear form f* € E* such that H = Ker f*.

(c) Given any hyperplane H in E and any (nonnull)
linear form f* € E* such that H = Ker f*, for
every linear form g* € E*, H = Kerg* iff g* = A\ f*
for some A # 0 in K.

We leave as an exercise the fact that every subspace
V # E of a vector space E, is the intersection of all
hyperplanes that contain V.

We now consider the notion of transpose of a linear map
and of a matrix.
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1.13 Transpose of a Linear Map and of a Matrix

Given a linear map f: E — F', it is possible to define a
map f': F* — E* which has some interesting proper-
ties.

Definition 1.21. Given a linear map f: E — F', the
transpose f': F* — E* of f is the linear map defined
such that

fT<”U*> _ ’U* o f,
for every v* € F™.

Equivalently, the linear map f': F* — E* is defined
such that

for all w € E and all v* € F'™™.
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[t is easy to verify that the following properties hold:
(f+9) =f"+g'
(gof) =f"og'
idy, = idps-.

& Note the reversal of composition on the right-hand side
of (gof)' =f'og"

We also have the following property showing the natural-
ity of the eval map.

Proposition 1.32. For any linear map f: £ — F,
we have

' oevaly = evalp o f,

or equivalently, the following diagram commutes:

fTT

E** F**

evalp evalp

E——7-7——F.
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If £ and F' are finite-dimensional, then evalg and evalp
are isomorphisms, and if we identify £ with its bidual

E™ and F' with its bidual F™**, then
(fH'=7r

Proposition 1.33. Gwen a linear map f: E — F,
for any subspace V' of E, we have

V=) V) ={w e F| f(w) € V.
As a consequence,

Ker f' = (Im f)° and Kerf=(Imf")".
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The following theorem shows the relationship between the
rank of f and the rank of f'.

Theorem 1.34. Given a linear map f: E — F', the
following properties hold.

(a) The dual (Im f)* of Im f is isomorphic to
Im f' = f'(F*); that is,

(Im f)* ~ Im f .
(b) If F is finite dimensional, then rk(f) =rk(f").

The following proposition can be shown, but it requires a
generalization of the duality theorem.

Proposition 1.35. If f: £ — F' 1s any linear map,
then the following tdentities hold:

Im " = (Ker (f))"

Ker (f') = (Im f)°
Im f = (Ker (f)’
Ker (f) = (Im f)".



204 CHAPTER 1. BASICS OF LINEAR ALGEBRA

The following proposition shows the relationship between
the matrix representing a linear map f: £ — F' and the
matrix representing its transpose f': F* — E*.

Proposition 1.36. Let E and F' be two vector spaces,
and let (uq,...,u,) be a basis for E, and (vq,...,Un)
be a basis for F'. Given any linear map f: B — F,
if M(f) is the m X m-matriz representing f w.r.t.
the bases (ui,...,u,) and (vy,...,0y,), the n X m-
matrix M(f") representing f': F* — E* w.r.t. the
dual bases (vi,...,v%) and (ui,...,u’) is the trans-

m n

pose M(f)" of M(f).

We now can give a very short proof of the fact that the
rank of a matrix is equal to the rank of its transpose.

Proposition 1.37. Given a m X n matriz A over a
field K, we have rk(A) = rk(A").

Thus, given an m X n-matrix A, the maximum number
of linearly independent columns is equal to the maximum
number of linearly independent rows.
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Proposition 1.38. Given any m X n matriz A over a
field K (typically K =R or K = C), the rank of A is
the maximum natural number r such that there is an
invertible r x r submatrix of A obtained by selecting
r rows and r columns of A.

For example, the 3 X 2 matrix
ail a2
A= a21 Q22
asip asz

has rank 2 iff one of the three 2 x 2 matrices

aip a2 aip ai2 ao1 A2
a1 A22 a3; as2 az; as2
is invertible. We will see in Chapter 3 that this is equiv-

alent to the fact the determinant of one of the above
matrices 1S nonzero.

This is not a very efficient way of finding the rank of
a matrix. We will see that there are better ways using
various decompositions such as LU, QR, or SVD.
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“THe BRAVTY OF THHS 1S TOAT 1T 1S OALY OF
TCORETCAL IMPORTANCE, AND THERE. 1S NO WAY
(T CAN BE OF ANY PRACTICAL USE: WHATSOEVER,

Figure 1.23: Beauty
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1.14 The Four Fundamental Subspaces

Given a linear map f: E — F (where F and F are
finite-dimensional), Proposition 1.33 revealed that the
four spaces

Im f, Im f', Ker f, Ker f'

play a special role. They are often called the fundamental
subspaces associated with f.

