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Alternating Direction Method of Multipliers

The alternating direction method of multipliers, for short ADMM, is the best
method known for solving optimization problems for which the function J to
be optimized can be split into two independent parts, as J(x, z) = f(x) + g(z),
and to consider the Minimization Problem (Padmm),

minimize f(x) + g(z)
subject to Ax + Bz = c,

for some p × n matrix A, some p × m matrix B, and with x ∈ Rn, z ∈ Rm, and
c ∈ Rp. We also assume that f and g are convex.
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Iterative Steps of ADMM
The above problem can be solved using an iterative process applying to the
augmented Lagrangian

Lρ(x, z, λ) = f(x) + g(z) + λ⊤(Ax + Bz − c) + (ρ/2) ∥Ax + Bz − c∥22 ,
with λ ∈ Rp and for some ρ > 0.

Given some initial values (z0, λ0), the ADMM method consists of the following
iterative steps:

xk+1 = arg min
x

Lρ(x, zk, λk)

zk+1 = arg min
z

Lρ(xk+1, z, λk)

λk+1 = λk + ρ(Axk+1 + Bzk+1 − c).
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ADMM Methodology of Sequential Updates

Instead of performing a minimization step jointly over x and z, as the step

(xk+1, zk+1) = arg min
x,z

Lρ(x, z, λk),

ADMM first performs an x-minimization step, and then a z-minimization step.
Thus x and z are updated in an alternating or sequential fashion, which
accounts for the term alternating direction.
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Specializing ADMM to Quadratic Programs

We specialize ADMM to quadratic programs of the following form:

minimize 1

2
x⊤Px + q⊤x + r

subject to Ax = b, x ≥ 0,

where P is an n × n symmetric positive semidefinite matrix, q ∈ Rn, r ∈ R,
and A is an m × n matrix of rank m.
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Specializing ADMM to Quadratic Programs
The above program is converted in ADMM form as follows:

minimize f(x) + g(z)
subject to x − z = 0,

with
f(x) = 1

2
x⊤Px + q⊤x + r, dom(f) = {x ∈ Rn | Ax = b},

and
g = IRn

+
,

the indicator function of the positive orthant Rn
+.
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Specializing ADMM to Quadratic Programs
Then ADMM consists of the following steps:

xk+1 = arg min
x

(
f(x) + (ρ/2)

∥∥x − zk + uk∥∥2
2

)
zk+1 = (xk+1 + uk)+

uk+1 = uk + xk+1 − zk+1,

where uk = λk/ρ (this is the scaled version of ADMM). Here, v+ is the vector
obtained by setting the negative components of v to zero.

The x-update
involves solving the KKT equations(

P + ρI A⊤

A 0

)(
xk+1

y

)
=

(
−q + ρ(zk − uk)

b

)
.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Specializing ADMM to Quadratic Programs
Then ADMM consists of the following steps:

xk+1 = arg min
x

(
f(x) + (ρ/2)

∥∥x − zk + uk∥∥2
2

)
zk+1 = (xk+1 + uk)+

uk+1 = uk + xk+1 − zk+1,

where uk = λk/ρ (this is the scaled version of ADMM). Here, v+ is the vector
obtained by setting the negative components of v to zero. The x-update
involves solving the KKT equations(

P + ρI A⊤

A 0

)(
xk+1

y

)
=

(
−q + ρ(zk − uk)

b

)
.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Solving (SVMs2′) Using ADMM
In order to solve (SVMs2′) using ADMM we need to write the matrix
corresponding to the constraints in equational form,

p∑
i=1

λi −
q∑

j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj − γ = Km

λi + αi = Ks, i = 1, . . . , p
µj + βj = Ks, j = 1, . . . , q,

with Km = (p + q)Ksν.
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Constraint Matrix for the Dual of (SVMs2′)
This is the (p + q + 2)× (2(p + q) + 1) matrix A given by

A =


1⊤

p −1⊤
q 0⊤p 0⊤q 0

1⊤
p 1⊤

q 0⊤p 0⊤q −1

Ip 0p,q Ip 0p,q 0p

0q,p Iq 0q,p Iq 0q

 .

