
-DEFINABILITY AND RECURSIVENESS

By S. C. KLEENE

1. Introduction. In Kleene [2] a theory of the definition of functions of
positive integers by certain formal means is developed in connection with the
study of a system of formal logic. The system of formal logic is shown in
Kleene-Rosser [1] to be inconsistent; however, the theory of formal definition
remains of interest, both for its use in a new system of formal logic proposed by
Church in [3], and for its connection with questions of constructibility and
decidability in number theory2 Hence it seems desirable to bring together the
essentials of the theory, and to develop them from a somewhat new point of view,
in which the emphasis is on the connection with the recursive functions. In
this presentation, no knowledge of systems of formal logic is presupposed, but
use will be made of a few results of the intuitive theory of recursive functions.

It is found convenient here to treat the functions as functions of natural
numbers, rather than of positive integers. This change can be regarded as a
change merely in the notation.
The theory deals with a class of formulas composed of the symbols {, }, (,),

k, [, and other symbols f, x, p,... called variables or proper symbols, where
f, x, p, is a given infinite list.
A formula is called properly-formed if it is obtainable from proper symbols by

zero or more successive operations of combining M and N to form {M} (N) or

kx[M], where x is any proper symbol. An occurrence of a proper symbol x in
a formula F is called bound or free according as it is or is not an occurrence in a
properly-formed part of the form kx[M]. By a free (bound) symbol of Y is
meant a proper symbol which occurs in F as a free (bound) symbol. A formula
shall be well-formed, if it is properly-formed, and if, for each properly-formed
part of the form kx[M], where x is a proper symbol, x is a free symbol of M.
Heavy-typed letters will henceforth represent undetermined well-formed

formulas under the convention that each set of symbols standing apart in which
a heavy-typed letter occurs shall stand for a well-formed formula. As abbre-
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viations, we shall write {F}(A1, ..., A) or F(A1, ..., An) instead of
{... {F}(A1) }(An), and Xxl... x.M instead of Xx[... Xx[M] ].
S, XnM shall denote the result of substituting A for each of the occurrences
(if any) of x in M (i 1, ..., n). From time to time we assign individual
symbols to stand as abbreviations for particular formulas, indicating this by an
arrow --% as

I ---+ )].f J )fxyz.f(x, f(z, y))

We introduce an equivalence relation A cony B, or A is convertible into B, be-
tween well-formed formulas, which is defined to be the relation of least domain
which is (1) reflexive, (2) symmetric, and (3) transitive, and has further the
properties (4)if A cony B, then {C} (A) cony {C}(B), {A}(C) cony {B}(C),
and Xx[A] cony Xx[B], (5) if the proper symbol y does not occur in A, Xx[h] cony

SXx[A]I, and (6) if x and the free symbols of N are not bound symbols of
Xx[M] (ll) conv SM[.
If {F} (N) is interpreted as representing the value of F (considered as a func-

tion) for N as argument, and ),x[M] as representing the function which M is of
x, then the equivalence relation A cony B corresponds to a relation of equality
in meaning. The analysis of the relation A cony B given in Church-Rosser [1]
can be regarded as furnishing a demonstration of the consistency of the system
under these interpretations" A formula A which has no part of the form
{,x[M] (N) is said to be in normal form, and to be a normal form of any formula
A convertible into it. According to Theorem 1, Corollary 2, if A has a normal
form, the latter is unique to within the choice of symbols used in it as bound
variables.

Evidently, a demonstration that A conv B is given by passing from A to B by
successive substitutions (on individual parts of a formula not immediately
following ) of (a) C for D (or inversely), where D cony C is known, and (b)
SM for {hx. M} (N) (or inversely), changing bound variables when necessary
to avoid confounding variables that should be distinct or to reach a desired
formula.
The substitution S,::: M for {),x x.M (N, N) is equivalent to

a series of the substitutions (b). Indeed, from the interpretations of {F} (N)
and x[M], it follows that the expression which we abbreviate to F(N1,
represents the value of F (considered as a function of n variables) for the set of

(1) and the clause "{tk} (C) cony {B} (C)" of (4) are redundant. The present definition
is equivalent to the former one, according to which/ conv B whenever B is derivable from
/k by certain rules I-III, the derivation being called a conversion (of. both Church [1] and
Kleene [1 ]).

A relation, rather than the relation, since, for example, it can be maintained that
Xfx.f(x) and Xf.f have the same meaning.

