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Soft Margin Support Vector Machine
(SVMs2′)
In this section we consider the following version of the soft margin support
vector machine:

Soft margin SVM (SVMs2′):

minimize 1

2
w⊤w − Kmη + Ks

(
ϵ⊤ ξ⊤

)
1p+q

subject to
w⊤ui − b ≥ η − ϵi, ϵi ≥ 0 i = 1, . . . , p

− w⊤vj + b ≥ η − ξj, ξj ≥ 0 j = 1, . . . , q
η ≥ 0.



Soft Margin Support Vector Machine
(SVMs2′)

This version of the SVM problem was first discussed in Schölkopf, Smola,
Williamson, and Bartlett under the name of ν-SVC (or ν-SVM), and also used
in Schölkopf, Platt, Shawe–Taylor, and Smola.
For this problem it is no longer clear that if (w, η, b, ϵ, ξ) is an optimal
solution, then w ̸= 0 and η > 0.
In fact, if the sets of points are not linearly separable and if Ks is chosen too
big, Problem (SVMs2′) may fail to have an optimal solution.



Conditions for Existence of an Optimal
Solution
We show that in order for the problem to have a solution we must pick Km
and Ks so that

Km ≤ min{2pKs, 2qKs}.

If we define ν by
ν =

Km
(p + q)Ks

,

then Km ≤ min{2pKs, 2qKs} is equivalent to

ν ≤ min
{

2p
p + q ,

2q
p + q

}
≤ 1.



Soft Margin Support Vector Machine
(SVMs2′)

The reason for introducing ν is that ν(p + q)/2 can be interpreted as the
maximum number of points failing to achieve the margin δ = η/ ∥w∥.
We will show later that if the points ui and vj are not separable, then we must
pick ν so that ν ≥ 2/(p + q) for the method to have a solution for which
w ̸= 0 and η > 0.
The objective function of our problem is convex and the constraints are affine.



Soft Margin Support Vector Machine
(SVMs2′)

Consequently, by the duality theorem if the primal problem (SVMs2′) has an
optimal solution, then the dual problem has a solution too, and the duality
gap is zero.
This does not immediately imply that an optimal solution of the dual yields an
optimal solution of the primal because the hypotheses of the duality theorem
fail to hold.



(SVMs2′) Notational Conventions
Let X be the n × (p + q) matrix

X =
(
−u1 · · · −up v1 · · · vq

)
.

▶ Let λ ∈ Rp
+ be the Lagrange multipliers for w⊤ui − b ≥ η − ϵi,

▶ Let µ ∈ Rq
+ be the Lagrange multipliers for −w⊤vj + b ≥ η − ξj.

▶ Let α ∈ Rp
+ be the Lagrange multipliers associated with ϵi ≥ 0.

▶ Let β ∈ Rq
+ be the Lagrange multipliers associated with ξj ≥ 0.

▶ Let γ ∈ R+ be the Lagrange multiplier associated with η ≥ 0.



Determining w of an Optimal Solution

We show that if the primal problem has an optimal solution (w, η, ϵ, ξ, b) with
w ̸= 0, then any optimal solution of the dual problem determines λ and µ,
which in turn determine w via the equation

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑

j=1

µjvj. (∗w)



Illustration of a Soft Margin SVM
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Figure 1: Soft margin ν-SVM for two sets of six points for ν = 0.6. There are two sets of six
points each. Two blue points are on the wrong side of the separating hyperplane and two
red points are on the wrong side of the separating hyperplane. Two blue points are on the

wrong side of the blue margin and three red points are on the wrong side of the red margin.
Two blue points are on the blue margin and one red points is on the the red margin.

.



Lagrangian of the Optimization Problem
The derivation of the Lagrangian of the above optimization problem is
somewhat laborious. After some algebra, the Lagrangian can be written as

L(w, ϵ, ξ, b, η, λ, µ, α, β, γ) = 1

2
w⊤w + w⊤X

(
λ
µ

)
+ (1⊤

p λ+ 1⊤
q µ− Km − γ)η

+ ϵ⊤(Ks1p − (λ+ α)) + ξ⊤(Ks1q − (µ+ β))

+ b(1⊤
p λ− 1⊤

q µ).

To find the dual function G(λ, µ, α, β, γ), we minimize
L(w, ϵ, ξ, b, η, λ, µ, α, β, γ) with respect to w, ϵ, ξ, b, and η.



