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Optimization with Convex Constraints

If the domain U is defined by convex inequality constraints satisfying mild
differentiability conditions and if the constraints at u are qualified, then there
is a necessary condition for the function J to have a local minimum at u ∈ U
involving generalized Lagrange multipliers. The proof uses a version of Farkas
lemma.
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Farkas Lemma
We will be using the following version of Farkas lemma.

Proposition (Farkas lemma). Let V be a Euclidean space of finite dimension
with inner product ⟨−,−⟩ (more generally, a Hilbert space). For any finite
family (a1, . . . , am) of m vectors ai ∈ V and any vector b ∈ V, for any v ∈ V,

if ⟨ai, v⟩ ≥ 0 for i = 1, . . . ,m implies that ⟨b, v⟩ ≥ 0,

then there exist λ1, . . . , λm ∈ R such that

λi ≥ 0 for i = 1, . . . ,m, and b =
m∑

i=1

λiai.
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Optimization with Convex Constraints

We can now prove the following theorem.

Theorem. Let φi : Ω → R be m convex constraints defined on some open
convex subset Ω of a finite-dimensional Euclidean vector space V (more
generally, a real Hilbert space V), let J : Ω → R be some function, let U be
given by

U = {x ∈ Ω | φi(x) ≤ 0, 1 ≤ i ≤ m},

and let u ∈ U be any point such that the functions φi and J are differentiable
at u.
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Necessary Condition for Minimization with
Convex Constraints
(1) If J has a local minimum at u with respect to U, and if the constraints are

qualified, then there exist some scalars λi(u) ∈ R, such that the KKT
condition hold:

Ju
′ +

m∑
i=1

λi(u)(φ′
i)u = 0

and m∑
i=1

λi(u)φi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m.
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Necessary Condition for Minimization with
Convex Constraints

Equivalently, in terms of gradients, the above conditions are expressed as

∇Ju +
m∑

i=1

λi(u)∇(φi)u = 0,

and m∑
i=1

λi(u)φi(u) = 0, λi(u) ≥ 0, i = 1, . . . ,m.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

Sufficient Condition for Minimization with
Convex Constraints

(2) Conversely, if the restriction of J to U is convex and if there exist scalars
(λ1, . . . , λm) ∈ Rm

+ such that the KKT conditions hold, then the function
J has a (global) minimum at u with respect to U.

The scalars λi(u) are often called generalized Lagrange multipliers.
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Minimization with Convex Constraints

If V = Rn, the necessary conditions of the preceding theorem are expressed as
the following system of equations and inequalities in the unknowns
(u1, . . . , un) ∈ Rn and (λ1, . . . , λm) ∈ Rm

+:
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Minimization with Convex Constraints
∂J
∂x1

(u) + λ1
∂φ1

∂x1
(u) + · · ·+ λm

∂φm
∂x1

(u) = 0

... ...
∂J
∂xn

(u) + λ1
∂φ1

∂xn
(u) + · · ·+ λm

∂φm
∂xn

(u) = 0

λ1φ1(u) + · · ·+ λmφm(u) = 0

φ1(u) ≤ 0
... ...

φm(u) ≤ 0

λ1, . . . , λm ≥ 0.
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Example of Convex Minimization
Example. Let J, φ1 and φ2 be the functions defined on R by

J(x) = x
φ1(x) = −x
φ2(x) = x − 1.

In this case
U = {x ∈ R | −x ≤ 0, x − 1 ≤ 0} = [0, 1].

Since the constraints are affine, they are automatically qualified for any
u ∈ [0, 1].
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Example of Convex Minimization
The system of equations and inequalities shown above becomes

1− λ1 + λ2 = 0

−λ1x + λ2(x − 1) = 0

−x ≤ 0

x − 1 ≤ 0

λ1, λ2 ≥ 0.

The first equality implies that λ1 = 1 + λ2.

The second equality then becomes
−(1 + λ2)x + λ2(x − 1) = 0,

which implies that λ2 = −x.
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Example of Convex Minimization

Since 0 ≤ x ≤ 1, or equivalently −1 ≤ −x ≤ 0, and λ2 ≥ 0, we conclude that
λ2 = 0 and λ1 = 1 is the solution associated with x = 0, the minimum of
J(x) = x over [0, 1].

Observe that the case x = 1 corresponds to the maximum and not a minimum
of J(x) = x over [0, 1].
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The Karush–Kuhn–Tucker Conditions

It is important to note that when both the constraints, the domain of
definition Ω, and the objective function J are convex, if the KKT conditions
hold for some u ∈ U and some λ ∈ Rm

+, the preceding theorem implies that J
has a (global) minimum at u with respect to U, independently of any
assumption on the qualification of the constraints.
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The Lagrangian
The above theorem suggests introducing the function L : Ω× Rm

+ → R given
by

L(v, λ) = J(v) +
m∑

i=1

λiφi(v),

with λ = (λ1, . . . , λm).

The function L is called the Lagrangian of the Minimization Problem (P):

minimize J(v)
subject to φi(v) ≤ 0, i = 1, . . . ,m.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

The Lagrangian
The above theorem suggests introducing the function L : Ω× Rm

+ → R given
by

L(v, λ) = J(v) +
m∑

i=1

λiφi(v),

with λ = (λ1, . . . , λm).

The function L is called the Lagrangian of the Minimization Problem (P):

minimize J(v)
subject to φi(v) ≤ 0, i = 1, . . . ,m.



. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

The Lagrangian and the KKT Conditions
The KKT conditions of the preceding theorem imply that for any u ∈ U, if the
vector λ = (λ1, . . . , λm) is known and if u is a minimum of J on U, then

∂L
∂u(u) = 0

J(u) = L(u, λ).

The Lagrangian technique “absorbs” the constraints into the new objective
function L and reduces the problem of finding a constrained minimum of the
function J, to the problem of finding an unconstrained minimum of the
function L(v, λ).
This is the main point of Lagrangian duality which will be treated in the next
lesson.
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KKT Conditions with Affine Constraints

A case that arises often in practice is the case where the constraints φi are
affine. If so, the m constraints aix ≤ bi can be expressed in matrix form as
Ax ≤ b, where A is an m × n matrix whose ith row is the row vector ai.

The KKT conditions of the preceding theorem yield the following corollary.
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KKT Conditions with Affine Constraints
Proposition. If U is given by

U = {x ∈ Ω | Ax ≤ b},

where Ω is an open convex subset of Rn and A is an m × n matrix, and if J is
differentiable at u and J has a local minimum at u, then there exist some
vector λ ∈ Rm, such that

∇Ju + A⊤λ = 0

λi ≥ 0 and if aiu < bi, then λi = 0, i = 1, . . . ,m.

If the function J is convex, then the above conditions are also sufficient for J
to have a minimum at u ∈ U.
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