The notion of the normalform of a formula under conversion was originally introduced
by Church in lectures at Princeton in the fall of 1931.
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arguments N1, N; and the expression which we abbreviate xl x.M
represents the function which M is of xl, x.
We have specified a class of formulas (the well-formed formulas) and an

equivalence relation between formulas of this class (the relation of intercon-
vertibility). We bring the natural numbers into relation with this subject-
matter by selecting a progression of well-formed formulas

Xfx.f(x), Xfx.f(f(x)), fx.f(f(f(x))),

to "represent" or "be identified with" the natural numbers in our symbolism.
This is recognized in the notation by assigning

0 Xfx .f(x), 1 ----> Xfx .f(f(x)), 2 -- Xfx .f(f(f(x))),

It may now happen, for a non-negative integral function L(xl, x) of
natural numbers, that there are well-formed formulas L which automatically
represent the function L(x, x,), on the basis of our equivalence relation
and our interpretation of Y(ll, ll). That is, there may be formulas I,
such that, whenever x, x. represent natural numbers x, x, respec-
tively, L(xl, .., x) is convertible into the formula which represents the natural
number L(x,..., x,). In this case, we shall say that L(x, ..., x) is
(formally) defined or -defined by L.
Thus a problem arises: what functions L(x,... x) are -definable? We

have at once that the successor function is k-definable, since

{Xpfx.f(p(f, x))} (Xfx.f(... nd-1 times.., f(x) ...)) conv Xfx.f( nd-2
times...f(x) ...) (n 0,1,2,...).

Accordingly let

S ---. hpfx.f(p(f, x)).

The identity function of a natural number is also -definable, since the formula
which we have called I has the property I(x) conv x.
The problem has arisen from the point of view in which interconvertible

formulas are regarded as equivalent. Hence we should consider whether the
representations involved are unambiguous from this point of view. Let us call
a representation of a class of mathematical entities by well-formed formulas
well-founded if interconvertible formulas cannot represent different entities of the
class. It follows from the above-mentioned consistency proof (Church-Rosser
[1]) that the given representation of natural numbers by well-formed formulas
is well-founded; this in turn implies that such representation of non-negative
integral functions of natural numbers as h-definition yields is well-founded.

This device for expressing functions of several variables in terms of functions for one
variable goes back to SchSnfinkel [1].
0 Non-interconvertible formulas may represent the same entity of a given class, and a

formula may represent entities of different classes, e.g., the formulas abbreviated I and 0
both represent the identity function of a natural number, while the latter also represents
the natural number 0.
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The problem is a special case of the larger problem" what functional relation-
ships among well-formed expressions can be expressed by well-formed formulas?
We shall say, generally, that a function L which associates well-formed

formulas with finite ordered sets of well-formed formulas is (formally) defined or
h-defined by if for each finite ordered set A1, AA for which L is defined,
L(A1, AA) is convertible into the value of the function L for the set
A1, ..., A.A of arguments; and we shall understand, by the h-definition of a

function of which the arguments or the values are other mathematical entities,
the )‘-definition of a function which corresponds under the representation of the
mathematical entities by well-formed formulas (in case a representation has
been specified).1

In this paper we restrict ourselves (except incidentally) to the case of the
larger problem in which the independent variables are fixed in number, and
range over the natural numbers. The subcase of the problem in which the
values are also natural numbers (i.e., the problem first proposed) we treat in
2, 3 by proving that all recursive functions, in a wide sense of the term recur-
sive, due to Herbrand and GSdel, are h-definable; and conversely, all ),-definable

functions of the type in question are recursive. In 4, 5 it is shown that, using
the term recursive in an extended sense, these results can be generalized (under
additional hypotheses) to the case in which the values are any well-formed
expressions. The extended sense of the term recursive is obtained by assigning
numbers to the values, by the GSdel method, and requiring that they be a re-
cursive function of the arguments in the first sense.
The formulas )‘fx.f(x), )‘fx.f(f(x)),... were originally coSrdinated with the

positive integers 1, 2, (Church [2], p. 863). That is a suitable course to
follow in developing number-theory (Kleene [2]). In this paper, for technical
reasons, we are using instead the correspondence established above between
those formulas and the natural numbers 0, 1, Because of this, the concept
of ),-definability of a function is altered. But, for the interpretation of the
final results, one can easily go back to the original notion of )‘-definability.
Since the "natural numbers", "0", "1",... enter into our definitions of h-
definable function and recursive function in the rSle of a progression, it is only
necessary to rename them "positive integers", "1", "2", in those definitions.
Or one may use the following relation: A positive integral function (yl, , y.)
[well-formed function (yl, , y)] of positive integers yl, , y. is )‘-definable

