
Introduction to the Theory of Computation
Computability, Complexity,
And the Lambda Calculus
Some Notes for CIS511

Jean Gallier and Jocelyn Quaintance
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@seas.upenn.edu

c© Jean Gallier
Please, do not reproduce without permission of the author

July 28, 2022

2

Contents

Contents 3

1 RAM Programs, Turing Machines, Computability 7
1.1 Partial Functions and RAM Programs . 10
1.2 Definition of a Turing Machine . 17
1.3 Computations of Turing Machines . 19
1.4 Equivalence of RAM programs And Turing Machines 23
1.5 Listable Languages and Computable Languages 24
1.6 A Simple Function Not Known to be Computable 25
1.7 The Primitive Recursive Functions . 28
1.8 Primitive Recursive Predicates . 39
1.9 The Partial Computable Functions . 43

2 Equivalence of the Models of Computation 49
2.1 Simulation of a RAM Program by a Turing Machine 49
2.2 Simulation of Turing Machine by a RAM Program 56
2.3 Every Turing Computable Function is Partial Computable 62

3 Universal RAM Programs and the Halting Problem 69
3.1 Pairing Functions . 69
3.2 Equivalence of Alphabets . 78
3.3 Coding of RAM Programs; The Halting Problem 80
3.4 Universal RAM Programs . 84
3.5 Indexing of RAM Programs . 89
3.6 Kleene’s T -Predicate . 90
3.7 A Non-Computable Function; Busy Beavers 92

4 Elementary Recursive Function Theory 97
4.1 Acceptable Indexings . 97
4.2 Undecidable Problems . 100
4.3 Reducibility and Rice’s Theorem . 103
4.4 Listable (Recursively Enumerable) Sets . 106
4.5 Reducibility and Complete Sets . 112

3

4 CONTENTS

5 The Lambda-Calculus 117

5.1 Syntax of the Lambda-Calculus . 119

5.2 β-Reduction and β-Conversion; the Church–Rosser Theorem 124

5.3 Some Useful Combinators . 128

5.4 Representing the Natural Numbers . 131

5.5 Fixed-Point Combinators and Recursively Defined Functions 137

5.6 λ-Definability of the Computable Functions 140

5.7 Definability of Functions in Typed Lambda-Calculi 145

5.8 Head Normal-Forms and the Partial Computable Functions 153

6 Recursion Theory; More Advanced Topics 157

6.1 The Recursion Theorem . 157

6.2 Extended Rice Theorem . 163

6.3 Creative and Productive Sets; Incompleteness 166

7 Listable and Diophantine Sets; Hilbert’s Tenth 173

7.1 Diophantine Equations; Hilbert’s Tenth Problem 173

7.2 Diophantine Sets and Listable Sets . 176

7.3 Diophantine Funtions . 180

7.4 GCD’s, Bezout Identity, Chinese Remainder Theorem 181

7.5 Proof of the DPRM: Main Steps . 185

7.6 The DPRM For Relations . 200

7.7 Some Applications of the DPRM Theorem 202

7.8 Gödel’s Incompleteness Theorem . 209

8 The Post Correspondence Problem; Applications 217

8.1 The Post Correspondence Problem . 217

8.2 Some Undecidability Results for CFG’s . 223

8.3 More Undecidable Properties of Languages 226

8.4 Undecidability of Validity in First-Order Logic 227

9 Computational Complexity; P and NP 231

9.1 The Class P . 231

9.2 Directed Graphs, Paths . 233

9.3 Eulerian Cycles . 234

9.4 Hamiltonian Cycles . 235

9.5 Propositional Logic and Satisfiability . 236

9.6 The Class NP , NP-Completeness . 241

9.7 The Bounded Tiling Problem is NP-Complete 250

9.8 The Cook-Levin Theorem . 257

9.9 Satisfiability of Arbitrary Propositions and CNF 260

CONTENTS 5

10 Some NP-Complete Problems 267
10.1 Statements of the Problems . 267
10.2 Proofs of NP-Completeness . 278
10.3 Succinct Certificates, coNP , and EXP . 295

11 Primality Testing is in NP 301
11.1 Prime Numbers and Composite Numbers . 301
11.2 Methods for Primality Testing . 302
11.3 Modular Arithmetic, the Groups Z/nZ, (Z/nZ)∗ 305
11.4 The Lucas Theorem . 313
11.5 Lucas Trees . 316
11.6 Algorithms for Computing Powers Modulo m 319
11.7 PRIMES is in NP . 321

12 Polynomial-Space Complexity; PS and NPS 325
12.1 The Classes PS (or PSPACE) and NPS (NPSPACE) 325
12.2 Savitch’s Theorem: PS = NPS . 327
12.3 A Complete Problem for PS: QBF . 328
12.4 Provability in Intuitionistic Propositional Logic 336

Bibliography 343

Symbol Index 347

Index 349

6 CONTENTS

Chapter 1

RAM Programs, Turing Machines,
and the Partial Computable Functions

In this chapter we address the fundamental question

What is a computable function?

Nowadays computers are so pervasive that such a question may seem trivial. Isn’t the
answer that a function is computable if we can write a program computing it!

This is basically the answer so what more can be said that will shed more light on the
question?

The first issue is that we should be more careful about the kind of functions that we
are considering. Are we restricting ourselves to total functions or are we allowing partial
functions that may not be defined for some of their inputs? It turns out that if we consider
functions computed by programs, then partial functions must be considered. In fact, we will
see that “deciding” whether a program terminates for all inputs is impossible. But what
does deciding mean?

To be mathematically precise requires a fair amount of work. One of the key technical
points is the ability to design a program U that takes other programs P as input, and then
executes P on any input x. In particular, U should be able to take U itself as input!

Of course a compiler does exactly the above task. But fully describing a compiler for
a “real” programming language such as JAVA, PYTHON, C++, etc. is a complicated and
lengthy task. So a simpler (still quite complicated) way to proceed is to develop a toy
programming language and a toy computation model (some kind of machine) capable of
executing programs written in our toy language. Then we show how programs in this toy
language can be coded so that they can be given as input to other programs. Having done
this we need to demonstrate that our language has universal computing power . This means
that we need to show that a “real” program, say written in JAVA, could be translated into
a possibly much longer program written in our toy language. This step is typically an act

7

8 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

of faith, in the sense that the details that such a translation can be performed are usually
not provided.

A way to be precise regarding universal computing power is to define mathematically a
family of functions that should be regarded as “obviously computable,” and then to show that
the functions computed by the programs written either in our toy programming language
or in any modern progamming language are members of this mathematically defined family
of computable functions. This step is usually technically very involved, because one needs
to show that executing the instructions of a program can be mimicked by functions in our
family of computable functions. Conversely, we should prove that every computable function
in this family is indeed computable by a program written in our toy programming language
or in any modern progamming language. Then we will be have the assurance that we have
captured the notion of universal computing power.

Remarkably, Herbrand, Gödel, and Kleene defined such a family of functions in 1934-
1935. This is a family of numerical functions f : Nm → N containing a subset of very simple
functions called base functions, and this family is the smallest family containing the base
functions closed under three operations:

1. Composition

2. Primitive recursion

3. Minimization.

Historically, the first two models of computation are the λ-calculus of Church (1935)
and the Turing machine (1936) of Turing. Kleene proved that the λ-definable functions are
exactly the (total) computable functions in the sense of Herbrand–Gödel–Kleene in 1936, and
Turing proved that the functions computed by Turing machines are exactly the computable
functions in the sense of Herbrand–Gödel–Kleene in 1937. Therefore, the λ-calculus and
Turing machines have the same “computing power,” and both compute exactly the class of
computable functions in the sense of Herbrand–Gödel–Kleene. In those days these results
were considered quite surprising because the formalism of the λ-calculus has basically nothing
to do with the formalism of Turing machines.

Once again we should be more precise about the kinds of functions that we are dealing
with. Until Turing (1936), only numerical functions f : Nm → N were considered. In order to
compute numerical functions in the λ-calculus, Church had to encode the natural numbers
as certain λ-terms, which can be viewed as iterators.

Turing assumes that what he calls his a-machines (for automatic machines) make use of
the symbols 0 and 1 for the purpose of input and output, and if the machine stops, then
the output is a string of 0s and 1s. Thus a Turing machine can be viewed as computing a
function f : ({0, 1}∗)m → {0, 1}∗ on strings . By allowing a more general alphabet Σ, we see
that a Turing machine computes a function f : (Σ∗)m → Σ∗ on strings over Σ.

9

At first glance it appears that Turing machines compute a larger class of functions, but
this is not so because there exist mutually invertible computable coding functions C : Σ∗ → N
and decoding functions D : N → Σ∗. Using these coding and decoding functions, it suffices
to consider numerical functions.

However, Turing machines can also very naturally be viewed as devices for defining
computable languages in terms of acceptance and rejection; some kinds of generalized DFA’s
or NFA’s. In this role, it would be very awkward to limit ourselves to sets of natural numbers,
although this is possible in theory.

We should also point out that the notion of computable language can be handled in terms
of a computation model for functions by considering the characteristic functions of languages.
Indeed, a language A is computable (we say decidable) iff its characteristic function χA is
computable.

The above considerations motivate the definition of the computable functions in the sense
of Herbrand–Gödel–Kleene to functions f : (Σ∗)m → Σ∗ operating on strings . However, it
is technically simpler to work out all the undecidability results for numerical functions or
for subsets of N. Since there is no loss of generally in doing so in view of the computable
bijections C : Σ∗ → N and D : N→ Σ∗, we will do so.

Nevertherless, in order to deal with languages, it is important to develop a fair amount
of computability theory about functions computing on strings, so we will present another
computation model, the RAM program model , which computes functions defined on strings.
This model was introduced around 1963 (although it was introduced earlier by Post in a
different format). It has the advantage of being closer to actual computer architecture,
because the RAM model consists of programs operating on a fixed set of registers. This
model is equivalent to the Turing machine model, and the translations, although tedious,
are not that bad.

The RAM program model also has the technical advantage that coding up a RAM pro-
gram as a natural number is not that complicated.

The λ-calculus is a very elegant model but it is more abstract than the RAM program
model and the Turing machine model so we postpone discussing it until Chapter 5.

Another very interesting computation model particularly well suited to deal with decid-
able sets of natural numbers is Diophantine definability . This model, arising from the work
involved in proving that Hilbert’s tenth problem is undecidable will be discussed in Chapter
7.

In the following sections we will define the RAM program model, the Turing machine
model, and then argue without proofs (relegated to Chapter 2) that there are algorithms to
convert RAM programs into Turing machines, and conversely. Then we define the class of
computable functions in the sense of Herbrand–Gödel–Kleene, both for numerical functions
(defined on N) and functions defined on strings. This will require explaining what is primitive
recursion, which is a restricted form of recursion which guarantees that if it is applied to total

10 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

functions, then the resulting function is total. Intuitively, primitive recursion corresponds
to writing programs that only use for loops (loops where the number of iterations is known
ahead of time and fixed).

1.1 Partial Functions and RAM Programs

In this section we define an abstract machine model for computing functions

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗,

where Σ = {a1, . . . , ak} is some input alphabet.

Numerical functions f : Nn → N can be viewed as functions defined over the one-letter
alphabet {a1}, using the bijection m 7→ am1 .

Since programs are not guaranteed to terminate for all inputs, we are forced to deal with
partial functions so we recall their definition.

Definition 1.1. A binary relation R ⊆ A × B between two sets A and B is functional iff,
for all x ∈ A and y, z ∈ B,

(x, y) ∈ R and (x, z) ∈ R implies that y = z.

A partial function is a triple f = 〈A,G,B〉, where A and B are arbitrary sets (possibly
empty) and G is a functional relation (possibly empty) between A and B, called the graph
of f .

Hence, a partial function is a functional relation such that every argument has at most
one image under f .

The graph of a function f is denoted as graph(f). When no confusion can arise, a
function f and its graph are usually identified.

A partial function f = 〈A,G,B〉 is often denoted as f : A→ B.

The domain dom(f) of a partial function f = 〈A,G,B〉 is the set

dom(f) = {x ∈ A | ∃y ∈ B, (x, y) ∈ G}.

For every element x ∈ dom(f), the unique element y ∈ B such that (x, y) ∈ graph(f) is
denoted as f(x). We say that f(x) is defined , also denoted as f(x) ↓.

If x ∈ A and x /∈ dom(f), we say that f(x) is undefined , also denoted as f(x) ↑.
Intuitively, if a function is partial, it does not return any output for any input not in

its domain. This corresponds to an infinite computation. It is important to note that

1.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 11

two partial functions f : A → B and f ′ : A′ → B′ are equal iff A = A′, B = B′, and
graph(f) = graph(f ′), which means that for all a ∈ A, either both f(a) and f ′(a) are
defined and f(a) = f ′(a), or both f(a) and f ′(a) are undefined. This implies that when we
write f(a) = f ′(a) for some a ∈ A, we mean that either both f(a) and f ′(a) are defined and
f(a) = f ′(a), or f and f ′ are both undefined at a (equivalently, a /∈ dom(f) = dom(f ′)).
There is a slight abuse of notation since f(a) (and f ′(a)) may not be defined, but this is the
customary notation.

A partial function f : A → B is a total function iff dom(f) = A. It is customary to call
a total function simply a function.

We now define a model of computation know as the RAM programs or Post machines .

RAM programs are written in a sort of assembly language involving simple instructions
manipulating strings stored into registers.

Every RAM program uses a fixed and finite number of registers denoted as R1, . . . , Rp,
with no limitation on the size of strings held in the registers.

RAM programs can be defined either in flowchart form or in linear form. Since the linear
form is more convenient for the purpose of encoding programs as numbers (a process known
as Gödel numbering), we focus primarily on RAM programs in linear form. However, the
flowchart form tends to be more intuitive and is useful to describe certain constructions (such
as primitive recursion and minimization) so we will also describe it.

A RAM program P (in linear form) consists of a finite sequence of instructions using a
finite number of registers R1, . . . , Rp.

Instructions may optionally be labeled with line numbers denoted as N1, . . . , Nq.

It is neither mandatory to label all instructions, nor to use distinct line numbers! Thus
the same line number can be used in more than one line. As we will see later on, this makes
it easier to concatenate two different programs without performing a renumbering of line
numbers.

Every instruction has four fields , not necessarily all used. The main field is the op-code.

Definition 1.2. RAM programs are constructed from seven types of instructions shown
below:

(1j) N addj Y
(2) N tail Y
(3) N clr Y
(4) N Y ← X
(5a) N jmp N1a
(5b) N jmp N1b
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue

12 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

1. An instruction of type (1j) concatenates the letter aj to the right of the string held by
register Y (1 ≤ j ≤ k). The effect is the assignment

Y := Y aj.

2. An instruction of type (2) deletes the leftmost letter of the string held by the register
Y . This corresponds to the function tail, defined such that

tail(ε) = ε,

tail(aju) = u

for all u ∈ Σ∗. The effect is the assignment

Y := tail(Y).

3. An instruction of type (3) clears register Y , i.e., sets its value to the empty string ε.
The effect is the assignment

Y := ε.

4. An instruction of type (4) assigns the value of register X to register Y . The effect is
the assignment

Y := X.

5. An instruction of type (5a) or (5b) is an unconditional jump.

The effect of (5a) is to jump to the closest line number N1 occurring above the in-
struction being executed, and the effect of (5b) is to jump to the closest line number
N1 occurring below the instruction being executed.

6. An instruction of type (6ja) or (6jb) is a conditional jump. Let head be the function
defined as follows:

head(ε) = ε,

head(aju) = aj

for all u ∈ Σ∗. The effect of (6ja) is to jump to the closest line number N1 occur-
ring above the instruction being executed iff head(Y) = aj, else to execute the next
instruction (the one immediately following the instruction being executed).

The effect of (6jb) is to jump to the closest line number N1 occurring below the
instruction being executed iff head(Y) = aj, else to execute the next instruction.

When computing over N, instructions of type (6ja) or (6jb) jump to the closest N1
above or below iff Y is nonnull.

1.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 13

7. An instruction of type (7) is a no-op, i.e., the registers are unaffected. If there is a
next instruction, then it is executed, else the program stops.

When computing over N, which corresponds to the case where Σ = {a1}, an instruction of
type (1) computes the successor function S (or Succ) given by S(n) = n+1, an instruction of
type (2) computes the predecessor function pred given by pred(n+ 1) = n and pred(0) = 0,
and an instruction of type (3) computes the zero function Z given by Z(n) = 0.

Obviously, a program is syntactically correct only if certain conditions hold.

Definition 1.3. A RAM program P is a finite sequence of instructions as in Definition 1.2,
and satisfying the following conditions:

(1) For every jump instruction (conditional or not), the line number to be jumped to must
exist in P .

(2) The last instruction of a RAM program is a continue.

The reason for allowing multiple occurences of line numbers is to make it easier to con-
catenate programs without having to perform a renaming of line numbers.

The technical choice of jumping to the closest address N1 above or below comes from
the fact that it is easy to search up or down using primitive recursion, as we will see later
on.

For the purpose of computing a function f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗ using a RAM program

P , we assume that P has at least n registers called input registers , and that these registers
R1, . . . , Rn are initialized with the input values of the function f . We also assume that the
output is returned in register R1.

Example 1.1. The following RAM program concatenates two strings x1 and x2 held in
registers R1 and R2. Since Σ = {a, b}, for more clarity, we wrote jmpa instead of jmp1, jmpb
instead of jmp2, adda instead of add1, and addb instead of add2.

R3 ← R1
R4 ← R2

N0 R4 jmpa N1b
R4 jmpb N2b

jmp N3b
N1 adda R3

tail R4
jmp N0a

N2 addb R3
tail R4
jmp N0a

N3 R1 ← R3
continue

14 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

The instructions of a RAM program in flowchart form are shown in Figure 1.1. They
are all self-explanatory except perhaps the test statements which behave as follows. If the
leftmost symbol head(y) is the letter ai, then follow the arrow labeled ai (to the instruction
to be executed next). Otherwise y = ε and then follow the arrow labeled ε.

Schematic Representations of RAM Instructions

1. START

3. Add statements y y a j
(a in Σ)j

2. Transfer statements y x

4. Clear statements y ε

5. Delete statements y tail(y)

head(y)
a1

ai

a k

ε6. Test statements

7. STOP

Figure 1.1: RAM instructions in flowchart form.

Remark: The instructions of a RAM program in flowchart form are very similar to the
instructions of the Post machines discussed in Manna [29]. However, Post machines use a
single register. Nevertheless, it can be shown that the two models are equivalent.

Definition 1.4. A RAM flowchart program is a directed graph obtained by interconnecting
statements in such a way that:

(1) There is a single START.

(2) There is a single STOP.

(3) Every entry point of a statement is connected to an exit point of some statement and
every exit point of a statement is connected to the entry point of some statement.

1.1. PARTIAL FUNCTIONS AND RAM PROGRAMS 15

As in the case of a RAM program in linear form, a RAM program in flowchart form is
assumed to have prescribed input variables. A flowchart form representation of the RAM
program of Example 1.1 is shown in Figure 1.2.

Concatenating two strings over {a,b}*

START

head(y)

x x

y x

1

2

x xa

y tail(y)

x xb

y tail(y)

a

b

ε

x x1

STOP

Figure 1.2: A RAM program in flowchart form for computing concatenation.

Remark: The reader may have noticed that the definition of a RAM program, either in
flowchart form or linear form, does not exclude undesirable programs such as disconnected
programs consisting of several connected components. We could fix the definitions to avoid
such pathological cases, but they are exceptional and we will not go into such trouble now.
The reader is invited to think about pathological cases that should be ruled out and ways
of fixing the definitions to avoid them.

Definition 1.5. A RAM program P computes the partial function ϕ : (Σ∗)n → Σ∗ if the
following conditions hold: For every input (x1, . . . , xn) ∈ (Σ∗)n, having initialized the input
registers R1, . . . , Rn with x1, . . . , xn, the program eventually halts iff ϕ(x1, . . . , xn) is defined,
and if and when P halts, the value of R1 is equal to ϕ(x1, . . . , xn). A partial function ϕ is
RAM-computable iff it is computed by some RAM program.

Example 1.2. The following program computes the erase function E defined such that

E(u) = ε

16 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

for all u ∈ Σ∗:
clr R1
continue

The following program computes the jth successor function Sj defined such that

Sj(u) = uaj

for all u ∈ Σ∗:
addj R1
continue

The following program (with n input variables) computes the projection function P n
i

defined such that

P n
i (u1, . . . , un) = ui,

where n ≥ 1, and 1 ≤ i ≤ n:
R1 ← Ri

continue

Note that P 1
1 is the identity function.

The equivalence of the flowchart form and the linear form of RAM programs is straight-
forward. Translating a program in linear form to the flowchart form is almost immediate
and is left as an exercise. In the other direction, first we assign distinct labels to all the
statements in the flowchart except START. The only translation which is not immediately
obvious is the case of a test statement. If the target labels of the arrows labeled a1, . . . , ak, ε
are N1, . . . , Nk,N(k + 1), we create the following piece of code:

Y jmp1 N1c
...

Y jmpk Nkc
Y jmp N(k + 1)c

where c is a or b depending on the location of Ni in the linear RAM program. Extra
unconditional jumps may also be needed to mimic the flow of control of the program in
flowchart form. The details are left as an exercise.

Having a programming language, we would like to know how powerful it is, that is, we
would like to know what kind of functions are RAM-computable. At first glance, it seems
that RAM programs don’t do much, but this is not so. Indeed, we will see shortly that the
class of RAM-computable functions is quite extensive.

One way of getting new programs from previous ones is via composition. Another one
is by primitive recursion. We will investigate these constructions after introducing another
model of computation, Turing machines .

1.2. DEFINITION OF A TURING MACHINE 17

Remarkably, the classes of (partial) functions computed by RAM programs and by Tur-
ing machines are identical. This is the class of partial computable functions in the sense of
Herbrand–Gödel–Kleene, also called partial recursive functions , a term which is now consid-
ered old-fashion. We will present the definition of the so-called µ-recursive functions (due
to Kleene).

The following proposition will be needed to simplify the encoding of RAM programs as
numbers.

Proposition 1.1. Every RAM program can be converted to an equivalent program only using
the following type of instructions:

(1j) N addj Y
(2) N tail Y
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue

The proof is fairly simple. For example, instructions of the form

Ri← Rj

can be eliminated by transferring the contents of Rj into an auxiliary register Rk, and then
by transferring the contents of Rk into Ri and Rj.

1.2 Definition of a Turing Machine

We define a Turing machine model for computing functions

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗,

where Σ = {a1, . . . , ak} is some input alphabet. In this section, since we are primarily
interested in computing functions we only consider deterministic Turing machines.

There are many variants of the Turing machine model. The main decision that needs to
be made has to do with the kind of tape used by the machine. We opt for a single finite
tape that is both an input and a storage mechanism. This tape can be viewed as a string
over tape alphabet Γ such that Σ ⊆ Γ. There is a read/write head pointing to some symbol
on the tape, symbols on the tape can be overwritten, and the read/write head can move
one symbol to the left or one symbol to the right, also causing a state transition. When the
write/read head attempts to move past the rightmost or the leftmost symbol on the tape,
the tape is allowed to grow. To accomodate such a move, the tape alphabet contains some
special symbol B /∈ Σ, the blank , and this symbol is added to the tape as the new leftmost
or rightmost symbol on the tape.

18 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

A common variant uses a tape which is infinite at both ends, but only has finitely many
symbols not equal to B, so effectively it is equivalent to a finite tape allowed to grow at
either ends. Another variant uses a semi-infinite tape infinite to the right, but with a left
end. We find this model cumbersome because it requires shifting right the entire tape when
a left move is attempted from the left end of the tape.

Another decision that needs to be made is the format of the instructions. Does an
instruction cause both a state transition and a symbol overwrite, or do we have separate
instructions for a state transition and a symbol overwrite. In the first case, an instruction
can be specified as a quintuple, and in the second case by a quadruple. We opt for quintuples.
Here is our definition.

Definition 1.6. A (deterministic) Turing machine (or TM) M is a sextuple M = (K,Σ,Γ,
{L,R}, δ, q0), where

• K is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite tape alphabet , s.t. Σ ⊆ Γ, K ∩ Γ = ∅, and with blank B /∈ Σ;

• q0 ∈ K is the start state (or initial state);

• δ is the transition function, a (finite) set of quintuples

δ ⊆ K × Γ× Γ× {L,R} ×K,

such that for all (p, a) ∈ K × Γ, there is at most one triple (b,m, q) ∈ Γ× {L,R} ×K
such that (p, a, b,m, q) ∈ δ.

A quintuple (p, a, b,m, q) ∈ δ is called an instruction. It is also denoted as

p, a→ b,m, q.

The effect of an instruction is to switch from state p to state q, overwrite the symbol
currently scanned a with b, and move the read/write head either left or right, according to
m.

Example 1.3. Here is an example of a Turing machine specified by

K = {q0, q1, q2, q3}; Σ = {a, b}; Γ = {a, b, B}.

1.3. COMPUTATIONS OF TURING MACHINES 19

The instructions in δ are:

q0, B → B,R, q3,

q0, a→ b, R, q1,

q0, b→ a,R, q1,

q1, a→ b, R, q1,

q1, b→ a,R, q1,

q1, B → B,L, q2,

q2, a→ a, L, q2,

q2, b→ b, L, q2,

q2, B → B,R, q3.

1.3 Computations of Turing Machines

To explain how a Turing machine works, we describe its action on instantaneous descriptions .
We take advantage of the fact that K ∩ Γ = ∅ to define instantaneous descriptions.

Definition 1.7. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

an instantaneous description (for short an ID) is a (nonempty) string in Γ∗KΓ+, that is, a
string of the form

upav,

where u, v ∈ Γ∗, p ∈ K, and a ∈ Γ.

The intuition is that an ID upav describes a snapshot of a TM in the current state p,
whose tape contains the string uav, and with the read/write head pointing to the symbol
a. Thus, in upav, the state p is just to the left of the symbol presently scanned by the
read/write head.

We explain how a TM works by showing how it acts on ID’s.

Definition 1.8. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

the yield relation (or compute relation) ` is a binary relation defined on the set of ID’s as
follows. For any two ID’s ID1 and ID2, we have ID1 ` ID2 iff either

(1) (p, a, b, R, q) ∈ δ, and either

(a) ID1 = upacv, c ∈ Γ, and ID2 = ubqcv, or

20 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

(b) ID1 = upa and ID2 = ubqB;

or

(2) (p, a, b, L, q) ∈ δ, and either

(a) ID1 = ucpav, c ∈ Γ, and ID2 = uqcbv, or

(b) ID1 = pav and ID2 = qBbv.

See Figure 1.3.

ID = upacv

reading head

1
u va

u v

p

b

q

ID = ubqcv2

(p,a,b,R,q)

ID = upa
1

u a

u

p

b

q

ID = ubqB2

(p,a,b,R,q)

B

ID = ucpav
1

u va

u v

p

b

q

ID = uqcbv2

(p,a,b,L,q)

ID = pav
1

a

p

b

q

ID = qBbv2

(p,a,b,L,q)

c

c

v

vB

(state)

c

c

Figure 1.3: Moves of a Turing machine.

Note how the tape is extended by one blank after the rightmost symbol in Case (1)(b),
and by one blank before the leftmost symbol in Case (2)(b).

As usual, we let `+ denote the transitive closure of `, and we let `∗ denote the reflexive
and transitive closure of `. We can now explain how a Turing machine computes a partial
function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗.

Since we allow functions taking n ≥ 1 input strings, we assume that Γ contains the
special delimiter , not in Σ, used to separate the various input strings.

It is convenient to assume that a Turing machine “cleans up” its tape when it halts before
returning its output. What this means is that when the Turing machine halts, the output
should be clearly identifiable, so all symbols not in Σ∪{B} that may have been used during

1.3. COMPUTATIONS OF TURING MACHINES 21

the computation must be erased. Thus when the TM stops the tape must consist of a string
w ∈ Σ∗ possibly surrounded by blanks (the symbol B). Actually, if the output is ε, the tape
must contain a nonempty string of blanks. To achieve this technically, we define proper ID’s.

Definition 1.9. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

where Γ contains some delimiter , not in Σ in addition to the blank B, a starting ID is of
the form

q0w1,w2, . . . ,wn

where w1, . . . , wn ∈ Σ∗ and n ≥ 2, or q0w with w ∈ Σ+, or q0B.

A blocking (or halting) ID is an ID upav such that there are no instructions (p, a, b,m, q) ∈
δ for any (b,m, q) ∈ Γ× {L,R} ×K.

A proper ID is a halting ID of the form

BhpwBl,

where w ∈ Σ∗, and h, l ≥ 0 (with l ≥ 1 when w = ε).

Computation sequences are defined as follows.

Definition 1.10. Given a Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0),

a computation sequence (or computation) is a finite or infinite sequence of ID’s

ID0, ID1, . . . , IDi, IDi+1, . . . ,

such that IDi ` IDi+1 for all i ≥ 0.
A computation sequence halts iff it is a finite sequence of ID’s, so that

ID0 `∗ IDn,

and IDn is a halting ID.

A computation sequence diverges if it is an infinite sequence of ID’s.

We now explain how a Turing machine computes a partial function.

Definition 1.11. A Turing machine

M = (K,Σ,Γ, {L,R}, δ, q0)

computes the partial function
f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸

n

→ Σ∗

iff the following conditions hold:

22 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

(1) For every w1, . . . , wn ∈ Σ∗, given the starting ID

ID0 = q0w1,w2, . . . ,wn

or q0w with w ∈ Σ+, or q0B, the computation sequence of M from ID0 halts in a
proper ID iff f(w1, . . . , wn) is defined.

