Fundamentals of Linear Algebra and Optimization Classification of Data Points: Terminology

Jean Gallier and Jocelyn Quaintance

CIS Department University of Pennsylvania jean@cis.upenn.edu

April 25, 2024

Classification of Data Points for $(SVM_{s2'})$

In this module we introduce the concepts necessary to discuss a classification of the points u_i and v_i in terms of Lagrange multipliers.

If $(w, \eta, \epsilon, \xi, b)$ is an optimal solution of Problem $(SVM_{s2'})$ with $w \neq 0$ and $\eta \neq 0$, then the complementary slackness conditions yield a classification of the points u_i and v_j in terms of the values of λ and μ .

Indeed, we have $\epsilon_i \alpha_i = 0$ for i = 1, ..., p and $\xi_j \beta_j = 0$ for j = 1, ..., q.

Classification of Data Points for $(SVM_{s2'})$

Also, if $\lambda_i > 0$, then the corresponding constraint is active, and similarly if $\mu_j > 0$. Since $\lambda_i + \alpha_i = K_s$, it follows that $\epsilon_i \alpha_i = 0$ iff $\epsilon_i (K_s - \lambda_i) = 0$, and since $\mu_j + \beta_j = K_s$, we have $\xi_j \beta_j = 0$ iff $\xi_j (K_s - \mu_j) = 0$.

Thus if $\epsilon_i > 0$, then $\lambda_i = K_s$, and if $\xi_j > 0$, then $\mu_j = K_s$.

Also, if $\lambda_i < K_s$, then $\epsilon_i = 0$ and u_i is correctly classified, and similarly if $\mu_j < K_s$, then $\xi_j = 0$ and v_j is correctly classified.

Definition of Support Vectors

Definition. The vectors u_i on the blue margin $H_{w,b+\eta}$ and the vectors v_j on the red margin $H_{w,b-\eta}$ are called *support vectors*. Support vectors correspond to vectors u_i for which $w^{\top}u_i - b - \eta = 0$ (which implies $\epsilon_i = 0$), and vectors v_j for which $w^{\top}v_j - b + \eta = 0$ (which implies $\xi_j = 0$).

Support vectors u_i such that $0 < \lambda_i < K_s$ and support vectors v_j such that $0 < \mu_j < K_s$ are support vectors of type 1.

Support Vectors of Type 1 and Type 2

Support vectors of type ${\bf 1}$ play a special role so we denote the sets of indices associated with them by

$$I_{\lambda} = \{ i \in \{1, \dots, p\} \mid 0 < \lambda_i < K_s \}$$

$$I_{\mu} = \{ j \in \{1, \dots, q\} \mid 0 < \mu_j < K_s \}.$$

We denote their cardinalities by $numsvI_1 = |I_{\lambda}|$ and $numsvm_1 = |I_{\mu}|$.

Support vectors u_i such that $\lambda_i = K_s$ and support vectors v_j such that $\mu_j = K_s$ are support vectors of type 2.

Exceptional Support Vectors; Failing the Margin

Support vectors u_i such that $\lambda_i = 0$ and support vectors v_j such that $\mu_j = 0$ are exceptional support vectors.

The vectors u_i for which $\lambda_i = K_s$ and the vectors v_j for which $\mu_j = K_s$ are said to *fail the margin*.

The sets of indices associated with the vectors failing the margin are denoted by

$$K_{\lambda} = \{i \in \{1, \dots, p\} \mid \lambda_i = K_s\}$$

 $K_{\mu} = \{j \in \{1, \dots, q\} \mid \mu_j = K_s\}.$

We denote their cardinalities by $p_f = |K_{\lambda}|$ and $q_f = |K_{\mu}|$.

Definition of Margin at Most δ

Definition. Vectors u_i such that $\lambda_i > 0$ and vectors v_j such that $\mu_j > 0$ are said to have margin at most δ .

The sets of indices associated with these vectors are denoted by

$$I_{\lambda>0} = \{i \in \{1, \dots, p\} \mid \lambda_i > 0\}$$

$$I_{\mu>0} = \{j \in \{1, \dots, q\} \mid \mu_j > 0\}.$$

We denote their cardinalities by $p_m = |I_{\lambda>0}|$ and $q_m = |I_{\mu>0}|$.

Definition of Strictly Failing the Margin

Vectors u_i such that $\epsilon_i > 0$ and vectors v_j such that $\xi_j > 0$ are said to *strictly fail the margin*.

The corresponding sets of indices are denoted by

$$E_{\lambda} = \{ i \in \{1, \dots, p\} \mid \epsilon_i > 0 \}$$

$$E_{\mu} = \{ j \in \{1, \dots, q\} \mid \xi_j > 0 \}.$$

We write $p_{sf} = |E_{\lambda}|$ and $q_{sf} = |E_{\mu}|$.

We have the inclusions $E_{\lambda} \subseteq K_{\lambda}$ and $E_{\mu} \subseteq K_{\mu}$.

The difference between the first sets and the second sets is that the second sets may contain support vectors of type 1 such that $\lambda_i = K_s$ and $\epsilon_i = 0$, or $\mu_j = K_s$ and $\xi_j = 0$.

We also have the equations $I_{\lambda} \cup (K_{\lambda} - E_{\lambda}) \cup E_{\lambda} = I_{\lambda>0}$ and $I_{\mu} \cup (K_{\mu} - E_{\mu}) \cup E_{\mu} = I_{\mu>0}$, and the inequalities $p_{sf} \leq p_f \leq p_m$ and $q_{sf} \leq q_f \leq q_m$.

The blue points u_i of index $i \in I_{\lambda > 0}$ are classified as follows:

- (1) If $i \in I_{\lambda}$, then u_i is a support vector of type 1 $(\lambda_i < K_s)$.
- (2) If $i \in K_{\lambda} E_{\lambda}$, then u_i is a support vector of type 2 $(\lambda_i = K_s)$.
- (3) If $i \in E_{\lambda}$, then u_i strictly fails the margin, that is $\epsilon_i > 0$.

Similarly the red points v_i of index $j \in I_{u>0}$ are classified as follows:

- (1) If $j \in I_{\mu}$, then v_i is a support vector of type 1 ($\mu_i < K_s$).
- (2) If $j \in K_{\mu} E_{\mu}$, then v_j is a support vector of type 2 $(\mu_j = K_s)$.
- (3) If $j \in E_{\mu}$, then v_j strictly fails the margin, that is $\xi_j > 0$.

Note that $p_m - p_f$ is the number of blue support vectors of type 1 and $q_m - q_f$ is the number of red support vectors of type 1.

The remaining blue points u_i for which $\lambda_i = 0$ are either exceptional support vectors or they are (strictly) in the open half-space corresponding to the blue side.

Similarly, the remaining red points v_j for which $\mu_j = 0$ are either exceptional support vectors or they are (strictly) in the open half-space corresponding to the red side.

In the example below (from the last lesson) , we have $numsvl1=2, numsvm1=1, \ p_{sf}=p_f=2, \ q_{sf}=q_f=3, \ p_m=4, \ q_m=4.$

Figure 1: Soft margin ν -SVM for two sets of six points for $\nu = 0.6$.