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Alternating Direction Method of Multipliers

The alternating direction method of multipliers, for short ADMM, is the best
method known for solving optimization problems for which the function J to
be optimized can be split into two independent parts, as J(x, z) = f(x) + g(2),
and to consider the Minimization Problem (Pagmm),

minimize f(x) + g(2)
subject to Ax+ Bz = c,

for some p X n matrix A, some p x m matrix B, and with x € R", z€ R™, and
c € RP. We also assume that f and g are convex.



Iterative Steps of ADMM

The above problem can be solved using an iterative process applying to the
augmented Lagrangian

Lo(x,2,A) = fx) + g(z) + AT (Ax+ Bz — ) + (p/2) | Ax+ Bz — cl2,
with A € RP and for some p > 0.



Iterative Steps of ADMM

The above problem can be solved using an iterative process applying to the
augmented Lagrangian

Ly(x,2,\) = fIx) + g(2) + A\ (Ax+ Bz — ¢) + (p/2) || Ax + Bz — )2,
with A € RP and for some p > 0.

Given some initial values (zo, )\O), the ADMM method consists of the following
iterative steps:

X = argmin L,(x, 25, \¥)
Z7 = argmin L, (X", 2 \K)

ML= N p(AXKTL 4+ BT — o).



ADMM Methodology of Sequential Updates

Instead of performing a minimization step jointly over x and z, as the step

(XL ) = argmin L (x, z, A¥),

)

ADMM first performs an x-minimization step, and then a zminimization step.
Thus x and z are updated in an alternating or sequential fashion, which
accounts for the term alternating direction.



Specializing ADMM to Quadratic Programs

We specialize ADMM to quadratic programs of the following form:
1
minimize 2 TPx+q'x+r
subject to Ax= b, x > 0,

where P is an n X n symmetric positive semidefinite matrix, g € R", r € R,
and A is an m x n matrix of rank m.



Specializing ADMM to Quadratic Programs

The above program is converted in ADMM form as follows:

minimize f(x) + g(2)

subject to x—z=0,
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1
fl) = 5x Px+q'x+r, dom(f) = {x€R" | Ax= b},



Specializing ADMM to Quadratic Programs

The above program is converted in ADMM form as follows:

minimize f(x) + g(2)
subject to x—z=0,

with

1
fl) = ox' Px+q'x+r, dom(f) = {x € R" | Ax= b},

and
g=Ir,

the indicator function of the positive orthant R .



Specializing ADMM to Quadratic Programs
Then ADMM consists of the following steps:

X1 = arg min (f(x) + (p/2) ||x— 2+ ukH§>

P L

JHL = g e e

where u* = \¥/p (this is the scaled version of ADMM). Here, v, is the vector
obtained by setting the negative components of v to zero.



Specializing ADMM to Quadratic Programs
Then ADMM consists of the following steps:
X1 = arg min (f(x) + (p/2) ||x— 2+ ukH§>

2L = (L 4 gy,
UFL = g T L

where u* = \¥/p (this is the scaled version of ADMM). Here, v, is the vector
obtained by setting the negative components of v to zero. The x-update
involves solving the KKT equations

P3N



Solving (SVMgy) Using ADMM

In order to solve (SVMg/) using ADMM we need to write the matrix
corresponding to the constraints in equational form,

p q

p q
DNt D == Kn
i=1 j=1

Aitai=Ks, i=1,...,p
pitBi=K, j=1,...,q

with K, = (p+ q)Ksv.



Constraint Matriz for the Dual of (SVMgy)

This is the (p+ g+ 2) x (2(p+ q) + 1) matrix A given by
1, -1, 0) 057 0
1, 1, 0y 05 -1
b Opg 1l Opq Op
Ogp  lg Ogqp lg 0O

A=



Constraint Matriz for the Dual of (SVMgy)

This is the (p+ g+ 2) x (2(p+ q) + 1) matrix A given by

T T T T

1, -1, 0, O 0
T T T T
na i, 1, 0, 0, -1
I Opg Ip
Ogp  lg Ogp g
We leave it as an exercise to prove that A has rank p+ g+ 2. The right-hand
side is
0
c= Kn
Klpiq



Solving (SVMgy) Using ADMM

The symmetric positive semidefinite (p+ g) x (p+ g) matrix P defining the
quadratic functional is

P=X'X, with X=(-wu - —u, vi -+ v,

and
q = Op+q-



Solving (SVMgy) Using ADMM

Since there are 2(p + q) + 1 Lagrange multipliers (A, i, «, 3, 7), the
(p+ q) x (p+ g) matrix X7 X must be augmented with zero's to make it a

(2(p+q) +1) x (2(p+ q) + 1) matrix P, given by

T
_ X X Optq.ptqt1
Pa - O O )
p+ag+l,p+q Vp+g+l,p+q+1

and similarly g is augmented with zeros as the vector g, = O(pqq)41-



Simplification of the Dual Constraints

Using the fact that the duality gap is zero it can be shown that if the primal
problem (SVMgy) has an optimal solution with w # 0, then n > 0.



Simplification of the Dual Constraints

Using the fact that the duality gap is zero it can be shown that if the primal
problem (SVMgy) has an optimal solution with w # 0, then n > 0.

Consequently we can drop the constraint 7 > 0 from the primal problem.



Simplification of the Dual Constraints

In this case there are 2(p + q) Lagrange multipliers (\, i, o, B). It is easy to
see that the objective function of the dual is unchanged and the set of
constraints is



Simplification of the Dual Constraints

In this case there are 2(p + q) Lagrange multipliers (\, i, o, B). It is easy to
see that the objective function of the dual is unchanged and the set of

constraints is

p q

D M= =0
i=1 j=1

p q
Z i + Z Hj= Km
i=1 j=1

Ai+ o= K,
/'LJ+BJ = KS7

with K, = (p+ q)Ksv.