(2) If f(w1, . . . , wn) is defined, then M halts in a proper ID of the form

IDn = Bhpf(w1, . . . , wn)Bl,

which means that it computes the right value.

A function f (over Σ∗) is Turing computable iff it is computed by some Turing machine
M .

Note that by (1), the TM M may halt in an improper ID, in which case f(w1, . . . , wn)
must be undefined. This corresponds to the fact that we only accept to retrieve the output of
a computation if the TM has cleaned up its tape, i.e., produced a proper ID. In particular,
intermediate calculations have to be erased before halting.

Example 1.4. Consider the Turing machine of Example 1.3 specified by K = {q0, q1, q2, q3};
Σ = {a, b}; Γ = {a, b, B}.

The instructions in δ are:

q0, B → B,R, q3,

q0, a→ b, R, q1,

q0, b→ a,R, q1,

q1, a→ b, R, q1,

q1, b→ a,R, q1,

q1, B → B,L, q2,

q2, a→ a, L, q2,

q2, b→ b, L, q2,

q2, B → B,R, q3.

The reader can easily verify that this machine exchanges the a’s and b’s in a string. For
example, on input w = aaababb, the output is bbbabaa. The computation is given by the
following sequence of ID’s.

q0 aaababb ` b q1 aababb ` bb q1 ababb ` bbb q1 babb ` bbba q1 abb ` bbbab q1 bb

` bbbaba q1 b ` bbbabaa q1B ` bbbaba q2 aB ` bbbab q2 aaB ` bbba q2 baaB

` bbb q2 abaaB ` bb q2 babaaB ` b q2 bbabaaB ` q2 bbbabaaB ` q2BbbbabaaB

` B q3 bbbabaaB.

The last ID B q3 bbbabaaB is a proper ID and the output is bbbabaa.

1.4. EQUIVALENCE OF RAM PROGRAMS AND TURING MACHINES 23

1.4 Equivalence of RAM Programs And Turing

Machines

Turing machines can simulate RAM programs, and as a result, we have the following theorem.

Theorem 1.2. Every RAM-computable function is Turing-computable. Furthermore, given
a RAM program P , we can effectively construct a Turing machine M computing the same
function.

The idea of the proof is to represent the contents of the registers R1, . . . Rp on the Turing
machine tape by the string

#r1#r2# · · ·#rp#,
where # is a special marker and ri represents the string held by Ri. We also use Proposition
1.1 to reduce the number of instructions to be dealt with.

The Turing machine M is built of blocks, each block simulating the effect of some in-
struction of the program P . The details are a bit tedious, and can be found in Section 2.1
or in Machtey and Young [28].

RAM programs can also simulate Turing machines.

Theorem 1.3. Every Turing-computable function is RAM-computable. Furthermore, given
a Turing machine M , one can effectively construct a RAM program P computing the same
function.

The idea of the proof is to design a RAM program containing an encoding of the current
ID of the Turing machine M in register R1, and to use other registers R2, R3 to simulate
the effect of executing an instruction of M by updating the ID of M in R1.

The details are tedious and can be found in Section 2.2.

Another proof can be obtained by proving that the class of Turing computable functions
coincides with the class of partial computable functions (formerly called partial recursive
functions), to be defined shortly. Indeed, it turns out that both RAM programs and Turing
machines compute precisely the class of partial recursive functions. For this, we will need to
define the primitive recursive functions .

Informally, a primitive recursive function is a total recursive function that can be com-
puted using only for loops, that is, loops in which the number of iterations is fixed (unlike
a while loop). A formal definition of the primitive functions is given in Section 1.7. For the
time being we make the following provisional definition.

Definition 1.12. Let Σ = {a1, . . . , ak}. The class of partial computable functions also called
partial recursive functions is the class of partial functions (over Σ∗) that can be computed
by RAM programs (or equivalently by Turing machines).

24 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

The class of computable functions also called recursive functions is the subset of the class
of partial computable functions consisting of functions defined for every input (i.e., total
functions).

Turing machines can also be used as acceptors to define languages so we introduce the
basic relevant definitions. A more detailed study of these languages will be provided in
Chapter 4.

1.5 Listable Languages and Computable Languages

We define the computably enumerable languages, also called listable languages, and the
computable languages. The old-fashion terminology for listable languages is recursively
enumerable languages, and for computable languages is recursive languages.

When operating as an acceptor, a Turing machine takes a single string as input and
either goes on forever or halts with the answer “accept” or “reject.” One way to deal with
acceptance or rejection is to assume that the TM has a set of final states. Another way more
consistent with our view that machines compute functions is to assume that the TM’s under
consideration have a tape alphabet containing the special symbols 0 and 1. Then acceptance
is signaled by the output 1, and rejection is signaled by the output 0.

Note that with our convention that in order to produce an output a TM must halt in a
proper ID, the TM must erase the tape before outputing 0 or 1.

Definition 1.13. Let Σ = {a1, . . . , ak}. A language L ⊆ Σ∗ is (Turing) listable or (Turing)
computably enumerable (for short, a c.e. set) (or recursively enumerable (for short, a r.e.
set)) iff there is some TM M such that for every w ∈ L, M halts in a proper ID with the
output 1, and for every w /∈ L, either M halts in a proper ID with the output 0 or it runs
forever.

A language L ⊆ Σ∗ is (Turing) computable (or recursive) iff there is some TM M such
that for every w ∈ L, M halts in a proper ID with the output 1, and for every w /∈ L, M
halts in a proper ID with the output 0.

Thus, given a computably enumerable language L, for some w /∈ L, it is possible that a
TM accepting L runs forever on input w. On the other hand, for a computable (recursive)
language L, a TM accepting L always halts in a proper ID.

When dealing with languages, it is often useful to consider nondeterministic Turing ma-
chines . Such machines are defined just like deterministic Turing machines, except that their
transition function δ is just a (finite) set of quintuples

δ ⊆ K × Γ× Γ× {L,R} ×K,

with no particular extra condition.

1.6. A SIMPLE FUNCTION NOT KNOWN TO BE COMPUTABLE 25

It can be shown that every nondeterministic Turing machine can be simulated by a
deterministic Turing machine, and thus, nondeterministic Turing machines also accept the
class of c.e. sets. This is a very tedious simulation, and very few books actually provide all
the details!

It can be shown that a computably enumerable language is the range of some computable
(recursive) function; see Section 4.4. It can also be shown that a language L is computable
(recursive) iff both L and its complement are computably enumerable; see Section 4.4. There
are computably enumerable languages that are not computable (recursive); see Section 4.4.

1.6 A Simple Function Not Known to be Computable

The “3n+ 1 problem” proposed by Collatz around 1937 is the following:

Given any positive integer n ≥ 1, construct the sequence ci(n) as follows starting with
i = 1:

c1(n) = n

ci+1(n) =

{
ci(n)/2 if ci(n) is even

3ci(n) + 1 if ci(n) is odd.

Observe that for n = 1, we get the infinite periodic sequence

1 =⇒ 4 =⇒ 2 =⇒ 1 =⇒ 4 =⇒ 2 =⇒ 1 =⇒ · · · ,

so we may assume that we stop the first time that the sequence ci(n) reaches the value 1 (if
it actually does). Such an index i is called the stopping time of the sequence. And this is
the problem:

Conjecture (Collatz):

For any starting integer value n ≥ 1, the sequence (ci(n)) always reaches 1.

Starting with n = 3, we get the sequence

3 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

Starting with n = 5, we get the sequence

5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

Starting with n = 6, we get the sequence

6 =⇒ 3 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

26 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Starting with n = 7, we get the sequence

7 =⇒ 22 =⇒ 11 =⇒ 34 =⇒ 17 =⇒ 52 =⇒ 26 =⇒ 13 =⇒ 40

=⇒ 20 =⇒ 10 =⇒ 5 =⇒ 16 =⇒ 8 =⇒ 4 =⇒ 2 =⇒ 1.

One might be surprised to find that for n = 27, it takes 111 steps to reach 1, and for
n = 97, it takes 118 steps. I computed the stopping times for n up to 107 and found that
the largest stopping time, 686 (685 steps) is obtained for n = 8400511. The terms of this
sequence reach values over 1.5 × 1011. The graph of the sequence c(8400511) is shown in
Figure 1.4.

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

16 #10
10

Figure 1.4: Graph of the sequence for n = 8400511.

We can define the partial computable function C (with positive integer inputs) defined
by

C(n) = the smallest i such that ci(n) = 1 if it exists.

1.6. A SIMPLE FUNCTION NOT KNOWN TO BE COMPUTABLE 27

Then the Collatz conjecture is equivalent to asserting that the function C is (total) com-
putable. The graph of the function C for 1 ≤ n ≤ 107 is shown in Figure 1.5.

Figure 1.5: Graph of the function C for 1 ≤ n ≤ 107.

So far, the conjecture remains open. It has been checked by computer for all integers less
than or equal to 87× 260.

We now return to the computability of functions. Our goal is to define the partial
computable functions in the sense of Herbrand–Gödel–Kleene. This class of functions is
defined from some base functions in terms of three closure operations:

1. Composition

2. Primitive recursion

3. Minimization.

The first two operations preserve the property of a function to be total, and this sub-
class of total computable functions called primitive recursive functions plays an important
technical role.

28 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

1.7 The Primitive Recursive Functions

Historically the primitive recursive functions were defined for numerical functions (comput-
ing on the natural numbers). Since one of our goals is to show that the RAM-computable
functions are partial recursive, we define the primitive recursive functions as functions
f : (Σ∗)m → Σ∗, where Σ = {a1, . . . , ak} is a finite alphabet. As usual, by assuming that
Σ = {a1}, we can deal with numerical functions f : Nm → N.

The class of primitive recursive functions is defined in terms of base functions and two
closure operations.

Definition 1.14. Let Σ = {a1, . . . , ak}. The base functions over Σ are the following func-
tions:

(1) The erase function E, defined such that E(w) = ε, for all w ∈ Σ∗;

(2) For every j, 1 ≤ j ≤ k, the j-successor function Sj, defined such that Sj(w) = waj,
for all w ∈ Σ∗;

(3) The projection functions P n
i , defined such that

P n
i (w1, . . . , wn) = wi,

for every n ≥ 1, every i, 1 ≤ i ≤ n, and for all w1, . . . , wn ∈ Σ∗.

Note that P 1
1 is the identity function on Σ∗. Projection functions can be used to permute,

duplicate, or drop the arguments of another function.

In the special case where we are only considering numerical functions (Σ = {a1}), the
function E : N → N is the zero function given by E(n) = 0 for all n ∈ N, and it is often
denoted by Z. There is a single successor function Sa1 : N→ N usually denoted S (or Succ)
given by S(n) = n+ 1 for all n ∈ N.

Even though in this section we are primarily interested in total functions, later on, the
same closure operations will be applied to partial functions so we state the definition of the
closure operations in the more general case of partial functions. The first closure operation
is (extended) composition.

Definition 1.15. Let Σ = {a1, . . . , ak}. For any partial or total function

g : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m

→ Σ∗,

and any m ≥ 1 partial or total functions

hi : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗, n ≥ 1,

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 29

the composition of g and the hi is the partial function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
n

→ Σ∗,

denoted as g ◦ (h1, . . . , hm), such that

f(w1, . . . , wn) = g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)),

for all w1, . . . , wn ∈ Σ∗. If g and all the hi are total functions, then g ◦ (h1, . . . , hm) is
obviously a total function. But if g or any of the hi is a partial function, then the value
(g◦(h1, . . . , hm))(w1, . . . , wn) is defined if and only if all the values hi(w1, . . . , wn) are defined
for i = 1, . . . ,m, and g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)) is defined.

Thus even if g “ignores” some of its inputs, in computing g(h1(w1, . . . , wn), . . . , hm(w1,
. . . , wn)), all arguments hi(w1, . . . , wn) must be evaluated.

As an example of a composition, f = g ◦ (P 2
2 , P

2
1) is such that

f(w1, w2) = g(P 2
2 (w1, w2), P 2

1 (w1, w2)) = g(w2, w1).

The second closure operation is primitive recursion. First we define primitive recursion
for numerical functions because it is simpler.

Definition 1.16. Given any two partial or total functions g : Nm−1 → N and h : Nm+1 → N
(m ≥ 2), the partial or total function f : Nm → N is defined by primitive recursion from g
and h if f is given by

f(0, x2, . . . , xm) = g(x2, . . . , xm),

f(n+ 1, x2, . . . , xm) = h(n, f(n, x2, . . . , xm), x2, . . . , xm),

for all n, x2, . . . , xm ∈ N. When m = 1, we have

f(0) = b,

f(n+ 1) = h(n, f(n)), for all n ∈ N,

for some fixed natural number b ∈ N.

If g and h are total functions, it is easy to show that f is also a total function. If g
or h is partial, obviously f(0, x2, . . . , xm) is defined iff g(x2, . . . , xm) is defined, and f(n +
1, x2, . . . , xm) is defined iff f(n, x2, . . . , xm) is defined and h(n, f(n, x2, . . . , xm), x2, . . . , xm)
is defined.

Definition 1.16 is quite a straightjacket in the sense that n+1 must be the first argument
of f , and the definition only applies if h has m + 1 arguments, but in practice a “natural”
definition often ignores the argument n and some of the arguments x2, . . . , xm. This is where
the projection functions come into play to drop, duplicate, or permute arguments.

30 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

For example, a “natural” definition of the predecessor function pred is

pred(0) = 0

pred(m+ 1) = m,

but this is not a legal primitive recursive definition. To make it a legal primitive recursive
definition we need the function h = P 2

1 , and a legal primitive recursive definition for pred is

pred(0) = 0

pred(m+ 1) = P 2
1 (m, pred(m)).

Addition, multiplication, exponentiation, and super-exponentiation, can be defined by
primitive recursion as follows (being a bit loose, for supexp we should use some projections
...):

add(0, n) = P 1
1 (n) = n,

add(m+ 1, n) = S ◦ P 3
2 (m, add(m,n), n)

= S(add(m,n))

mult(0, n) = E(n) = 0,

mult(m+ 1, n) = add ◦ (P 3
2 , P

3
3)(m,mult(m,n), n)

= add(mult(m,n), n),

rexp(0, n) = S ◦ E(n) = 1,

rexp(m+ 1, n) = mult ◦ (P 3
2 , P

3
3)(m, rexp(m,n), n),

exp(m,n) = rexp ◦ (P 2
2 , P

2
1)(m,n),

supexp(0, n) = 1,

supexp(m+ 1, n) = exp(n, supexp(m,n)).

We usually write m + n for add(m,n), m ∗ n or even mn for mult(m,n), and mn for
exp(m,n). The recursive definition of mn is m(n+1) = mn ∗m, which corresponds to

exp(m,n+ 1) = mult(exp(m,n),m).

Unfortunately, the recursion is on the second argument n, so we have to create the auxiliary
function rexp given by

rexp(m,n) = nm,

write the primitive recusive definition of rexp in m, and then

exp(m,n) = rexp(n,m) = rexp ◦ (P 2
2 , P

2
1)(m,n).

There is a minus operation on N named monus. This operation denoted by ·− is defined
by

m ·− n =

{
m− n if m ≥ n

0 if m < n.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 31

Then monus is defined by

m ·− 0 = m

m ·− (n+ 1) = pred(m ·− n),

except that the above is not a legal primitive recursion. For one thing, recursion should be
performed on m, not n. We can define rmonus as

rmonus(n,m) = m ·− n,

and then m ·− n = (rmonus ◦ (P 2
2 , P

2
1))(m,n), and

rmonus(0 ·−m) = P 1
1 (m)

rmonus(n+ 1,m) = pred ◦ P 2
2 (n, rmonus(n,m)).

The following functions are also primitive recursive:

sg(n) =

{
1 if n > 0

0 if n = 0,

sg(n) =

{
0 if n > 0

1 if n = 0,

as well as
abs(m,n) = |m− n| = m ·− n+ n ·−m,

and

eq(m,n) =

{
1 if m = n

0 if m 6= n.

Indeed

sg(0) = 0

sg(n+ 1) = S ◦ E ◦ P 2
1 (n, sg(n))

sg(n) = S(E(n)) ·− sg(n) = 1 ·− sg(n),

and
eq(m,n) = sg(|m− n|).

Finally, the function

cond(m,n, p, q) =

{
p if m = n

q if m 6= n,

is primitive recursive since

cond(m,n, p, q) = eq(m,n) ∗ p+ sg(eq(m,n)) ∗ q.

32 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

We can also design more general version of cond. For example, define compare≤ as

compare≤(m,n) =

{
1 if m ≤ n

0 if m > n,

which is given by

compare≤(m,n) = 1 ·− sg(m ·− n).

Then we can define

cond≤(m,n, p, q) =

{
p if m ≤ n

q if m > n,

with

cond≤(m,n, n, p) = compare≤(m,n) ∗ p+ sg(compare≤(m,n)) ∗ q.
The above allows to define functions by cases.

We now generalize primitive recursion to functions defined on strings (in Σ∗). The new
twist is that instead of the argument n+ 1 of f , we need to consider the k arguments uai of
f for i = 1, . . . , k (with u ∈ Σ∗), so instead of a single function h, we need k functions hi to
define primitive recursively what f(uai, w2, . . . , wm) is.

Definition 1.17. Let Σ = {a1, . . . , ak}. For any partial or total function

g : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m−1

→ Σ∗,

where m ≥ 2, and any k partial or total functions

hi : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m+1

→ Σ∗,

the partial function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m

→ Σ∗,

is defined by primitive recursion from g and h1, . . . , hk, if

f(ε, w2, . . . , wm) = g(w2, . . . , wm),

f(ua1, w2, . . . , wm) = h1(u, f(u,w2, . . . , wm), w2, . . . , wm),

· · · = · · ·
f(uak, w2, . . . , wm) = hk(u, f(u,w2, . . . , wm), w2, . . . , wm),

for all u,w2, . . . , wm ∈ Σ∗.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 33

When m = 1, for some fixed w ∈ Σ∗, we have

f(ε) = w,

f(ua1) = h1(u, f(u)),

· · · = · · ·
f(uak) = hk(u, f(u)),

for all u ∈ Σ∗.

Again, if g and the hi are total, it is easy to see that f is total.

As an example over {a, b}∗, the following function g : Σ∗×Σ∗ → Σ∗, is defined by primitive
recursion:

g(ε, v) = P 1
1 (v),

g(uai, v) = Si ◦ P 3
2 (u, g(u, v), v),

where 1 ≤ i ≤ k. It is easily verified that g(u, v) = vu. Then,

con = g ◦ (P 2
2 , P

2
1)

computes the concatenation function, i.e., con(u, v) = uv. The extended concatenation
conn+1 (n ≥ 1) defined by

conn+1(x1, . . . , xn+1) = x1 · · · xn+1

is primitive recursive because con2 = con and

conn+1(x1, . . . , xn+1) = con(conn(P n+1
1 (x1, . . . , xn+1), . . . P n+1

n (x1, . . . , xn+1)),

P n+1
n+1 (x1, . . . , xn+1)).

Here are some primitive recursive functions that often appear as building blocks for other
primitive recursive functions.

The delete last function dell given by

dell(ε) = ε

dell(uai) = u, 1 ≤ i ≤ k, u ∈ Σ∗

is defined primitive recursively by

dell(ε) = ε

dell(uai) = P 2
1 (u, dell(u)), 1 ≤ i ≤ k, u ∈ Σ∗.

For every string w ∈ Σ∗, the constant function cw given by

cw(u) = w for all u ∈ Σ∗

34 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

is defined primitive recursively by induction on the length of w by

cε = E

cvai = Si ◦ cv, 1 ≤ i ≤ k.

The sign function sg given by

sg(x) =

{
ε if x = ε

a1 if x 6= ε

is defined primitive recursively by

sg(ε) = ε

sg(uai) = (ca1 ◦ P 2
1)(u, sg(u)).

The anti-sign function sg given by

sg(x) =

{
a1 if x = ε

ε if x 6= ε

is primitive recursive. The proof is left an an exercise.

The function endj (1 ≤ j ≤ k) given by

endj(x) =

{
a1 if x ends with aj

ε otherwise

is primitive recursive. The proof is left an an exercise.

The reverse function rev : Σ∗ → Σ∗ given by rev(u) = uR is primitive recursive, because

rev(ε) = ε

rev(uai) = (con ◦ (cai ◦ P 2
1 , P

2
2))(u, rev(u)), 1 ≤ i ≤ k.

The tail function tail given by

tail(ε) = ε

tail(aiu) = u

is primitive recursive, because
tail = rev ◦ dell ◦ rev.

The last function last given by

last(ε) = ε

last(uai) = ai

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 35

is primitive recursive, because

last(ε) = ε

last(uai) = cai ◦ P 2
1 (u, last(u)).

The head function head given by

head(ε) = ε

head(aiu) = ai

is primitive recursive, because
head = last ◦ rev.

We are now ready to define the class of primitive recursive functions.

Definition 1.18. Let Σ = {a1, . . . , ak}. The class of primitive recursive functions is the
smallest class of (total) functions (over Σ∗) which contains the base functions and is closed
under composition and primitive recursion.

In the special where k = 1, we obtain the class of numerical primitive recursive functions .

The class of primitive recursive functions may not seem very big, but it contains all the
total functions that we would ever want to compute. Although it is rather tedious to prove,
the following theorem can be shown.

Theorem 1.4. For any alphabet Σ = {a1, . . . , ak}, every primitive recursive function is
RAM computable, and thus Turing computable.

Proof. We showed just after Definition 1.5 that the base functions are RAM-computable.

Let us first show closure of the class of RAM programs under composition. Let R,P1, . . .,
Pm be RAM programs computing g, h1, . . . , hm, and assume that h1, . . . , hm are functions
of n variables. The idea is to use P1, . . . , Pm are subroutines to R. Let q be least integer
greater than m and n and such that no register of index past q is used in R,P1, . . . , Pm. The
program computing g ◦ (h1, . . . , hm) is designed as follows. First, we save the contents of the
input registers.

R(q + 1) ← R1
...

R(q + n) ← Rn

Next we initialize the noninput registers and compute h1(x1, . . . , xn) by “calling” P1 as a
subroutine. The output is stored in R(q + n+ 1).

clr R(n+ 1)
...

clr Rq
P1

R(q + n+ 1) ← R1

36 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

We have similar pieces of RAM code to execute P2, . . . , Pm, the mth piece of code being

R1 ← R(q + 1)
...

Rn ← R(q + n)
clr R(n+ 1)

...
clr Rq
Pm

R(q + n+m) ← R1

At this stage, the values h1(x1, . . . , xn), . . . , hm(x1, . . . , xn) have been computed and are
stored in the registers R(q + n+ 1), . . . , R(q + n+m), or one of the Pi diverged. We finally
call the subroutine R to compute g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)).

R1 ← R(q + n+ 1)
...

Rn ← R(q + n+m)
clr R(m+ 1)

...
clr Rq
R

The output is in register R1 (or the program diverged). Now the reader should understand
why we are using relative addresses in the jumps–this allows us to simply plug in the programs
acting as subroutines in the right places. The other instructions simply make sure that these
programs are correctly initialized.

Next we show closure of the class of RAM programs under primitive recursion.

Suppose g, h1, . . . , hk are some total functions, with g : (Σ∗)m−1 → Σ∗, and hi : (Σ∗)m+1 →
Σ∗, for i = 1, . . . , k. If we write x for (x2, . . . , xm), for any y ∈ Σ∗, where y = ai1 · · · ain (with
aij ∈ Σ), let f be defined by primitive recursion from g and the hi’s, that is,

f(ε, x) = g(x)

f(ya1, x) = h1(y, f(y, x), x)

...

f(yai, x) = hi(y, f(y, x), x)

...

f(yak, x) = hk(y, f(y, x), x),

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 37

for all y ∈ Σ∗ and all x ∈ (Σ∗)m−1. Define the following sequences, uj and vj, for j =
0, . . . , n+ 1:

u0 = ε

u1 = u0ai1
...

uj = uj−1aij
...

un = un−1ain
un+1 = unai

and

v0 = g(x)

v1 = hi1(u0, v0, x)

...

vj = hij(uj−1, vj−1, x)

...

vn = hin(un−1, vn−1, x)

vn+1 = hi(y, vn, x).

We leave it as an exercise to prove by induction that

vj = f(uj, x),

for j = 0, . . . , n+ 1. It follows that

f(unai, x) = hi(un, f(un, x), x),

so f(unai, x) is defined and the function f is total. The RAM program in flowchart form
shown in Figure 1.6 implements the computation of the vj. A statement such as

v ← g(x1, . . . , xm−1)

is an abbreviation for a RAM program R computing g, in which it is assumed that the
variables used by R, except the variables x1, . . . , xm−1, are not used elsewhere in the program
implementing primitive recursion. The same convention applies to the statement

v ← hi(x1, . . . , xm+1).

38 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

START

(y , . . . , y) (x , . . . , x)1 1m m

(x , . . . , x) (y , . . . , y)1 m-1 m 2

v g(x , . . . , x) 1 m-1

x u1

x v2

x y

x y

3 2

m+1 m

v h (x , . . . , x) i 1 m+1

u ua i

head (y)1

y tail (y)1 1

ai

a a
1 k

x v1

STOP

u ε

Primitive Recursion

Figure 1.6: Closure under primitive recursion.

Example 1.5. The function f given by f(x1, x2) = x
|x2|
1 is defined by primitive recursion as

follows. First we introduce g given by g(x1, x2) = x
|x1|
2 , with

g(ε, x2) = ε

g(x1ai, x2) = con(g(x1, x2), x2).

Then f(x1, x2) = g(x2, x1). A RAM program in flowchart form computing f is shown in Fig-
ure 1.7. Observe how this program makes use of the program for computing concatenation.

In order to define new functions it is also useful to use predicates.

1.8. PRIMITIVE RECURSIVE PREDICATES 39

START

STOP

head(y)

a
b

x xa x xby x

y x

y x

1

1

2 2

x y
x y

1

1 1

a
b

head (y)2

y tail(y) y tail(y) y tail(y)
22

ε

ε

y ε1

Computing x 1
| x |

2

Figure 1.7: Computing f(x1, x2) = x
|x2|
1 by primitive recursion.

1.8 Primitive Recursive Predicates

Primitive recursive predicates will be used in Section 3.3.

Definition 1.19. An n-ary predicate P over N is any subset of Nn. We write that a tuple
(x1, . . . , xn) satisfies P as (x1, . . . , xn) ∈ P or as P (x1, . . . , xn). The characteristic function
of a predicate P is the function CP : Nn → {0, 1} defined by

Cp(x1, . . . , xn) =

{
1 iff P (x1, . . . , xn) holds

0 iff not P (x1, . . . , xn).

A predicate P (over N) is primitive recursive iff its characteristic function CP is primitive
recursive.

40 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

More generally, an n-ary predicate P (over Σ∗) is any subset of (Σ∗)n. We write that
a tuple (x1, . . . , xn) satisfies P as (x1, . . . , xn) ∈ P or as P (x1, . . . , xn). The characteristic
function of a predicate P is the function CP : (Σ∗)n → {a1}∗ defined by

Cp(x1, . . . , xn) =

{
a1 iff P (x1, . . . , xn) holds

ε iff not P (x1, . . . , xn).

A predicate P (over Σ∗) is primitive recursive iff its characteristic function CP is primitive
recursive.

Since we will only need to use primitive recursive predicates over N in the following
chapters, for simplicity of exposition we will restrict ourselves to such predicates. The
general case in treated in Machtey and Young [28].

It is easily shown that if P and Q are primitive recursive predicates (over (Nn), then
P ∨Q, P ∧Q and ¬P are also primitive recursive.

As an exercise, the reader may want to prove that the predicate,

prime(n) iff n is a prime number, is a primitive recursive predicate.

For any fixed k ≥ 1, the function

ord(k, n) = exponent of the kth prime in the prime factorization of n, is a primitive recursive
function.

We can also define functions by cases.

Proposition 1.5. If P1, . . . , Pm are pairwise disjoint primitive recursive n-ary predicates
(which means that Pi∩Pj = ∅ for all i 6= j) and f1, . . . , fm+1 are primitive recursive functions
on Nn, the function g : Nn → N defined below is also primitive recursive:

g(x) =


f1(x) iff P1(x)
...
fm(x) iff Pm(x)
fm+1(x) otherwise.

Here we write x for (x1, . . . , xn).

Proposition 1.5 also applies to functions and predicates with string arguments.

It is also useful to have bounded quantification and bounded minimization. Recall that
we are restricting our attention to numerical predicates and functions, so all variables range
over N. Proofs of the results stated below can be found in Machtey and Young [28].

Definition 1.20. If P is an (n + 1)-ary predicate, then the bounded existential predicate
(∃y ≤ x)P (y, z) holds iff some y ≤ x makes P (y, z) true.

The bounded universal predicate (∀y ≤ x)P (y, z) holds iff every y ≤ x makes P (y, z)
true.

Both (∃y ≤ x)P (y, z) and (∀y ≤ x)P (y, z) are (n + 1)-ary predicates; that is, the input
arguments are x and z.

1.8. PRIMITIVE RECURSIVE PREDICATES 41

Proposition 1.6. If P is an (n+ 1)-ary primitive recursive predicate, then (∃y ≤ x)P (y, z)
and (∀y ≤ x)P (y, z) are also primitive recursive predicates.

As an application, we can show that the equality predicate, u = v?, is primitive recursive.
The following slight generalization of Proposition 1.6 will be needed in Section 3.3.

Proposition 1.7. If P is an (n + 1)-ary primitive recursive predicate and f : Nn → N is
a primitive recursive function, then (∃y ≤ f(z))P (y, z) and (∀y ≤ f(z))P (y, z) are also
primitive recursive predicates.