in the original sense if and only if the function (x 1, .-., x + 1) 1
[(x+ 1, ..., x. + 1)] of natural numbers x, ..., x. is )‘-definable in the
present sense.TM

n The ,-definition of a sequence A0, A1, shall mean the X-definition of the function
which A is of i, and the h-enumeration of a class shall mean the h-definition of an enumera-
tion (with or without repetitions) of the members of the class.

1 Under the Church representation of the positive integers, the formula of n denotes the
operation of applying the n-th power of a function to an argument, and exceedingly simple
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2. Recursive non-negative integral functions.
tion of a function by substitution is immediate"

In the k-notation, the defini-

() {xx x.G(I-I(x, x), ..., I(x, x))} (x, x) cons
((x, ..., x), ..., (x, ..., X)).
When an italic letter denotes a number, the same letter in heavy type shall

denote the corresponding formula. Our remark that S k-defines the successor
function of a natural number can now be written thus"

(2) If x + 1 z, S(x) conv z (x O, 1, ).

In view of the form of x (x 0, 1, ):

(3) x(F, A) cony F( x + 1 times F(A) ...)

(4) x(I) convI (x 0,1,...). (I(A) convA.)

(x 0, 1,... ).

By use of (4):

(5) {kt. t(I, 0) (x) cony 0 (x 0, 1,-.. ).

(6) {ktl tn.t(I, ..., t,(I, t) )}(xl, ...,xn) cony x
0, 1,... ).

k-definitions of addition, multiplication, and exponentiation, due to Rosser (Kleene [2]
pp. 160-164), are possible.

If that representation is extended by adding kfx. x(f) to represent 0, the resulting formal
definition of functions of natural numbers is equivalent to the one of this paper in re-
spect to the results we have summarized.

If the Church representation is extended by the natural method of using the class of
properly-formed formulas instead of the class of well-formed formulas, modifying suitably
the relation cony, and letting kfx.x represent 0, simplifications are afforded in the proofs
of many theorems, but unfortunately difficulties are introduced in the formal logics in
which this theory is used. Rosser has shown that the formal definition (k-K-definition)
under this program is equivalent to ).-definition, when the range of the independent varia-
bles is the set of natural numbers, and all the values have the same free symbols. For
functions over all well-formed formulas, k-K-definition is not equivalent to k-definition,
but we conjecture that the equivalence holds for many other significant ranges of the
independent variables (such as functions of natural numbers, functions of functions of
natural numbers, ..., with values in the same range, and ordinal numbers represented
by well-formed formulas as in Church-Kleene [1]), and fails only for very heterogeneous
ranges.

The formal definition which is obtained from that of this paper by using the [k--]con-
version of Church [3] is likewise equivalent to k-definition, when the range of the independ-
ent variables is the set of natural numbers and the values do not contain .

13 Here we assume that xl, x do not occur in G, I-I1, I-I,, as free symbols; and,
in general, when a heavy-typed letter represents occurrences of a proper symbol in a for-
mula, we suppose the only occurrences of the symbol in the formula to be those appearing
explicitly, unless the contrary is implied by the original convention concerning heavy-type.
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For the moment we abbreviate {),po-rfgha.p(f, o-(g, ’(h, a))) }(x, y, z) to [x, y, z],
{hpf. p(f, I, I) (X) to Xl, [)pf. p(I, f, I) (X) to X., {pf. p(I, I, f) (X) to X3.

(7) Ix, y, z]l cony x, Ix, y, z]2 cony y, [x, y, z]8 cony z (x, y, z O, 1, ...).

If -- },p. [p2, p3, S(p)] and ( - [0, 0, 0], then, using (2) and (7):

(8) i(3) cony [0, 0, 1], ((3)) cony [0, 1, 2], ((())) cony [1, 2, 3],
((((3)))) cony [2, 3, 4],

Hence, letting P )p.p(, )1, and using (3), (7) and (8):

(9) /fx--- z-t- 1, P(x) convz(x 1,2,...). P(O) convO.

