Fundamentals of Linear Algebra and Optimization Classification of Data Points: Terminology

Jean Gallier and Jocelyn Quaintance

CIS Department University of Pennsylvania

jean@cis.upenn.edu

April 25, 2024

Classification of Data Points for (SVM*^s*² *′*)

In this module we introduce the concepts necessary to discuss a classification of the points *uⁱ* and *v^j* in terms of *Lagrange multipliers*.

If $(w, \eta, \epsilon, \xi, b)$ is an optimal solution of Problem $(\text{SVM}_{\textbf{s2}'})$ with $w \neq 0$ and $\eta \neq 0$, then the complementary slackness conditions yield a classification of the points u_i and v_j in terms of the values of λ and $\mu.$

Indeed, we have
$$
\epsilon_i \alpha_i = 0
$$
 for $i = 1, ..., p$ and $\xi_j \beta_j = 0$ for $j = 1, ..., q$.

Classification of Data Points for (SVM*^s*² *′*)

Also, if $\lambda_i > 0$, then the corresponding constraint is active, and similarly if $\mu_j > 0$. Since $\lambda_i + \alpha_i = \mathcal{K}_{\mathsf{s}}$, it follows that $\epsilon_i \alpha_i = 0$ iff $\epsilon_i (\mathcal{K}_{\mathsf{s}} - \lambda_i) = 0$, and since $\mu_j + \beta_j = \mathcal{K}_{\mathsf{s}}$, we have $\xi_j \beta_j = 0$ iff $\xi_j(\mathcal{K}_{\mathsf{s}} - \mu_j) = 0$.

Thus if
$$
\epsilon_i > 0
$$
, then $\lambda_i = K_s$, and if $\xi_j > 0$, then $\mu_j = K_s$.

Also, if $\lambda_i < K_s$, then $\epsilon_i = 0$ and u_i is *correctly classified*, and similarly if $\mu_j < K_s$, then $\xi_j = 0$ and v_j is *correctly classified*.

Definition of Support Vectors

Definition. The vectors u_i on the blue margin $H_{w,b+\eta}$ and the vectors v_i on the red margin *H^w,b−^η* are called *support vectors*. Support vectors correspond to vectors u_i for which $w^{\top}u_i - b - \eta = 0$ (which implies $\epsilon_i = 0$), and vectors v_j for which $w^{\top}v_j - b + \eta = 0$ (which implies $\xi_j = 0$).

Support vectors u_i such that $0 < \lambda_i < K_s$ and support vectors v_i such that $0 < \mu_i < K_s$ are *support vectors of type 1*.

Support Vectors of Type 1 and Type 2

Support vectors of type 1 play a special role so we denote the sets of indices associated with them by

$$
I_{\lambda} = \{i \in \{1, ..., p\} \mid 0 < \lambda_i < K_s\}
$$

$$
I_{\mu} = \{j \in \{1, ..., q\} \mid 0 < \mu_j < K_s\}.
$$

We denote their cardinalities by $numsvl_1 = |l_\lambda|$ and $numswm_1 = |l_\mu|$.

Support vectors u_i such that $\lambda_i = K_s$ and support vectors v_i such that $\mu_i = K_s$ are *support vectors of type 2*.

Exceptional Support Vectors; Failing the Margin

Support vectors u_i such that $\lambda_i = 0$ and support vectors v_i such that $\mu_i = 0$ are *exceptional support vectors*.

The vectors u_i for which $\lambda_i = K_s$ and the vectors v_j for which $\mu_j = K_s$ are said to *fail the margin*.

The sets of indices associated with the vectors failing the margin are denoted by

$$
K_{\lambda} = \{i \in \{1, ..., p\} \mid \lambda_i = K_s\}
$$

$$
K_{\mu} = \{j \in \{1, ..., q\} \mid \mu_j = K_s\}.
$$

We denote their cardinalities by $p_f = |K_\lambda|$ and $q_f = |K_\mu|$.

Definition of Margin at Most δ

Definition. Vectors u_i such that $\lambda_i > 0$ and vectors v_i such that $\mu_i > 0$ are said to *have margin at most δ*.

The sets of indices associated with these vectors are denoted by

$$
I_{\lambda>0} = \{i \in \{1,\ldots,p\} \mid \lambda_i > 0\}
$$

$$
I_{\mu>0} = \{j \in \{1,\ldots,q\} \mid \mu_j > 0\}.
$$

We denote their cardinalities by $p_m = |I_{\lambda>0}|$ and $q_m = |I_{\mu>0}|$.

Definition of Strictly Failing the Margin

Vectors u_i such that $\epsilon_i > 0$ and vectors v_i such that $\xi_i > 0$ are said to *strictly fail the margin*.

The corresponding sets of indices are denoted by

$$
E_{\lambda} = \{i \in \{1, ..., p\} \mid \epsilon_i > 0\}
$$

$$
E_{\mu} = \{j \in \{1, ..., q\} \mid \xi_j > 0\}.
$$

We write $p_{sf} = |E_{\lambda}|$ and $q_{sf} = |E_{\mu}|$.

Classification of the Points

We have the inclusions $E_{\lambda} \subseteq K_{\lambda}$ and $E_{\mu} \subseteq K_{\mu}$.

The difference between the first sets and the second sets is that the second sets may contain support vectors of type 1 such that $\lambda_i = K_s$ and $\epsilon_i = 0$, or $\mu_i = K_s$ and $\xi_i = 0$.

We also have the equations $I_{\lambda} \cup (K_{\lambda} - E_{\lambda}) \cup E_{\lambda} = I_{\lambda>0}$ and *I*^{*µ*} \cup (*K*_{*µ*} − *E*_{*u*}) \cup *E*_{*u*} = *I*_{*u*>0}, and the inequalities p_{sf} ≤ p_f ≤ p_m and q_{sf} \leq q_f \leq q_m .

Classification of the Points

The blue points u_i of index $i \in I_{\lambda > 0}$ are classified as follows:

 (1) If $i \in I_\lambda$, then u_i is a support vector of type $1 \ (\lambda_i < K_s)$. (2) If *i ∈ K^λ − Eλ*, then *uⁱ* is a support vector of type 2 (*λⁱ* = *Ks*). (3) If $i \in E_\lambda$, then u_i strictly fails the margin, that is $\epsilon_i > 0$.

Similarly the red points v_i of index $j \in I_{\mu > 0}$ are classified as follows:

(1) If $j ∈ I_µ$, then v_j is a support vector of type 1 $(µ_j < K_s)$. (2) If $j ∈ K_\mu − E_\mu$, then v_j is a support vector of type 2 $(\mu_j = K_s)$. (3) If $j \in E_\mu$, then v_i strictly fails the margin, that is $\xi_i > 0$.

Classification of the Points

Note that $p_m - p_f$ is the number of blue support vectors of type 1 and $q_m - q_i$ is the number of red support vectors of type 1.

The remaining blue points u_i for which $\lambda_i=0$ are either exceptional support vectors or they are (strictly) in the open half-space corresponding to the blue side.

Similarly, the remaining red points v_j for which $\mu_j = 0$ are either exceptional support vectors or they are (strictly) in the open half-space corresponding to the red side.

Classification of the Points In the example below (from the last lesson) , we have *numsvl*1 = 2*, numsvm*1 = 1*,* $p_{sf} = p_f = 2$ *,* $q_{sf} = q_f = 3$ *,* $p_m = 4$ *,* $q_m = 4$ *.*

Figure 1: Soft margin ν -SVM for two sets of six points for $\nu = 0.6$.