P
"7q7



Simplifying the Constraint Matriz

The constraint matrix corresponding to this system of equations is the

(p+g+2) x 2(p+ q) matrix Az given by

1) -1 05 0F
P 1, 1, 0} 0F
lp Op,q Ip Op,q
Oq,p /q Oq,p /q



Simplifying the Constraint Matriz

The constraint matrix corresponding to this system of equations is the
(p+qg+2) x 2(p+ q) matrix Ay given by
T T T T
1p _1q Op Oq
T T T T
4, — 1, 1, 0, 0,
Ib Opg I Opg
Ogp  lg Ogp g
We leave it as an exercise to prove that Ay has rank p+ g+ 2. The
right-hand side is
0
Cy = Km
K51p+q



Solving (SVMgy) Using ADMM

The symmetric positive semidefinite (p+ q) x (p+ g) matrix P is
P=X"X, with X= (—u1 e —Up Vg o vq),

and g = Opyq.



Solving (SVMgy) Using ADMM

The symmetric positive semidefinite (p+ q) X (p + q) matrix P is
P=X"X, with X= (—u1 e —Up Vg o vq),

and g = Opyq.

Since there are 2(p + q) Lagrange multipliers, the (p+ q) x (p+ g) matrix
X" X must be augmented with zero's to make it a 2(p + q) x 2(p + g) matrix

P, given by .
X'X 0
P,, — ( p+q,p+q) ’
" \Optgpta Optgptq

and similarly g is augmented with zeros as the vector g2, = 03(p4q)-



Matlab Illustrations of ADMM Solutions

The above method was implemented in Matlab with p = 10.

We ran our program on two sets of 30 points each generated at random using
the following code which calls the function runSVMs2pbv3:

rho = 10;

ul6é = 10.1*randn(2,30)+7 ;

v16 = -10.1*xrandn(2,30)-7;

[~,~,~,~,~,~,w3] = runSVMs2pbv3(0.37,rho,ul6,v16,1/60)



Matlab Illustrations of ADMM Solutions

We picked Ks = 1/60 and various values of v starting with v = 0.37, which
appears to be the smallest value for which the method converges; see Figure 1.



Matlab Illustrations of ADMM Solutions

We picked Ks = 1/60 and various values of v starting with v = 0.37, which
appears to be the smallest value for which the method converges; see Figure 1.

Reducing v below v = 0.37 has the effect that pf, gf, pm, gm decrease but the
following situation arises. Shrinking 7 a little bit has the effect that
pPr= 97 ar = 107pm = 10; dm = 11.



Matlab Illustrations of ADMM Solutions

Then max{ps, g} = min{pm, gm} = 10, so the only possible value for v is
v =20/60=1/3=0.3333333- - - .



Matlab Illustrations of ADMM Solutions

Then max{ps, g} = min{pm, gm} = 10, so the only possible value for v is
v =20/60=1/3=0.3333333- - - .

When we run our program with v = 1/3, it returns a value of 7 less than
10~'3 and a value of w whose components are also less than 10713, This is
probably due to numerical precision. Values of v less than 1/3 cause the same
problem. It appears that the geometry of the problem constrains the values of
Pf, Gf, Pm, m in such a way that it has no solution other than w = 0 and
n=0.



Solving (SVMgy) Using ADMM

Figure 1: Running (SVMg/) on two sets of 30 points; v = 0.37.



Matlab Illustrations of ADMM Solutions

Figure 2 shows the result of running the program with v = 0.51. We have
pr= 15, qr= 16, p,, = 16, g, = 16. Interestingly, for v = 0.5, we run into the
singular situation where there is only one support vector and v = 2p¢/(p + q).



Solving (SVMgy) Using ADMM

Figure 2: Running (SVMg/) on two sets of 30 points; v = 0.51.



Solving (SVMgy) Using ADMM

Figure 3: Running (SVMg/) on two sets of 30 points; v = 0.71.



Matlab Illustrations of ADMM Solutions

Next Figure 3 shows the result of running the program with v = 0.71. We
have pr= 21, qr = 21, pm = 22, qm = 23. Interestingly, for v = 0.7, we run
into the singular situation where there are no support vectors.



Matlab Illustrations of ADMM Solutions

Next Figure 3 shows the result of running the program with v = 0.71. We
have pr= 21, qr = 21, pm = 22, qm = 23. Interestingly, for v = 0.7, we run
into the singular situation where there are no support vectors.

For our next to the last run, Figure 4 shows the result of running the program
with v = 0.95. We have pr= 28, gr = 28, pm, = 29, g, = 29.



Solving (SVMgy) Using ADMM
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Figure 4: Running (SVMg/) on two sets of 30 points; v = 0.95.



Matlab Illustrations of ADMM Solutions

Figure 5 shows the result of running the program with v = 0.97. We have
pr=29,qr= 29, pm = 30, g, = 30, which shows that the largest margin has
been achieved.



Matlab Illustrations of ADMM Solutions

Figure 5 shows the result of running the program with v = 0.97. We have
pr=29,qr= 29, pm = 30, g, = 30, which shows that the largest margin has
been achieved.

However, after 80000 iterations the dual residual is less than 1072 but the
primal residual is approximately 10=% (our tolerance for convergence is 10~
which is quite high). Nevertheless the result is visually very good.



Solving (SVMgy) Using ADMM
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Figure 5: Running (SVMg/) on two sets of 30 points; v = 0.97.