Now let -- ),.,(P, S()), and abbreviate {’-}(x, y) to Ix]- [y] (omitting
brackets when no ambiguity results). By (3) and (9):

(10) If x>_ y and x y z, x-y cony z; if x <= y,x-y convO (x, y O, 1, ...).

Let min -- kxy. y [y x].

(11) If x <= y, min (x, y) cony min (y, x) cony x (x, y O, 1, ).

We call a formula constructed out of I, J and proper symbols by zero or more
successive operations of passing from 1 and A to {11 (A) a combination, and the
individual occurrences in it of I, J and proper symbols which enter in the course
of this construction its terms. Let T -- J(I, I), so that T cony hfx.x(f). The
reader may verify that

(12) J(T, tt, F) cony ),x.l(x, A), J(T, 11, J(I, )) cony x.’(A(x)), J(T, T, J(I,
J(T, T, J(T, A, J(T,Y, g))))) cony Xx.l(x, A(x))

If C is the proper symbol x, I is a combination convertible into hx. C. If C is a
combination of the form I’(11) and has x as a free symbol, then x is a free symbol
either (a) of Y but not of A, (b) of A but not of Y, or (c) both Of Y and of A. In
case (a), if 1 is a combination convertible into x. l’, then by (12) J(T, A, )
is a combination convertible into ),x.’(x, A) and hence into x.l(A) or ),x.C,
and similarly in cases (b) and (c). Thus, by induction on the number of terms
of C:

(13) If x is a free symbol of the combination C, there is a combination C such that
C cony x. C.

A proper symbol is a combination; if Y’ and A’ are combinations convertible
into F and A, respectively, F (Ap) is a combination convertible into F(A); if tt
has x as a free symbol, and 1’ is a combination convertible into It, then 1’ has
x as a free symbol (interconvertible formulas have the same free symbols), and
by (13) there is a combination R’ convertible into ),x.R’ and hence into kx.R.
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Thus, by an induction corresponding to the process of construction of a well-
formed formula:

(14) Given A, there is a combination A’ such that A’ cony A.14

Let H -- ). (I, I, I, I). Given a formula A having no free symbols, there is
by (14) a combination A’ convertible into A. A’ has no free symbols, and hence
its terms are I’s and J’s. Let w A’S y{W} denote the result of replacing each term
T of A’ by y(T), and let C -- ),y w T A’ A’oS y(W)A ]o Then a(I) conv S xcw) conv
cony A; and C(H) conv S’ W ,/T A’H(T) A’] conv S c0nv I.

(15) /f A has no free symbols, there is a formula C such that C(I) cony A and
C(H) cony I.

Let B_I -- Xpxyz.p(x, z, y), Bo ---+ Xpxyz.p(y, x, z), B -- Xpxyz.p(x, y, z).

(16) BI(B_) cony B_, B_I(B) cony Bo, B_I(B_I(B)) cony Bx.
We now adopt the notation 1 - Xfx. x(f). Given formulas A_, A0, A having
no free symbols, there are by (15) formulas C such that C(I) conv A and
C(H) conv I (i 1, 0, 1). Then Xn. n(B_l, B1, Xabc.b(a(H, c(H))), Co, C, C_1)
has the properties of " in the following:

(17) /f A_, A0, AI have no free symbols, there is a formula F such that 1(i) cony

A (i-- --1,0,1).

If I -- )p.p(O, 1), then, using (3) and the relations 0(1) cony 1 and 1(0) cony 0:

(18) (n) cony 1 (n O, 1,... ). I(-1) cony O.

If 1 has no free symbols, there is by (17) a formula B such that B(-1) cony

B(0) conv I and B(1) cony Xbx.g(x, Xp.b(I(p), b, p)). Then ),p.B(I(p), B, p)
has the properties of L in the following:

(19) If has no free symbols, there is a formula L such that L(x) cony ’(x, L)
(x O, 1, ) and L(-1) cony I.

Given formulas G and I-I having no free symbols, choose K by (17) so that
K(0) cony Xyf.y(f(-1), G) and K(1) cony Xyfx x,,.I-I(P(y), f(P(y), x,
x), x, ..., x), and let ’-- Xy.K(min(y, 1), y). Then the L given by (19)
for this ’ satisfies the following"

(20) If G and It have no free symbols, there is a formula L such that

L(0, x., xn) cony G(x, x) and L(S(y), x., xn) cony

I-I(y, L(y, x, x), x, x) (y, x, x 0, 1, ).

