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Classification of Data Points for (SVMgy)

For a finer classification of the points it turns out to be convenient to consider

the ratio
Km

(P+ 9K

UV =

First note that in order for the constraints to be satisfied, some relationship
between K and K,,, must hold. In addition to the constraints

OSA,'SKS, OSMJSK.S?



Classification of Data Points for (SVMgy)

we also have the constraints

p q
D N=2u
i=1 j=1

which imply that



Relationship Between Ks and K,

Since A, i are all nonnegative, if \; = K for all i and if 1; = K for all j, then

K p q
ngigA,ész and ngg 1 < gk,

so these constraints are not satisfied unless K, < min{2pKj, 2gK;}, so we
assume that K, < min{2pKs, 2qK}.



Definition of v for (SVMg)

The equations in (1) also imply that there is some iy such that \;, > 0 and
some jo such that p;, > 0, and so p,, > 1 and g, > 1.

For a finer classification of the points we find it convenient to define v > 0

such that
Km

(P+ g)Ks’
so that the objective function J(w, €, &, b,n) is given by
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Normalization of v for (SVMg)

Observe that the condition K, < min{2pKj, 2qK,} is equivalent to

2 2
ngin{_P,_Q}g.
p+q p+gq

Since we obtain an equivalent problem by rescaling by a common positive
factor, theoretically it is convenient to normalize K; as

1
Ks =
pP+q
in which case K,,, = v.

This method is called the v-support vector machine.



Classification of Data Points for (SVMgy)

Actually, to program the method, it may be more convenient assume that K
is arbitrary. This helps in avoiding A; and y; to become to small when p+ g is
relatively large.

The equations (1) and the box inequalities
0<A<Ks, 0<p<Ks

also imply the following facts:



Classification of Data Points for (SVMgy)

Proposition.  If Problem (SVMg) has an optimal solution with w # 0 and
n > 0, then the following facts hold:

(1) Let pr be the number of points u; such that A\; = K, and let gr the
number of points v; such that y; = Ks. Then pr, qr < v(p+ q)/2.

(2) Let p;, be the number of points u; such that \; > 0, and let g,, the
number of points v; such that y; > 0. Then pm, gm > v(p+ q)/2. We
have p,, > 1 and g, > 1.

(3) If pr>1o0rgr>1, thenv > 2/(p+ q).



Condition for Separablity of Data Points

Observe that pr = gr = 0 means that there are no points in the open slab
containing the separating hyperplane, namely, the points u; and the points v;
are separable.

So if the points u; and the points v; are not separable, then we must pick v
such that 2/(p+ q) < v < min{2p/(p+ q),2q/(p+ q)} for the method to
succeed. Otherwise, the method is trying to produce a solution where w = 0
and = 0, and it does not converge (y is nonzero).



Upper and Lower Bounds for v of (SVMgy)

Actually, above Proposition yields more accurate bounds on v for the method
to converge, namely

{ 2pr  2gf } . { U Ak }
max , < v < min , .
pt+q p+gq pPt+q p+gq

By a previous remark, pr < p,, and gr < g, the first inequality being strict if
there is some i such that 0 < A\; < K, and the second inequality being strict if
there is some j such that 0 < p; < K. This will be the case under the
Standard Margin Hypothesis.




Value of v Controls Width of Slab

Observe that a small value of v keeps pr and gr small, which is achieved if the
d-slab is narrow (to avoid having points on the wrong sides of the margin
hyperplanes).

A large value of v allows p,, and g, to be fairly large, which is achieved if the
0-slab is wide.

Thus the smaller v is, the narrower the d-slab is, and the larger v is, the wider
the d-slab is.



