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Ridge Regression

The problem of solving an overdetermined or underdetermined linear system
Aw =y, where A is an m X n matrix, arises as a “learning problem” in which
we observe a sequence of data ((a1,¥1),- .., (am, ¥m)), viewed as input-output
pairs of some unknown function f that we are trying to infer, where the a; are
the rows of the matrix A and y; € R.
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The problem of solving an overdetermined or underdetermined linear system
Aw =y, where A is an m X n matrix, arises as a “learning problem” in which
we observe a sequence of data ((a1,¥1),- .., (am, ¥m)), viewed as input-output
pairs of some unknown function f that we are trying to infer, where the a; are
the rows of the matrix A and y; € R.

The values y; are sometimes called /abels or responses.

The simplest kind of function is a linear function f{x) = x" w, where w € R" is
a vector of coefficients usually called a weight vector, or sometimes an
estimator.
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Ridge Regression: Least-Squares Solution

Since the problem is overdetermined and since our observations may be subject
to errors, we can't solve for w exactly as the solution of the system Aw =y,
so instead we solve the least-square problem of minimizing ||Aw — y||§

In an earlier module we showed that this problem can be solved using the
pseudo-inverse.

We know that the minimizers w are solutions of the normal equations
AT Aw = ATy, but when AT A is not invertible, such a solution is not unique
so some criterion has to be used to choose among these solutions.
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Ridge Regression: Least-Squares Solutions

One solution is to pick the unique vector w" of smallest Euclidean norm
[wt ||, that minimizes [|Aw — y|3.

The solution w' is given by w" = ATy, where AT is the pseudo-inverse of A.
The matrix AT is obtained from an SVD of A, say A = vauT.
Namely, At = USTVT, where 7 is the matrix obtained from ¥ by replacing

every nonzero singular value o; in X by ai_l, leaving all zeros in place, and
then transposing.
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Ridge Regression: Regularization Term

The difficulty with this approach is that it requires knowing whether a singular
value is zero or very small but nonzero.

A very small nonzero singular value o in ¥ yields a very large value 0! in X7,
but o = 0 remains 0 in 7.

This discontinuity phenomenon is not desirable and another way is to control
the size of w by adding a regularization term to ||Aw — y||>, and a natural
candidate is ||w]||*.




Ridge Regression: Notational Convention

It is customary to rename each column vector a; as x; (where x; € R™) and to

rename the input data matrix A as X, so that the row vector x,-T are the rows

of the m x n matrix X

X:
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Ridge Regression: Program (RR1)

Our optimization problem, called ridge regression, is

Program (RR1):

minimize ||y — Xw|® + K ||w|*,

which by introducing the new variable £ = y — Xw can be rewritten as



Ridge Regression: Program (RR2)

Program (RR2):

minimize &'¢ + Kw'w
subject to
y—= Xw = 57

where K > 0 is some constant determining the influence of the regularizing

term w' w, and we minimize over ¢ and w.
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The objective function of the first version of our minimization problem can be
expressed as

J(w) = ly = Xw||* + K| w]’
=w (X" X+ Kl)yw—2w"X"y+yy.

The matrix X' X is symmetric positive semidefinite and K > 0, so the matrix
X" X+ Kl, is positive definite.

It follows that Jis strictly convex, so by a previous theorem it has a unique
minimum iff VJ, = 0.
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Ridge Regression: Program (RR1) Solution

Since
Vidw=2(X"X+ Kl,)w—2X"y,

we deduce that
w= (X"X+KI,)*X"y. (*wp)

There is an interesting connection between the matrix (X' X + K1,)~'X" and
the pseudo-inverse X of X.

Proposition.  The limit of the matrix (X' X+ K/,) 7' X" when K > 0 goes
to zero is the pseudo-inverse X* of X
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Ridge Regression: Program (RR2) Solution

The dual function of the first formulation of our problem is a constant
function (with value the minimum of J) so it is not useful, but the second
formulation of our problem yields an interesting dual problem.

The Lagrangian is
L& w,\) =€+ Kw w (y— Xw—€)TA
=T Kww—w XTA—€TA+ 2Ty,
with A\, &,y € R™.

The Lagrangian L(&, w, \), as a function of & and w with A held fixed, is
obviously convex, in fact strictly convex.
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Ridge Regression: Dual Function of (RR2)

To derive the dual function G(\) we minimize L(&, w, \) with respect to £ and
w.

Since L(&, w, \) is (strictly) convex as a function of £ and w, by a previous
theorem it has a minimum iff its gradient VL, is zero.
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Since

RS
View= (QKW— xU) ’



Ridge Regression: Dual Function of (RR2)

Since 0t )
View= (2Kv§—_XT)\) ’
we get
A =2

_ Ly 8
w= o XA= X"
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Ridge Regression: Dual Function of (RR2)

The above suggests defining the variable o so that & = Ko, so we have
A =2Ka and w= X'a.

Then we obtain the dual function as a function of « by substituting the above
values of &, A\ and w back in the Lagrangian, and we get

G(a) = —Ka" (XXT + Kly)a + 2Ka .



Ridge Regression: Problem (RR2) Solution

This is a strictly concave function so by a previous theorem its maximum is
achieved iff VG, = 0, that is,

2K(XX" + K)o = 2Ky,

which yields
a=(XX" + Klp) "ty



Ridge Regression: Solution Comparison

Putting everything together we obtain
a=(XX" +Klp) "ty
w=X"a
£ = Ka,

which vyields
w=X"(XX" + Kl,) " ty. (*wd)
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Ridge Regression

Earlier in (,,) we found that
w= (X" X+ KI,) Xy,
and it is easy to check that

(XTX+ KI) X" = XT (XX + Ki,) L.

If n < m it is cheaper to use the formula on the left-hand side, but if m < n it
is cheaper to use the formula on the right-hand side.



