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Constrained Optimization

In many practical situations, we need to look for local extrema of a function J
under additional constraints. This situation can be formalized conveniently as
follows. We have a function J : Ω → R defined on some open subset Ω of a
normed vector space, but we also have some subset U of Ω, and we are
looking for the local extrema of J with respect to the set U.

The elements u ∈ U are often called feasible solutions of the optimization
problem consisting in finding the local extrema of some objective function J
with respect to some subset U of Ω defined by a set of constraints. Note that
in most cases, U is not open. In fact, U is usually closed.
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Constrained Local Extrema
Definition. If J : Ω → R is a real-valued function defined on some open
subset Ω of a normed vector space E and if U is some subset of Ω, we say that
J has a local minimum (or relative minimum) at the point u ∈ U with respect
to U if there is some open subset W ⊆ Ω containing u such that

J(u) ≤ J(w) for all w ∈ U ∩ W.

Similarly, we say that J has a local maximum (or relative maximum) at the
point u ∈ U with respect to U if there is some open subset W ⊆ Ω containing
u such that

J(u) ≥ J(w) for all w ∈ U ∩ W.

In either case, we say that J has a local extremum at u with respect to U.
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Equality Constraints

In order to find necessary conditions for a function J : Ω → R to have a local
extremum with respect to a subset U of Ω (where Ω is open), we need to
incorporate the definition of U into these conditions. This can be done when
the set U is defined by a set of equations,

U = {x ∈ Ω | φi(x) = 0, 1 ≤ i ≤ m},

where the functions φi : Ω → R are continuous (and usually differentiable).

The equations φi(x) = 0 are called equality constraints.
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Necessary Condition for Constrained
Extrema

In the case of equality constraints, a necessary condition for a local extremum
with respect to U can be given in terms of Lagrange multipliers.
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Necessary Condition for Constrained
Extrema

Theorem (Necessary condition for a constrained extremum in terms of
Lagrange multipliers). Let Ω be an open subset of Rn, consider m
C1-functions φi : Ω → R (with 1 ≤ m < n), let

U = {v ∈ Ω | φi(v) = 0, 1 ≤ i ≤ m},

and let u ∈ U be a point such that the derivatives dφi(u) ∈ L(Rn;R) are
linearly independent; equivalently, assume that the m × n matrix(
(∂φi/∂xj)(u)

)
has rank m.
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Necessary Condition for Constrained
Extrema
If J : Ω → R is a function which is differentiable at u ∈ U and if J has a local
constrained extremum at u, then there exist m numbers λi(u) ∈ R, uniquely
defined, such that

dJ(u) + λ1(u)dφ1(u) + · · ·+ λm(u)dφm(u) = 0;

or equivalently,

∇J(u) + λ1(u)∇φ1(u) + · · ·+ λm(u)∇φm(u) = 0.
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Lagrange Multipliers

Definition. The numbers λi(u) involved in the preceding theorem are called
the Lagrange multipliers associated with the constrained extremum u.

The linear independence of the linear forms dφi(u) is equivalent to the fact
that the Jacobian matrix

(
(∂φi/∂xj)(u)

)
of φ = (φ1, . . . , φm) at u has rank

m. If m = 1, the linear independence of the dφi(u) reduces to the condition
∇φ1(u) ̸= 0.
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The Lagrangian

A fruitful way to reformulate the use of Lagrange multipliers is to introduce the
notion of the Lagrangian associated with our constrained extremum problem.

Definition. The Lagrangian associated with our constrained extremum
problem is the function L : Ω× Rm → R given by

L(v, λ) = J(v) + λ1φ1(v) + · · ·+ λmφm(v),

with λ = (λ1, . . . , λm).
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Critical Point of the Lagrangian

Proposition. There exists some µ = (µ1, . . . , µm) and some u ∈ U such
that

dJ(u) + µ1dφ1(u) + · · ·+ µmdφm(u) = 0

if and only if
dL(u, µ) = 0,

or equivalently
∇L(u, µ) = 0;

that is, iff (u, µ) is a critical point of the Lagrangian L.
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Lagrangian System
If we write out explicitly the condition

dJ(u) + λ1dφ1(u) + · · ·+ λmdφm(u) = 0,

we get the n × m system

∂J
∂x1

(u) + λ1
∂φ1

∂x1
(u) + · · ·+ λm

∂φm
∂x1

(u) = 0

...
∂J
∂xn

(u) + λ1
∂φ1

∂xn
(u) + · · ·+ λm

∂φm
∂xn

(u) = 0,
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Lagrangian System

and it is important to note that the matrix of this system is the transpose of
the Jacobian matrix of φ at u. If we write Jac(φ)(u) =

(
(∂φi/∂xj)(u)

)
for the

Jacobian matrix of φ (at u), then the above system is written in matrix form as

∇J(u) + (Jac(φ)(u))⊤λ = 0,

where λ is viewed as a column vector, and the Lagrangian is equal to

L(u, λ) = J(u) + (φ1(u), . . . , φm(u))λ.
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The Lagrangian Technique

The beauty of the Lagrangian is that the constraints {φi(v) = 0} have been
incorporated into the function L(v, λ), and that the necessary condition for the
existence of a constrained local extremum of J is reduced to the necessary
condition for the existence of a local extremum of the unconstrained L.
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Lagrangian Technique Counterexample
One should be careful to check that the assumptions of the preceding theorem
are satisfied (in particular, the linear independence of the linear forms dφi).

