Fundamentals of Linear Algebra
and Optimization
Convex Sets and Convex Functions

Jean Gallier and Jocelyn Quaintance

CIS Department
University of Pennsylvania

jean@cis.upenn.edu

May 7, 2020



Definition of a Convex Set

Definition. Given any real vector space E, we say that a subset C of E is
convex if either C = () or if for every pair of points u, v € C, the line segment
connecting v and v is contained in C, i.e.,

(1=XNu+Ave C forall A € Rsuchthat 0 < A <1.
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Definition of a Convex Set

Definition. Given any real vector space E, we say that a subset C of E is
convex if either C = () or if for every pair of points u, v € C, the line segment
connecting v and v is contained in C, i.e.,

(1=XNu+Ave C forall A € Rsuchthat 0 < A <1.

Given any two points u, v € E, the line segment [u, v] is the set

] ={(1-Nu+IeE|XeR, 0< A< 1}

Clearly, a nonempty set Cis convex iff [u, v] C C whenever u, v € C.



Illustration of a Convex Set
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does not lie on its surface. Figure (b) shows that a solid ball is convex in R3.
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Figure 1: Figure (a) shows that a sphere is not convex in R3 since the dashed green line
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Definition of a Convex Function

Definition. If Cis a nonempty convex subset of E, a function f: C — R is
convex (on C) if for every pair of points u,v € C,

(1 —=XNu+Av) < (1 —MNflu)+ Af(v) forall A € Rsuchthat 0 <\ < 1;



Definition of a Convex Function

Definition. If Cis a nonempty convex subset of E, a function f: C — R is
convex (on C) if for every pair of points u,v € C,

(1 —=XNu+Av) < (1 —MNflu)+ Af(v) forall A € Rsuchthat 0 <\ < 1;

the function fis strictly convex (on C) if for every pair of distinct points
uve C(us#v),

(L —=XNu+Av) <(1—=XNFAu)+ Afv) forall A\ € Rsuchthat 0 < A < 1.



Epigraph and Convexity

The epigraph epi(f) of a function f: A — R defined on some subset A of R”
is the subset of R™"! defined as

epi(f) = {(x,y) e R"" | fix) <y, xe A}.
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Epigraph and Convexity

The epigraph epi(f) of a function f: A — R defined on some subset A of R”
is the subset of R™"! defined as

epi(f) = {(x,y) e R"" | fix) <y, xe A}.

A function fis convex if and only if epi(f) is a convex subset of R"*1.

A function f: C — R defined on a convex subset C is concave (resp. strictly
concave) if (—f) is convex (resp. strictly convex).



[llustration of a Convex Function

I = (1-Nf(u) + AMf(v)

(a) .
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Figure 2: Figures (a) and (b) are the graphs of real valued functions. Figure (a) is the
graph of convex function since the blue line lies above the graph of f. Figure (b) shows the
graph of a function which is not convex.
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Ezxamples of Convex Sets

Example. Here are some common examples of convex sets.

v

Subspaces V C E of a vector space E are convex.

Affine subspaces, that is, sets of the form u+ V, where V'is a subspace of
E and u € E, are convex.

Balls (open or closed) are convex. Given any linear form ¢: E — R, for
any scalar ¢ € R, the closed half-spaces

Hic={ueE|lpu)=ct, H.={ueE]p()<ch

are convex.
Any intersection of half-spaces is convex.

More generally, any intersection of convex sets is convex.
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Example. Here are some common examples of convex and concave
functions.
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Linear forms are convex functions (but not strictly convex).
Any norm || || : E— R is a convex function.
The max function,

v

v

max(x, ..., X,) = max{xi, ..., X,}

is convex on R".
The exponential x — e is strictly convex for any ¢ # 0 (c € R).

v



Ezxamples of Convex Functions

Example. Here are some common examples of convex and concave
functions.

» Linear forms are convex functions (but not strictly convex).

» Any norm || || : E— Ry is a convex function.

» The max function,

max(x, ..., X,) = max{xi, ..., X,}

is convex on R".

» The exponential x — e is strictly convex for any ¢ # 0 (c € R).

» The logarithm function is concave on R — {0}.

» The log-determinant function logdet is concave on the set of symmetric
positive definite matrices. This function plays an important role in convex
optimization.



Optimization and Convezity

The following theorem is the key result about the existence of a local
minimum of a convex function with respect to a convex subset U.
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Optimization and Convezity

Theorem (necessary and sufficient condition for a local minimum on a convex

subset). Given any normed vector space E, let U be any nonempty convex
subset of E.

(1) For any convex function J: U — R, for any u € U, if J has a local
minimum at v in U, then J has a (global) minimum at v in U.

(2) Any strictly convex function J: U — R has at most one minimum (in U),
and if it does, then it is a strict minimum (in U).

(3) Let J: © — R be any function defined on some open subset 2 of E with

U C Q and assume that Jis convex on U. For any point u € U, if dJ(u)
exists, then J has a minimum in u with respect to U iff

dJ(u)(v—u) >0 forall ve U.



Optimization and Convezity

(4) If the convex subset U in (3) is open, then the above condition is
equivalent to
dJ(u) = 0.