We leave it as an exercise to prove that A has rank p + q + 2. The right-hand
side is

c =

 0
Km

Ks1p+q

 .
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Solving (SVMs2′) Using ADMM

The symmetric positive semidefinite (p + q)× (p + q) matrix P defining the
quadratic functional is

P = X⊤X, with X =
(
−u1 · · · −up v1 · · · vq

)
,

and
q = 0p+q.
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Solving (SVMs2′) Using ADMM

Since there are 2(p + q) + 1 Lagrange multipliers (λ, µ, α, β, γ), the
(p + q)× (p + q) matrix X⊤X must be augmented with zero’s to make it a
(2(p + q) + 1)× (2(p + q) + 1) matrix Pa given by

Pa =

(
X⊤X 0p+q,p+q+1

0p+q+1,p+q 0p+q+1,p+q+1

)
,

and similarly q is augmented with zeros as the vector qa = 02(p+q)+1.
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Simplification of the Dual Constraints

Using the fact that the duality gap is zero it can be shown that if the primal
problem (SVMs2′) has an optimal solution with w ̸= 0, then η ≥ 0.

Consequently we can drop the constraint η ≥ 0 from the primal problem.
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Simplification of the Dual Constraints

Using the fact that the duality gap is zero it can be shown that if the primal
problem (SVMs2′) has an optimal solution with w ̸= 0, then η ≥ 0.

Consequently we can drop the constraint η ≥ 0 from the primal problem.
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Simplification of the Dual Constraints
In this case there are 2(p + q) Lagrange multipliers (λ, µ, α, β). It is easy to
see that the objective function of the dual is unchanged and the set of
constraints is

p∑
i=1

λi −
q∑

j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj = Km

λi + αi = Ks, i = 1, . . . , p
µj + βj = Ks, j = 1, . . . , q,

with Km = (p + q)Ksν.
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Simplification of the Dual Constraints
In this case there are 2(p + q) Lagrange multipliers (λ, µ, α, β). It is easy to
see that the objective function of the dual is unchanged and the set of
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p∑
i=1

λi −
q∑
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Simplifying the Constraint Matrix
The constraint matrix corresponding to this system of equations is the
(p + q + 2)× 2(p + q) matrix A2 given by

A2 =


1⊤

p −1⊤
q 0⊤p 0⊤q

1⊤
p 1⊤

q 0⊤p 0⊤q

Ip 0p,q Ip 0p,q

0q,p Iq 0q,p Iq

 .

We leave it as an exercise to prove that A2 has rank p + q + 2. The
right-hand side is

c2 =

 0
Km

Ks1p+q

 .
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Solving (SVMs2′) Using ADMM
The symmetric positive semidefinite (p + q)× (p + q) matrix P is

P = X⊤X, with X =
(
−u1 · · · −up v1 · · · vq

)
,

and q = 0p+q.

Since there are 2(p + q) Lagrange multipliers, the (p + q)× (p + q) matrix
X⊤X must be augmented with zero’s to make it a 2(p + q)× 2(p + q) matrix
P2a given by

P2a =

(
X⊤X 0p+q,p+q

0p+q,p+q 0p+q,p+q

)
,

and similarly q is augmented with zeros as the vector q2a = 02(p+q).
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Matlab Illustrations of ADMM Solutions

The above method was implemented in Matlab with ρ = 10.

We ran our program on two sets of 30 points each generated at random using
the following code which calls the function runSVMs2pbv3:

rho = 10;
u16 = 10.1*randn(2,30)+7 ;
v16 = -10.1*randn(2,30)-7;
[~,~,~,~,~,~,w3] = runSVMs2pbv3(0.37,rho,u16,v16,1/60)
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Matlab Illustrations of ADMM Solutions

We picked Ks = 1/60 and various values of ν starting with ν = 0.37, which
appears to be the smallest value for which the method converges; see Figure 1.

Reducing ν below ν = 0.37 has the effect that pf, qf, pm, qm decrease but the
following situation arises. Shrinking η a little bit has the effect that
pf = 9, qf = 10, pm = 10, qm = 11.
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Matlab Illustrations of ADMM Solutions

We picked Ks = 1/60 and various values of ν starting with ν = 0.37, which
appears to be the smallest value for which the method converges; see Figure 1.