Choose K by (17) so that K(0) conv )fyr.r(y, f(-1), y) and K(1) cony

)fyr.f(r(S(y)), S(y), r), let F -- },x.K(min(x, 1)), aad choose L by (19) for this
F. Then L(x, y, r) cony L(r(S(y)), S(y), r) (x 1, 2, ) and, if r(y) cony

This theorem derives from Rosser [1], and the present proof of it from Church [3].
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z, where z is a natural number, L(O, y, r) cony y.
Xrx x.L(r(x, x, 0), O, r(x, x)):

Hence, letting

(21) If r )‘-defines a non-negative integral function p(xl, x,, y) of natural
numbers such that (xl, x,)(Ey)[p(xl, x,,, y) 0], then n(r) )‘-defines
ey[p(x, ..., x,, y) 0].

According to Kleene [3] IV every function of natural numbers recursive in the
general Herbrand-GSdel sense (see [3] Def. 2a or Def. 2b) is expressible in the
form (ey[p(x, x,, y) 0]), where (y)and p(x, x,, y) are primitive
recursive ([3] Def. 1) and (x,..., x,)(Ey)[p(x,..., x,, y) 0]. In view of
(1), (2), (5), (6) and (20),6 every primitive recursive function is )‘-definable;
and therefore, from (21), every general recursive function is ),-definable.

(22) Every non-negative integral function of natural numbers which is recursive in
the Herbrand-GSdel sense is )‘-definable.

(19) constitutes a schema for circular definition. Given any set of conditions
of dependence of an entity L(x) on the variable natural number x and on L
itself, if the set can be expressed in the h-notation by a formula F, a formula L
satisfying the conditions in terms of the equivalence relation A cony B can be
found. To do this it need not be known that the conditions actually deter-
mine a function L(x). Further analysis of this situation (Kleene [2] 18) shows
that to each problem of a large class, which includes many famous unsolved
problems (such as the Fermat problem and the 4-color problem), there is a
formula P such that whether P has a normal form is an equivalent problem.

3. )‘-definable non-negative integral functions. We now set up a represen-
tation of the well-formed formulas by natural numbers, by the GSdel method.
The symbols which occur in well-formed formulas we number thus:s... 1;{, (, [... 11;}, ), ]... 13; the i-th proper symbol.., p+6

(p the i-th prime number), and we order numbers to formulas (considered as
fmite sequences of symbols), finite sequences of formulas, etc., on the basis of

n kthe correspondence nl, n., nk to Pl P pk between finite sequences of
numbers and individual numbers (nl, n2,-.., n :> 0). Using the methods

Read (x, x) "for all x, x,", (Ey) "there is a y", ey[R(y)] "the least y such
that R(y) (0 if there is no such y)".

* A formula which k-defines a non-negative integral function of natural numbers has no
free symbols.

(17) can be used in the selection of F, if cases are distinguished in the form of the
dependence of L(x) on x and L. (4) and the clause L(- 1) cony I of (19) can be used when-
ever under a given case L(x) is independent of either or both of x and L. These devices are
illustrated in the proofs of (20), (21) and (24).

The distinction in well-formed formulas of three species of parentheses is unessential,
since the species of each parenthesis can be determined from its situation.
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and notations of G6del [1] pp. 179-182,1- and starting from 1-5, 7-10 of his list
(p. 182) and 6, 11-18 of Kleene [3], we define the additional primitive recursive
functions and relations 19-42"

19. Z(0) 2.317. 511. 7.1119.1311.171. 1917. 2313. 291.3119.3713.411a. 43,
z( + 1) s z() .a..7t.l,.at

Z(0), Z(1), are he numbers corresponding o he formulas 0, 1,

20. Num(x) (N)[e N & Z()].
corresponds go one of ghe formulas 0, 1,

21. Z-(x) en[n x & x Z(n)].
If x corresponds to kfx.f( n + 1 times f(x) ), Z-(x) is n.

22. PS(x) Prim(x)& x > 13.
x is a proper symbol.

23. PER(x) (n){0 < n l(x) (Ev)[ x & PS(v) & n G1 x
R(v)] Y (Ep, q)[0 < p, q < n & {n G1 x E(p G1 x),E(q G1 x)
V {n G1 x R(1),[p G1 x],E(q Gl x) & (Ev)[v x & PS(v) &
p G n(,)l}}]} & (x) > 0.

x is a sequence of formulas of which each is either a proper symbol or is
compounded out of the preceding ones by the operations and k ].