These spaces are related in an intimate manner, since
Proposition 1.33 shows that

Ker f = (Im f")"
Ker T = (Im /)"

and Theorem 1.34 shows that

k(f) = rk(f7).
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It is instructive to translate these relations in terms of
matrices (actually, certain linear algebra books make a
big deal about this!).

If dim(F) = n and dim(F) = m, given any basis (ug, . . .,
uy,) of E and a basis (v, ..., v,) of F, we know that f is
represented by an m x n matrix A = (a;;), where the jth

column of A is equal to f(u;) over the basis (v, ..., vp).

Furthermore, the transpose map f' is represented by the
n x m matrix A" (with respect to the dual bases).

Consequently, the four fundamental spaces

Im f, Im ', Ker f, Ker f'

correspond to
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(1) The column space of A, denoted by Im A or R(A);
this is the subspace of R™ spanned by the columns of
A, which corresponds to the image Im f of f.

(2) The kernel or nullspace of A, denoted by Ker A or
N(A); this is the subspace of R" consisting of all
vectors x € R" such that Ax = 0.

(3) The row space of A, denoted by Im A" or R(A");
this is the subspace of R" spanned by the rows of A,
or equivalently, spanned by the columns of A", which
corresponds to the image Im f' of f'.

(4) The left kernel or left nullspace of A denoted by
Ker A" or N(A"); this is the kernel (nullspace) of A",
the subspace of R consisting of all vectors y € R™
such that A"y = 0, or equivalently, y' A = 0.

Recall that the dimension r of Im f, which is also equal
to the dimension of the column space Im A = R(A), is

the rank of A (and f).
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Then, some our previous results can be reformulated as
follows:

1. The column space R(A) of A has dimension r.
2. The nullspace N'(A) of A has dimension n — 7.
3. The row space R(A") has dimension r.

4. The left nullspace N'(A") of A has dimension m — r.

The above statements constitute what Strang calls the
Fundamental Theorem of Linear Algebra, Part I (see
Strang [30]).
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The two statements
Ker f = (Im f)°
Ker f' = (Im f)"
translate to

(1) The nullspace of A is the orthogonal of the row space
of A.

(2) The left nullspace of A is the orthogonal of the column
space of A.

The above statements constitute what Strang calls the
Fundamental Theorem of Linear Algebra, Part I (see
Strang [30]).

Since vectors are represented by column vectors and linear
forms by row vectors (over a basis in E or F'), a vector
x € R" is orthogonal to a linear form y if

yr = 0.



212 CHAPTER 1. BASICS OF LINEAR ALGEBRA

Then, a vector x € R" is orthogonal to the row space of
A iff x is orthogonal to every row of A, namely

Az = 0, which is equivalent to the fact that x belong to
the nullspace of A.

Similarly, the column vector y € R™ (representing a
linear form over the dual basis of F™*) belongs to the
nullspace of A" iff A"y =0, iff y' A = 0, which means
that the linear form given by y' (over the basis in F) is
orthogonal to the column space of A.

Since (2) is equivalent to the fact that the column space
of A is equal to the orthogonal of the left nullspace of
A, we get the following criterion for the solvability of an
equation of the form Ax = b:

The equation Az = b has a solution iff for all y € R™, if
Ay =0, then y'b = 0.
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Indeed, the condition on the right-hand side says that b
is orthogonal to the left nullspace of A, that is, that b
belongs to the column space of A.

This criterion can be cheaper to check that checking di-
rectly that b is spanned by the columns of A. For exam-
ple, if we consider the system

Ty — X = by
1132—[1332192
333—513'1:(?3

which, in matrix form, is written Az = b as below:

1 —1 0 1 b1
0 1 -1 I9 = bQ ,
—1 0 1 X3 b3

we see that the rows of the matrix A add up to 0.
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In fact, it is easy to convince ourselves that the left nullspace
of A is spanned by y = (1,1, 1), and so the system is solv-
able iff y'b = 0, namely

b1 + by + b3 = 0.
Note that the above criterion can also be stated negatively

as follows:

The equation Az = b has no solution iff there is some
y € R™ such that A"y =0 and y'b # 0.
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Figure 1.24: Brain Size?
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