Determining the Dual From the Lagrangian
Since the Lagrangian is convex and (w, ϵ, ξ, b, η) ∈ Rn × Rp × Rq × R× R, a
convex open set, by a previous theorem, the Lagrangian has a minimum in
(w, ϵ, ξ, b, η) iff ∇Lw,ϵ,ξ,b,η = 0.
So we compute its gradient with respect to w, ϵ, ξ, b, η, and we get

∇Lw,ϵ,ξ,b,η =


X
(
λ
µ

)
+ w

Ks1p − (λ+ α)
Ks1q − (µ+ β)

1⊤
p λ− 1⊤

q µ
1⊤

p λ+ 1⊤
q µ− Km − γ

 .



Determining the Dual From the Lagrangian
By setting ∇Lw,ϵ,ξ,b,η = 0 we get the equations

w = −X
(
λ
µ

)
(∗w)

λ+ α = Ks1p

µ+ β = Ks1q

1⊤
p λ = 1⊤

q µ,

and
1⊤

p λ+ 1⊤
q µ = Km + γ. (∗γ)



The Box Constraints

The second and third equations are equivalent to the box constraints

0 ≤ λi, µj ≤ Ks, i = 1, . . . , p, j = 1, . . . , q,

and since γ ≥ 0 equation (∗γ) is equivalent to

1⊤
p λ+ 1⊤

q µ ≥ Km.



Dual Function of (SVMs2′)
Plugging back w from (∗w) into the Lagrangian, after simplifications we get

G(λ, µ, α, β) = 1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
−

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
= −1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
,

so the dual function is independent of α, β and is given by

G(λ, µ) = −1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
.

Finally, the dual program is equivalent to the minimization program:



Dual Program of (SVMs2′)
Dual of Soft margin SVM (SVMs2′):

minimize 1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
subject to

p∑
i=1

λi −
q∑

j=1

µj = 0

p∑
i=1

λi +

q∑
j=1

µj ≥ Km

0 ≤ λi ≤ Ks, i = 1, . . . , p
0 ≤ µj ≤ Ks, j = 1, . . . , q.



Solving the Dual and Computing w
It is shown in a following section how the dual program is solved using
ADMM.
If the primal problem is solvable, this yields solutions for λ and µ. Once a
solution for λ and µ is obtained, we have

w = −X
(
λ
µ

)
=

p∑
i=1

λiui −
q∑

j=1

µjvj.

It remains to determine b, η, ϵ and ξ. The solution of the dual does not
determine b, η, ϵ, ξ directly, and we are not aware of necessary and sufficient
conditions that ensure that they can be determined.



Computing Remaining (SVMs2′)
Parameters
The best we can do is to use the KKT conditions.
If (w, η, ϵ, ξ, b) is an optimal solution of Problem (SVMs2′) with w ̸= 0 and
η ̸= 0, then the complementary slackness conditions yield a classification of
the points ui and vj in terms of the values of λ and µ.
Indeed, we have ϵiαi = 0 for i = 1, . . . , p and ξjβj = 0 for j = 1, . . . , q.
Also, if λi > 0, then the corresponding constraint is active, and similarly if
µj > 0. Since λi + αi = Ks, it follows that ϵiαi = 0 iff ϵi(Ks − λi) = 0, and
since µj + βj = Ks, we have ξjβj = 0 iff ξj(Ks − µj) = 0.



Standard Margin Hypothesis
In order to determine b and η we assume the following condition:

Standard Margin Hypothesis for (SVMs2′): There is some i0 such that
0 < λi0 < Ks, and there is some µj0 such that 0 < µj0 < Ks.

Under the Standard Margin Hypothesis for (SVMs2′), there is some i0 such
that 0 < λi0 < Ks and some j0 such that 0 < µj0 < Ks, and by the
complementary slackness conditions ϵi0 = 0 and ξj0 = 0, so we have the two
active constraints

w⊤ui0 − b = η, −w⊤vj0 + b = η,



Standard Margin Hypothesis

and we can solve for b and η and we get

b =
w⊤ui0 + w⊤vj0

2

η =
w⊤ui0 − w⊤vj0

2

δ =
η

∥w∥ .



Computing Soft Margin SVM Parameters
Due to numerical instability, when writing a computer program it is preferable
to compute the lists of indices Iλ and Iµ given by

Iλ = {i ∈ {1, . . . , p} | 0 < λi < Ks}
Iµ = {j ∈ {1, . . . , q} | 0 < µj < Ks}.

Then it is easy to compute b and η using the following averaging formulae:

b = w⊤

(∑
i∈Iλ

ui

)
/|Iλ|+

(∑
j∈Iµ

vj

)
/|Iµ|

 /2

η = w⊤

(∑
i∈Iλ

ui

)
/|Iλ| −

(∑
j∈Iµ

vj

)
/|Iµ|

 /2.