24. RE(x) (En){n (Pr[l(x)])’()’ & PER(n) & x [/(n)] G1 n}.
x is a properly-formed formula.

25. v Geb n, x PS(v) & PF(x) & (Ea, b, c)[a, b, c x & x
a,R(1),R(v),E(b),c & RE(b) & l(a) < n l(a) + l(b) + 4].

The proper symbol v is bound at the n-th point of the properly-formedformula x.

26. vFrn, xPS(v)&PF(x)&v n Gl x & n l(x) & v Geb n, x.
The proper symbol v occurs as a free symbol at the n-th point of the properly-

formed formula x.

27. vGebx (En)[n l(x) & v n Gl x & v Geb n, x].
The proper symbol v occurs in the properly-formed formula x as a bound symbol.

28. v Fr x (En)[n l(x) & v Fr n, x].
The proper symbol v occurs in the properly-formed formula x as a free symbol.

29. WE(x) PF(x) & (n)[n < l(x) & (n + 1)Gl x 1 (Ep, q, r) {p, q, r
x & x p,R(1),R[(n + 2)Gl x],E(q),r & l(p) n & RE(q)
& [(n + 2) x] Fr q}].

x is a well-formed formula.
The possibility of defining number-theoretic functions by means of recursion was

expounded in Skolem [1]. In that paper Skolem also showed that restricted existence and
restricted generality (the restriction by an upper bound) can be expressed by recursive
functions.
0 Cf. GSdel [1] p. 1, footnote 35_
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30. xImry WF(x) & {x y V (Ep, q, r, s, t)[p, q, s, <= x & r <__ y & x
p,R(1),R(q),E(s),t & PS(q) & WE(s) & PS(r) & r Occ s &
y p,R(1),R(r),E(S(s, q, R(r))),t] y (Ep, q, r, s, t)
[p, q, r, s, <- x & x p,E(R(1),R(q),E(r)),E(s),t & PS(q) &
WF(r) & WF(s) & q Geb r & (u)[u <= s & u Fr s -- u Geb r] &
y p,S(r, q, s),t]}.

xImcy---- xImryyyImrx.
x Imr y (x Imc y) corresponds to the relation obtained from A conv B by

omitting (2) and (3) (omitting (3)) ia the definition of the latter.

31. EC(x, m) O(R(x), m) for the (z, m) given by Kleene [3] I when (n, x, y)
ez[z <- n+x& {(xImcn&z-- n) y (xImcn&z-- x)}].

EC(x, 0), EC(x, 1), is an enumeration (with repetitions) of the numbers
y convertible into x (if x is well-formed).

Now let L be a given non-negative integral function of n natural numbers, and
L a formula which ),-defines L, i.e., a formula such that, for each set xl, x.
of natural numbers, L(xl, x) conv ),fx.f( m -t- 1 times f(x)
when m L(xl,..., x) and (by Church-Rosser [1], Thm. 1, Cor. 2) only
then. If denotes the correspondent of L under our representation of well-
formed formulas by natural numbers,

A(xl,..., x) E(... E(1),E(Z(x)) ),E(Z(x))

is the correspondent of L(x, x) (8, 10, 19). Hence, if zx, x denotes the
correspondent of the formula ),fx.f(... m W 1 times.., f(x)... ), there are
y’s such that EC(A(Xl, x), y) zl (31). For those and only those
y’s Num (EC(A(x, x,), y)) holds (20). Hence

(xl, x,) (Ey) Num (EC(A (x, x,) y)

and

Z-(EC(A(xl, x,), ey[Num (EC(A(x, xn), y))])) Z-(z,... x)

L(xx, x,) (21).

Using Kleene [3IV, the expression on the left is seen to be recursive. Thus:

(23’) Every ),-definable non-negative integral function of natural numbers is
recursive in the Herbrand-G6del sense?1

4. Recursive well-formed functions. Let L be afunction of a fixed
number n of natural numbers x, x, of which the values Lx, , are well-
formed formulas. Let ),(xl, x) be the function which corresponds to L
under our representation of formulas by numbers, i.e., the function which the
correspondent of L,, , is of x, xn. We call L recursive if ),(xl, x)

This result was first announced by Church.
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is recursive ia the Herbmnd-GSdel sense. This definition agrees with the
former one, when the values of L are formulas representing natural numbers, in
view of the recursiveness of Z and Z-1 (19, 21).