Definition 1.21. If P is an (n + 1)-ary predicate, then the bounded minimization of P ,
min(y ≤ x)P (y, z), is the function defined such that min(y ≤ x)P (y, z) is the least natural
number y ≤ x such that P (y, z) if such a y exists, x+ 1 otherwise.

The bounded maximization of P , max(y ≤ x)P (y, z), is the function defined such that
max(y ≤ x)P (y, z) is the largest natural number y ≤ x such that P (y, z) if such a y exists,
x+ 1 otherwise.

Both min(y ≤ x)P (y, z) and max(y ≤ x)P (y, z) are functions from Nn+1 to N; that is,
the input arguments are x and z.

Proposition 1.8. If P is an (n+1)-ary primitive recursive predicate, then min(y ≤ x)P (y, z)
and max(y ≤ x)P (y, z) are primitive recursive functions.

Bounded existential predicates and bounded universal predicates can also be defined for
predicates with string arguments. The bounded existential predicate (∃y/x)P (y, z) holds iff
some prefix y of x makes P (y, z) true. The bounded universal predicate (∀y/x)P (y, z) holds
iff every prefix y of x makes P (y, z) true. In both cases the input arguments are x and z.
Again, if P is primitive recursive, then so are (∃y/x)P (y, z) and (∀y/x)P (y, z).

Bounded universal quantification can be used to prove that the equality predicate eq(x, y)
for strings is primitive recursive. This is surprisingly tricky. One needs a version of monus
on strings, namely

x− y =

{
ε if |x| ≤ |y|
v if |x| > |y| and x = uv with |u| = |y|.

We leave it as an exercise to show that that the above function is primitive recursive.

One also needs the predicate end(x) = end(y) which holds iff x = y = ε or x and y end
with the same letter. It is easy to show that this predicate is primitive recursive. Then the
predicate |x| = |y| is primitive recursive since it holds iff x− y = ε and y − x = ε.

Finally, the reader should verify that we have eq(x, y) iff |x| = |y| and

∀z/x[end(z) = end(rev(rev(y)− (x− z))].

42 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

We can also define bounded minimization and maximization for predicates with string
arguments.

The bounded minimization min(y/x) P (y, z) of P is the function defined such that
min(y/x)P (y, z) is the shortest prefix y of x such that P (y, z) if such a y exists, xa1 other-
wise.

The bounded maximization max(y/x)P (y, z) of P is the function defined such that
max(y/x)P (y, z) is the longest prefix y of x such that P (y, z) if such a y exists, xa1 otherwise.

In both cases the input arguments are x and z. If P is primitive recursive, then so are
min(y/x)P (y, z) and max(y/x)P (y, z).

So far the primitive recursive functions do not yield all the Turing-computable func-
tions. The following proposition also shows that restricting ourselves to total functions is
too limiting.

Let F be any set of total functions that contains the base functions and is closed un-
der composition and primitive recursion (and thus, F contains all the primitive recursive
functions).

Definition 1.22. We say that a function f : Σ∗×Σ∗ → Σ∗ is universal for the one-argument
functions in F iff for every function g : Σ∗ → Σ∗ in F , there is some n ∈ N such that

f(an1 , u) = g(u)

for all u ∈ Σ∗.

Proposition 1.9. For any countable set F of total functions containing the base functions
and closed under composition and primitive recursion, if f is a universal function for the
functions g : Σ∗ → Σ∗ in F , then f /∈ F .

Proof. Assume that the universal function f is in F . Let g be the function such that

g(u) = f(a
|u|
1 , u)a1

for all u ∈ Σ∗. We claim that g ∈ F . It is enough to prove that the function h such that

h(u) = a
|u|
1

is primitive recursive, which is easily shown.

Then, because f is universal, there is some m such that

g(u) = f(am1 , u)

for all u ∈ Σ∗. Letting u = am1 , we get

g(am1) = f(am1 , a
m
1) = f(am1 , a

m
1)a1,

a contradiction.

Thus, either a universal function for F is partial, or it is not in F .

In order to get a larger class of functions, we need the closure operation known as mini-
mization.

1.9. THE PARTIAL COMPUTABLE FUNCTIONS 43

1.9 The Partial Computable Functions

Minimization can be viewed as an abstract version of a while loop. First let us consider the
simpler case of numerical functions.

Consider a function g : Nm+1 → N, with m ≥ 0. We would like to know if for any fixed
n1, . . . , nm ∈ N, the equation

g(n, n1, . . . , nm) = 0 with respect to n ∈ N

has a solution n ∈ N, and if so, we return the smallest such solution. Thus we are defining
a (partial) function f : Nm → N such that

f(n1, . . . , nm) = min{n ∈ N | g(n, n1, . . . , nm) = 0},

with the understanding that f(n1, . . . , nm) is undefined otherwise. If g is computed by a
RAM program, computing f(n1, . . . , nm) corresponds to the while loop

n := 0;
while g(n, n1, . . . , nm) 6= 0 do
n := n+ 1;
endwhile
let f(n1, . . . , nm) = n.

Definition 1.23. For any function g : Nm+1 → N, where m ≥ 0, the function f : Nm → N is
defined by minimization from g, if the following conditions hold for all n1, . . . , nm ∈ N:

(1) f(n1, . . . , nm) is defined iff there is some n ∈ N such that g(p, n1, . . . , nm) is defined for
all p, 0 ≤ p ≤ n, and

g(n, n1, . . . , nm) = 0;

(2) When f(n1, . . . , nm) is defined,

f(n1, . . . , nm) = n,

where n is such that g(n, n1, . . . , nm) = 0 and g(p, n1, . . . , nm) 6= 0 for every p, 0 ≤ p ≤
n−1. In other words, n is the smallest natural number such that g(n, n1, . . . , nm) = 0.

Following Kleene, we write

f(n1, . . . , nm) = µn[g(n, n1, . . . , nm) = 0].

Remark: When f(n1, . . . , nm) is defined, f(n1, . . . , nm) = n, where n is the smallest natural
number such that condition (1) holds. It is very important to require that all the values
g(p, n1, . . . , nm) be defined for all p, 0 ≤ p ≤ n, when defining f(n1, . . . , nm). Failure to do
so allows non-computable functions.

44 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

Minimization can be generalized to functions defined on strings as follows. Given a
function g : (Σ∗)m+1 → Σ∗, for any fixed w1, . . . , wm ∈ Σ∗, we wish to solve the equation

g(u,w1, . . . , wm) = ε with respect to u ∈ Σ∗,

and return the “smallest” solution u, if any. The only issue is, what does smallest solution
mean. We resolve this issue by restricting u to be a string of aj’s, for some fixed letter
aj ∈ Σ. Thus there are k variants of minimization corresponding to searching for a shortest
string in {aj}∗, for a fixed j, 1 ≤ j ≤ k.

Let Σ = {a1, . . . , ak}. For any function

g : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ k, the function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m

→ Σ∗

looks for the shortest string u over {aj}∗ (for a fixed j) such that

g(u,w1, . . . , wm) = ε :

This corresponds to the following while loop:

u := ε;
while g(u,w1, . . . , wm) 6= ε do
u := uaj;
endwhile
let f(w1, . . . , wm) = u

The operation of minimization (sometimes called minimalization) is defined as follows.

Definition 1.24. Let Σ = {a1, . . . , ak}. For any function

g : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ k, the function

f : Σ∗ × · · · × Σ∗︸ ︷︷ ︸
m

→ Σ∗,

is defined by minimization over {aj}∗ from g, if the following conditions hold for all w1, . . .,
wm ∈ Σ∗:

(1) f(w1, . . . , wm) is defined iff there is some n ≥ 0 such that g(apj , w1, . . . , wm) is defined
for all p, 0 ≤ p ≤ n, and

g(anj , w1, . . . , wm) = ε.

1.9. THE PARTIAL COMPUTABLE FUNCTIONS 45

(2) When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = anj ,

where n is such that
g(anj , w1, . . . , wm) = ε

and
g(apj , w1, . . . , wm) 6= ε

for every p, 0 ≤ p ≤ n− 1.

We write
f(w1, . . . , wm) = minju[g(u,w1, . . . , wm) = ε].

Note: When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = anj ,

where n is the smallest natural number such that condition (1) holds. It is very important
to require that all the values g(apj , w1, . . . , wm) be defined for all p, 0 ≤ p ≤ n, when defining
f(w1, . . . , wm). Failure to do so allows non-computable functions.

Remark: Inspired by Kleene’s notation in the case of numerical functions, we may use the
µ-notation:

f(w1, . . . , wm) = µju[g(u,w1, . . . , wm) = ε].

The class of partial computable functions is defined as follows.

Definition 1.25. Let Σ = {a1, . . . , ak}. The class of partial computable functions (in the
sense of Herbrand–Gödel–Kleene), also called partial recursive functions is the smallest class
of partial functions (over Σ∗) which contains the base functions and is closed under compo-
sition, primitive recursion, and minimization.

The class of computable functions also called recursive functions is the subset of the class
of partial computable functions consisting of functions defined for every input (i.e., total
functions).

One of the major results of computability theory is the following theorem.

Theorem 1.10. For an alphabet Σ = {a1, . . . , ak}, every partial computable function (partial
recursive function) is RAM-computable, and thus Turing-computable. Conversely, every
RAM-computable function (or Turing-computable function) is a partial computable function
(partial recursive function). Similarly, the class of computable functions (recursive functions)
is equal to the class of Turing-computable functions that halt in a proper ID for every input,
and to the class of RAM programs that halt for all inputs.

46 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

(y , . . . , y) (x , . . . , x)1m

m (x , . . . , x) (y , . . . , y)1

m-1

m

2

1

x g(x , . . . , x) 11 m

START

STOP

x y1 1 y y a1 1 j

ε not ε
head (x)1

y ε1

Minimization over {a }j *

Figure 1.8: Closure under minimization.

Sketch of proof. First we prove that every partial computable function is RAM-computable.
Since we already know from Theorem 1.4 that the RAM programs contain the base functions
and are closed under composition and primitive recursion, it suffices to show that minimiza-
tion can be implemented by a RAM program. The RAM program in flowchart form shown
in Figure 1.8 implements minimization.

By Theorem 1.2, every RAM program can be converted to a Turing machine, so every
partial computable function is Turing-computable.

For the converse, one can show that given a Turing machine, there is a primitive recursive
function describing how to go from one ID to the next. Then minimization is used to guess
whether a computation halts. The proof shows that every partial computable function needs
minimization at most once. The characterization of the computable functions in terms of
TM’s follows easily. Details are given in Section 2.3. See also Machtey and Young [28] and
Kleene I.M. [23] (Chapter XIII).

We will prove directly in Section 3.3 that every RAM-computable function (over N) is
partial computable. This will be done by encoding RAM programs as natural numbers.

1.9. THE PARTIAL COMPUTABLE FUNCTIONS 47

There are computable functions (recursive functions) that are not primitive recursive.
Such an example is given by Ackermann’s function.

Ackermann’s function is the function A : N × N → N which is defined by the following
recursive clauses:

A(0, y) = y + 1,

A(x+ 1, 0) = A(x, 1),

A(x+ 1, y + 1) = A(x, A(x+ 1, y)).

It turns out that A is a computable function which is not primitive recursive. This is
not easy to prove. It can be shown that:

A(0, x) = x+ 1,

A(1, x) = x+ 2,

A(2, x) = 2x+ 3,

A(3, x) = 2x+3 − 3,

and

A(4, x) = 22·
··
216
}
x − 3,

with A(4, 0) = 16− 3 = 13.

For example
A(4, 1) = 216 − 3, A(4, 2) = 2216 − 3.

Actually, it is not so obvious that A is a total function, but it is.

Proposition 1.11. Ackermann’s function A is a total function.

Proof. This is shown by induction, using the lexicographic ordering � on N × N, which is
defined as follows:

(m,n) � (m′, n′) iff either

m = m′ and n = n′, or

m < m′, or

m = m′ and n < n′.

We write (m,n) ≺ (m′, n′) when (m,n) � (m′, n′) and (m,n) 6= (m′, n′).

We prove that A(m,n) is defined for all (m,n) ∈ N× N by complete induction over the
lexicographic ordering on N× N.

In the base case, (m,n) = (0, 0), and since A(0, n) = n + 1, we have A(0, 0) = 1, and
A(0, 0) is defined.

48 CHAPTER 1. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

For (m,n) 6= (0, 0), the induction hypothesis is that A(m′, n′) is defined for all (m′, n′) ≺
(m,n). We need to conclude that A(m,n) is defined.

If m = 0, since A(0, n) = n+ 1, A(0, n) is defined.

If m 6= 0 and n = 0, since
(m− 1, 1) ≺ (m, 0),

by the induction hypothesis, A(m − 1, 1) is defined, but A(m, 0) = A(m − 1, 1), and thus
A(m, 0) is defined.

If m 6= 0 and n 6= 0, since
(m,n− 1) ≺ (m,n),

by the induction hypothesis, A(m,n− 1) is defined. Since

(m− 1, A(m,n− 1)) ≺ (m,n),

by the induction hypothesis, A(m − 1, A(m,n − 1)) is defined. But A(m,n) = A(m −
1, A(m,n− 1)), and thus A(m,n) is defined.

Thus, A(m,n) is defined for all (m,n) ∈ N× N.

It is possible to show that A is a computable (recursive) function, although the quickest
way to prove it requires some fancy machinery (the recursion theorem; see Section 6.1).
Proving that A is not primitive recursive is even harder.

A further study of the partial recursive functions requires the notions of pairing functions
and of universal functions (or universal Turing machines).

Chapter 2

Equivalence of the Models of
Computation

2.1 Simulation of a RAM Program by a

Turing Machine

It is convenient to describe Turing machines using diagrams. We can use a labeled graph
representation where each transition (p, a, b,m, q) is represented by the diagrams shown in
Figure 2.1.

orp q qp
(a,b,m) a/b, m

Figure 2.1: Representation of a Turing machine instruction.

There is another convenient notation which can be used, if for each state, all transitions
entering that state cause the head to move in the same direction. If this condition is not
satisfied, by splitting states, an equivalent Turing machine can be effectively constructed
and we leave the construction as an exercise. The situation is now the following. Given an
instruction (p, a, b,m, a) ∈ δ, we have the diagram shown in Figure 2.2.

There is a sight problem if p is not entered by any transition. But then, either p is the
start state, in which case we use the notation shown in Figure 2.3, or else p is inaccessible
and we can get rid of quintuples starting with p. Otherwise, all transitions entering p cause
the tape to move in the same direction m′, and we draw the diagram shown in Figure 2.4.

49

50 CHAPTER 2. EQUIVALENCE OF THE MODELS OF COMPUTATION

m
a/bp q

Figure 2.2: Representation of a Turing machine instruction.

m
a/b q

Figure 2.3: Transition from the start state.

m
a/bp q

m’

Figure 2.4: A typical transition.

Further simplifications are possible. When no confusion arises, we can omit state names.
Transitions (p, a, a,m, q) are represented by the diagram of Figure 2.5, and transitions

m
ap q

Figure 2.5: A simplified transition.

(p, a, a,m, p) are simply omitted. In other words, loops from a state to itself that do not
change the current symbol being scanned are omitted.

For all blocking pairs (p, a), that is, pairs such that no quintuple in δ begins with (p, a),
we draw an outgoing arrow from state p labeled a as shown in Figure 2.6.

2.1. SIMULATION OF A RAM PROGRAM BY A TURING MACHINE 51

m
ap

Figure 2.6: A blocking transition.

Example 2.1. Consider the Turing machine M with K = {q0, q1, q2.q3}, Γ = {a, b, B}, and
δ consisting if the following quintuples:

q0, B → B,R, q3,

q0, a→ b, R, q1,

q0, b→ a,R, q1,

q1, a→ b, R, q1,

q1, b→ a,R, q1,

q1, B → B,L, q2,

q2, a→ a, L, q2,

q2, b→ b, L, q2,

q2, B → B,R, q3.

The diagram (using the above conventions) corresponding to the Turing machine M is
shown in Figure 2.7.

START
q0

a/b

START
q0

b/a

R

q1
a/b

b/a

B
L

q2
B

R

q3

START
q
0

a/a

b/b B

a,b
,B

Figure 2.7: Diagram of the Turing machine M .

For any input u ∈ {a, b}∗, the output of the computation is the string v obtained from u
by changing each “a” into a “b” and each “b” into an “a”.

We now describe a construction which takes a RAM program as input and produces as
output a Turing machine computing the same function as the function computed by the

52 CHAPTER 2. EQUIVALENCE OF THE MODELS OF COMPUTATION

RAM program. This construction provides a proof for Theorem 1.2 that we repeat for the
convenience of the reader.

Theorem 2.1. Every RAM-computable function is Turing-computable. Furthermore, given
a RAM program P , we can effectively construct a Turing machine M computing the same
function.

Proof. Let P be a RAM program using m registers R1, . . . Rm and having n instructions.
The contents r1, . . . , rm of the registers are represented on the Turing machine tape by the
string

#r1#r2# · · ·#rm#,

where # is a special marker and ri represents the string held by Ri. We also use Proposition
1.1, which allows us to restrict ourselves to RAM programs that use only instructions of the
form

(1j) N addj Y
(2) N tail Y
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue

The simulating Turing machine M is built of n blocks connected for the same flow of
control as the n instructions in P . The jth block of the Turing machine simulates the jth
instruction in P .

The machine M begins with some initialization whose purpose is to make sure that the
simulation starts with a tape of the form

#r1#r2# · · ·#rm#

representing m registers, with m + 1 symbolsl #. Since the RAM program could have a
number of input variables t < m, and it is necessary to add m+2− t symbols #. If the input
is x1, x2, · · · , xt, the t− 1 commas are changed to #, and we add m+ 1− (t− 1) = m+ 2− t
symbols #. For example, if m = 5 and t = 3, the Turing input tape ab, bb, a becomes
#ab#bb#a###. See Figure 2.8 for the Turing machine achieving this step.

To simplify our diagrams, let us assume that the RAM alphabet is Σ = {0, 1}. Then the
alphabet of the Turing machine is Γ = {0, 1,#, B}. Each RAM statement is translated as a
Turing machine block as follows. We have four blocks, one for each instruction.

(a) addi Rq

See Figure 2.9.

(b) tail Rq

See Figure 2.10.

2.1. SIMULATION OF A RAM PROGRAM BY A TURING MACHINE 53

START

START

START

0

1

B

L B/# R
B/#
,/#

. . .
B/#
,/# R

B/#
,/# R B/# L

m

Initialization

Figure 2.8: Initialization.

L B R # # R #

q

R
#/a

R

R

R

1/#

#/1

0/1 1/0

0/#

#/0

B/#

to (j+1)-st block

find rq add a

j

j shift right

Figure 2.9: Simulation of an instruction addi Rq.

L B R # # R #

q

R R
1/B

0/B RL

L

L

0/B

1/B B/1

B/0

#/B B/#

B

L

B

B

#

to (j+1)-st block

delete shift leftfind rq

Figure 2.10: Simulation of an instruction tail Rq.

54 CHAPTER 2. EQUIVALENCE OF THE MODELS OF COMPUTATION

(c) jmpi Z

There are two variants of this case, since Z is either a jump above or a jump below.
These two cases are handled similarly, the only difference being the address of the block to
jump to. See Figure 2.11.

L B R # # R #

q

R

to block Z

to (j+1)-st block

to (j+1)-st block

#

aj

j - aj

find rq test

Figure 2.11: Simulation of an instruction jmpi Z.

Finally, we clean up the tape by erasing all but the contents of R1 from the tape. This
block corresponds to the last continue statement.

(d) Clean up phase. See Figure 2.12.

L B #R R #/B R

0/B

1/B #/B

B L #/B R
0,1,B

erase #r2#...#rm# move back erase first #

Figure 2.12: Clean up phase.

Also note that a continue statement which is not the last continue statement in the
RAM program is translated as an arrow from the exit of the jth block to the entry of the
(j + 1)th block.

2.1. SIMULATION OF A RAM PROGRAM BY A TURING MACHINE 55

Notice that the Turing machine produced by the construction has the nice property that
it never moves left of the blank square immediately to the left of its leftmost #. In other
words, the tape need only be unbounded to the right. We leave as an exercise to prove that
every Turing-computable function is computable by a Turing machine which never moves
more than one square to the left of its starting position.

Example 2.2. Here is an example of the simulation for a RAM program with two input
registers and a total of four registers. The input values are 101 in R1 and 00 in R2. The
initialization phase is shown in Figure 2.13.

R R B/# R B/# L

START

START

START

0

1

B

L B/# R ,/#

1/1

contents of R1 moves cursor back to leftmost #

0/0

contents of R
contents of R

contents of R2
3

4

0/0

x = 101R1 1

x = 002R2 Instruction Block
of RAM Program

R3

R4

Initial input: 101 , 00

B/#

 Place input string onto Turing Machine Tape

Turing Machine Tape# 1 0 1 # 0 0 # # #

Figure 2.13: Initialization phase.

The simulation of the instruction add0 R1 is shown in Figure 2.14.

The simulation of the instruction tail R2 is shown in Figure 2.15.

Next we show that every Turing computable function is RAM-computable.

56 CHAPTER 2. EQUIVALENCE OF THE MODELS OF COMPUTATION

Turing Machine Tape

1 0 1 # 0 0 # #

Execute add R0 1

Move cursor to #

1 0 1 # 0 0 # #

Change # to 0 and move cursor right

1 0 1 0 0 0 # #

R
#/a

R

R

R

1/#
#/1

0/1 1/0

0/#

#/0

j

Change 0 to # and move right

1 0 1 0 0 # #

R
#/a

Rj

Keep 0 and move right

1 0 1 0 0 # #

R

R

0/#

R

R

0/#

0/0
Change # to 0 and move right

1 0 1 0 0 # ## 0

R

R

#/0

Keep # and move right (do this twice)

1 0 1 0 0 # ## 0

R

R

#/0

#/#

B/#

move to next block

Change B to # and move to next block

B

B

B

B

B

B

B

B

B

B

B B

1 0 1 0 0 # ## 0 B#
R

B/#

Figure 2.14: Simulation of the instruction add0 R1.

2.2 Simulation of Turing Machine by a

RAM Program

In this section we provide a proof of Theorem 1.3 which we repeat for the reader’s conve-
nience.

Theorem 2.2. Every Turing-computable function is RAM-computable. Furthermore, given
a Turing machine M , one can effectively construct a RAM program P computing the same
function.

Proof. Recall that we showed that the concatenation function con and the extended concate-
nation function conn defined such that conn(x1, . . . , xn) = x1 · · ·xn are primitive recursive

2.2. SIMULATION OF TURING MACHINE BY A RAM PROGRAM 57

R R
1/B

0/B RL

L

L

0/B

1/B B/1

B/0

#/B B/#

B

L

B

B

#

1 0 1 0 0 # ## 0 B#

Turing Machine Tape

Execute tail R2

Move cursor to first entry in R2

1 0 1 0 0 # ## 0 B#

Change 0 to B and move right R R0/B

1 0 1 0 B # ## 0 B#

Change 0 to B and move left

R

L

0/B

1 0 1 0 B # ## B#B

Change B to 0 and move right

1 0 1 0 # ## B#B0

Move Right

1 0 1 0 # ## B#B0
R R

L

B/0

B

Change # to B and move left

1 0 1 0 ## B#B0 B

R

L
#/B

Change B to # and move right

1 0 1 0 ## B#0 B#

Move Right

1 0 1 0 ## B#0 B# R R

L

B/#
B

Repeat two more times

1 0 1 0 # B0 # # # B

Move cursor left to rightmost # and exit to next block

R

L

B

B

Figure 2.15: Simulation of the instruction tail R2.

and consequently RAM-computable. Also, RAM programs are closed under composition.
This allows to write a RAM program as a composition of blocks, avoiding the tedious task
of writing the program in full.

Let M = (K,Γ,∆, δ, q0) be a Turing machine with K = {q0, . . . , qm} and Γ = {a1, . . . , ak,
B, “,’), and let ϕ be the partial function of n arguments computed by M .

The idea of the proof is to design a RAM program P containing an encoding of the
current ID of the Turing machine M in register R1, and to use other registers R2, R3 to
simulate the effect of executing an instruction of M by updating the ID of M in R1. After
some initialization, the program P contains the current ID of M in register R1. For each
move of M , the program P updates the current ID to the next ID.

58 CHAPTER 2. EQUIVALENCE OF THE MODELS OF COMPUTATION

Initially, P takes the n input strings x1, . . . , xn and creates

#ID0# = #q0x1, x2, · · · , xn#

in register R1 and then simulates M . If and when M halts in a halting ID of the form
BkqwB`, the program P places w in R1 and stops. If the ID is improper, then P loops
forever.

The alphabet for P is Σ = Γ ∪K ∪ {#}, and it is assumed that Γ ∩K = ∅ and that #
is neither in Γ nor K. We let ak+1 = B and ak+2 = #.

When P simulates a move of M by updating the ID, register R1 contains the current ID,
which is of the form uajpaiv and satisfies the following properties: if u = ε, then aj = #,
and if v consists of single symbol, then v = #.

During the first phase in which P updates the ID, P transfers u into register R2, aj into
register R3, and paiv is left in R1. Then it reads ai and, depending on (p, ai), it simulates
the action of M . In order to remember p and ai, the program P has labels of the form jp
and jpi. Right moves are accomplished at the addresses jpiR and jpiR#. Left moves are
accomplished at the addresses jpiL and jpiL#. The updated ID is placed back into R1.
When a halting ID is found, P checks that this ID is proper. If the halting ID is proper,
then the output is returned in R1, otherwise P loops forever. For simplicity we adopt a
subroutine notation. We also omit the suffix a or b in the target labels of jumps, which is
not a problem since all jumps in P are uniquely defined.

We initialize P with the following commands:

R1 = con2n+2(#, q0, x1, “,”, · · · , “,”, xn,#)

BEGIN clr R2
clr R3
jmp TEST

NU tail R1
TEST R1 jmp1 A1

...
R1 jmpk+2 A(k + 2)
R1 jmpq0 Q0

...
R1 jmpqm Qm

2.2. SIMULATION OF TURING MACHINE BY A RAM PROGRAM 59

The subroutine Ai is the following program:

Ai R3 jmp1 ui1
...
R3 jmpk+2 ui(k + 2)
addi R3
jmp NU

ui1 add1 R2
jmp upr3
...

ui(k + 2) addk+2 R2
jmp upr3

upr3 tail R3
addi R3
jmp NU

To remember ajp, for each p, 0 ≤ p ≤ m, we have

Qp R3 jmp1 1p
...
R3 jmpk+2 (k + 2)p

To remember ajpai, for each p, 0 ≤ p ≤ m, we have

jp tail R1
R1 jmp1 jp1

...
R1 jmpk+1 jp(k + 1)

Next we have three cases.

(1) (Right move) To simulate the instruction (p, a, b, R, q) corresponding to the transition
on ID’s given by

uajpaiv → uajbqv, v 6= #

we have the program

jpi tail R1
R1 jmp1 jpiR

...
R1 jmpk+1 jpiR
R1 jmpk+2 jpiR#
jpiR R1 = con3(R2, ajbq, R1)

jmp BEGIN

60 CHAPTER 2. EQUIVALENCE OF THE MODELS OF COMPUTATION

To simulate the transition
uajpai → uajbqB

corresponding to the case where v = #, in which case a blank needs to be inserted as the
rightmost symbol on the tape, we have the program

jpiR# R1 = con2(R2, ajbqB#)
jmp BEGIN

(2) (Left move) To simulate the instruction (p, a, b, L, q), corresponding to the transition
on ID’s given by

uajpaiv → uqajbv, u 6= ε

we have the program

jpi tail R1
R1 jmp1 jpiL

...
R1 jmpk+1 jpiL
R1 jmpk+2 jpiL#
jpiL R1 = con3(R2, qajb, R1)

jmp BEGIN

To simulate the transition
paiv → qBbv

corresponding to the case where u = ε, in which case a blank needs to be inserted as the
lefmost symbol on the tape, we have the program

jpiL# R1 = con2(#qBb,R1)
jmp BEGIN

(3) If no quintuple begins with (p, ai), then upaiv is a halting ID. We test if it is proper.
For each such jpi, we have the program shown below.

jpi tail R1
jmp PROPER

The program PROPER checks that an ID is proper. It should be noted that this is
unnecessary if the Turing machine has the property that if it halts, then the ID is proper.
This can be achieved by modifying the Turing machine so that if it halts in an improper ID,
then it loops.

First, the program PROPER checks that the ID starts with a string of the form #Bkq.
Next it places the output in R1, and finally it checks that the ID ends with B`#.

2.2. SIMULATION OF TURING MACHINE BY A RAM PROGRAM 61

PROPER R1 = con3(R2, ajpai, R1)
R2 ← R1
R2 jmp# B
jmp LOOP

HEAD R2 jmpB B
R2 jmpq0 Q
...
R2 jmpqm Q
jmp LOOP

B tail R2
jmp HEAD

Q clr R1

MORE tail R2
R2 jmp1 RES1
...
R2 jmpk RESk
R2 jmpB BTAIL
R2 jmp# STOP
jmp LOOP

For each i, 1 ≤ i ≤ k, we have the program

RESi addi R1
jmp MORE

BTAIL tail R2
R2 jmpB BTAIL
R2 jmp# STOP
jmp LOOP

LOOP jmp LOOP
STOP continue

Example 2.3. Here is an example of the simulation of the Turing machine of Example
1.3 that exchanges a’s and b’s by a RAM program. The input is ab. The simulation of the
transition q0ab→ bq1b is shown in Figure 2.16. The simulation of the transition bq1b→ baq1B
is shown in Figure 2.17.

