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Solving Hard Margin SVM Problem
(SVMh2)

Recall the Hard margin SVM problem (SVMh2):

minimize 1

2
∥w∥2 , w ∈ Rn

subject to
w⊤ui − b ≥ 1 i = 1, . . . , p

− w⊤vj + b ≥ 1 j = 1, . . . , q.

The main steps are the following.
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Lagrangian of Hard Margin (SVMh2)
Step 1. Write the Lagrangian in matrix form.

Let X be the n × (p + q) matrix given by
X =

(
−u1 · · · −up v1 · · · vq

)
.

We obtain the Lagrangian

L(w, b, λ, µ) =1

2

(
w⊤ b

)( In 0n
0⊤n 0

)(
w
b

)
+

(
w⊤ b

) X
(
λ
µ

)
1⊤

p λ −1⊤
q µ

+
(
λ⊤ µ⊤)1p+q.
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Dual Function of Hard Margin (SVMh2)

Step 2. Find the dual function G(λ, µ).

In order to find the dual function G(λ, µ), we need to minimize L(w, b, λ, µ)
with respect to w and b and for this, since the objective function J is convex
and since Rn+1 is convex and open, a necessary and sufficient condition for a
minimum is that ∇Lw,b = 0, where ∇Lw,b is the gradient of L(w, b, λ, µ).
We have

∇Lw,b =

w + X
(
λ
µ

)
1⊤

p λ −1⊤
q µ

 .
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Dual Function of Hard Margin (SVMh2)

The necessary and sufficient condition for a minimum is

∇Lw,b = 0,

which yields
w = −X

(
λ
µ

)
(∗1)

and
1⊤

p λ− 1⊤
q µ = 0. (∗2)
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Dual Function of Hard Margin (SVMh2)

The second equation can be written as
p∑

i=1

λi −
q∑

j=1

µj = 0. (∗3)

Plugging back w from (∗1) into the Lagrangian and using (∗2) we get

G(λ, µ) = −1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
+
(
λ⊤ µ⊤)1p+q, (∗4)

where
(
λ⊤ µ⊤)1p+q =

∑p
i=1 λi +

∑q
j=1 µj.
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Dual Function of Hard Margin (SVMh2)
Step 3. Write the dual as a minimization problem.

Maximizing the dual function G(λ, µ) over its domain of definition is
equivalent to maximizing

Ĝ(λ, µ) = −1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
+
(
λ⊤ µ⊤)1p+q

subject to the constraint
p∑

i=1

λi −
q∑

j=1

µj = 0,
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Convert Dual to a Minimization Problem
so we formulate the dual program as,

maximize − 1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
+
(
λ⊤ µ⊤)1p+q

subject to
p∑

i=1

λi −
q∑

j=1

µj = 0

λ ≥ 0, µ ≥ 0,
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Dual Function of Hard Margin (SVMh2)

or equivalently, Dual of the Hard margin SVM (SVMh2):

minimize 1

2

(
λ⊤ µ⊤)X⊤X

(
λ
µ

)
−
(
λ⊤ µ⊤)1p+q

subject to
p∑

i=1

λi −
q∑

j=1

µj = 0

λ ≥ 0, µ ≥ 0.
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Solving the Dual Program of (SVMh2)

Step 4. Solve the dual program.

This step involves using numerical procedures typically based on gradient
descent to find λ and µ, for example, ADMM.
Once λ and µ are determined, w is determined by (∗1), namely

w = −X
(
λ
µ

)
.

To determine b we use the KKT conditions.
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Using the KKT Conditions of (SVMh2)

Because the primal always has a solution, so does the dual, which implies that
there is at least some i0 such that λi0 > 0. But then the constraint∑p

i=1 λi −
∑q

j=1 µj = 0 implies that there is also some j0 such that µj0 > 0.

By the KKT conditions, since the corresponding constraints are active, we
have

w⊤ui0 − b = 1, −w⊤vj0 + b = 1,

so we obtain
b = w⊤(ui0 + vj0)/2.

The support vectors are those for which the constraints are active.
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Averaging Over Indices

For improved numerical stability, we can average over the sets of indices
defined as Iλ>0 = {i ∈ {1, . . . , p} | λi > 0} and
Iµ>0 = {j ∈ {1, . . . , q} | µj > 0}.

We obtain

b = w⊤

( ∑
i∈Iλ>0

ui

)
/|Iλ>0|+

( ∑
j∈Iµ>0

vj

)
/|Iµ>0|

 /2.
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