Reducing ν below ν = 0.37 has the effect that pf, qf, pm, qm decrease but the
following situation arises. Shrinking η a little bit has the effect that
pf = 9, qf = 10, pm = 10, qm = 11.
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Matlab Illustrations of ADMM Solutions

Then max{pf, qf} = min{pm, qm} = 10, so the only possible value for ν is
ν = 20/60 = 1/3 = 0.3333333 · · · .

When we run our program with ν = 1/3, it returns a value of η less than
10−13 and a value of w whose components are also less than 10−13. This is
probably due to numerical precision. Values of ν less than 1/3 cause the same
problem. It appears that the geometry of the problem constrains the values of
pf, qf, pm, qm in such a way that it has no solution other than w = 0 and
η = 0.
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Matlab Illustrations of ADMM Solutions

Then max{pf, qf} = min{pm, qm} = 10, so the only possible value for ν is
ν = 20/60 = 1/3 = 0.3333333 · · · .

When we run our program with ν = 1/3, it returns a value of η less than
10−13 and a value of w whose components are also less than 10−13. This is
probably due to numerical precision. Values of ν less than 1/3 cause the same
problem. It appears that the geometry of the problem constrains the values of
pf, qf, pm, qm in such a way that it has no solution other than w = 0 and
η = 0.
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Solving (SVMs2′) Using ADMM
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Figure 1: Running (SVMs2′) on two sets of 30 points; ν = 0.37.
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Matlab Illustrations of ADMM Solutions

Figure 2 shows the result of running the program with ν = 0.51. We have
pf = 15, qf = 16, pm = 16, qm = 16. Interestingly, for ν = 0.5, we run into the
singular situation where there is only one support vector and ν = 2pf/(p + q).
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Solving (SVMs2′) Using ADMM
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Figure 2: Running (SVMs2′) on two sets of 30 points; ν = 0.51.
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Solving (SVMs2′) Using ADMM
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Figure 3: Running (SVMs2′) on two sets of 30 points; ν = 0.71.
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Matlab Illustrations of ADMM Solutions

Next Figure 3 shows the result of running the program with ν = 0.71. We
have pf = 21, qf = 21, pm = 22, qm = 23. Interestingly, for ν = 0.7, we run
into the singular situation where there are no support vectors.

For our next to the last run, Figure 4 shows the result of running the program
with ν = 0.95. We have pf = 28, qf = 28, pm = 29, qm = 29.
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Matlab Illustrations of ADMM Solutions

Next Figure 3 shows the result of running the program with ν = 0.71. We
have pf = 21, qf = 21, pm = 22, qm = 23. Interestingly, for ν = 0.7, we run
into the singular situation where there are no support vectors.

For our next to the last run, Figure 4 shows the result of running the program
with ν = 0.95. We have pf = 28, qf = 28, pm = 29, qm = 29.
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Solving (SVMs2′) Using ADMM
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Figure 4: Running (SVMs2′) on two sets of 30 points; ν = 0.95.
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Matlab Illustrations of ADMM Solutions

Figure 5 shows the result of running the program with ν = 0.97. We have
pf = 29, qf = 29, pm = 30, qm = 30, which shows that the largest margin has
been achieved.

However, after 80000 iterations the dual residual is less than 10−12 but the
primal residual is approximately 10−4 (our tolerance for convergence is 10−10,
which is quite high). Nevertheless the result is visually very good.
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Matlab Illustrations of ADMM Solutions

Figure 5 shows the result of running the program with ν = 0.97. We have
pf = 29, qf = 29, pm = 30, qm = 30, which shows that the largest margin has
been achieved.

However, after 80000 iterations the dual residual is less than 10−12 but the
primal residual is approximately 10−4 (our tolerance for convergence is 10−10,
which is quite high). Nevertheless the result is visually very good.
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Solving (SVMs2′) Using ADMM
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Figure 5: Running (SVMs2′) on two sets of 30 points; ν = 0.97.