We leave the following proposition as an exercise.

Proposition 2.3. Given a Turing machine M computing a function ϕ, we can effectively
construct a Turing machine M ′ also computing ϕ with the following additional properties.

(1) M ′ halts in a proper ID iff M halts in a proper ID.

(2) M ′ loops iff either M loops or M halts in an improper ID.

62 CHAPTER 2. EQUIVALENCE OF THE MODELS OF COMPUTATION

ID0 q ab0

a b
q0

becomes b
q
b

ID bq b

1

1 1

RAM program counterpart

#q a,b#0

Run TEST which tells us to jump to A4
(recall # is associated with a)4

Subroutine A4 removes the leftmost pound sign and places it into R3

q a,b#0

#

Run TEST again; jump to routine Q0Q
Create Line 4q0
Delete q from R1 and jump to Line 4q01

Change ID into ID

Result of A4

 a,b#

0

#

Result o
f Q

0

Use Line 4q01R to form the correct concatenation
 The empty string of R2
 The transition

1

#bq1
The tail of R1
Place result into R1

0

#bq , b#1

Clear R3 and repeat process

First Transition

STEP 2

Step 1

Step 3

R1

R2

R3

R1

R2

R3

R1

R2

R3

R1

R2

R3

Figure 2.16: Simulation of the transition q0ab→ bq1b.

The construction is possible because a Turing machine is capable of checking whether or
not a halting ID of M is proper, and if impoper, it loops forever. The construction is very
similar to the program PROPER, as a Turing machine.

2.3 Every Turing Computable Function is Partial Com-

putable a la Herbrand–Gödel–Kleene

The key to the proof that every Turing-computable function is a partial computable function
in the sense of Herbrand–Gödel–Kleene is that we can define a primitive recursive function
which simulates the transitions of a Turing machine in terms of instantaneous descriptions
(ID’s).

Instantaneous descriptions are represented as strings #upav#, where p is a state, a ∈ Γ,
and u, v ∈ Γ∗.

Given a Turing machine M = (K,Γ,∆, δ, q0) (with Σ = {a1, . . . , ak}) we define the

2.3. EVERY TURING COMPUTABLE FUNCTION IS PARTIAL COMPUTABLE 63

becomesb
q
b

ID bq b

1

1 1

RAM program counterpart

Run TEST which tells us to jump to A4
(recall # is associated with a)4

Subroutine A4 removes the leftmost pound sign and places it into R3

#

Run TEST again; jump to routine Q 1Q

Change ID into ID

Result of A4

 ,b#

#

Use Line 2q12R# to form the correct concatenation
 The string in R2
 The transition

1

b, a,

1

Clear R3 and repeat process

Second Transition

q
b

ID baq

1

2 1B

a

#bq , b#1

bq , b#1

Result of A2

Run TEST which tells us to jump to A2
(recall # is associated with a)2

Subroutine transfers the # in R3 to R2 and places b in R3

#

q , b#1

b

Create Line 2q1
Delete q from R1 and jump to Line 2q121

Result of Q1

b

2

q B#1
Place result in R1

#b, a, q B#

STEP 1

STEP 2

STEP 3

Step 4

R1

R1
R2

R3
R2

R3
R1

R2

R3

R1

R2

R3

R1

R2

R3

Figure 2.17: Simulation of the transition bq1b→ baq1B.

following pairs of ID’s describing the transitions of M :

(1) For every (move right) instruction (p, a, b, R, q) ∈ δ, we have the pairs

(paa1, bqa1)

...

(paak, bqak)

(pa#, bqB#).

(2) For every (move left) instruction (p, a, b, L, q) ∈ δ, we have the pairs

(a1pa, qa1b)

...

(akpa, qakb)

(#pa,#qBb).

64 CHAPTER 2. EQUIVALENCE OF THE MODELS OF COMPUTATION

The above set of pairs is denoted TRANS, and it is assumed to be ordered in some
fashion. As an abbreviation each pair is denoted `i → ri, for example, paa1 → bqa1 and
a1pa→ qa1b. We assume that there are N such pairs (this is the number of quintuples in δ).

We also have a list BLOCKED of strings pa such that no quintuple in δ starts with (p, a),
say

pi1ai1 , . . . , pimaim .

An illustration of the rules `i → ri is shown in Figure 2.18.

Right instruction (p,a,b,R,q)

u a ak v1

p

u ak v1becomes

q

b

u a

p

ubecomes

q

b# B #

(paa , bqa)k k

(pa#, bqB#)

Left instruction (p,a,b,L,q)

a

p

vu 1 ak vu 1 ak

q

bbecomes

(a pa, qa b)k k

a

p

v# v# b

q

Bbecomes

(#pa, #qBb)

Figure 2.18: Illustration of the rules associated to transitions.

We will use a number of primitive recursive functions.

Proposition 2.4. The following functions are primitive recursive.

(1) Occ(x, y), where Occ(x, y) holds iff x is a substring of y.

(2) u(x, z) = the prefix of z the left of the leftmost occurrence of x in z if Occ(x, z).

(3) v(x, z) = the suffix of z the right of the leftmost occurrence of x in z if Occ(x, z).

(4) rep(x, y, z) = the result of replacing the leftmost occurrence of x by y in z if Occ(x, z).

Proof. Recall that concatenation and extended concatenation are primitive recursive.

(1) Occ(x, y) iff (∃z/y)(∃w/y)[z = wx].

2.3. EVERY TURING COMPUTABLE FUNCTION IS PARTIAL COMPUTABLE 65

(2) u(x, z) = min y/z(∃w/z)[yx = w].

(3) v(x, z) = z − u(x, z)x (here − is the version of monus on strings).

(4) rep(x, y, z) = u(x, z)yv(x, z).

Note that for every ID, there is at most one occurrence of `i or ri for some `i → ri in
TRANS. This is why it doesn’t hurt to pick the leftmost occurrence.

The predicate Occ is illustrated in Figure 2.19.

w x Schematic representation of Occ(x,y)

{ z}
y{ } baw = abbab b

y = abbabbab

z=wx = abbabba

w could contain x

Occ(ba, abbabbab)

Figure 2.19: Illustration of the predicate Occ.

The functions u and v are illustrated in Figure 2.20.
The function rep is illustrated in Figure 2.21.
The function T is illustrated in Figure 2.22.

Proposition 2.5. For any Turing machine M , the following functions are primitive recur-
sive:

(1) The function T such that T (ID0, y) = ID iff ID0 `∗|y| ID in |y| steps.

(2) HALT(ID) iff ID is a halting ID.

(3) STOP(y, ID) iff M halts in a halting ID after |y| steps.

Proof. Note that we do not actually care what T,HALT, STOP do if ID0 and ID are not
proper representations of ID’s.

66 CHAPTER 2. EQUIVALENCE OF THE MODELS OF COMPUTATION

x Schematic representation of u(x,z)

{

z

} y

y does NOT contain x

w

{ }
z = abbabbab

bbabbay = ab

w = yx = abba

u(ba, abbabba) = ab

x Schematic representation of v(x,z)

z

} u(x,z) does NOT contain x

u(x,z) z - u(x,z)x

} z - u(x,z)x

z = abbabbab

ab ba v(ba, abbabbab) = bbab

Figure 2.20: Illustration of the functions u and v.

(1)

T (x, ε) = x

T (x, yai) =



rep(`1, r1, T (x, y)) iff Occ(`1, T (x, y))

rep(`2, r2, T (x, y)) iff Occ(`2, T (x, y)) ∧ ¬Occ(`1, T (x, y))
...

rep(`N , rN , T (x, y)) iff Occ(`N , T (x, y)) ∧ ¬Occ(`1, T (x, y))

∧ · · · ∧ ¬Occ(`N−1, T (x, y))

T (x, y) otherwise.

If T (x, y) represents the ID #upav# obtained after performing |y| steps starting from
the ID x, then T (x, yai) represents the ID obtained by applying an instruction starting
with (p, a), if any. To see if such an instruction applies we test sequentially starting

2.3. EVERY TURING COMPUTABLE FUNCTION IS PARTIAL COMPUTABLE 67

Schematic representation of rep(x,y,z)

z

} u(x,z) does NOT contain x

u(x,z) x <-- y v(x,z)

} rep(ba, aa, abbabbab) = abaabbabu(x,z) = ab ba <-- aa v(x,z) = bbab

z = abbabbab

Figure 2.21: Illustration of the function rep.

from k = 1 whether the left-hand side `k of a transition `k → rk occurs in T (x, y),
which is performed by Occ(`k, T (x, y)), the tests Occ(`k1 , T (x, y)) for all k1 < k being
negative. If so, `k is replaced by rk in the ID T (x, y) to mimic the TM transition
corresponding to `r → rk, which is achieved by rep(`k, rk, T (x, y)).

(2) HALT(x) iff [Occ(pi1ai1 , x) ∨ · · · ∨Occ(pimaim , x)].

(3) STOP(y, ID) iff HALT(T (x, y)).

If M is a Turing machine computing a function of n arguments x1, . . . , xn, the starting
ID is defined as

ID0 = #q0x1, x2, · · · , xn#

Let INIT be the function given by

INIT(x1, . . . , xn) = #x1, . . . , xn#.

Obviously INIT is primitive recursive. Since the purpose of y is to count the number of steps,
only |y| matters, so we may assume that y is a string of a1s. Then for all x1, . . . , xn ∈ Σ∗,
we have

ID0 `∗|y| ID and ID is a halting ID

iff

T (INIT(x1, . . . , xn),min1y[STOP(y, INIT(x1, . . . , xn))]) = ID.

Let RES be the function that cleans up a halting ID to produce the output. The function
RES is defined by primitive recursion as follows (recall that rev is the reverse function and

68 CHAPTER 2. EQUIVALENCE OF THE MODELS OF COMPUTATION

ID = q abb0 0

a b b

(q , a, b, R, q)0 1

q
0

q
1

b b b

ID = bq bb1 1

(q , b, a, R, q)1 1

(q bb, aq b)1 1

q
1

b a b

ID = baq b12

T(ID , ε) = ID = q abb 0 0 0

T(ID , a) = rep(q ab, bq b, T(ID , ε))

(q ab, bq b)0 1

0 10 = ID = bq bb1 1

T(ID , aa) = rep(q bb, aq b, T(ID ,a)) =

0

00 11
ID = baq b12

Figure 2.22: Illustration of the function T .

con is the concatenation function).

RES(ε) = ε

RES(x#) = RES(x)

RES(xB) = RES(x)

RES(xai) = con(RES(x), ai), 1 ≤ i ≤ k

RES(xq) = RES(rev(x)), q ∈ K.

We leave it as an exercise to prove that for any halting ID of the form #BkquB`# with
u ∈ Σ∗, we have

RES(#BkquB`#) = u.

Combining all the facts we established we obtain the following result.

Theorem 2.6. Every Turing computable function ϕ of n arguments is partial computable
in the sense of Herbrand–Gödel–Kleene. Moreover, given a Turing machine M , we can
effectively find a definition of ϕ of the form

ϕ(x1, . . . , xn) = RES(T (INIT(x1, . . . , xn),min1y[STOP(y, INIT(x1, . . . , xn))])).

As a corollary we have the following nontrivial result.

Corollary 2.7. Every partial computable function ϕ can be effectively obtained in the form
ϕ = f ◦min1 g, where f and g are primitive recursive functions.

Consequently, every partial computable function has a definition in which minimization
is applied at most once.

Chapter 3

Universal RAM Programs and
Undecidability of the Halting Problem

The goal of this chapter is to prove three of the main results of computability theory:

(1) The undecidability of the halting problem for RAM programs (and Turing machines).

(2) The existence of universal RAM programs.

(3) The existence of the Kleene T -predicate.

All three require the ability to code a RAM program as a natural number. Gödel pio-
neered the technique of encoding objects such as proofs as natural numbers in his famous
paper on the (first) incompleteness theorem (1931). One of the technical issues is to code
(pack) a tuple of natural numbers as a single natural number, so that the numbers being
packed can be retrieved. Gödel designed a fancy function whose defintion does not involve
recursion (Gödel’s β function; see Kleene [23] or Shoenfield [37]). For our purposes, a simpler
function J due to Cantor packing two natural numbers m and n as a single natural number
J(m,n) suffices.

Another technical issue is the fact it is possible to reduce most of computability theory
to numerical functions f : Nm → N, and even to functions f : N → N. Indeed, there are
primitive recursive coding and decoding functions Dk : Σ∗ → N and Ck : N → Σ∗ such that
Ck ◦Dk = idΣ∗ , where Σ = {a1, . . . , ak}. It is simpler to code programs (or Turing machines)
taking natural numbers as input.

Unfortunately, these coding techniques are very tedious so we advise the reader not to
get bogged down with technical details upon first reading.

3.1 Pairing Functions

Pairing functions are used to encode pairs of integers into single integers, or more generally,
finite sequences of integers into single integers. We begin by exhibiting a bijective pairing

69

70 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

function J : N2 → N. The function J has the graph partially showed below:

y
4 10

↘
3 6 11

↘ ↘
2 3 7 12

↘ ↘ ↘
1 1 4 8 13

↘ ↘ ↘ ↘
0 0 2 5 9 14

0 1 2 3 4 x

The function J corresponds to a certain way of enumerating pairs of integers (x, y). Note
that the value of x + y is constant along each descending diagonal, and consequently, we
have

J(x, y) = 1 + 2 + · · ·+ (x+ y) + x,

= ((x+ y)(x+ y + 1) + 2x)/2,

= ((x+ y)2 + 3x+ y)/2,

that is,
J(x, y) = ((x+ y)2 + 3x+ y)/2.

For example, J(0, 3) = 6, J(1, 2) = 7, J(2, 2) = 12, J(3, 1) = 13, J(4, 0) = 14.

If we can prove can J is a bijection, then we can define K : N→ N and L : N→ N as the
projection functions onto the axes, that is, the unique functions such that

K(J(a, b)) = a and L(J(a, b)) = b,

for all a, b ∈ N. For example, K(11) = 1, and L(11) = 3; K(12) = 2, and L(12) = 2;
K(13) = 3 and L(13) = 1.

Definition 3.1. The pairing function J : N2 → N is defined by

J(x, y) = ((x+ y)2 + 3x+ y)/2 for all x, y ∈ N.

The functions K : N→ N and L : N→ N are the projection functions onto the axes, that is,
the unique functions such that

K(J(a, b)) = a and L(J(a, b)) = b,

for all a, b ∈ N.

3.1. PAIRING FUNCTIONS 71

The functions J,K, L are called Cantor’s pairing functions . They were used by Cantor
to prove that the set Q of rational numbers is countable.

Clearly, J is primitive recursive, since it is given by a polynomial. In Definition 3.1, we
implicitly assumed that J is bijective in order to define K and L.

Neither injectivity nor surjectivity of J are easy to prove.

Theorem 3.1. The pairing function J : N2 → N defined by

J(x, y) = ((x+ y)2 + 3x+ y)/2 for all x, y ∈ N

is a bijection. There are unique functions K : N→ N and L : N→ N such that

K(J(a, b)) = a

L(J(a, b)) = b

J(K(z), L(z)) = z.

for all a, b, z ∈ N.

Sketch of proof. We follow Martin Davis [7]. The first step is to prove that for any z ∈ N, if
J(m,n) = z, then

8z + 1 = (2m+ 2n+ 1)2 + 8m. (a)

From the above equation we can deduce that

2m+ 2n+ 1 ≤
√

8z + 1 < 2m+ 2n+ 3. (b)

If x 7→ bxc is the function from R to N (the floor function), where bxc is the largest
integer ≤ x (for example, b2.3c = 2, b

√
2c = 1), we can prove that

b
√

8z + 1c+ 1 = 2m+ 2n+ 2 or b
√

8z + 1c+ 1 = 2m+ 2n+ 3,

so that

b(b
√

8z + 1c+ 1)/2c = m+ n+ 1. (c)

From Equation (c) we obtain

m+ n = b(b
√

8z + 1c+ 1)/2c − 1. (d)

Since J(m,n) = z means that

2z = (m+ n)2 + 3m+ n,

that is,

3m+ n = 2z − (m+ n)2, (e)

72 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

we deduce from (d) and (e) that m and n are solutions of the system

m+ n = b(b
√

8z + 1c+ 1)/2c − 1

3m+ n = 2z − (b(b
√

8z + 1c+ 1)/2c − 1)2.

If we let

Q1(z) = b(b
√

8z + 1c+ 1)/2c − 1

Q2(z) = 2z − (b(b
√

8z + 1c+ 1)/2c − 1)2 = 2z − (Q1(z))2,

then we can prove that the number Q2(z)−Q1(z) is even and that

m =
1

2
(Q2(z)−Q1(z)) = K(z)

n = Q1(z)− 1

2
(Q2(z)−Q1(z)) = L(z).

Consequently, if z = J(m,n), then m = K(z) and n = L(z) as above, showing that m and
n are unique and thus that J is injective. The above also proves that J,K, L satisfy the
equations.

m = K(J(m,n))

n = L(J(m,n)).

It remains to prove that J is surjective. Let z ∈ N be any natural number and let r ∈ N
be the largest number such that

1 + 2 + · · ·+ r ≤ z.

If we let
x = z − (1 + 2 + · · ·+ r), (f)

then x ≤ r, since otherwise x ≥ r+ 1, and then (f) implies that 1 + 2 + · · ·+ r+ (r+ 1) ≤ z,
contradicting the maximality of r. Let y = r − x ≥ 0. Then we have

z = (1 + 2 + · · ·+ r) + x

= (1 + 2 + · · ·+ x+ y) + x

=
1

2
(x+ y)(x+ y + 1) + x

= J(x, y).

Therefore J is surjective. But

x =K(J(x, y)) = K(z)

y =L(J(x, y)) = L(z),

so
J(K(z), L(z)) = z,

as claimed.

3.1. PAIRING FUNCTIONS 73

Theorem 3.1 yields explicit formulae for K and L. If we define

Q1(z) = b(b
√

8z + 1c+ 1)/2c − 1

Q2(z) = 2z − (Q1(z))2,

then we have

K(z) =
1

2
(Q2(z)−Q1(z))

L(z) = Q1(z)− 1

2
(Q2(z)−Q1(z)).

In the above formula, the function m 7→ b√mc yields the largest integer s such that
s2 ≤ m. These formulae also show that K and L are primitive recursive. An easier way to
see this is to observe that since J is a bijection,

x ≤ J(x, y) and y ≤ J(x, y),

we have
K(z) = min(x ≤ z)(∃y ≤ z)[J(x, y) = z],

and
L(z) = min(y ≤ z)(∃x ≤ z)[J(x, y) = z].

Therefore, by the results of Section 1.8, K and L are primitive recursive.

Observe that the equations K(J(a, b)) = a and L(J(a, b)) = b assert that J is injective
and that the equation J(K(z), L(z)) = z assert that J is surjective, but the problem is that
the definition of J does not obviously imply these properties so it is necessary to construct
K and L as done in the proof of Theorem 3.1.

The pairing function J(x, y) is also denoted as 〈x, y〉, and K and L are also denoted
as Π1 and Π2. The notation 〈x, y〉 is “intentionally ambiguous,” in the sense that it can
be interpreted as the actual ordered pair consisting of the two numbers x and y, or as the
number 〈x, y〉 = J(x, y) that encodes the pair consisting of the two numbers x and y. The
context should make it clear which interpretation is intended. In this chapter and the next,
it is the number (code) interpretation.

We can define bijections between Nn and N by induction for all n ≥ 1.

Definition 3.2. The function 〈−, . . . ,−〉n : Nn → N called an extended pairing function is
defined as follows. We let

〈z〉1 = z

〈x1, x2〉2 = 〈x1, x2〉,

and
〈x1, . . . , xn, xn+1〉n+1 = 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n,

for all z, x2, . . . , xn+1 ∈ N.

74 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Again we stress that 〈x1, . . . , xn〉n is a natural number . For example.

〈x1, x2, x3〉3 = 〈x1, 〈x2, x3〉〉2
= 〈x1, 〈x2, x3〉〉

〈x1, x2, x3, x4〉4 = 〈x1, x2, 〈x3, x4〉〉3
= 〈x1, 〈x2, 〈x3, x4〉〉〉

〈x1, x2, x3, x4, x5〉5 = 〈x1, x2, x3, 〈x4, x5〉〉4
= 〈x1, 〈x2, 〈x3, 〈x4, x5〉〉〉〉.

It can be shown by induction on n that

〈x1, . . . , xn, xn+1〉n+1 = 〈x1, 〈x2, . . . , xn+1〉n〉. (∗)

Observe that if z = 〈x1, . . . , xn〉n, then x1 = Π1(z), x2 = Π1(Π2(z)), x3 = Π1(Π2(Π2(z))),
x4 = Π1(Π2(Π2(Π2(z)))), x5 = Π2(Π2(Π2(Π2(z)))).

We can also define a uniform projection function Π: N3 → N with the following property:
if z = 〈x1, . . . , xn〉n, with n ≥ 2, then

Π(i, n, z) = xi for all i, where 1 ≤ i ≤ n.

The idea is to view z as an n-tuple, and Π(i, n, z) as the i-th component of that n-tuple, but
if z, n and i do not fit this interpretation, the function must be still be defined and we give
it a “crazy” value by default using some simple primitive recursive clauses.

Definition 3.3. The uniform projection function Π: N3 → N is defined by cases as follows:

Π(i, 0, z) = 0, for all i ≥ 0,

Π(i, 1, z) = z, for all i ≥ 0,

Π(i, 2, z) = Π1(z), if 0 ≤ i ≤ 1,

Π(i, 2, z) = Π2(z), for all i ≥ 2,

and for all n ≥ 2,

Π(i, n+ 1, z) =

Π(i, n, z) if 0 ≤ i < n,
Π1(Π(n, n, z)) if i = n,
Π2(Π(n, n, z)) if i > n.

By the results of Section 1.8, this is a legitimate primitive recursive definition. If z is the
code 〈x1, . . . , xn+1〉n+1 for the (n + 1)-tuple (x1, . . . , xn+1) with n ≥ 2, then for 0 ≤ i < n,
the clause of Definition 3.3 that applies is

Π(i, n+ 1, z) = Π(i, n, z),

and since
〈x1, . . . , xn, xn+1〉n+1 = 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n,

3.1. PAIRING FUNCTIONS 75

we have

Π(i, n+ 1, 〈x1, . . . , xn, xn+1〉n+1) = Π(i, n+ 1, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n)

= Π(i, n, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n),

and since 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n codes an n-tuple, for i = 1, . . . , n−1, the value returned
is indeed xi. If i = n, then the clause that applies is

Π(n, n+ 1, z) = Π1(Π(n, n, z)),

so we have

Π(n, n+ 1, 〈x1, . . . , xn, xn+1〉n+1) = Π(n, n+ 1, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n)

= Π1(Π(n, n, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n))

= Π1(〈xn, xn+1〉)
= xn.

Finally, if i = n+ 1, then the clause that applies is

Π(n+ 1, n+ 1, z) = Π2(Π(n, n, z)),

so we have

Π(n+ 1, n+ 1, 〈x1, . . . , xn, xn+1〉n+1) = Π(n+ 1, n+ 1, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n)

= Π2(Π(n, n, 〈x1, . . . , xn−1, 〈xn, xn+1〉〉n))

= Π2(〈xn, xn+1〉)
= xn+1.

When i = 0 or i > n+ 1, we get “bogus” values.

Remark: One might argue that it would have been preferable to order the arguments of Π
as (n, i, z) rather than (i, n, z). We use the order (i, n, z) in conformity with Machtey and
Young [28].

Some basic properties of Π are given as exercises. In particular, the following properties
are easily shown:

(a) 〈0, . . . , 0〉n = 0, 〈x, 0〉 = 〈x, 0, . . . , 0〉n;

(b) Π(0, n, z) = Π(1, n, z) and Π(i, n, z) = Π(n, n, z), for all i ≥ n and all n, z ∈ N;

(c) 〈Π(1, n, z), . . . ,Π(n, n, z)〉n = z, for all n ≥ 1 and all z ∈ N;

(d) Π(i, n, z) ≤ z, for all i, n, z ∈ N;

(e) There is a primitive recursive function Large, such that,

Π(i, n+ 1,Large(n+ 1, z)) = z,

76 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

for i, n, z ∈ N.

As a first application, we observe that we need only consider partial computable functions
(partial recursive functions)1 of a single argument. Indeed, let ϕ : Nn → N be a partial
computable function of n ≥ 2 arguments. Let ϕ : N→ N be the function given by

ϕ(z) = ϕ(Π(1, n, z), . . . ,Π(n, n, z)),

for all z ∈ N. Then ϕ is a partial computable function of a single argument, and ϕ can be
recovered from ϕ, since

ϕ(x1, . . . , xn) = ϕ(〈x1, . . . , xn〉n).

Thus, using 〈−, · · · ,−〉n and Π as coding and decoding functions, we can restrict our atten-
tion to functions of a single argument.

From now on, since the context usually makes it clear we abbreviate 〈x1, . . . , xn〉n as
〈x1, . . . , xn〉.

Pairing functions can also be used to prove that certain functions are primitive recursive,
even though their definition is not a legal primitive recursive definition. For example, consider
the Fibonacci function defined as follows:

f(0) = 1,

f(1) = 1,

f(n+ 2) = f(n+ 1) + f(n),

for all n ∈ N. This is not a legal primitive recursive definition, since f(n+ 2) depends both
on f(n+1) and f(n). In a primitive recursive definition, g(y+1, x) is only allowed to depend
upon g(y, x), where x is an abbrevation for (x2, . . . , xm).

Definition 3.4. Given any function f : Nn → N, the function f : Nn+1 → N defined such
that

f(y, x) = 〈f(0, x), . . . , f(y, x)〉y+1

is called the course-of-value function for f .

The following proposition holds.

Proposition 3.2. Given any function f : Nn → N, if f is primitive recursive, then so is f .

Proof. First it is necessary to define a function con such that if x = 〈x1, . . . , xm〉 and y =
〈y1, . . . , yn〉, where m,n ≥ 1, then

con(m,x, y) = 〈x1, . . . , xm, y1, . . . , yn〉.

1The term partial recursive is now considered old-fashion. Many researchers have switched to the term
partial computable.

3.1. PAIRING FUNCTIONS 77

This fact is left as an exercise. Now, if f is primitive recursive, let

f(0, x) = f(0, x),

f(y + 1, x) = con(y + 1, f(y, x), f(y + 1, x)),

showing that f is primitive recursive. Conversely, if f is primitive recursive, then

f(y, x) = Π(y + 1, y + 1, f(y, x)),

and so, f is primitive recursive.

Remark : Why is it that

f(y + 1, x) = 〈f(y, x), f(y + 1, x)〉

does not work? Check the definition of 〈x1, . . . , xn〉n.

We define course-of-value recursion as follows.

Definition 3.5. Given any two functions g : Nn → N and h : Nn+2 → N, the function
f : Nn+1 → N is defined by course-of-value recursion from g and h if

f(0, x) = g(x),

f(y + 1, x) = h(y, f(y, x), x).

The following proposition holds.

Proposition 3.3. If f : Nn+1 → N is defined by course-of-value recursion from g and h and
g, h are primitive recursive, then f is primitive recursive.

Proof. We prove that f is primitive recursive. Then by Proposition 3.2, f is also primitive
recursive. To prove that f is primitive recursive, observe that

f(0, x) = g(x),

f(y + 1, x) = con(y + 1, f(y, x), h(y, f(y, x), x)).

When we use Proposition 3.3 to prove that a function is primitive recursive, we rarely
bother to construct a formal course-of-value recursion. Instead, we simply indicate how the
value of f(y + 1, x) can be obtained in a primitive recursive manner from f(0, x) through
f(y, x). Thus, an informal use of Proposition 3.3 shows that the Fibonacci function is
primitive recursive. A rigorous proof of this fact is left as an exercise.

Next we show that there exist coding and decoding functions between Σ∗ and {a1}∗, and
that partial computable functions over Σ∗ can be recoded as partial computable functions
over {a1}∗. Since {a1}∗ is isomorphic to N, this shows that we can restrict out attention to
functions defined over N.

78 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

3.2 Equivalence of Alphabets

Given an alphabet Σ = {a1, . . . , ak}, strings over Σ can be ordered by viewing strings as
numbers in a number system where the digits are a1, . . . , ak. In this number system, which
is almost the number system with base k, the string a1 corresponds to zero, and ak to k− 1.
Hence, we have a kind of shifted number system in base k. The total order on Σ∗ induced
by this number system is defined so that u precedes v if |u| < |v|, and if |u| = |v|, then u
comes before v in the lexicographic ordering. For example, if Σ = {a, b, c}, a listing of Σ∗ in
the ordering corresponding to the number system begins with

a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc,

aaa, aab, aac, aba, abb, abc,

This ordering induces a function from Σ∗ to N which is a bijection. Indeed, if u = ai1 · · · ain ,
this function f : Σ∗ → N is given by

f(u) = i1k
n−1 + i2k

n−2 + · · ·+ in−1k + in.

Since we also want a decoding function, we define the coding function Ck : Σ∗ → Σ∗ as
follows:

Ck(ε) = ε, and if u = ai1 · · · ain , then

Ck(u) = a
i1kn−1+i2kn−2+···+in−1k+in
1 .

The function Ck is primitive recursive, because

Ck(ε) = ε,

Ck(xai) = Ck(x)kai1.

The inverse of Ck is a function Dk : {a1}∗ → Σ∗. However, primitive recursive functions are
total, and we need to extend Dk to Σ∗. This is easily done by letting

Dk(x) = Dk(a
|x|
1)

for all x ∈ Σ∗. It remains to define Dk by primitive recursion over Σ∗ = {a1, . . . , ak}∗. For
this, we introduce three auxiliary functions p, q, r, defined as follows. Let

p(ε) = ε,

p(xai) = xai, if i 6= k,

p(xak) = p(x).