Example. Let J : R3 → R be given by

J(x, y, z) = x + y + z2

and g : R3 → R by
g(x, y, z) = x2 + y2.

Since g(x, y, z) = 0 iff x = y = 0, we have U = {(0, 0, z) | z ∈ R} and the
restriction of J to U is given by J(0, 0, z) = z2, which has a minimum for
z = 0.
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Lagrangian Technique Counterexample

However, a “blind” use of Lagrange multipliers would require that there is
some λ so that
∂J
∂x(0, 0, z) = λ

∂g
∂x (0, 0, z),

∂J
∂y(0, 0, z) = λ

∂g
∂y (0, 0, z),

∂J
∂z(0, 0, z) = λ

∂g
∂z (0, 0, z),

and since
∂g
∂x (x, y, z) = 2x, ∂g

∂y (x, y, z) = 2y, ∂g
∂z (0, 0, z) = 0,
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Lagrangian Technique Counterexample
the partial derivatives above all vanish for x = y = 0, so at a local extremum
we should also have

∂J
∂x(0, 0, z) = 0,

∂J
∂y(0, 0, z) = 0,

∂J
∂z(0, 0, z) = 0,

but this is absurd since
∂J
∂x(x, y, z) = 1,

∂J
∂y(x, y, z) = 1,

∂J
∂z(x, y, z) = 2z.

The reader should enjoy finding the reason for the flaw in the
argument.
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Lagrangian Provides a Necessary Condition

Keep in mind that the preceding theorem gives only a necessary condition.
The (u, λ) may not correspond to local extrema! Thus it is always necessary
to analyze the local behavior of J near a critical point u.
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Lagrangian Technique Example

Example. Let us apply the above method to the following example in which
E1 = R, E2 = R, Ω = R2, and

J(x1, x2) = −x2
φ(x1, x2) = x21 + x22 − 1.
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Lagrangian Technique Example

Observe that
U = {(x1, x2) ∈ R2 | x21 + x22 = 1}

is the unit circle, and since

∇φ(x1, x2) =
(
2x1
2x2

)
,

it is clear that ∇φ(x1, x2) ̸= 0 for every point = (x1, x2) on the unit circle.
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Lagrangian Technique Example
If we form the Lagrangian

L(x1, x2, λ) = −x2 + λ(x21 + x22 − 1),

a necessary condition for J to have a constrained local extremum is that
∇L(x1, x2, λ) = 0,

so the following equations must hold:

2λx1 = 0

−1 + 2λx2 = 0

x21 + x22 = 1.
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Lagrangian Technique Example
The second equation implies that λ ̸= 0, and then the first yields x1 = 0, so
the third yields x2 = ±1, and we get two solutions:

λ =
1

2
, (x1, x2) = (0, 1)

λ = −1

2
, (x′1, x′2) = (0,−1).

We can check immediately that the first solution is a minimum and the second
is a maximum.
The reader should look for a geometric interpretation of this problem.
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Lagrangian for Quadratic Optimization
Example. Let us now consider the case in which J is a quadratic function of
the form

J(v) = 1

2
v⊤Av − v⊤b,

where A is an n × n symmetric matrix, b ∈ Rn, and the constraints are given
by a linear system of the form

Cv = d,
where C is an m × n matrix with m < n and d ∈ Rm. We also assume that C
has rank m.

In this case the function φ is given by

φ(v) = (Cv − d)⊤,
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Lagrangian for Quadratic Optimization
and since

dφ(v)(w) = C⊤w,
the condition that the Jacobian matrix of φ at u have rank m is satisfied.

The
Lagrangian of this problem is

L(v, λ) = 1

2
v⊤Av − v⊤b + (Cv − d)⊤λ =

1

2
v⊤Av − v⊤b + λ⊤(Cv − d),

where λ is viewed as a column vector. Now because A is a symmetric matrix,
it is easy to show that

∇L(v, λ) =
(

Av − b + C⊤λ
Cv − d

)
.
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Lagrangian for Quadratic Optimization

Therefore, the necessary condition for constrained local extrema is

Av + C⊤λ = b
Cv = d,

which can be expressed in matrix form as(
A C⊤

C 0

)(
v
λ

)
=

(
b
d

)
,

where the matrix of the system is a symmetric matrix.
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Lagrangian and Quadratic Optimization

This example will be further discussed in the next module. As we will show,
the function J has a minimum iff A is positive definite, so in general, if A is
only a symmetric matrix, the critical points of the Lagrangian do not
correspond to extrema of J.