In order that L be )‘-definable, it is necessary that all the values L, n
have the same set zl, zm of free symbols. If L is recursive, the function L’
whose values are the expressions ),z zm. L, (which contain no free sym-
bols) is recursive, since

)‘’(x, ..., x,) R(1),R(s),E( R(1),R(s,),E()‘(xI, x))

where s,..., s are the numbers corresponding to the symbols z, ..., z,
respectively. Moreover, if L is ),-defined by L, then L is X-defined by

x x.L’(x, x, z, z).

These remarks reduce the problem of this section (to prove (25)) to the special
case in which the values of L contain no free symbols.

In the following i and j denote the numbers corresponding to the formulas I
and J, respectively:

32. CR(x) (n){0<n <__ l(x) n Gl x i V n Gl x j V (Ep, q)[O ,< p, q < n
& n G1 x E(p Gl x),E(q G1 x)]l & l(x) > O.

x is a sequence offormulas of which each is either I or J or is compounded out
of the preceding ones by the operation ().

33. Comb (x) - (En){n <= (Pr[l(x)])’()’ & CR(n) & x [/(n)] Gln}.
x is a combination.

34. C(x) EC(x, ey{[WF(x) & Comb (EC(x, y))] Y [WF(x) & y Oil).
If x is well-formed, C(x) is a combination convertible into x.

35. D(x) (Ep, q)[p, q <= x & x S(p),S(q) & WE(p) & WF(q)].
x corresponds to a formula of the form {P/ (Q).

36. M(x) ep[p <= x & WF(p) & (Sq)[q <= x & x E(p),E(q)]].
Ms(x) q[q <- x & WE(q)& (Ep)[p x & x E(p).E(q)]].
If x corresponds to the formul {1a} (Q), Ml(x) and Ms(x) correspond to P

and Q, respectively.

37. I(x) ==--x i.
x corresponds to the formula I.

By the )‘-definition of a relation we mean the X-definition of the representing
function of the relation (i.e., the function which is 0 or 1 according as the relation
holds or not). Since a recursive relation is one of which the representing func-
tion is recursive, recursive relations among natural numbers, as well as recursive
functions, are )‘-definable (by (22)).

Accordingly, let C, D, lYI1, lYI, I be formulas which )‘-define C, D, M, Ms, I,
2 By (14) and Kleene [3] V, this function is recursive, which is sufficient for our purpose.

Actually it is primitive recursive, by GSdel [1] IV, since a primitive recursive bound for y
is given implicitly by the proofs of (14) and the property of EC(x, m).
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respectively. Using (17), choose a formula 9 such that (0) cony xf. x(f(- 1)),
(1) cony hxf.x(f(-1), J), and a formula such that (0) cony xf.f(Ml(x),
f(M(x))), (1) cony xf.(I(x), x, f); and let ! -- Xxf.(D(x), x, f). By (19),
there is a formula (R) such that @(x) cony (x, @) and @(-1) cony I. Then
@(y) cony I if y corresponds to I, @(y) cony J if y corresponds to J, and @(y)
cony @(MI(y), @(M(y))) if y corresponds to a formula of the form IP} (Q).
Heace, if y corresponds to a combination Y whose terms are I’s and J’s, @(y)
conv Y. If x corresponds to a formula X having no free symbols, C(x) corre-
sponds to a combination Y of I’s and J’s convertible into X. Hence, letting
G - x.@(C(x)).

(24) If the number x corresponds to a formula X having no free symbols, G(x)
cony X.

Now, if the function L is recursive, and if the values Lx,.... contain no free
symbols, there is a formula which k-defines },(xl, x) (by (22)), and then
xl... x,.G(l(xl,..., x,)) -defines L. Passing to the general case by the
means we have indicated"

(25) If the function L of n natural numbers having well-formed formulas as values
is recursive (i.e., if the corresponding numerical function is recursive in the Her-
brand-G6del sense), and if all the values have the same free symbols, then L is
)-definable.

We are now in a position to infer the h-defmability of various sequences of
well-formed formulas from the theory of recursive functions. We give several
examples, each accompanied by a definition displaying the recursiveness of the
corresponding numerical function X(x).2 a, f, stand for the numbers
corresponding to A, F, respectively.