Note that p(x) is the result of deleting consecutive ak’s in the tail of x. Let

q(ε) = ε,

q(xai) = q(x)a1.

3.2. EQUIVALENCE OF ALPHABETS 79

Note that q(x) = a
|x|
1 . Finally, let

r(ε) = a1,

r(xai) = xai+1, if i 6= k,

r(xak) = xak.

The function r is almost the successor function for the ordering. Then the trick is that
Dk(xai) is the successor of Dk(x) in the ordering so usually Dk(xai) = r(Dk(x)), except if

Dk(x) = yaja
n
k

with j 6= k, since the successor of yaja
n
k is yaj+1a

n
1 . Thus, we have

Dk(ε) = ε,

Dk(xai) = r(p(Dk(x)))q(Dk(x)− p(Dk(x))), ai ∈ Σ.

Then both Ck and Dk are primitive recursive, and Dk ◦ Ck = id. Here

u− v =

{
ε if |u| ≤ |v|
w if u = xw and |x| = |v|.

In other words, u − v is u with its first |v| letters deleted. We can show that this function
can be defined by primitive recursion by first defining rdiff(u, v) as v with its first |u| letters
deleted, and then

u− v = rdiff(v, u).

To define rdiff, we use tail given by

tail(ε) = ε

tail(aiu) = u, ai ∈ Σ, u ∈ Σ∗.

We proved in Section 1.7 that tail is primitive recursive. Then

rdiff(ε, v) = v

rdiff(uai, v) = rdiff(u, tail(v)), ai ∈ Σ.

We leave as an exercise to put all these definitions into the proper format of primitive
recursion using projections.

Let ϕ : (Σ∗)n → Σ∗ be a partial function over Σ∗, and let ϕ+ : ({a1}∗)n → {a1}∗ be the
function given by

ϕ+(x1, . . . , xn) = Ck(ϕ(Dk(x1), . . . , Dk(xn))).

Also, for any partial function ψ : ({a1}∗)n → {a1}∗, let ψ] : (Σ∗)n → Σ∗ be the function
given by

ψ](x1, . . . , xn) = Dk(ψ(Ck(x1), . . . , Ck(xn))).

80 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We claim that if ψ is a partial computable function over ({a1}∗)n, then ψ] is partial com-
putable over (Σ∗)n, and that if ϕ is a partial computable function over (Σ∗)n, then ϕ+ is
partial computable over ({a1}∗)n.

The function ψ can be extended to (Σ∗)n by letting

ψ(x1, . . . , xn) = ψ(a
|x1|
1 , . . . , a

|xn|
1)

for all x1, . . . , xn ∈ Σ∗, and so, if ψ is partial computable, then so is the extended function,
by composition. It follows that if ψ is partial (or primitive) recursive, then so is ψ].

This seems equally obvious for ϕ and ϕ+, but there is a difficulty. The problem is that
ϕ+ is defined as a composition of functions over Σ∗. We have to show how ϕ+ can be defined
directly over {a1}∗ without using any additional alphabet symbols. This is done in Machtey
and Young [28], see Section 2.2, Lemma 2.2.3.

3.3 Coding of RAM Programs; The Halting Problem

In this section we present a specific encoding of RAM programs which allows us to treat
programs as integers . This encoding will allow us to prove one of the most important
results of computability theory first proven by Turing for Turing machines (1936-1937), the
undecidability of the halting problem for RAM programs (and Turing machines).

Encoding programs as integers also allows us to have programs that take other programs
as input, and we obtain a universal program. Universal programs have the property that
given two inputs, the first one being the code of a program and the second one an input
data, the universal program simulates the actions of the encoded program on the input data.
A coding scheme is also called an indexing or a Gödel numbering, in honor to Gödel, who
invented this technique.

From results of the previous chapter, without loss of generality, we can restrict out atten-
tion to RAM programs computing partial functions of one argument over N. Furthermore,
we only need the following kinds of instructions, each instruction being coded as shown
below. Since we are considering functions over the natural numbers, which corresponds to
a one-letter alphabet, there is only one kind of instruction of the form add and jmp (add
increments by 1 the contents of the specified register Rj).

Recall that a conditional jump causes a jump to the closest address Nk above or below
iff Rj is nonzero, and if Rj is null, the next instruction is executed. We assume that all lines
in a RAM program are numbered. This is always feasible, by labeling unnamed instructions
with a new and unused line number.

3.3. CODING OF RAM PROGRAMS; THE HALTING PROBLEM 81

Definition 3.6. Instructions of a RAM program (operating on N) are coded as follows:

Ni add Rj code = 〈1, i, j, 0〉
Ni tail Rj code = 〈2, i, j, 0〉
Ni continue code = 〈3, i, 1, 0〉
Ni Rj jmp Nka code = 〈4, i, j, k〉
Ni Rj jmp Nkb code = 〈5, i, j, k〉

The code of an instruction I is denoted as #I.

To simplify the notation, we introduce the following decoding primitive recursive func-
tions Typ, LNum, Reg, and Jmp, defined as follows:

Typ(x) = Π(1, 4, x),

LNum(x) = Π(2, 4, x),

Reg(x) = Π(3, 4, x),

Jmp(x) = Π(4, 4, x).

The functions yield the type, line number, register name, and line number jumped to, if any,
for an instruction coded by x. Note that we have no need to interpret the values of these
functions if x does not code an instruction.

We can define the primitive recursive predicate INST, such that INST(x) holds iff x codes
an instruction. First, we need the connective ⇒ (implies), defined such that

P ⇒ Q iff ¬P ∨Q.

Definition 3.7. The predicate INST(x) is defined primitive recursively as follows:

[1 ≤ Typ(x) ≤ 5] ∧ [1 ≤ Reg(x)]∧
[Typ(x) ≤ 3⇒ Jmp(x) = 0]∧
[Typ(x) = 3⇒ Reg(x) = 1].

The predicate INST(x) says that if x is the code of an instruction, say x = 〈c, i, j, k〉,
then 1 ≤ c ≤ 5, j ≥ 1, if c ≤ 3, then k = 0, and if c = 3 then we also have j = 1.

Definition 3.8. Program are coded as follows. If P is a RAM program composed of the n
instructions I1, . . . , In, the code of P , denoted as #P , is

#P = 〈n,#I1, . . . ,#In〉.

Recall from Property (∗) in Section 3.1 that

〈n,#I1, . . . ,#In〉 = 〈n, 〈#I1, . . . ,#In〉〉.

Also recall that
〈x, y〉 = ((x+ y)2 + 3x+ y)/2.

82 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Example 3.1. Consider the following program Padd2 computing the function add2: N→ N
given by

add2(n) = n+ 2.

Padd2:
I1 : 1 add R1
I2 : 2 add R1
I3 : 3 continue

We have

#I1 = 〈1, 1, 1, 0〉4 = 〈1, 〈1, 〈1, 0〉〉〉 = 37

#I2 = 〈1, 2, 1, 0〉4 = 〈1, 〈2, 〈1, 0〉〉〉 = 92

#I3 = 〈3, 3, 1, 0〉4 = 〈3, 〈3, 〈1, 0〉〉〉 = 234

and

#Padd2 = 〈3,#I1,#I2,#I3〉4 = 〈3, 〈37, 〈92, 234〉〉
= 1 018 748 519 973 070 618.

The codes get big fast!

We define the primitive recursive functions Ln, Pg, and Line, such that:

Ln(x) = Π(1, 2, x),

Pg(x) = Π(2, 2, x),

Line(i, x) = Π(i,Ln(x),Pg(x)).

The function Ln yields the length of the program (the number of instructions), Pg yields
the sequence of instructions in the program (really, a code for the sequence), and Line(i, x)
yields the code of the ith instruction in the program. Again, if x does not code a program,
there is no need to interpret these functions. However, note that by a previous exercise, it
happens that

Line(0, x) = Line(1, x), and

Line(Ln(x), x) = Line(i, x), for all i ≥ Ln(x).

The primitive recursive predicate PROG is defined such that PROG(x) holds iff x codes
a program. Thus, PROG(x) holds if each line codes an instruction, each jump has an
instruction to jump to, and the last instruction is a continue.

3.3. CODING OF RAM PROGRAMS; THE HALTING PROBLEM 83

Definition 3.9. The primitive recursive predicate PROG(x) is given by

∀i ≤ Ln(x)[i ≥ 1⇒
[INST(Line(i, x)) ∧ Typ(Line(Ln(x), x)) = 3

∧ [Typ(Line(i, x)) = 4⇒
∃j ≤ i− 1[j ≥ 1 ∧ LNum(Line(j, x)) = Jmp(Line(i, x))]]∧
[Typ(Line(i, x)) = 5⇒
∃j ≤ Ln(x)[j > i ∧ LNum(Line(j, x)) = Jmp(Line(i, x))]]]].

Note that we have used Proposition 1.7 which states that if f is a primitive recursive
function and if P is a primitive recursive predicate, then ∃x ≤ f(y)P (x) is primitive recursive.

The last instruction Line(Ln(x), x)) in the program must be a continue, which means
that Typ(Line(Ln(x), x)) = 3. When the ith instruction coded by Line(i, x) of the program
coded by x has its first field Typ(Line(i, x)) = 4, this instruction is a jump above, and there
must be an instruction in line j above instruction in line i, which means that 1 ≤ j ≤ i− 1,
and the line number LNum(Line(j, x)) of the jth instruction must be equal to the jump
address Jmp(Line(i, x)) of the ith instruction. When Typ(Line(i, x)) = 5, this instruction is
a jump below, and the analysis is similar.

We are now ready to prove a fundamental result in the theory of algorithms. This result
points out some of the limitations of the notion of algorithm.

Theorem 3.4. (Undecidability of the halting problem) There is no RAM program Decider
which halts for all inputs and has the following property when started with input x in register
R1 and with input i in register R2 (the other registers being set to zero):

(1) Decider halts with output 1 iff i codes a program that eventually halts when started
on input x (all other registers set to zero).

(2) Decider halts with output 0 in R1 iff i codes a program that runs forever when started
on input x in R1 (all other registers set to zero).

(3) If i does not code a program, then Decider halts with output 2 in R1.

Proof. Assume that Decider is such a RAM program, and let Q be the following program
with a single input:

ProgramQ (code q)


R2 ← R1

P
N1 continue

R1 jmp N1a
continue

Let i be the code of some program P . The key point is that the termination behavior of
Q on input i is exactly the opposite of the termination behavior of Decider on input i and
code i.

84 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

(1) If Decider says that program P coded by i halts on input i, then R1 just after the
continue in line N1 contains 1, and Q loops forever.

(2) If Decider says that program P coded by i loops forever on input i, then R1 just after
continue in line N1 contains 0, and Q halts.

The program Q can be translated into a program using only instructions of type 1, 2, 3,
4, 5, described previously, and let q be the code of the program Q.

Let us see what happens if we run the program Q on input q in R1 (all other registers set
to zero).

Just after execution of the assignment R2 ← R1, the program Decider is started with
q in both R1 and R2. Since Decider is supposed to halt for all inputs, it eventually halts
with output 0 or 1 in R1. If Decider halts with output 1 in R1 (which means that Q halts
on input q), then Q goes into an infinite loop, while if Decider halts with output 0 in R1
(which means that Q loops forever on input q), then Q halts. But then, we see that Decider
says that Q halts when started on input q iff Q loops forever on input q, a contradiction.
Therefore, Decider cannot exist.

The argument used in the proof of 3.4 is quite similar in spirit to “Russell’s Paradox.” If
we identify the notion of algorithm with that of a RAM program which halts for all inputs,
the above theorem says that there is no algorithm for deciding whether a RAM program
eventually halts for a given input. We say that the halting problem for RAM programs is
undecidable (or unsolvable).

The above theorem also implies that the halting problem for Turing machines is unde-
cidable. Indeed, if we had an algorithm for solving the halting problem for Turing machines,
we could solve the halting problem for RAM programs as follows: first, apply the algorithm
for translating a RAM program into an equivalent Turing machine, and then apply the
algorithm solving the halting problem for Turing machines.

The argument is typical in computability theory and is called a “reducibility argument.”

Our next goal is to define a primitive recursive function that describes the computation
of RAM programs.

3.4 Universal RAM Programs

To describe the computation of a RAM program, we need to code not only RAM programs
but also the contents of the registers. Assume that we have a RAM program P using n
registers R1, . . . , Rn, whose contents are denoted as r1, . . . , rn. We can code r1, . . . , rn into a
single integer 〈r1, . . . , rn〉. Conversely, every integer x can be viewed as coding the contents
of R1, . . . , Rn, by taking the sequence Π(1, n, x), . . . ,Π(n, n, x).

3.4. UNIVERSAL RAM PROGRAMS 85

Actually, it is not necessary to know n, the number of registers, if we make the following
observation:

Reg(Line(i, x)) ≤ Line(i, x) ≤ Pg(x) < x

for all i, x ∈ N. If x codes a program, then R1, . . . , Rx certainly include all the registers in
the program. Also note that from a previous exercise,

〈r1, . . . , rn, 0, . . . , 0〉 = 〈r1, . . . , rn, 0〉.

We now define the primitive recursive functions Nextline, Nextcont, and Comp, describing
the computation of RAM programs. There are a lot of tedious technical details that the
reader should skip upon first reading. However, to be rigorous, we must spell out all these
details.

Definition 3.10. Let x code a program and let i be such that 1 ≤ i ≤ Ln(x). The following
functions are defined:

(1) Nextline(i, x, y) is the number of the next instruction to be executed after executing
the ith instruction (the current instruction) in the program coded by x, where the contents
of the registers is coded by y.

(2) Nextcont(i, x, y) is the code of the contents of the registers after executing the ith
instruction in the program coded by x, where the contents of the registers is coded by y.

(3) Comp(x, y,m) = 〈i, z〉, where i and z are defined such that after running the program
coded by x for m steps, where the initial contents of the program registers are coded by y,
the next instruction to be executed is the ith one, and z is the code of the current contents
of the registers.

Proposition 3.5. The functions Nextline, Nextcont, and Comp are primitive recursive.

Proof. (1) Nextline(i, x, y) = i + 1, unless the ith instruction is a jump and the contents of
the register being tested is nonzero:

Nextline(i, x, y) =

max j ≤ Ln(x)[j < i ∧ LNum(Line(j, x)) = Jmp(Line(i, x))]

if Typ(Line(i, x)) = 4 ∧ Π(Reg(Line(i, x)), x, y) 6= 0

min j ≤ Ln(x)[j > i ∧ LNum(Line(j, x)) = Jmp(Line(i, x))]

if Typ(Line(i, x)) = 5 ∧ Π(Reg(Line(i, x)), x, y) 6= 0

i+ 1 otherwise.

For example, if the ith instruction of the program coded by x is a jump above, namely
Typ(Line(i, x)) = 4, then the register being tested is Reg(Line(i, x)), and its contents must
be nonzero for a jump to occur, so the contents of this register, which is obtained from the
code y of all registers as Π(Reg(Line(i, x)), x, y) (remember that we may assume that there
are x registers, by padding with zeros) must be nonzero.

86 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Note that according to this definition, if the ith line is the final continue, then Nextline
signals that the program has halted by yielding

Nextline(i, x, y) > Ln(x).

(2) We need two auxiliary functions Add and Sub defined as follows.

Add(j, x, y) is the number coding the contents of the registers used by the program coded
by x after register Rj coded by Π(j, x, y) has been increased by 1, and

Sub(j, x, y) codes the contents of the registers after register Rj has been decremented by
1 (y codes the previous contents of the registers). It is easy to see that

Sub(j, x, y) = min z ≤ y[Π(j, x, z) = Π(j, x, y)− 1

∧ ∀k ≤ x[0 < k 6= j ⇒ Π(k, x, z) = Π(k, x, y)]].

The definition of Add is slightly more tricky. We leave as an exercise to the reader to prove
that:

Add(j, x, y) = min z ≤ Large(x, y + 1)

[Π(j, x, z) = Π(j, x, y) + 1 ∧ ∀k ≤ x[0 < k 6= j ⇒ Π(k, x, z) = Π(k, x, y)]],

where the function Large is the function defined in an earlier exercise. Then

Nextcont(i, x, y) =

Add(Reg(Line(i, x), x, y) if Typ(Line(i, x)) = 1

Sub(Reg(Line(i, x), x, y) if Typ(Line(i, x)) = 2

y if Typ(Line(i, x)) ≥ 3.

(3) Recall that Π1(z) = Π(1, 2, z) and Π2(z) = Π(2, 2, z). The function Comp is defined
by primitive recursion as follows:

Comp(x, y, 0) = 〈1, y〉
Comp(x, y,m+ 1) = 〈Nextline(Π1(Comp(x, y,m)), x,Π2(Comp(x, y,m))),

Nextcont(Π1(Comp(x, y,m)), x,Π2(Comp(x, y,m)))〉.

If Comp(x, y,m) = 〈i, z〉, then Π1(Comp(x, y,m)) = i is the number of the next instruction
to be executed and Π2(Comp(x, y,m)) = z codes the current contents of the registers, so

Comp(x, y,m+ 1) = 〈Nextline(i, x, z),Nextcont(i, x, z)〉,

as desired.

3.4. UNIVERSAL RAM PROGRAMS 87

We can now reprove that every RAM computable function is partial computable. Indeed,
assume that x codes a program P .

We would like to define the partial function End so that for all x, y, where x codes a
program and y codes the contents of its registers, End(x, y) is the number of steps for which
the computation runs before halting, if it halts. If the program does not halt, then End(x, y)
is undefined.

If y is the value of the register R1 before the program P coded by x is started, recall that
the contents of the registers is coded by 〈y, 0〉. Noticing that 0 and 1 do not code programs,
we note that if x codes a program, then x ≥ 2, and Π1(z) = Π(1, x, z) is the contents of R1
as coded by z.

Since Comp(x, y,m) = 〈i, z〉, we have

Π1(Comp(x, y,m)) = i,

where i is the number (index) of the instruction reached after running the program P coded
by x with initial values of the registers coded by y for m steps. Thus, P halts if i is the last
instruction in P , namely Ln(x), iff

Π1(Comp(x, y,m)) = Ln(x).

This suggests the following definition.

Definition 3.11. The partial function End(x, y) is defined by

End(x, y) = minm[Π1(Comp(x, y,m)) = Ln(x)].

Note that End is a partial computable function; it can be computed by a RAM program
involving only one while loop searching for the number of steps m. The function involved in
the minimization is primitive recursive. However, in general, End is not a total function.

If ϕ is the partial computable function computed by the program P coded by x, then we
claim that

ϕ(y) = Π1(Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉))).
This is because if m = End(x, 〈y, 0〉) is the number of steps after which the program P coded
by x halts on input y, then

Comp(x, 〈y, 0〉,m)) = 〈Ln(x), z〉,
where z is the code of the register contents when the program stops. Consequently

z = Π2(Comp(x, 〈y, 0〉,m))

z = Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉))).
The value of the register R1 is Π1(z), that is

ϕ(y) = Π1(Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉))).
The above fact is worth recording as the following proposition which is a variant of a

result known as the Kleene normal form

88 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Proposition 3.6. (Kleene normal form for RAM programs) If ϕ is the partial computable
function computed by the program P coded by x, then we have

ϕ(y) = Π1(Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉))) for all y ∈ N.

Observe that ϕ is written in the form ϕ = g◦min f , for some primitive recursive functions
f and g. It will be convenient to denote the function ϕ computed by the RAM program P
coded by x as ϕx. We also denote the program P coded by x as Px.

We can also exhibit a partial computable function which enumerates all the unary partial
computable functions. It is a universal function.

Abusing the notation slightly, we will write ϕ(x, y) for ϕ(〈x, y〉), viewing ϕ as a function
of two arguments (however, ϕ is really a function of a single argument). We define the
function ϕuniv as follows:

ϕuniv(x, y) =
{

Π1(Π2(Comp(x, 〈y, 0〉,End(x, 〈y, 0〉))) if PROG(x),
undefined otherwise.

The function ϕuniv is a partial computable function with the following property: for every x
coding a RAM program P , for every input y,

ϕuniv(x, y) = ϕx(y),

the value of the partial computable function ϕx computed by the RAM program P coded
by x. If x does not code a program, then ϕuniv(x, y) is undefined for all y.

By Proposition 1.9, the partial function ϕuniv is not computable (recursive).2 Indeed,
being an enumerating function for the partial computable functions, it is an enumerating
function for the total computable functions, and thus, it cannot be computable. Being a
partial function saves us from a contradiction.

The existence of the universal function ϕuniv is sufficiently important to be recorded in
the following proposition.

Proposition 3.7. (Universal RAM program) For the indexing of RAM programs defined
earlier, there is a universal partial computable function ϕuniv such that, for all x, y ∈ N, if
ϕx is the partial computable function computed by the program Px coded by x, then

ϕx(y) = ϕuniv(〈x, y〉).

The program UNIV computing ϕuniv can be viewed as an interpreter for RAM programs.
By giving the universal program UNIV the “program” x and the “data” y, we get the result
of executing program Px on input y. We can view the RAM model as a stored program
computer .

2The term recursive function is now considered old-fashion. Many researchers have switched to the term
computable function.

3.5. INDEXING OF RAM PROGRAMS 89

By Theorem 3.4 and Proposition 3.7, the halting problem for the single program UNIV
is undecidable. Otherwise, the halting problem for RAM programs would be decidable, a
contradiction. It should be noted that the program UNIV can actually be written (with a
certain amount of pain).

The existence of the function ϕuniv leads us to the notion of an indexing of the RAM
programs.

3.5 Indexing of RAM Programs

We can define a listing of the RAM programs as follows. If x codes a program (that is, if
PROG(x) holds) and P is the program that x codes, we call this program P the xth RAM
program and denote it as Px. If x does not code a program, we let Px be the program that
diverges for every input:

N1 add R1
N1 R1 jmp N1a
N1 continue

Therefore, in all cases, Px stands for the xth RAM program. Thus, we have a listing
of RAM programs, P0, P1, P2, P3, . . ., such that every RAM program (of the restricted type
considered here) appears in the list exactly once, except for the “infinite loop” program. For
example, the program Padd2 (adding 2 to an integer) appears as

P1 018 748 519 973 070 618.

In particular, note that ϕuniv being a partial computable function, it is computed by
some RAM program UNIV that has a code univ and is the program Puniv in the list.

Having an indexing of the RAM programs, we also have an indexing of the partial com-
putable functions.

Definition 3.12. For every integer x ≥ 0, we let Px be the RAM program coded by x as
defined earlier, and ϕx be the partial computable function computed by Px.

For example, the function add2 (adding 2 to an integer) appears as

ϕ1 018 748 519 973 070 618.

Remark: Kleene used the notation {x} for the partial computable function coded by x.
Due to the potential confusion with singleton sets, we follow Rogers, and use the notation
ϕx; see Rogers [36], page 21.

It is important to observe that different programs Px and Py may compute the same
function, that is, while Px 6= Py for all x 6= y, it is possible that ϕx = ϕy. For example,

90 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

the program Py coded by y may be the program obtained from the program Px coded by x
obtained by adding and subtracting 1 a million times to a register not in the program Px.
In fact, it is undecidable whether ϕx = ϕy.

The object of the next section is to show the existence of Kleene’s T -predicate. This
will yield another important normal form. In addition, the T -predicate is a basic tool in
recursion theory.

3.6 Kleene’s T -Predicate

In Section 3.3, we have encoded programs. The idea of this section is to also encode com-
putations of RAM programs. Assume that x codes a program, that y is some input (not a
code), and that z codes a computation of Px on input y.

Definition 3.13. The predicate T (x, y, z) is defined as follows:

T (x, y, z) holds iff x codes a RAM program, y is an input, and z codes a halting compu-
tation of Px on input y.

The code z of a computation packs the consecutive “states” of the computation, namely
the pairs 〈ij, yj〉, where ij is the physical location of the next instruction to be executed and
each yj codes the contents of the registers just before execution of this instruction. We will
show that T is primitive recursive.

First we need to encode computations . We say that z codes a computation of length
n ≥ 1 if

z = 〈n+ 2, 〈1, y0〉, 〈i1, y1〉, . . . , 〈in, yn〉〉,

where each ij is the physical location of the next instruction to be executed and each yj
codes the contents of the registers just before execution of the instruction at the location ij.
Also, y0 codes the initial contents of the registers, that is, y0 = 〈y, 0〉, for some input y.

We let Lz(z) = Π1(z) (not to be confused with Ln(x)).

Note that ij denotes the physical location of the next instruction to be executed in the
sequence of instructions constituting the program coded by x, and not the line number (label)
of this instruction. Thus, the first instruction to be executed is in location 1, 1 ≤ ij ≤ Ln(x),
and in−1 = Ln(x). Since the last instruction which is executed is the last physical instruction
in the program, namely, a continue, there is no next instruction to be executed after that,
and in is irrelevant. Writing the definition of T is a little simpler if we let in = Ln(x) + 1.

3.6. KLEENE’S T -PREDICATE 91

Definition 3.14. The T -predicate is the primitive recursive predicate defined as follows:

T (x, y, z) iff PROG(x) and (Lz(z) ≥ 3) and

∀j ≤ Lz(z)− 3[0 ≤ j ⇒
Nextline(Π1(Π(j + 2,Lz(z), z)), x,Π2(Π(j + 2,Lz(z), z))) = Π1(Π(j + 3,Lz(z), z)) and

Nextcont(Π1(Π(j + 2,Lz(z), z)), x,Π2(Π(j + 2,Lz(z), z))) = Π2(Π(j + 3,Lz(z), z)) and

Π1(Π(Lz(z)− 1,Lz(z), z)) = Ln(x) and

Π1(Π(2,Lz(z), z)) = 1 and

y = Π1(Π2(Π(2,Lz(z), z))) and Π2(Π2(Π(2,Lz(z), z))) = 0].

The reader can verify that T (x, y, z) holds iff x codes a RAM program, y is an input,
and z codes a halting computation of Px on input y. For example, since

z = 〈n+ 2, 〈1, y0〉, 〈i1, y1〉, . . . , 〈in, yn〉〉,

we have Π(j + 2,Lz(z), z) = 〈ij−1, yj−1〉 and Π(j + 3,Lz(z), z) = 〈ij, yj〉, so Π1(Π(j +
2,Lz(z), z)) = Π1(〈ij−1, yj−1〉) = ij−1, Π2(Π(j + 2,Lz(z), z)) = Π2(〈ij−1, yj−1〉) = yj−1, and
similarly Π1(Π(j+3,Lz(z), z)) = ij, Π2(Π(j+3,Lz(z), z)) = yj, so the T predicate expresses
that Nextline(ij−1, yj−1) = ij and Nextcont(ij−1, yj−1) = yj.

In order to extract the output of Px from z, we define the primitive recursive function
Res as follows:

Res(z) = Π1(Π2(Π(Lz(z),Lz(z), z))).

The explanation for this formula is that if Π(Lz(z),Lz(z), z) = 〈in, yn〉, then Π2(Π(Lz(z),
Lz(z), z)) = yn, the code of the registers, and since the output is returned in Register R1,
Res(z) is the contents of register R1 when Px halts, that is, Π1(yLz(z)). Using the T -predicate,
we get the so-called Kleene normal form.

Theorem 3.8. (Kleene Normal Form) Using the indexing of the partial computable functions
defined earlier, we have

ϕx(y) = Res[min z(T (x, y, z))],

where T (x, y, z) and Res are primitive recursive.

Note that the universal function ϕuniv can be defined as

ϕuniv(x, y) = Res[min z(T (x, y, z))].

There is another important property of the partial computable functions, namely, that
composition is effective (computable). We need two auxiliary primitive recursive functions.
The function Conprogs creates the code of the program obtained by concatenating the pro-
grams Px and Py, and for i ≥ 2, Cumclr(i) is the code of the program which clears registers
R2, . . . , Ri. To get Cumclr, we can use the function clr(i) such that clr(i) is the code of the
program

92 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

N1 tail Ri
N1 Ri jmp N1a
N continue

We leave it as an exercise to prove that clr, Conprogs, and Cumclr, are primitive recursive.

Theorem 3.9. There is a primitive recursive function c such that

ϕc(x,y) = ϕx ◦ ϕy.

Proof. If both x and y code programs, then ϕx ◦ ϕy can be computed as follows: Run Py,
clear all registers but R1, then run Px. Otherwise, let loop be the index of the infinite loop
program:

c(x, y) =

{
Conprogs(y,Conprogs(Cumclr(y), x)) if PROG(x) and PROG(y)
loop otherwise.

3.7 A Non-Computable Function; Busy Beavers

Total functions that are not computable must grow very fast and thus are very complicated .
Yet, in 1962, Radó published a paper in which he defined two functions Σ and S (involving
computations of Turing machines) that are total and not computable.

Consider Turing machines with a tape alphabet Γ = {1, B} with two symbols (B being
the blank). We also assume that these Turing machines have a special final state qF , which is
a blocking state (there are no transitions from qF). We do not count this state when counting
the number of states of such Turing machines. The game is to run such Turing machines
with a fixed number of states n starting on a blank tape, with the goal of producing the
maximum number of (not necessarily consecutive) ones (1).

Definition 3.15. The function Σ (defined on the positive natural numbers) is defined as
the maximum number Σ(n) of (not necessarily consecutive) 1’s written on the tape after a
Turing machine with n ≥ 1 states started on the blank tape halts. The function S is defined
as the maximum number S(n) of moves that can be made by a Turing machine of the above
type with n states before it halts, started on the blank tape.3

Definition 3.16. A Turing machine with n states that writes the maximum number Σ(n)
of 1’s when started on the blank tape is called a busy beaver .

3The function S defined here is obviously not the successor function from Definition 1.14.

3.7. A NON-COMPUTABLE FUNCTION; BUSY BEAVERS 93

Busy beavers are hard to find, even for small n. First, it can be shown that the number
of distinct Turing machines of the above kind with n states is (4(n + 1))2n. Second, since
it is undecidable whether a Turing machine halts on a given input, it is hard to tell which
machines loop or halt after a very long time.

Here is a summary of what is known for 1 ≤ n ≤ 6. Observe that the exact value of
Σ(5),Σ(6), S(5) and S(6) is unknown.

n Σ(n) S(n)
1 1 1
2 4 6
3 6 21
4 13 107
5 ≥ 4098 ≥ 47, 176, 870
6 ≥ 95, 524, 079 ≥ 8, 690, 333, 381, 690, 951
6 ≥ 3.515× 1018267 ≥ 7.412× 1036534

The first entry in the table for n = 6 corresponds to a machine due to Heiner Marxen
(1999). This record was surpassed by Pavel Kropitz in 2010, which corresponds to the second
entry for n = 6. The machines achieving the record in 2017 for n = 4, 5, 6 are shown below,
where the blank is denoted ∆ instead of B, and where the special halting state is denoted
H:

4-state busy beaver:

A B C D
∆ (1, R,B) (1, L, A) (1, R,H) (1, R,D)
1 (1, L,B) (∆, L, C) (1, L,D) (∆, R,A)

The above machine output 13 ones in 107 steps. In fact, the output is

1 ∆ 1 1 1 1 1 1 1 1 1 1 1 1 .

5-state best contender:

A B C D E
∆ (1, R,B) (1, R, C) (1, R,D) (1, L, A) (1, R,H)
1 (1, L, C) (1, R,B) (∆, L, E) (1, L,D) (∆, L, A)

The above machine output 4098 ones in 47, 176, 870 steps. The tape actually contains a
total of 12289 symbols, 4098 if which are 1’s, and the other the blank ∆.

6-state contender (Heiner Marxen):

A B C D E F
∆ (1, R,B) (1, L, C) (∆, R, F) (1, R,A) (1, L,H) (∆, L, A)
1 (1, R,A) (1, L,B) (1, L,D) (∆, L, E) (1, L, F) (∆, L, C)

94 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The above machine outputs 96, 524, 079 ones in 8, 690, 333, 381, 690, 951 steps.

6-state best contender (Pavel Kropitz):

A B C D E F
∆ (1, R,B) (1, R, C) (1, L,D) (1, R,E) (1, L, A) (1, L,H)
1 (1, L, E) (1, R, F) (∆, R,B) (∆, L, C) (∆, R,D) (1, R, C)

The above machine output at least 3.515× 1018267 ones!

The reason why it is so hard to compute Σ and S is that they are not computable!

Theorem 3.10. The functions Σ and S are total functions that are not computable (not
recursive).

Proof sketch. The proof consists in showing that Σ (and similarly for S) eventually outgrows
any computable function. More specifically, we claim that for every computable function f ,
there is some positive integer kf such that

Σ(n+ kf) ≥ f(n) for all n ≥ 0.

We simply have to pick kf to be the number of states of a Turing machine Mf computing
f . Then we can create a Turing machine Mn,f that works as follows. Using n of its states,
it writes n ones on the tape, and then it simulates Mf with input 1n. Since the ouput of
Mn,f started on the blank tape consists of f(n) ones, and since Σ(n + kf) is the maximum
number of ones that a turing machine with n+ kf states will ouput when it stops, we must
have

Σ(n+ kf) ≥ f(n) for all n ≥ 0.

Next observe that Σ(n) < Σ(n + 1), because we can create a Turing machine with n + 1
states which simulates a busy beaver machine with n states, and then writes an extra 1 when
the busy beaver stops, by making a transition to the (n+ 1)th state. It follows immediately
that if m < n then Σ(m) < Σ(n). If Σ was computable, then so would be the function g
given by g(n) = Σ(2n). By the above, we would have

Σ(n+ kg) ≥ g(n) = Σ(2n) for all n ≥ 0,

and for n > kg, since 2n > n+ kg, we would have Σ(n+ ng) < Σ(2n), contradicting the fact
that Σ(n+ ng) ≥ Σ(2n).

Since by definition S(n) is the maximum number of moves that can be made by a Turing
machine of the above type with n states before it halts, S(n) ≥ Σ(n). Then the same
reasoning as above shows that S is not a computable function.

The zoo of computable and non-computable functions is illustrated in Figure 3.1.

3.7. A NON-COMPUTABLE FUNCTION; BUSY BEAVERS 95

E
S
P

n
i

primitive
recursive add

mult

supexp

rational expressions

total computabale

terminates for all input

partial computable

built from primitive recursive
and minimization

(while loops)

3x + 1 problem

membership in a language
(set)

φ
univ

(x,y)

partial decider

functions that computer can’t calculate
grow too fast: overflow

Busy Beaver

 Only initial cases computed.

poor thing is so busy, he is anemic!

exp

Figure 3.1: Computability Classification of Functions.

96 CHAPTER 3. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Chapter 4

Elementary Recursive Function
Theory

4.1 Acceptable Indexings

In Chapter 3, we have exhibited a specific indexing of the partial computable functions by
encoding the RAM programs. Using this indexing, we showed the existence of a universal
function ϕuniv and of a computable function c, with the property that for all x, y ∈ N,

ϕc(x,y) = ϕx ◦ ϕy.

It is natural to wonder whether the same results hold if a different coding scheme is used or
if a different model of computation is used, for example, Turing machines. In other words,
we would like to know if our results depend on a specific coding scheme or not.

Our previous results showing the characterization of the partial computable functions
being independent of the specific model used, suggests that it might be possible to pinpoint
certain properties of coding schemes which would allow an axiomatic development of recursive
function theory. What we are aiming at is to find some simple properties of “nice” coding
schemes that allow one to proceed without using explicit coding schemes, as long as the
above properties hold.

Remarkably, such properties exist. Furthermore, any two coding schemes having these
properties are equivalent in a strong sense (called effectively equivalent), and so, one can pick
any such coding scheme without any risk of losing anything else because the wrong coding
scheme was chosen. Such coding schemes, also called indexings, or Gödel numberings, or
even programming systems, are called acceptable indexings .

Definition 4.1. An indexing of the partial computable functions is an infinite sequence
ϕ0, ϕ1, . . . , of partial computable functions that includes all the partial computable func-
tions of one argument (there might be repetitions, this is why we are not using the term
enumeration). An indexing is universal if it contains the partial computable function ϕuniv

97

98 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

such that
ϕuniv(i, x) = ϕi(x) for all i, x ∈ N. (∗univ)

An indexing is acceptable if it is universal and if there is a total computable function c for
composition, such that

ϕc(i,j) = ϕi ◦ ϕj for all i, j ∈ N. (∗compos)

An indexing may fail to be universal because it is not “computable enough,” in the sense
that it does not yield a function ϕuniv satisfying (∗univ). It may also fail to be acceptable
because it is not “computable enough,” in the sense that it does not yield a function ϕuniv
satisfying (∗compos).

From Chapter 3, we know that the specific indexing of the partial computable functions
given for RAM programs is acceptable. Another characterization of acceptable indexings left
as an exercise is the following: an indexing ψ0, ψ1, ψ2, . . . of the partial computable functions
is acceptable iff there exists a total computable function f translating the RAM indexing of
Section 3.3 into the indexing ψ0, ψ1, ψ2, . . ., that is,

ϕi = ψf(i) for all i ∈ N.

A very useful property of acceptable indexings is the so-called “s-m-n Theorem”. Using
the slightly loose notation ϕ(x1, . . . , xn) for ϕ(〈x1, . . . , xn〉), the s-m-n Theorem says the
following. Given a function ϕ considered as having m+ n arguments, if we fix the values of
the first m arguments and we let the other n arguments vary, we obtain a function ψ of n
arguments. Then the index of ψ depends in a computable fashion upon the index of ϕ and
the first m arguments x1, . . . , xm. We can “pull” the first m arguments of ϕ into the index
of ψ.

Theorem 4.1. (The “s-m-n Theorem”) For any acceptable indexing ϕ0, ϕ1, . . . , there is a
total computable function s : Nn+2 → N, such that, for all i,m, n ≥ 1, for all x1, . . . , xm and
all y1, . . . , yn, we have

ϕs(i,m,x1,...,xm)(y1, . . . , yn) = ϕi(x1, . . . , xm, y1, . . . , yn).

Proof. First, note that the above identity is really

ϕs(i,m,〈x1,...,xm〉)(〈y1, . . . , yn〉) = ϕi(〈x1, . . . , xm, y1, . . . , yn〉).

Recall that there is a primitive recursive function Con such that

Con(m, 〈x1, . . . , xm〉, 〈y1, . . . , yn〉) = 〈x1, . . . , xm, y1, . . . , yn〉

for all x1, . . . , xm, y1, . . . , yn ∈ N. Hence, a computable function s such that

ϕs(i,m,x)(y) = ϕi(Con(m,x, y))

4.1. ACCEPTABLE INDEXINGS 99

will do. We define some auxiliary primitive recursive functions as follows:

P (y) = 〈0, y〉 and Q(〈x, y〉) = 〈x+ 1, y〉.

Since we have an indexing of the partial computable functions, there are indices p and q such
that P = ϕp and Q = ϕq. Let R be defined such that

R(0) = p,

R(x+ 1) = c(q, R(x)),

where c is the computable function for composition given by the indexing. We prove by
induction of x that

ϕR(x)(y) = 〈x, y〉 for all x, y ∈ N.

For this we use the existence of the universal function ϕuniv.

For the base case x = 0, we have

ϕR(0)(y) = ϕuniv(〈R(0), y〉)
= ϕuniv(〈p, y〉)
= ϕp(y) = P (y) = 〈0, y〉.

For the induction step, we have

ϕR(x+1)(y) = ϕuniv(〈R(x+ 1), y〉)
= ϕuniv(〈c(q, R(x)), y〉)
= ϕc(q,R(x))(y)

= (ϕq ◦ ϕR(x))(y)

= ϕq(〈x, y〉) = Q(〈x, y〉) = 〈x+ 1, y〉.

Also, recall that 〈x, y, z〉 = 〈x, 〈y, z〉〉, by definition of pairing. Then we have

ϕR(x) ◦ ϕR(y)(z) = ϕR(x)(〈y, z〉) = 〈x, y, z〉.

Finally, let k be an index for the function Con, that is, let

ϕk(〈m,x, y〉) = Con(m,x, y).

Define s by
s(i,m, x) = c(i, c(k, c(R(m), R(x)))).

Then we have

ϕs(i,m,x)(y) = ϕi ◦ ϕk ◦ ϕR(m) ◦ ϕR(x)(y) = ϕi(Con(m,x, y)),

as desired. Notice that if the composition function c is primitive recursive, then s is also
primitive recursive. In particular, for the specific indexing of the RAM programs given in
Section 3.3, the function s is primitive recursive.

100 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

In practice, when using the s-m-n Theorem we usually denote the function s(i,m, x)
simply as s(x).

As a first application of the s-m-n Theorem, we show that any two acceptable indexings
are effectively inter-translatable, that is, computably inter-translatable.

Theorem 4.2. Let ϕ0, ϕ1, . . . , be a universal indexing, and let ψ0, ψ1, . . . , be any indexing
with a total computable s-1-1 function, that is, a function s such that

ψs(i,1,x)(y) = ψi(x, y)

for all i, x, y ∈ N. Then there is a total computable function t such that ϕi = ψt(i).

Proof. Let ϕuniv be a universal partial computable function for the indexing ϕ0, ϕ1, Since
ψ0, ψ1, . . . , is also an indexing ϕuniv occurs somewhere in the second list, and thus, there is
some k such that ϕuniv = ψk. Then we have

ψs(k,1,i)(x) = ψk(i, x) = ϕuniv(i, x) = ϕi(x),

for all i, x ∈ N. Therefore, we can take the function t to be the function defined such that

t(i) = s(k, 1, i)

for all i ∈ N.

Using Theorem 4.2, if we have two acceptable indexings ϕ0, ϕ1, . . . , and ψ0, ψ1, . . ., there
exist total computable functions t and u such that

ϕi = ψt(i) and ψi = ϕu(i)

for all i ∈ N.

Also note that if the composition function c is primitive recursive, then any s-m-n function
is primitive recursive, and the translation functions are primitive recursive. Actually, a
stronger result can be shown. It can be shown that for any two acceptable indexings, there
exist total computable injective and surjective translation functions. In other words, any two
acceptable indexings are recursively isomorphic (Roger’s isomorphism theorem); see Machtey
and Young [28]. Next we turn to algorithmically unsolvable, or undecidable, problems.

4.2 Undecidable Problems

We saw in Section 3.3 that the halting problem for RAM programs is undecidable. In this
section, we take a slightly more general approach to study the undecidability of problems,
and give some tools for resolving decidability questions.

First, we prove again the undecidability of the halting problem, but this time, for any
indexing of the partial computable functions.

4.2. UNDECIDABLE PROBLEMS 101

Theorem 4.3. (Halting Problem, Abstract Version) Let ψ0, ψ1, . . . , be any indexing of the
partial computable functions. Then the function f defined such that

f(x, y) =

{
1 if ψx(y) is defined,
0 if ψx(y) is undefined,

is not computable.

Proof. Assume that f is computable, and let g be the function defined such that

g(x) = f(x, x)

for all x ∈ N. Then g is also computable. Let θ be the function defined such that

θ(x) =

{
0 if g(x) = 0,
undefined if g(x) = 1.

We claim that θ is not even partial computable. Observe that θ is such that

θ(x) =

{
0 if ψx(x) is undefined,
undefined if ψx(x) is defined.

If θ was partial computable, it would occur in the list as some ψi, and we would have

θ(i) = ψi(i) = 0 iff ψi(i) is undefined,

a contradiction. Therefore, f and g can’t be computable.

Observe that the proof of Theorem 4.3 does not use the fact that the indexing is univer-
sal or acceptable, and thus, the theorem holds for any indexing of the partial computable
functions.

Given any set, X, for any subset, A ⊆ X, of X, recall that the characteristic function,
CA (or χA), of A is the function, CA : X → {0, 1}, defined so that, for all x ∈ X,

CA(x) =
{

1 if x ∈ A
0 if x /∈ A.

The function g defined in the proof of Theorem 4.3 is the characteristic function of an
important set denoted as K.

Definition 4.2. Given any indexing (ψi) of the partial computable functions, the set K is
defined by

K = {x | ψx(x) is defined}.

The set K is an abstract version of the halting problem. It is example of a set which is
not computable (or not recursive). Since this fact is quite important, we give the following
definition:

102 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Definition 4.3. A subset A of Σ∗ (or a subset A of N) is computable, or recursive,1 or
decidable iff its characteristic function, CA, is a total computable function.

Using Definition 4.3, Theorem 4.3 can be restated as follows.

Proposition 4.4. For any indexing ϕ0, ϕ1, . . . of the partial computable functions (over Σ∗

or N), the set K = {x | ϕx(x) is defined} is not computable (not recursive).

Computable (recursive) sets allow us to define the concept of a decidable (or undecidable)
problem. The idea is to generalize the situation described in Section 3.3 and Section 3.6,
where a set of objects, the RAM programs, is encoded into a set of natural numbers, using
a coding scheme. For example, we would like to discuss the notion of computability of sets
of trees or sets of graphs.

Definition 4.4. Let C be a countable set of objects, and let P be a property of objects in
C. We view P as the set

{a ∈ C | P (a)}.
A coding-scheme is an injective function #: C → N that assigns a unique code to each object
in C. The property P is decidable (relative to #) iff the set {#(a) | a ∈ C and P (a)} is
computable (recursive). The property P is undecidable (relative to #) iff the set {#(a) | a ∈
C and P (a)} is not computable (not recursive).

Observe that the decidability of a property P of objects in C depends upon the coding
scheme #. Thus, if we are cheating in using a non-effective (i.e not computable by a
computer program) coding scheme, we may declare that a property is decidable even though
it is not decidable in some reasonable coding scheme. Consequently, we require a coding
scheme # to be effective in the following sense. Given any object a ∈ C, we can effectively
(i.e. algorithmically) determine its code #(a). Conversely, given any integer n ∈ N, we
should be able to tell effectively if n is the code of some object in C, and if so, to find this
object. In practice, it is always possible to describe the objects in C as strings over some
(possibly complex) alphabet Σ (sets of trees, graphs, etc). In such cases, the coding schemes
are computable functions from Σ∗ to N = {a1}∗.

For example, let C = N×N, where the property P is the equality of the partial functions
ϕx and ϕy. We can use the pairing function 〈−,−〉 as a coding function, and the problem is
formally encoded as the computability (recursiveness) of the set

{〈x, y〉 | x, y ∈ N, ϕx = ϕy}.

In most cases, we don’t even bother to describe the coding scheme explicitly, knowing
that such a description is routine, although perhaps tedious.

We now show that most properties about programs (except the trivial ones) are unde-
cidable.

1Since 1996, the term recursive has been considered old-fashioned by many researchers, and the term
computable has been used instead.

4.3. REDUCIBILITY AND RICE’S THEOREM 103

4.3 Reducibility and Rice’s Theorem

First, we show that it is undecidable whether a RAM program halts for every input. In
other words, it is undecidable whether a procedure is an algorithm. We actually prove a
more general fact.

Proposition 4.5. For any acceptable indexing ϕ0, ϕ1, . . . of the partial computable functions,
the set

TOTAL = {x | ϕx is a total function}
is not computable (not recursive).

Proof. The proof uses a technique known as reducibility. We try to reduce a set A known
to be noncomputable (nonrecursive) to TOTAL via a computable function f : A→ TOTAL,
so that

x ∈ A iff f(x) ∈ TOTAL.

If TOTAL were computable (recursive), its characteristic function g would be computable,
and thus, the function g ◦ f would be computable, a contradiction, since A is assumed to be
noncomputable (nonrecursive). In the present case, we pick A = K. To find the computable
function f : K → TOTAL, we use the s-m-n Theorem. Let θ be the function defined below:
for all x, y ∈ N,

θ(x, y) =
{
ϕx(x) if x ∈ K,
undefined if x /∈ K.

Note that θ does not depend on y. The function θ is partial computable. Indeed, we have

θ(x, y) = ϕx(x) = ϕuniv(x, x).

Thus, θ has some index j, so that θ = ϕj, and by the s-m-n Theorem, we have

ϕs(j,1,x)(y) = ϕj(x, y) = θ(x, y).

Let f be the computable function defined such that

f(x) = s(j, 1, x)

for all x ∈ N. Then we have

ϕf(x)(y) =
{
ϕx(x) if x ∈ K,
undefined if x /∈ K

for all y ∈ N. Thus, observe that ϕf(x) is a total function iff x ∈ K, that is,

x ∈ K iff f(x) ∈ TOTAL,

where f is computable. As we explained earlier, this shows that TOTAL is not computable
(not recursive).

104 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

The above argument can be generalized to yield a result known as Rice’s theorem. Let
ϕ0, ϕ1, . . . be any indexing of the partial computable functions, and let C be any set of partial
computable functions. We define the set PC as

PC = {x ∈ N | ϕx ∈ C}.

We can view C as a property of some of the partial computable functions. For example

C = {all total computable functions}.

Observe that if ϕi ∈ C for some partial computable function ϕi, equivalently i ∈ PC ,
then j ∈ PC for all j ∈ N such that ϕj = ϕi. In other words, if PC contains the code i of
some program Pi computing a partial computable function ϕi ∈ C, then PC contains the
code of every program computing ϕi. Steve Cook calls such a set PC a function index set .
Note that PC is always infinite, unless PC = ∅.
Definition 4.5. We say that a set C of partial computable functions (over N) is nontrivial
if C is neither empty nor the set of all partial computable functions. Equivalently C is
nontrivial iff PC 6= ∅ and PC 6= N. We also say that C is trivial if PC = ∅ or PC = N.

Theorem 4.6. (Rice’s Theorem, 1953) For any acceptable indexing ϕ0, ϕ1, . . . of the partial
computable functions, for any set C of partial computable functions, the set

PC = {x ∈ N | ϕx ∈ C}

is not computable (not recursive) unless C is trivial.

Proof. Assume that C is nontrivial. A set is computable (recursive) iff its complement
is computable (recursive) (the proof is trivial). Hence, we may assume that the totally
undefined function is not in C, and since C 6= ∅, let ψ be some other function in C. We
produce a computable function f such that

ϕf(x)(y) =

{
ψ(y) if x ∈ K,
undefined if x /∈ K,

for all y ∈ N. We get f by using the s-m-n Theorem. Let ψ = ϕi, and define θ as follows:

θ(x, y) = ϕuniv(i, y) + (ϕuniv(x, x) ·− ϕuniv(x, x)),

where ·− is the primitive recursive function monus for truncated subtraction; see Section 1.7.
Recall that ϕuniv(x, x) ·− ϕuniv(x, x) is defined iff ϕuniv(x, x) is defined iff x ∈ K, and so

θ(x, y) = ϕuniv(i, y) = ϕi(y) = ψ(y) iff x ∈ K

and θ(x, y) is undefined otherwise. Clearly θ is partial computable, and we let θ = ϕj. By
the s-m-n Theorem, we have

ϕs(j,1,x)(y) = ϕj(x, y) = θ(x, y)

4.3. REDUCIBILITY AND RICE’S THEOREM 105

for all x, y ∈ N. Letting f be the computable function such that

f(x) = s(j, 1, x),

by definition of θ, we get

ϕf(x)(y) = θ(x, y) =
{
ψ(y) if x ∈ K,
undefined if x /∈ K.

Thus, f is the desired reduction function. Now we have

x ∈ K iff f(x) ∈ PC ,

and thus, the characteristic function CK of K is equal to CP ◦f , where CP is the characteristic
function of PC . Therefore, PC is not computable (not recursive), since otherwise, K would
be computable, a contradiction.

Rice’s theorem shows that all nontrivial properties of the input/output behavior of pro-
grams are undecidable!

It is important to understand that Rice’s theorem says that the set PC of indices of all
partial computable functions equal to some function in a given set C of partial computable
functions is not computable if C is nontrivial, not that the set C is not computable if C
is nontrivial. The second statement does not make any sense because our machinery only
applies to sets of natural numbers (or sets of strings). For example, the set C = {ϕi0}
consisting of a single partial computable function is nontrivial, and being finite, under the
second wrong interpretation it would be computable. But we need to consider the set

PC = {n ∈ N | ϕn = ϕi0}

of indices of all partial computable functions ϕn that are equal to ϕi0 , and by Rice’s theorem,
this set is not computable. In other words, it is undecidable whether an arbitrary partial
computable function is equal to some fixed partial computable function.

The scenario to apply Rice’s theorem to a class C of partial functions is to show that
some partial computable function belongs to C (C is not empty), and that some partial
computable function does not belong to C (C is not all the partial computable functions).
This demonstrates that C is nontrivial.

In particular, the following properties are undecidable.

Proposition 4.7. The following properties of partial computable functions are undecidable.

(a) A partial computable function is a constant function.

(b) Given any integer y ∈ N, is y in the range of some partial computable function.

(c) Two partial computable functions ϕx and ϕy are identical. More precisely, the set
{〈x, y〉 | ϕx = ϕy} is not computable.

106 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

(d) A partial computable function ϕx is equal to a given partial computable function ϕa.

(e) A partial computable function yields output z on input y, for any given y, z ∈ N.

(f) A partial computable function diverges for some input.

(g) A partial computable function diverges for all input.

The above proposition is left as an easy exercise. For example, in (a), we need to exhibit
a constant (partial) computable function, such as zero(n) = 0, and a nonconstant (partial)
computable function, such as the identity function (or succ(n) = n+ 1).

A property may be undecidable although it is partially decidable. By partially decidable,
we mean that there exists a computable function g that enumerates the set PC = {x | ϕx ∈
C}. This means that there is a computable function g whose range is PC . We say that PC is
listable, or computably enumerable, or recursively enumerable. Indeed, g provides a recursive
enumeration of PC , with possible repetitions. Listable sets are the object of the next section.

4.4 Listable (Recursively Enumerable) Sets

In this section and the next our focus is on subsets of N rather than on numerical functions.
Consider the set

A = {k ∈ N | ϕk(a) is defined},
where a ∈ N is any fixed natural number. By Rice’s theorem, A is not computable (not
recursive); check this. We claim that A is the range of a computable function g. For this,
we use the T -predicate introduced in Definition 3.13. Recall that the predicate T (i, y, z) is
defined as follows:

T (i, y, z) holds iff i codes a RAM program, y is an input, and z codes a halting compu-
tation of program Pi on input y.

We produce a function which is actually primitive recursive. First, note that A is
nonempty (why?), and let x0 be any index in A. We define g by primitive recursion as
follows:

g(0) = x0,

g(x+ 1) =

{
Π1(x) if T (Π1(x), a,Π2(x)),
x0 otherwise.

Since this type of argument is new, it is helpful to explain informally what g does. For
every input x, the function g tries finitely many steps of a computation on input a for some
partial computable function ϕi computed by the RAM program Pi. Since we need to consider
all pairs (i, z) but we only have one variable x at our disposal, we use the trick of packing i
and z into x = 〈i, z〉. Then the index i of the partial function is given by i = Π1(x) and the

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 107

guess for the code of the computation is given by z = Π2(x). Since Π1 and Π2 are projection
functions, when x ranges over N, both i = Π1(x) and z = Π2(x) also range over N. Thus
every partial function ϕi and every code for a computation z will be tried, and whenever
ϕi(a) is defined, which means that there is a correct guess for the code z of the halting
computation of Pi on input a, T (Π1(x), a,Π2(x)) = T (i, a, z) is true, and g(x+ 1) returns i.

Such a process is called a dovetailing computation. This type of argument will be used
over and over again.

Definition 4.6. A subset X of N is listable, or computably enumerable, or recursively enu-
merable2 iff either X = ∅, or X is the range of some total computable function (total recursive
function). Similarly, a subset X of Σ∗ is listable or computably enumerable, or recursively
enumerable iff either X = ∅, or X is the range of some total computable function (total
recursive function).

We will often abbreviate computably enumerable as c.e, (and recursively enumerable as
r.e.). A computably enumerable set is sometimes called a partially decidable or semidecidable
set.

Remark: It should be noted that the definition of a listable set (c.e set or r.e. set) given
in Definition 4.6 is different from an earlier definition given in terms of acceptance by a
Turing machine and it is by no means obvious that these two definitions are equivalent.
This equivalence will be proven in Proposition 4.9 ((1)⇐⇒ (4)).

The following proposition relates computable sets and listable sets (recursive sets and
recursively enumerable sets).

Proposition 4.8. A set A is computable (recursive) iff both A and its complement A are
listable (computably enumerable, recursively enumerable).

Proof. Assume that A is computable. Then it is trivial that its complement is also com-
putable. Hence, we only have to show that a computable set is listable. The empty set is
listable by definition. Otherwise, let y ∈ A be any element. Then the function f defined
such that

f(x) =

{
x iff CA(x) = 1,
y iff CA(x) = 0,

for all x ∈ N is computable and has range A.

Conversely, assume that both A and A are listable. If either A or A is empty, then A is
computable. Otherwise, let A = f(N) and A = g(N), for some computable functions f and
g. We define the function CA as follows:

CA(x) =
{

1 if f(min y[f(y) = x ∨ g(y) = x]) = x,
0 otherwise.

2Since 1996, the term recursively enumerable has been considered old-fashioned by many researchers,
and the terms listable and computably enumerable have been used instead.

108 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

The function CA lists A and A in parallel, waiting to see whether x turns up in A or in A.
Note that x must eventually turn up either in A or in A, so that CA is a total computable
function.

Our next goal is to show that the listable (recursively enumerable) sets can be given
several equivalent definitions.

Proposition 4.9. For any subset A of N, the following properties are equivalent:

(1) A is empty or A is the range of a primitive recursive function (Rosser, 1936).

(2) A is listable (computably enumerable, recursively enumerable).

(3) A is the range of a partial computable function.

(4) A is the domain of a partial computable function.

Proof. The implication (1) ⇒ (2) is trivial, since A is listable iff either it is empty or it is
the range of a (total) computable function.

To prove the implication (2) ⇒ (3), it suffices to observe that the empty set is the
range of the totally undefined function (computed by an infinite loop program), and that a
computable function is a partial computable function.

The implication (3)⇒ (4) is shown as follows. Assume that A is the range of ϕi. Define
the function f such that

f(x) = min k[T (i,Π1(k),Π2(k)) ∧ Res(Π2(k)) = x]

for all x ∈ N. Since A = ϕi(N), we have x ∈ A iff there is some input y ∈ N and some
computation coded by z such that the RAM program Pi on input y has a halting computation
coded by z and produces the output x. Using the T -predicate, this is equivalent to T (i, y, z)
and Res(z) = x. Since we need to search over all pairs (y, z), we pack y and z as k = 〈y, z〉
so that y = Π1(k) and z = Π2(k), and we search over all k ∈ N. If the search succeeds,
which means that T (i, y, z) and Res(z) = x, we set f(x) = k = 〈y, z〉, so that f is a function
whose domain in the range of ϕi (namely A). Note that the value f(x) is irrelevant, but it
is convenient to pick k. Clearly, f is partial computable and has domain A.

The implication (4) ⇒ (1) is shown as follows. The only nontrivial case is when A is
nonempty. Assume that A is the domain of ϕi. Since A 6= ∅, there is some a ∈ N such that
a ∈ A, which means that for some input y the RAM program Pi has a halting computation
coded by z on input a, so if we pack y and z as k = 〈y, z〉, the quantity

min k[T (i,Π1(k),Π2(k))] = min〈y, z〉[T (i, y, z)]

is defined. We can pick a to be

a = Π1(min k[T (i,Π1(k),Π2(k))]).