(26) The sequence A0, Ak_l, F(0), F(1), is )-definable (if A0, Ak_, Y
have the same free symbols).

(x) y[(x O & y ao) V V (x k-- l & y a_) V (x >. k & y

(/),E(Z(--))].

(27) The sequence Ao, A_, F(0, Ao, A_), F(1, A, A), whe,’e

A denotes the (i - 1)-th member, is k-definable (if Ao, A_ have the same free
symbols, and the free symbols of F are free symbols of Ao).

(0) ao, )(k 1) a,_, )(k - x)

E(... E(E(f).E(Z(z))).E(X(x)) ).E(X(x + [k 1])).

(28) The set offormulas derivable from A(0), A(1), by zero or more successive
operations of passing from lYl and 1 to R(0, lYl, ll), R(1, lYl, ll), is h-enumerable
(if the free symbols of R are free symbols of A).

3 Here are used known recursive functions and relations, the methods of G6del [1],
Kleene [3] V, direct recursive definition by equations.
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)‘(x) O(R(E(a),E(Z(O))), x), where O(z, m) is chosen by Kleene [3] I taking

(n, x, y)-- ez [(n 2 & z E(E(E(r).E(Z([I))).E(x
V(n-t-l[2&z--

38. EW(O) i (the number corresponding to I).
EW(x + 1) ey{EW(x) < y g(x) & WE(y) & (p)[p -< y--+ p Fry]}.
EW(O), EW(1), is an enumeration of the well-formed formulas with no

free symbols.

(29) The class of well-formed formulas (having a given set of free symbols) is
X-enumerable.

For the case of no free symbols, ),(x) is the function EW(x) which precedes; if L
X-enumerates the class for this case, )‘x. L(x, zl, zm) ),-enumerates it when
he set of free symbols is zl, zm.

39. NF(x) =-- WF(x) & (p, q, r, s, t){p, q, r, s, <- x & WF(q) & WF(r) & WE(s)
x p,E(R(1),q,E(r)),E(s),t}.

x is a well-formed formula in normal form.
40. ENF(x) (defined in the same nanner as EW(x) replacing WF(x) by NF(x)).

ENF(O), ENF(1),... is an enumeration of the well-formed formulas with
no free symbols in normal form.
41. EN(x) EC(ENF(1 Gl Dy(x)), 2 Gl Dy(x)).

EN(O), EN(1), is an enumeration of the well-formed formulas with no

free symbols which have normal forms.
(30) The class of well-formed formulas (having a given set of free symbols) which
have normal forms is )‘-enumerable.4

This follows from 41 (or 40) in the same manner as (29) from 38.

5. )‘-definable well-formed functions. In the extension of the notion of
recursiveness to functions L of which the values are any well-formed formulas,
the point of view in which interconvertible formulas are regarded as equivalent
is compromised. Every well-formed formula )‘-defines 2 functions L of n natural
numbers, each corresponding to a different numerical function )‘(xl, xn).
Since the power of the class of recursive numerical functions is R0, not all func-
tions L )‘-definable by a given L are recursive. In order to prove a theorem like
(23’), there must be added to the hypothesis of ),-definability a condition on the
form of the values L,... of L which selects from the formulas in which
L(x, xn) is convertible that one which is L,... n" A condition of this sort

This theorem is due to Church.
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which can be used here to replace the condition of representing a natural number
is that of being in normal form, supplemented by a convention which removes
the ambiguity in the normal form of a formula" a formula shall be in principal
normal form if it is in normal form and the symbol following the n-th occurrence
of k is the n-th proper symbol (in the given list) which is not a free symbol of
the formula.

42. PNF(x) NF(x) & (p, q, r){p, q, r <= x & x p.R(1).R(q).r
q es[s_<__ x&PS(s)&sFrx&sGebp]}.
x is a well-formed formula in principal normal form.

If all the values L,... are in principal normal form, and A (x, ..., x.) is chosen
as in the proof of (23’), we find that k(x, ..., x,,) EC(A(x, ..., x),
ey[PNF(EC(A(x,..., x), y))]), which is recursive in the Herbrand-GSdel
sense, since (z, x,,)(Ey)PNF(EC(A(x, x,,), y)).

(31’) Every k-definable function of n natural numbers of which the alues are well-
formed formulas in principal normal form is recursive (i.e., the corresponding nu-
merical function is recursive in the Herbrand-GSdel sense).
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