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 109

We define the primitive recursive function f as follows:

f(0) = a,

f(x+ 1) =

{
Π1(x) if T (i,Π1(x),Π2(x)),
a if ¬T (i,Π1(x),Π2(x)).

Some y ∈ N is in the domain of ϕi (namely A) iff the RAM program Pi has a halting
computation coded by z on input y iff T (i, y, z) is true. If we pack y and z as x = 〈y, z〉,
then T (i, y, z) = T (i,Π1(x),Π2(x)), so if we search over all x = 〈y, z〉 we search over all y
and all z. Whenever T (i, y, z) = T (i,Π1(x),Π2(x)) holds, we set f(x + 1) = y since y ∈ A,
and if T (i, y, z) = T (i,Π1(x),Π2(x)) is false, we return the default value a ∈ A. Our search
will find all y such that T (i, y, z) = T (i,Π1(x),Π2(x)) holds for some z, which means that
all y ∈ A will be in the range of f . By construction, f only has values in A. Clearly, f is
primitive recursive.

More intuitive proofs of the implications (3)⇒ (4) and (4)⇒ (1) can be given. Assume
that A 6= ∅ and that A = range(g), where g is a partial computable function. Assume that
g is computed by a RAM program P . To compute f(x), we start computing the sequence

g(0), g(1), . . .

looking for x. If x turns up as say g(n), then we output n. Otherwise the computation
diverges. Hence, the domain of f is the range of g.

Assume now that A is the domain of some partial computable function g, and that g is
computed by some Turing machine M . Since the case where A = ∅ is trivial, we may assume
that A 6= ∅, and let n0 ∈ A be some chosen element in A. We construct another Turing
machine performing the following steps: On input n,

(0) Do one step of the computation of g(0)

. . .

(n) Do n+ 1 steps of the computation of g(0)

Do n steps of the computation of g(1)

. . .

Do 2 steps of the computation of g(n− 1)

Do 1 step of the computation of g(n)

During this process, whenever the computation of g(m) halts for some m ≤ n, we output
m. Otherwise, we output n0.

In this fashion, we will enumerate the domain of g, and since we have constructed a
Turing machine that halts for every input, we have a total computable function.

The following proposition can easily be shown using the proof technique of Proposition
4.9.

110 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Proposition 4.10. The following facts hold.

(1) There is a computable function h such that

range(ϕx) = dom(ϕh(x)) for all x ∈ N.

(2) There is a computable function k such that

dom(ϕx) = range(ϕk(x))

and ϕk(x) is total computable, for all x ∈ N such that dom(ϕx) 6= ∅.

The proof of Proposition 4.10 is left as an exercise.

Using Proposition 4.9, we can prove that K is a listable set. Indeed, we have K = dom(f),
where

f(x) = ϕuniv(x, x) for all x ∈ N.

The set
K0 = {〈x, y〉 | ϕx(y) is defined}

is also a listable set, since K0 = dom(g), where

g(z) = ϕuniv(Π1(z),Π2(z)),

which is partial computable. It worth recording these facts in the following proposition.

Proposition 4.11. The sets K and K0 are listable (c.e., r.e.) sets that are not computable
sets (not recursive).

We can now prove that there are sets that are not listable (not c.e., not r.e.).

Proposition 4.12. For any indexing of the partial computable functions, the complement
K of the set

K = {x ∈ N | ϕx(x) is defined}
is not listable (not computably enumerable, not recursively enumerable).

Proof. If K was listable, since K is also listable, by Proposition 4.8, the set K would be
computable, a contradiction.

The sets K and K0 are examples of sets that are not listable (not c.e., not r.e.). This
shows that the listable (c.e., r.e.) sets are not closed under complementation. However, we
leave it as an exercise to prove that the listable (c.e., r.e.) sets are closed under union and
intersection.

We will prove later on that TOTAL is not listable (not c.e., not r.e.). This is rather
unpleasant. Indeed, this means that there is no way of effectively listing all algorithms (all

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 111

total computable functions). Hence, in a certain sense, the concept of partial computable
function (procedure) is more natural than the concept of a (total) computable function
(algorithm).

The next two propositions give other characterizations of the listable (c.e., r.e. sets) and
of the computable sets (recursive sets). The proofs are left as an exercise.

Proposition 4.13. The following facts hold.

(1) A set A is listable (c.e., r.e.) iff either it is finite or it is the range of an injective
computable function.

(2) A set A is listable (c.e., r.e.) if either it is empty or it is the range of a monotonic
partial computable function.

(3) A set A is listable (c.e., r.e.) iff there is a Turing machine M such that, for all x ∈ N,
M halts on x iff x ∈ A.

Proposition 4.14. A set A is computable (recursive) iff either it is finite or it is the range
of a strictly increasing computable function.

Another important result relating the concept of partial computable function and that
of a listable (c.e., r.e.) set is given below.

Theorem 4.15. For every unary partial function f , the following properties are equivalent:

(1) f is partial computable.

(2) The set

{〈x, f(x)〉 | x ∈ dom(f)}
is listable (c.e., r.e.).

Proof. Let g(x) = 〈x, f(x)〉. Clearly, g is partial computable, and

range(g) = {〈x, f(x)〉 | x ∈ dom(f)}.

Conversely, assume that

range(g) = {〈x, f(x)〉 | x ∈ dom(f)}

for some computable function g. Then we have

f(x) = Π2(g(min y[Π1(g(y)) = x)])) for all x ∈ N,

so that f is partial computable.

112 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Using our indexing of the partial computable functions and Proposition 4.9, we obtain
an indexing of the listable (c.e., r.e.) sets.

Definition 4.7. For any acceptable indexing ϕ0, ϕ1, . . . of the partial computable functions,
we define the enumeration W0,W1, . . . of the listable (c.e., r.e.) sets by setting

Wx = dom(ϕx).

We now describe a technique for showing that certain sets are listable (c.e., r.e.) but
not computable (not recursive), or complements of listable (c.e., r.e.) sets that are not
computable (not recursive), or not listable (not c.e., not r.e.), or neither listable (not c.e.,
not r.e.) nor the complement of a listable (c.e., r.e.) set. This technique is known as
reducibility .

4.5 Reducibility and Complete Sets

We already used the notion of reducibility in the proof of Proposition 4.5 to show that
TOTAL is not computable (not recursive).

Definition 4.8. Let A and B be subsets of N (or Σ∗). We say that the set A is many-one
reducible to the set B if there is a total computable function (or total recursive function)
f : N→ N (or f : Σ∗ → Σ∗) such that

x ∈ A iff f(x) ∈ B for all x ∈ N.

We write A ≤ B, and for short, we say that A is reducible to B. Sometimes, the notation
A ≤m B is used to stress that this is a many-to-one reduction (that is, f is not necessarily
injective).

Intuitively, deciding membership in B is as hard as deciding membership in A. This is
because any method for deciding membership in B can be converted to a method for deciding
membership in A by first applying f to the number (or string) to be tested.

Remark: Besides many-to-one reducibility, there is a also a notion of one-one reducibility
defined as follows: the set A is one-one reducible to the set B if there is a total injective
computable function f : N→ N such that

x ∈ A iff f(x) ∈ B for all x ∈ N.

We write A ≤1 B. Obviously A ≤1 B implies A ≤m B so one-one reducibiity is a stronger
notion. We do not need one-one reducibility for our purposes so we will not discuss it. We
refer the interested reader to Rogers [36] (especially Chapter 7) for more on reducibility.

The following simple proposition is left as an exercise to the reader.

4.5. REDUCIBILITY AND COMPLETE SETS 113

Proposition 4.16. Let A,B,C be subsets of N (or Σ∗). The following properties hold:

(1) If A ≤ B and B ≤ C, then A ≤ C.

(2) If A ≤ B then A ≤ B.

(3) If A ≤ B and B is listable (c.e., r.e.), then A is listable (c.e., r.e.).

(4) If A ≤ B and A is not listable (not c.e., not r.e.), then B is not listable (not c.e., not
r.e.).

(5) If A ≤ B and B is computable, then A is computable.

(6) If A ≤ B and A is not computable, then B is not computable.

Part (4) of Proposition 4.16 is often useful for proving that some set B is not listable. It
suffices to reduce some set known to be nonlistable to B, for example K. Similarly, Part (6)
of Proposition 4.16 is often useful for proving that some set B is not computable. It suffices
to reduce some set known to be noncomputable to B, for example K.

Observe that A ≤ B implies that A ≤ B, but not that B ≤ A.

Part (3) of Proposition 4.16 may be useful for proving that some set A is listable. It
suffices to reduce A to some set known to be listable, for example K. Similarly, Part (5)
of Proposition 4.16 may be useful for proving that some set A is computable. It suffices to
reduce A to some set known to be computable. In practice, it is often easier to prove directly
that A is computable by showing that both A and A are listable.

Another important concept is the concept of a complete set.

Definition 4.9. A listable (c.e., r.e.) set A is complete w.r.t. many-one reducibility iff every
listable (c.e., r.e.) set B is reducible to A, i.e., B ≤ A.

For simplicity, we will often say complete for complete w.r.t. many-one reducibility .
Intuitively, a complete listable (c.e., r.e.) set is a “hardest” listable (c.e., r.e.) set as far as
membership is concerned.

Theorem 4.17. The following properties hold:

(1) If A is complete, B is listable (c.e, r.e.), and A ≤ B, then B is complete.

(2) K0 is complete.

(3) K0 is reducible to K. Consequently, K is also complete.

114 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Proof. (1) This is left as a simple exercise.

(2) Let Wx be any listable set (recall Definition 4.7). Then

y ∈ Wx iff 〈x, y〉 ∈ K0,

and the reduction function is the computable function f such that

f(y) = 〈x, y〉 for all y ∈ N.

(3) We use the s-m-n Theorem. First, we leave it as an exercise to prove that there is a

computable function f such that

ϕf(x)(y) =

{
1 if ϕΠ1(x)(Π2(x)) is defined,
undefined otherwise,

for all x, y ∈ N. Then for every z ∈ N,

z ∈ K0 iff ϕΠ1(z)(Π2(z)) is defined,

iff ϕf(z)(y) = 1 for all y ∈ N. However,

ϕf(z)(y) = 1 iff ϕf(z)(f(z)) = 1,

since ϕf(z) is a constant function. This means that

z ∈ K0 iff f(z) ∈ K,

and f is the desired function.

As a corollary of Theorem 4.17, the set K is also complete.

Definition 4.10. Two sets A and B have the same degree of unsolvability or are equivalent
iff A ≤ B and B ≤ A.

Since K and K0 are both complete, they have the same degree of unsolvability in the set
of listable sets.

We will now investigate the reducibility and equivalence of various sets.

Recall that
TOTAL = {x ∈ N | ϕx is total}.

We define EMPTY and FINITE, as follows:

EMPTY = {x ∈ N | ϕx is undefined for all input},
FINITE = {x ∈ N | ϕx is defined only for finitely many input}.

4.5. REDUCIBILITY AND COMPLETE SETS 115

Obviously, EMPTY ⊂ FINITE, and since

FINITE = {x ∈ N | ϕx has a finite domain},
we have

FINITE = {x ∈ N | ϕx has an infinite domain},
and thus, TOTAL ⊂ FINITE. Since

EMPTY = {x ∈ N | ϕx is undefined for all input}
we have

EMPTY = {x ∈ N | ϕx is defined for some input},
we have FINITE ⊆ EMPTY.

Proposition 4.18. We have K0 ≤ EMPTY.

The proof of Proposition 4.18 follows from the proof of Theorem 4.17. We also have the
following proposition.

Proposition 4.19. The following properties hold:

(1) EMPTY is not listable (not c.e., not r.e.).

(2) EMPTY is listable (c.e., r.e.).

(3) K and EMPTY are equivalent.

(4) EMPTY is complete.

Proof. We prove (1) and (3), leaving (2) and (4) as an exercise (Actually, (2) and (4) follow
easily from (3)). First, we show that K ≤ EMPTY. By the s-m-n Theorem, there exists a
computable function f such that

ϕf(x)(y) =

{
ϕx(x) if ϕx(x) is defined,
undefined if ϕx(x) is undefined,

for all x, y ∈ N. Note that for all x ∈ N,

x ∈ K iff f(x) ∈ EMPTY,

and thus, K ≤ EMPTY. Since K is not listable, EMPTY is not listable.

We now prove (3). By the s-m-n Theorem, there is a computable function g such that

ϕg(x)(y) = min z[T (x,Π1(z),Π2(z))], for all x, y ∈ N.

Note that
x ∈ EMPTY iff g(x) ∈ K for all x ∈ N.

Therefore, EMPTY ≤ K, and since we just showed that K ≤ EMPTY, the sets K and
EMPTY are equivalent.

116 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Proposition 4.20. The following properties hold:

(1) TOTAL and TOTAL are not listable (not c.e., not r.e.).

(2) FINITE and FINITE are not listable (not c.e, not r.e.).

Proof. Checking the proof of Theorem 4.17, we note that K0 ≤ TOTAL and K0 ≤ FINITE.
Hence, we get K0 ≤ TOTAL and K0 ≤ FINITE, and neither TOTAL nor FINITE is
listable. If TOTAL was listable, then there would be a computable function f such that
TOTAL = range(f). Define g as follows:

g(x) = ϕf(x)(x) + 1 = ϕuniv(f(x), x) + 1

for all x ∈ N. Since f is total and ϕf(x) is total for all x ∈ N, the function g is total
computable. Let e be an index such that

g = ϕf(e).

Since g is total, g(e) is defined. Then we have

g(e) = ϕf(e)(e) + 1 = g(e) + 1,

a contradiction. Hence, TOTAL is not listable. Finally, we show that TOTAL ≤ FINITE.
This also shows that FINITE is not listable. By the s-m-n Theorem, there is a computable
function f such that

ϕf(x)(y) =

{
1 if ∀z ≤ y(ϕx(z) ↓),
undefined otherwise,

for all x, y ∈ N. It is easily seen that

x ∈ TOTAL iff f(x) ∈ FINITE for all x ∈ N.

From Proposition 4.20, we have TOTAL ≤ FINITE. It turns out that FINITE ≤
TOTAL, and TOTAL and FINITE are equivalent.

Proposition 4.21. The sets TOTAL and FINITE are equivalent.

Proof. We show that FINITE ≤ TOTAL. By the s-m-n Theorem, there is a computable
function f such that

ϕf(x)(y) =

{
1 if ∃z ≥ y(ϕx(z) ↓),
undefined if ∀z ≥ y(ϕx(z) ↑),

for all x, y ∈ N. It is easily seen that

x ∈ FINITE iff f(x) ∈ TOTAL for all x ∈ N.

More advanced topics such that the recursion theorem, the extended Rice Theorem, and
creative and productive sets will be discussed in Chapter 6.

Chapter 5

The Lambda-Calculus

The original motivation of Alonzo Church for inventing the λ-calculus was to provide a
type-free foundation for mathematics (alternate to set theory) based on higher-order logic
and the notion of function in the early 1930’s (1932, 1933). This attempt to provide such
a foundation for mathematics failed due to a form of Russell’s paradox. Church was clever
enough to turn the technical reason for this failure, the existence of fixed-point combinators,
into a success, namely to view the λ-calculus as a formalism for defining the notion of
computability (1932,1933,1935). The λ-calculus is indeed one of the first computation models,
slightly preceding the Turing machine.

Kleene proved in 1936 that all the computable functions (recursive functions) in the
sense of Herbrand and Gödel are definable in the λ-calculus, showing that the λ-calculus
has universal computing power . In 1937, Turing proved that Turing machines compute the
same class of computable functions. (This paper is very hard to read, in part because the
definition of a Turing machine is not included in this paper). In short, the λ-calculus and
Turing machines have the same computing power . Here we have to be careful. To be precise
we should have said that all the total computable functions (total recursive functions) are
definable in the λ-calculus. In fact, it is also true that all the partial computable functions
(partial recursive functions) are definable in the λ-calculus but this requires more care.

Since the λ-calculus does not have any notion of tape, register, or any other means of
storing data, it quite amazing that the λ-calculus has so much computing power.

The λ-calculus is based on three concepts:

(1) Application.

(2) Abstraction (also called λ-abstraction).

(3) β-reduction (and β-conversion).

If f is a function, say the exponential function f : N→ N given by f(n) = 2n, and if n a
natural number, then the result of applying f to a natural number, say 5, is written as

(f5)

117

118 CHAPTER 5. THE LAMBDA-CALCULUS

and is called an application. Here we can agree that f and 5 do not have the same type, in
the sense that f is a function and 5 is a number, so applications such as (ff) or (55) do not
make sense, but the λ-calculus is type-free so expressions such as (ff) as allowed. This may
seem silly, and even possibly undesirable, but allowing self application turns out to a major
reason for the computing power of the λ-calculus.

Given an expression M containing a variable x, say

M(x) = x2 + x+ 1,

as x ranges over N, we obtain the function respresented in standard mathematical notation
by x 7→ x2 + x + 1. If we supply the input value 5 for x, then the value of the function is
52 + 5 + 1 = 31. Church introduced the notation

λx. (x2 + x+ 1)

for this function. Here, we have an abstraction, in the sense that the static expression M(x)
for x fixed becomes an “abstract” function denoted λx.M .

It would be pointless to only have the two concepts of application and abstraction. The
glue between these two notions is a form of evaluation called β-reduction.1 Given a λ-
abstraction λx.M and some other term N (thought of as an argument), we have the “eval-
uation” rule, we say β-reduction,

(λx.M)N
+−→β M [x := N],

where M [x := N] denotes the result of substituting N for all occurrences of x in M . For
example, if M = λx. (x2 + x+ 1) and N = 2y + 1, we have

(λx. (x2 + x+ 1))(2y + 1)
+−→β (2y + 1)2 + 2y + 1 + 1.

Observe that β-reduction is a purely formal operation (plugging N wherever x occurs in
M), and that the expression (2y+1)2 +2y+1+1 is not instantly simplified to 4y2 +6y+3. In
the λ-calculus, the natural numbers as well as the arithmetic operations + and × need to be
represented as λ-terms in such a way that they “evaluate” correctly using only β-conversion.
In this sense, the λ-calculus is an incredibly low-level programming language. Nevertheless,
the λ-calculus is the core of various functional programming languages such as OCaml , ML,
Miranda and Haskell , among others.

We now proceed with precise definitions and results. But first we ask the reader not
to think of functions as the functions we encounter in analysis or algebra. Instead think
of functions as rules for computing (by moving and plugging arguments around), a more
combinatory (which does not mean combinatorial) viewpoint.

This chapter relies heavily on the masterly expositions by Barendregt [3, 4]. We also
found inspiration from very informative online material by Henk Barendregt, Peter Selinger,
and J.R.B. Cockett, whom we thank. Hindley and Seldin [21] and Krivine [25] are also
excellent sources (and not as advanced as Barendregt [3]).

1Apparently, Church was fond of Greek letters.

5.1. SYNTAX OF THE LAMBDA-CALCULUS 119

5.1 Syntax of the Lambda-Calculus

We begin by defining the lambda-calculus , also called untyped lambda-calculus or pure lambda-
calculus , to emphasize that the terms of this calculus are not typed. This formal system
consists of

1. A set of terms, called λ-terms .

2. A notion of reduction, called β-reduction, which allows a term M to be transformed
into another term N in a way that mimics a kind of evaluation.

First we define (pure) λ-terms. We have a countable set of variables {x0, x1, . . . , xn . . .}
that correspond to the atomic λ-terms.

Definition 5.1. The λ-terms M are defined inductively as follows:

(1) If xi is a variable, then xi is a λ-term.

(2) If M and N are λ-terms, then (MN) is a λ-term called an application.

(3) If M is a λ-term, and x is a variable, then the expression (λx.M) is a λ-term called a
λ-abstraction.

Note that the only difference between the λ-terms of Definition 5.1 and the raw simply-
typed λ-terms of Definition ?? is that in Clause (3), in a λ-abstraction term (λx.M), the
variable x occurs without any type information, whereas in a simply-typed λ-abstraction
term (λx : σ.M), the variable x is assigned the type σ. At this stage this is only a cosmetic
difference because raw λ-terms are not yet assigned types. But there are type-checking
rules for assigning types to raw simply-typed λ-terms that restrict application, so the set
of simply-typed λ-terms that type-check is much more restricted than the set of (untyped)
λ-terms. In particular, no simply-typed λ-term that type-checks can be a self-application
(MM). The fact that self-application is allowed in the untyped λ-calculus is what gives it
its computational power (through fixed-point combinators, see Section 5.5).

Definition 5.2. The depth d(M) of a λ-term M is defined inductively as follows.

1. If M is a variable x, then d(x) = 0.

2. If M is an application (M1M2), then d(M) = max{d(M1), d(M2)}+ 1.

3. If M is a λ-abstraction (λx.M1), then d(M) = d(M1) + 1.

It is pretty clear that λ-terms have representations as (ordered) labeled trees.

Definition 5.3. Given a λ-term M , the tree tree(M) representing M is defined inductively
as follows:

1. If M is a variable x, then tree(M) is the one-node tree labeled x.

120 CHAPTER 5. THE LAMBDA-CALCULUS

2. If M is an application (M1M2), then tree(M) is the tree with a binary root node labeled
. , and with a left subtree tree(M1) and a right subtree tree(M2).

3. If M is a λ-abstraction (λx.M1), then tree(M) is the tree with a unary root node
labeled λx, and with one subtree tree(M1).

Definition 5.3 is illustrated in Figure 5.1.

x
M = x

tree (M)
1 2M = (M M) •

M1
M2

tree(M)
M = λx • M λx

tree(M)

M1

tree()
tree()

tree()

1

Figure 5.1: The tree tree(M) associated with a pure λ-term M .

Obviously, the depth d(M) of λ-term is the depth of its tree representation tree(M).
Unfortunately λ-terms contain a profusion of parentheses so some conventions are com-

monly used:

(1) A term of the form
(· · · ((FM1)M2) · · ·Mn)

is abbreviated (association to the left) as

FM1 · · ·Mn.

(2) A term of the form
(λx1. (λx2. (· · · (λxn.M) · · ·)))

is abbreviated (association to the right) as

λx1 · · · xn.M.

Matching parentheses may be dropped or added for convenience.

5.1. SYNTAX OF THE LAMBDA-CALCULUS 121

Example 5.1. Here are some examples of λ-terms (and their abbreviation):

y y

(yx) yx

(λx. (yx)) λx. yx

((λx. (yx))z) (λx. yx)z

(((λx. (λy. (yx)))z)w) (λxy. yx)zw.

Note that λx. yx is an abbreviation for (λx. (yx)), not ((λx. y)x).

The variables occurring in a λ-term are free or bound.

Definition 5.4. For any λ-term M , the set FV (M) of free variables of M and the set
BV (M) of bound variables in M are defined inductively as follows:

(1) If M = x (a variable), then

FV (x) = {x}, BV (x) = ∅.

(2) If M = (M1M2), then

FV (M) = FV (M1) ∪ FV (M2), BV (M) = BV (M1) ∪BV (M2).

(3) if M = (λx.M1), then

FV (M) = FV (M1)− {x}, BV (M) = BV (M1) ∪ {x}.

If x ∈ FV (M1), we say that the occurrences of the variable x occur in the scope of λ.

A λ-term M is closed or a combinator if FV (M) = ∅, that is, if it has no free variables.

Example 5.2. We have

FV
(
(λx. yx)z

)
= {y, z}, BV

(
(λx. yx)z

)
= {x},

and
FV
(
(λxy. yx)zw

)
= {z, w}, BV

(
(λxy. yx)zw

)
= {x, y}.

Before proceeding with the notion of substitution we must address an issue with bound
variables. The point is that bound variables are really place-holders so they can be renamed
freely without changing the reduction behavior of the term as long as they do not clash
with free variables. For example, the terms λx. (x(λy. x(yx)) and λx. (x(λz. x(zx)) should
be considered as equivalent. Similarly, the terms λx. (x(λy. x(yx)) and λw. (w(λz. w(zw))
should be considered as equivalent.

122 CHAPTER 5. THE LAMBDA-CALCULUS

λx

•

x λy

•

•

x

x
y

tree(λx • x(λy • x(yx)))

Figure 5.2: The tree representation of a λ-term with backpointers.

One way to deal with this issue is to use the tree representation of λ-terms given in
Definition 5.3. For every leaf labeled with a bound variable x, we draw a backpointer to
an ancestor of x determined as follows. Given a leaf labeled with a bound variable x,
climb up to the closest ancestor labeled λx, and draw a backpointer to this node. Then
all bound variables can be erased. An example is shown in Figure 5.2 for the term M =
λx. x(λy. (x(yx))).

A clever implementation of the idea of backpointers is the formalism of de Bruijn indices ;
see Pierce [32] (Chapter 6) or Barendregt [3] (Appendix C).

Church introduced the notion of α-conversion to deal with this issue. First we need to
define substitutions.

A substitution ϕ is a finite set of pairs ϕ = {(x1, N1), . . . , (xn, Nn)}, where the xi are
distinct variables and the Ni are λ-terms. We write

ϕ = [N1/x1, . . . , Nn/xn] or ϕ = [x1 := N1, . . . , xn := Nn].

The second notation indicates more clearly that each term Ni is substituted for the variable
xi, and it seems to have been almost universally adopted.

Given a substitution ϕ = [x1 := N1, . . . , xn := Nn], for any variable xi, we denote by
ϕ−xi the new substitution where the pair (xi, Ni) is replaced by the pair (xi, xi) (that is, the
new substitution leaves xi unchanged).

Definition 5.5. Given any λ-term M and any substitution ϕ = [x1 := N1, . . . , xn := Nn],
we define the λ-term M [ϕ], the result of applying the substitution ϕ to M , as follows:

5.1. SYNTAX OF THE LAMBDA-CALCULUS 123

(1) If M = y, with y 6= xi for i = 1, . . . , n, then M [ϕ] = y = M .

(2) If M = xi for some i ∈ {1, . . . , n}, then M [ϕ] = Ni.

(3) If M = (PQ), then M [ϕ] = (P [ϕ]Q[ϕ]).

(4) If M = λx.N and x 6= xi for i = 1, . . . , n, then M [ϕ] = λx.N [ϕ],

(5) If M = λx.N and x = xi for some i ∈ {1, . . . , n}, then
M [ϕ] = λx.N [ϕ]−xi .

The term M is safe for the substitution ϕ = [x1 := N1, . . . , xn := Nn] if BV (M)∩(FV (N1)∪
· · · ∪ FV (Nn)) = ∅, that is, if the free variables in the substitution do not become bound.

Note that Clause (5) ensures that a substitution only substitutes the terms Ni for the
variables xi free in M . Thus if M is a closed term, then for every substitution ϕ, we have
M [ϕ] = M .

Example 5.3. Here are some examples of substitution.

y[x := λx. (xz)(xz)] = y

x[x := λx. (xz)(xz)] = λx. (xz)(xz)

(xz)(yz)[y := (vv); z := (λu. v)] = (x(λu. v))((vv)(λu. v))

λx. (xz)(yz)[y := (vv); z := (λu. v)] = λx. (x(λu. v))((vv)(λu. v))

λz. (z(xz))[x := (λu. (uu)); z = (uu)] = λz. (z((λu. (uu))z)).

There is a problem with the present definition of a substitution in Cases (4) and (5),
which is that the result of substituting a term Ni containing the variable x free causes this
variable to become bound after the substitution. We say that x is captured .

Example 5.4. If we make the substitution

λx. (xz)(yz)[y := (xx); z := (λu. v)] = λx. (x(λu. v))((xx)(λu. v)),

the variable x occurring free in the term (xx) now has three bound occurrences in the term
λx. (x(λu. v))((xx)(λu. v)). We should only apply a substitution ϕ to a term M if M is
safe for ϕ. We should rename the bound variable x in the term λx. (xz)(yz), say as w,
obtaining the term λw. (wz)(yz), and then there is no capture of variable when we make the
substitution

λw. (wz)(yz)[y := (xx); z := (λu. v)] = λw. (w(λu. v))((xx)(λu. v)).

To remedy this problem, Church defined α-conversion.

124 CHAPTER 5. THE LAMBDA-CALCULUS

Definition 5.6. The binary relation −→α on λ-terms called immediate α-conversion2 is the
smallest relation satisfying the following properties: for all λ-terms M,N,P,Q:

λx.M −→α λy.M [x := y], for all y /∈ FV (M) ∪BV (M)

if M −→α N then MQ −→α NQ and PM −→α PN

if M −→α N then λx.M −→α λx.N.

The least equivalence relation ≡α= (−→α ∪ −→−1
α)∗ containing −→α (the reflexive and

transitive closure of −→α ∪ −→−1
α) is called α-conversion. Here −→−1

α denotes the converse
of the relation −→α, that is, M −→−1

α N iff N −→α M .

Example 5.5. We have

λfx. f(f(x)) = λf. λx. f(f(x)) −→α λf. λy. f(f(y)) −→α λg. λy. g(g(y)) = λgy. g(g(y)).

Now given a λ-term M and a substitution ϕ = [x1 := N1, . . . , xn := Nn], before applying
ϕ to M we first perform some α-conversion to obtain a term M ′ ≡α M whose set of bound
variables BV (M ′) is disjoint from FV (N1)∪ · · · ∪FV (Nn) so that M ′ is safe for ϕ, and the
result of the substitution is M ′[ϕ].

Example 5.6. We have(
λyz. (xy)z

)
[x := yz] ≡α

(
λuv. (xu)v

)
[x := yz] = λuv. ((yz)u)v.

From now on, we consider two λ-terms M and M ′ such that M ≡α M ′ as identical (to
be rigorous, we deal with equivalence classes of terms with respect to α-conversion). Even
the experts are lax about α-conversion so we happily go along with them. The convention
is that bound variables are always renamed to avoid clashes (with free or bound variables).

Note that the representation of λ-terms as trees with back-pointers also ensures that
substitutions are safe. However, this requires some extra effort. No matter what, it takes
some effort to deal properly with bound variables.

5.2 β-Reduction and β-Conversion; the Church–Rosser

Theorem

The computational engine of the λ-calculus is β-reduction.

Definition 5.7. The relation −→β, called immediate β-reduction, is the smallest relation
satisfying the following properties for all λ-terms M,N,P,Q:

(λx.M)N −→β M [x := N], where M is safe for [x := N]

2We told you that Church was fond of Greek letters.

5.2. β-REDUCTION AND β-CONVERSION; THE CHURCH–ROSSER THEOREM 125

if M −→β N then MQ −→β NQ and PM −→β PN

if M −→β N then λx.M −→β λx.N.

The transitive closure of −→β is denoted by
+−→β, the reflexive and transitive closure of

−→β is denoted by
∗−→β, and we define β-conversion, denoted by

∗←→β, as the smallest

equivalence relation
∗←→β = (−→β ∪ −→−1

β)∗ containing −→β. A subterm of the form
(λx.M)N occurring in another term is called a β-redex . A λ-term M is a β-normal form if
there is no λ-term N such that M −→β N , equivalently if M contains no β-redex.

Example 5.7. We have

(λxy. x)uv =
(
(λx. (λy. x)u

)
v −→β ((λy. x)[x := u])v = (λy. u)v −→β u[y := v] = u

and

(λxy. y)uv =
(
(λx. (λy. y)u

)
v −→β ((λy. y)[x := u])v = (λy. y)v −→β y[y := v] = v.

This shows that λxy. x behaves like the projection onto the first argument and λxy. y behaves
like the projection onto the second.

Example 5.8. More interestingly, if we let ω = λx. (xx), then

Ω = ωω = (λx. (xx))(λx. (xx)) −→β (xx)[x := λx. (xx)] = ωω = Ω.

The above example shows that β-reduction sequences may be infinite. This is a curse and a
miracle of the λ-calculus!

Example 5.9. There are even β-reductions where the evolving term grows in size:

(λx. xxx)(λx. xxx)
+−→β(λx. xxx)(λx. xxx)(λx. xxx)
+−→β(λx. xxx)(λx. xxx)(λx. xxx)(λx. xxx)
+−→β · · ·

In general, a λ-term contains many different β-redex. One then might wonder if there is
any sort of relationship between any two terms M1 and M2 arising through two β-reduction
sequences M

∗−→βM1 and M
∗−→βM2 starting with the same term M . The answer is given

by the following famous theorem.

Theorem 5.1. (Church–Rosser Theorem) The following two properties hold:

(1) The λ-calculus is confluent: for any three λ-terms M,M1,M2, if M
∗−→β M1 and

M
∗−→β M2, then there is some λ-term M3 such that M1

∗−→β M3 and M2
∗−→β M3.

See Figure 5.3.

126 CHAPTER 5. THE LAMBDA-CALCULUS

M

* *

Given

M M1 2
0 M

* *

M M1 2

M3

Confluence

* *

Figure 5.3: The confluence property
.

M M1 2
*

Given

0 M M1 2
*

M3
Church-Rosser

* *

Figure 5.4: The Church–Rosser property.

(2) The λ-calculus has the Church–Rosser property: for any two λ-terms M1,M2, if

M1
∗←→β M2, then there is some λ-term M3 such that M1

∗−→β M3 and M2
∗−→β M3.

See Figure 5.4.

Furthermore (1) and (2) are equivalent, and if a λ-term M β-reduces to a β-normal form
N , then N is unique (up to α-conversion).

Proof. I am not aware of any easy proof of Part (1) or Part (2) of Theorem 5.1, but the
equivalence of (1) and (2) is easily shown by induction.

Assume that (2) holds. Since
∗−→β is contained in

∗←→β, if M
∗−→βM1 and M

∗−→βM2,

then M1
∗←→βM2, and since (2) holds, then there is some λ-term M3 such that M1

∗−→βM3

and M2
∗−→β M3, which is (1).

5.2. β-REDUCTION AND β-CONVERSION; THE CHURCH–ROSSER THEOREM 127

To prove that (1) implies (2) we need the following observation.

Since
∗←→β = (−→β ∪ −→−1

β)∗, we see immediately that M1
∗←→β M2 iff either

(a) M1 = M2, or

(b) there is some M3 such that M1 −→β M3 and M3
∗←→β M2, or

(c) there is some M3 such that M3 −→β M1 and M3
∗←→β M2.

Assume (1). We proceed by induction on the number of steps in M1
∗←→βM2. If

M1
∗←→βM2, as discussed before, there are three cases.

Case a. Base case, M1 = M2. Then (2) holds with M3 = M1 = M2.

Case b. There is some M3 such that M1 −→β M3 and M3
∗←→βM2. Since M3

∗←→βM2

contains one less step than M1
∗←→βM2, by the induction hypothesis there is some M4 such

that M3
∗−→βM4 and M2

∗−→βM4, and then M1 −→β M3
∗−→βM4 and M2

∗−→βM4, proving
(2). See Figure 5.5.

M M * M
1 23

Given

0

M M * M
1 23

M4

Induction Hypothesis

0

M M * M
1 2

M4

3

**

* **

Figure 5.5: Case b.

Case c. There is some M3 such that M3 −→β M1 and M3
∗←→β M2. Since M3

∗←→β M2

contains one less step than M1
∗←→βM2, by the induction hypothesis there is some M4 such

that M3
∗−→β M4 and M2

∗−→β M4. Now M3 −→β M1 and M3
∗−→β M4, so by (1) there

is some M5 such that M1
∗−→β M5 and M4

∗−→β M5. Putting derivations together we get

M1
∗−→β M5 and M2

∗−→β M4
∗−→β M5, which proves (2). See Figure 5.6.

128 CHAPTER 5. THE LAMBDA-CALCULUS

M M * M
1 23

Given

0

M M * M
1 23

M4

Induction Hypothesis* *

0

M M * M
1 23

M4

* *
* Confluence

*
M 5

=

M M * M
1 23

M4

* *
*

*
M5

*

Figure 5.6: Case c.

Suppose M
∗−→β N1 and M

∗−→β N2 where N1 and N2 are both β-normal forms. Then

by confluence there is some N such that N1
∗−→β N and N2

∗−→β N . Since N1 and N2 are
both β-normal forms, we must have N1 = N = N2 (up to α-conversion).

Barendregt gives an elegant proof of the confluence property in [3] (Chapter 11).

Another immediate corollary of the Church–Rosser theorem is that if M
∗←→β N and if

N is a β-normal form, then in fact M
∗−→β N . We leave this fact as an exerise

This fact will be useful in showing that the recursive functions are computable in the
λ-calculus.

5.3 Some Useful Combinators

In this section we provide some evidence for the expressive power of the λ-calculus.

First we make a remark about the representation of functions of several variables in
the λ-calculus. The λ-calculus makes the implicit assumption that a function has a single
argument. This is the idea behind application: given a term M viewed as a function and
an argument N , the term (MN) represents the result of applying M to the argument N ,
except that the actual evaluation is suspended . Evaluation is performed by β-conversion. To
deal with functions of several arguments we use a method known as Currying (after Haskell
Curry). In this method, a function of n arguments is viewed as a function of one argument
taking a function of n− 1 arguments as argument . Consider the case of two arguments, the
general case being similar. Consider a function f : N × N → N. For any fixed x, we define
the function Fx : N→ N given by

Fx(y) = f(x, y) y ∈ N.

5.3. SOME USEFUL COMBINATORS 129

Using the λ-notation we can write

Fx = λy. f(x, y),

and then the function x 7→ Fx, which is a function from N to the set of functions [N → N]
(also denoted NN), is denoted by the λ-term

F = λx. Fx = λx. (λy. f(x, y)).

And indeed,

(FM)N
+−→β FMN

+−→β f(M,N).

Remark: Currying is a way to realizing the isomorphism between the sets of functions
[N × N → N] and [N → [N → N]] (or in the standard set-theoretic notation, between NN×N

and (NN)N. Does this remind you of the identity

(mn)p = mn∗p?

It should.

The function space [N → N] is called an exponential . There is a very abstract way to
view all this which is to say that we have an instance of a Cartesian closed category (CCC).

Proposition 5.2. If I,K,K∗, and S are the combinators defined by

I = λx. x

K = λxy. x

K∗ = λxy. y

S = λxyz. (xz)(yz),

then for all λ-terms M,N,P , we have

IM
+−→β M

KMN
+−→β M

K∗MN
+−→β N

SMNP
+−→β (MP)(NP)

KI
+−→β K∗

SKK
+−→β I.

The proof is left as an easy exercise.

130 CHAPTER 5. THE LAMBDA-CALCULUS

Example 5.10. We have

SMNP =
(
λxyz. (xz)(yz)

)
MNP −→β

((
λyz. (xz)(yz)

)
[x := M]

)
NP

=
(
λyz. (Mz)(yz)

)
NP

−→β

((
λz. (Mz)(yz)

)
[y := N]

)
P

=
(
λz. (Mz)(Nz)

))
P

−→β

(
(Mz)(Nz)

)
[z := P] = (MP)(NP).

The need for a conditional construct if then else such that if T then P elseQ yields P and
if F then P else Q yields Q is indispensable to write nontrivial programs. There is a trick
to encode the boolean values T and F in the λ-calculus to mimick the above behavior of
if B then P else Q, provided that B is a truth value. Since everything in the λ-calculus is a
function, the booleans values T and F are encoded as λ-terms. At first, this seems quite
odd, but what counts is the behavior of if B then P elseQ, and it works!

The truth values T,F and the conditional construct if B thenP elseQ can be encoded in
the λ-calculus as follows.

Proposition 5.3. Consider the combinators given by T = K,F = K∗, and

if then else = λbxy. bxy.

Then for all λ-terms we have

if T then P elseQ
+−→β P

if F then P elseQ
+−→β Q.

The proof is left as an easy exercise.

Example 5.11. We have

if T then P elseQ = (if then else)TPQ

=
(
λbxy. bxy

)
TPQ

−→β

((
λxy. bxy

)
[b := T]

)
PQ =

(
λxy.Txy

)
PQ

−→β

((
λy.Txy

)
[x := P]

)
Q =

(
λy.TPy

))
Q

−→β (TPy)[y := Q] = TPQ

= KPQ
+−→β P,

by Proposition 5.2.

The boolean operations ∧,∨,¬ can be defined in terms of if then else. For example,

And b1b2 = if b1then (if b2 then T else F) else F.

5.4. REPRESENTING THE NATURAL NUMBERS 131

Remark: If B is a term different from T or F, then if B then P else Q may not reduce
at all, or reduce to something different from P or Q. The problem is that the conditional
statement that we designed only works properly if the input B is of the correct type, namely
a boolean. If we give garbage as input, then we can’t expect a correct result. The λ-calculus
being type-free, it is unable to check for the validity of the input. In this sense this is a
defect, but it also accounts for its power.

The ability to construct ordered pairs is also crucial.

Proposition 5.4. For any two λ-terms M and N consider the combinator 〈M,N〉 and the
combinator π1 and π2 given by

〈M,N〉 = λz. zMN = λz. if z thenM elseN

π1 = λz. zK

π2 = λz. zK∗.

Then

π1〈M,N〉 +−→β M

π2〈M,N〉 +−→β N

〈M,N〉T +−→β M

〈M,N〉F +−→β N.

The proof is left as an easy exercise.

Example 5.12. We have

π1〈M,N〉 =
(
λz. zK

)(
λz. zMN

)
−→β

(
zK
)
[z := λz. zMN] =

(
λz. zMN)K

−→β (zMN)[z := K] = KMN
+−→β M,

by Proposition 5.2.

In the next section we show how to encode the natural numbers in the λ-calculus and
how to compute various arithmetical functions.

5.4 Representing the Natural Numbers

Historically the natural numbers were first represented in the λ-calculus by Church in the
1930’s. Later in 1976 Barendregt came up with another representation which is more con-
venient to show that the recursive functions are λ-definable. We start with Church’s repre-
sentation.

132 CHAPTER 5. THE LAMBDA-CALCULUS

First, given any two λ-terms F and M , for any natural number n ∈ N, we define F n(M)
inductively as follows:

F 0(M) = M

F n+1(M) = F (F n(M)).

Definition 5.8. (Church Numerals) The Church numerals c0, c1, c2, . . . are defined by

cn = λfx. fn(x).

So c0 = λfx. x = K∗, c1 = λfx. fx, c2 = λfx. f(fx), etc. The Church numerals are
β-normal forms.

Observe that
cnFz = (λfx. fn(x))Fz

+−→β F
n(z). (†)

This shows that cn iterates n times the function represented by the term F on initial input z.
This is the trick behind the definition of the Church numerals. This suggests the following
definition.

Definition 5.9. The iteration combinator Iter is given by

Iter = λnfx. nfx.

Observe that
Iter cn F X

+−→β F
nX,

that is, the result of iterating F for n steps starting with the initial term X.

Remark: The combinator Iter is actually equal to the combinator

if then else = λbxy. bxy

of Definition 5.3. Remarkably, if n (or b) is a boolean, then this combinator behaves like a
conditional, but if n (or b) is a Church numeral, then it behaves like an iterator. A closely
related combinator is Fold, defined by

Fold = λxfn. nxf.

The only difference is that the abstracted variables are listed in the order x, f, n, instead
of n, f, x. This version of an iterator is used when the Church numerals are defined as
λxf. fn(x) instead of λfx. fn(x), where x and f are permuted in the λ-binder.

Let us show how some basic functions on the natural numbers can be defined. We begin
with the constant function Z given by Z(n) = 0 for all n ∈ N. We claim that Zc = λx. c0

works. Indeed, we have

Zc cn = (λx. c0)cn −→β c0[x := cn] = c0

5.4. REPRESENTING THE NATURAL NUMBERS 133

since c0 is a closed term.
The successor function Succ is given by

Succ(n) = n+ 1.

We claim that
Succc = λnfx. f(nfx)

computes Succ. Indeed we have

Succc cn = (λnfx. f(nfx))cn

−→β

(
λfx. f(nfx)

)
[n := cn] = λfx. f(cnfx)

−→β λfx. f(fn(x))

= λfx. fn+1(x) = cn+1.

The function IsZero which tests whether a natural number is equal to 0 is defined by
the combinator

IsZeroc = λx. x(K F)T.

The proof that it works is left as an exercise.
Addition and multiplication are a little more tricky to define.

Proposition 5.5. (J.B. Rosser) Define Add and Mult as the combinators given by

Add = λmnfx.mf(nfx)

Mult = λxyz. x(yz).

We have

Add cmcn
+−→β cm+n

Mult cmcn
+−→β cm∗n

for all m,n ∈ N.

Proof. We have

Add cmcn = (λmnfx.mf(nfx))cmcn
+−→β (λfx. cmf(cnfx))
+−→β λfx. f

m(fn(x))

= λfx. fm+n(x) = cm+n.

For multiplication we need to prove by induction on m that

(cnx)m(y)
∗−→β x

m∗n(y). (∗)

134 CHAPTER 5. THE LAMBDA-CALCULUS

If m = 0 then both sides are equal to y.
For the induction step we have

(cnx)m+1(y) = cnx((cnx)m(y))
∗−→β cnx(xm∗n(y)) by induction
∗−→β x

n(xm∗n(y))

= xn+m∗n(y) = x(m+1)∗n(y).

We now have

Mult cmcn = (λxyz. x(yz))cmcn
+−→β λz. (cm(cnz))

= λz. ((λfy. fm(y))(cnz))
+−→β λzy. (cnz)m(y),

and since we proved in (∗) that

(cnz)m(y)
∗−→β z

m∗n(y),

we get

Mult cmcn
+−→β λzy. (cnz)m(y)

+−→β λzy. z
m∗n(y) = cm∗n,

which completes the proof.

As an exercise the reader should prove that addition and multiplication can also be
defined in terms of Iter (see Definition 5.9) by

Add = λmn. ItermSuccc n

Mult = λmn. Iterm (Addn) c0.

The above expressions are close matches to the primitive recursive definitions of addition
and multiplication. To check that they work, prove that

Add cm cn
+−→β (Succc)

m(cn)
+−→β cm+n

and
Mult cm cn

+−→β (Addn)m(c0)
+−→β cm∗n.

A version of the exponential function can also be defined. A function that plays an
important technical role is the predecessor function Pred defined such that

Pred(0) = 0

Pred(n+ 1) = n.

5.4. REPRESENTING THE NATURAL NUMBERS 135

It turns out that it is quite tricky to define this function in terms of the Church numerals.
Church and his students struggled for a while until Kleene found a solution in his famous
1936 paper. The story goes that Kleene found his solution when he was sittting in the
dentist’s chair! The trick is to make use of pairs. Kleene’s solution is

PredK = λn. π2(Iternλz. 〈Succc(π1z), π1z〉 〈c0, c0〉).

The reason this works is that we can prove that

(λz. 〈Succc(π1z), π1z〉)0〈c0, c0〉 +−→β 〈c0, c0〉,

and by induction that

(λz. 〈Succc(π1z), π1z〉)n+1〈c0, c0〉 +−→β 〈cn+1, cn〉.

For the base case n = 0 we get

(λz. 〈Succc(π1z), π1z〉)〈c0, c0〉 +−→β 〈c1, c0〉.

For the induction step we have

(λz. 〈Succc(π1z), π1z〉)n+2〈c0, c0〉 =

(λz. 〈Succc(π1z), π1z〉)
(
(λz. 〈Succc(π1z), π1z〉)n+1〈c0, c0〉

)
+−→β (λz. 〈Succc(π1z), π1z〉)〈cn+1, cn〉 +−→β 〈cn+2, cn+1〉.

Here is another tricky solution due to J. Velmans (according to H. Barendregt):

Predc = λxyz. x(λpq. q(py))(Kz)I.

We leave it to the reader to verify that it works.
The ability to construct pairs together with the Iter combinator allows the definition of

a large class of functions, because Iter is “type-free” in its second and third arguments so
it really allows higher-order primitive recursion.

Example 5.13. The factorial function defined such that

0! = 1

(n+ 1)! = (n+ 1)n!

can be defined. First we define h by

h = λxn.Mult Succcnx

and then
fact = λn. π1(Iternλz. 〈h(π1z) (π2z),Succc(π2z)〉 〈c1, c0〉).

136 CHAPTER 5. THE LAMBDA-CALCULUS

The above term works because

(λz. 〈h(π1z) (π2z),Succc(π2z)〉)0 〈c1, c0〉 +−→β 〈c1, c0〉 = 〈c0!, c0〉,

and

(λz. 〈h(π1z) (π2z),Succc(π2z)〉)n+1 〈c1, c0〉 +−→β 〈c(n+1)n!, cn+1〉 = 〈c(n+1)!, cn+1〉.

We leave the details as an exercise.

Barendregt came up with another way of representing the natural numbers that makes
things easier.

Definition 5.10. (Barendregt Numerals) The Barendregt numerals bn are defined as follows:

b0 = I = λx. x

bn+1 = 〈F,bn〉.

The Barendregt numerals are β-normal forms. Barendregt uses the notation pnq instead
of bn but this notation is also used for the Church numerals by other authors so we prefer
using bn (which is consistent with the use of cn for the Church numerals). The Barendregt
numerals are tuples, which makes operating on them simpler than the Church numerals
which encode n as the composition fn.

Proposition 5.6. The functions Succ,Pred and IsZero are defined in terms of the Baren-
dregt numerals by the combinators

Succb = λx. 〈F, x〉
Predb = λx. (xF)

IsZerob = λx. (xT),

and we have

Succb bn
+−→β bn+1

Predb b0
+−→β b0

Predb bn+1
+−→β bn

IsZerob b0
+−→β T

IsZerob bn+1
+−→β F.

The proof is left as an exercise.
Since there is an obvious bijection between the Church combinators and the Barendregt

combinators there should be combinators effecting the translations. Indeed we have the
following result.

5.5. FIXED-POINT COMBINATORS AND RECURSIVELY DEFINED FUNCTIONS137

Proposition 5.7. The combinator T given by

T = λx. (xSuccb)b0

has the property that

T cn
+−→β bn for all n ∈ N.

Proof. We proceed by induction on n. For the base case

T c0 = (λx. (xSuccb)b0)c0

+−→β c0(Succb)b0

+−→β b0.

For the induction step,

T cn = (λx. (xSuccb)b0)cn
+−→β (cnSuccb)b0

+−→β Succb
n(b0).

Thus we need to prove that

Succb
n(b0)

+−→β bn. (∗)

For the base case n = 0, the left-hand side reduces to b0.
For the induction step, we have

Succb
n+1(b0) = Succb(Succb

n(b0))

=
+−→β Succb(bn) by induction

=
+−→β bn+1,

which concludes the proof.

There is also a combinator defining the inverse map but it is defined recursively and we
don’t know how to express recursive definitions in the λ-calculus. This is achieved by using
fixed-point combinators.

5.5 Fixed-Point Combinators and Recursively Defined

Functions

Fixed-point combinators are the key to the definability of recursive functions in the λ-
calculus. We begin with the Y-combinator due to Curry.

138 CHAPTER 5. THE LAMBDA-CALCULUS

Proposition 5.8. (Curry Y-combinator) If we define the combinator Y as

Y = λf. (λx. f(xx))(λx. f(xx)),

then for any λ-term F we have
F (YF)

∗←→β YF.

Proof. Write W = λx. F (xx). We have

F (YF) = F
((
λf. (λx. f(xx))(λx. f(xx))

)
F
)
−→β F

(
(λx. F (xx))(λx. F (xx))

)
= F (WW),

and

YF =
(
λf. (λx. f(xx))(λx. f(xx))

)
F −→β (λx. F (xx))(λx. F (xx)) = (λx. F (xx))W

−→β F (WW).

Therefore F (YF)
∗←→β YF , as claimed.

Observe that neither F (YF)
+−→βYF nor YF

+−→βF (YF). This is a slight disadvantage
of the Curry Y-combinator. Turing came up with another fixed-point combinator that does
not have this problem.

Proposition 5.9. (Turing Θ-combinator) If we define the combinator Θ as

Θ = (λxy. y(xxy))(λxy. y(xxy)),

then for any λ-term F we have

ΘF
+−→β F (ΘF).

Proof. If we write A = (λxy. y(xxy)), then Θ = AA. We have

ΘF = (AA)F = ((λxy. y(xxy))A)F

−→β (λy. y(AAy))F

−→β F (AAF)

= F (ΘF),

as claimed.

Now we show how to use the fixed-point combinators to represent recursively-defined
functions in the λ-calculus.

Example 5.14. There is a combinator G such that

GX
+−→β X(XG) for all X.

5.5. FIXED-POINT COMBINATORS AND RECURSIVELY DEFINED FUNCTIONS139

Informally the idea is to consider the “functional” F = λgx. x(xg), and to find a fixed-point
of this functional. Pick

G = Θλgx. x(xg) = ΘF.

Since by Proposition 5.9 we have G = ΘF
+−→β F (ΘF) = FG, and we also have

FG = (λgx. x(xg))G −→β λx. x(xG),

so G
+−→β λx. x(xG), which implies

GX
+−→β (λx. x(xG))X −→β X(XG).

In general, if we want to define a function G recursively such that

GX
+−→β M(X,G)

where M(X,G) is λ-term containing recursive occurrences of G, we let F = λgx.M(x, g)
and

G = ΘF.

Then we have

G
+−→β FG = (λgx.M(x, g))G −→β λx.M(x, g)[g := G] = λx.M(x,G),

so
GX

+−→β (λx.M(x,G))X −→β M(x,G)[x := X] = M(X,G),

as desired.

Example 5.15. Here is how the factorial function can be defined (using the Church numer-
als). Let

F = λgn. if IsZeroc n then c1 else Multn g(Predc n).

Then the term G = ΘF defines the factorial function. The verification of the above fact is
left as an exercise.

As usual with recursive definitions there is no guarantee that the function that we obtain
terminates for all input.

Example 5.16. For example, if we consider

F = λgn. if IsZeroc n then c1 else Multn g(Succc n)

then for n ≥ 1 the reduction behavior is

Gcn
+−→β Mult cnG cn+1,

which does not terminate.

140 CHAPTER 5. THE LAMBDA-CALCULUS

We leave it as an exercise to show that the inverse of the function T mapping the Church
numerals to the Barendregt numerals is given by the combinator

T−1 = Θ(λfx. if IsZerob x then c0 else Succc(f(Predb x)).

It is remarkable that the λ-calculus allows the implementation of arbitrary recursion with-
out a stack, just using λ-terms as the data-structure and β-reduction. This does not mean
that this evaluation mechanism is efficient but this is another story (as well as evaluation
strategies, which have to do with parameter-passing strategies, call-by-name, call-by-value).

Now we have all the ingredients to show that all the (total) computable functions are
definable in the λ-calculus.

5.6 λ-Definability of the Computable Functions

Let us begin by reviewing the definition of the computable functions (recursive functions)
(à la Herbrand–Gödel–Kleene). For our purposes it suffices to consider functions (partial or
total) f : Nn → N as opposed to the more general case of functions f : (Σ∗)n → Σ∗ defined
on strings.

Definition 5.11. The base functions are the functions Z, S, P n
i defined as follows:

(1) The constant zero function Z such that

Z(n) = 0, for all n ∈ N.

(2) The successor function S such that

S(n) = n+ 1, for all n ∈ N.

(3) For every n ≥ 1 and every i with 1 ≤ i ≤ n, the projection function P n
i such that

P n
i (x1, . . . , xn) = xi, x1, . . . , xn ∈ N.

Next comes (extended) composition.

Definition 5.12. Given any partial or total function g : Nm → N (m ≥ 1) and any m
partial or total functions hi : Nn → N (n ≥ 1), the composition of g and h1, . . . , hm, denoted
g ◦ (h1, . . . , hm), is the partial or total function function f : Nn → N given by

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)), x1, . . . , xn ∈ N.

If g or any of the hi are partial functions, then f(x1, . . . , xn) is defined if and only if all
hi(x1, . . . , xn) are defined and g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)) is defined .

� Note that even if g “ignores” one of its arguments, say the ith one,
g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)) is undefined if hi(x1, . . . , xn) is undefined.

5.6. λ-DEFINABILITY OF THE COMPUTABLE FUNCTIONS 141

Definition 5.13. Given any partial or total functions g : Nm → N and h : Nm+2 → N
(m ≥ 1), the partial or total function function f : Nm+1 → N is defined by primitive recursion
from g and h if f is given by:

f(0, x1, . . . , xm) = g(x1, . . . , xm)

f(n+ 1, x1, . . . , xm) = h(f(n, x1, . . . , xm), n, x1, . . . , xm)

for all n, x1, . . . , xm ∈ N. If m = 0, then g is some fixed natural number and we have

f(0) = g

f(n+ 1) = h(f(n), n).

It can be shown that if g and h are total functions, then so if f .
Note that the second clause of the definition of primitive recursion is

f(n+ 1, x1, . . . , xm) = h(f(n, x1, . . . , xm), n, x1, . . . , xm) (∗1)

but in an earlier definition it was

f(n+ 1, x1, . . . , xm) = h(n, f(n, x1, . . . , xm), x1, . . . , xm), (∗2)

with the first two arguments of h permuted. Since

h ◦ (Pm+2
2 , Pm+2

1 , Pm+2
3 , . . . , Pm+2

m+2)(n, f(n, x1, . . . , xm), x1, . . . , xm)

= h(f(n, x1, . . . , xm), n, x1, . . . , xm)

and

h ◦ (Pm+2
2 , Pm+2

1 , Pm+2
3 , . . . , Pm+2

m+2)(f(n, x1, . . . , xm), n, x1, . . . , xm)

= h(n, f(n, x1, . . . , xm), x1, . . . , xm),

the two definitions are equivalent. In this section we chose version (∗1) because it matches
the treatment in Barendregt [3] and will make it easier for the reader to follow Barendregt
[3] if they wish.

The last operation is minimization (sometimes called minimalization).

Definition 5.14. Given any partial or total function g : Nm+1 → N (m ≥ 0), the partial or
total function function f : Nm → N is defined as follows: for all x1, . . . , xm ∈ N,

f(x1, . . . , xm) = the least n ∈ N such that g(n, x1, . . . , xm) = 0,

and undefined if there is no n such that g(n, x1, . . . , xm) = 0. We say that f is defined by
minimization from g, and we write

f(x1, . . . , xm) = µx[g(x, x1, . . . , xm) = 0].

For short, we write f = µg.

142 CHAPTER 5. THE LAMBDA-CALCULUS

Even if g is a total function, f may be undefined for some (or all) of its inputs.

Definition 5.15. (Herbrand–Gödel–Kleene) The set of partial computable (or partial recur-
sive) functions is the smallest set of partial functions (defined on Nn for some n ≥ 1) which
contains the base functions and is closed under

(1) Composition.

(2) Primitive recursion.

(3) Minimization.

The set of computable (or recursive) functions is the subset of partial computable functions
that are total functions (that is, defined for all input).

We proved earlier the Kleene normal form, which says that every partial computable
function f : Nm → N is computable as

f = g ◦ µh,

for some primitive recursive functions g : N→ N and h : Nm+1 → N. The significance of this
result is that f is built up from total functions using composition and primitive recursion,
and only a single minimization is needed at the end.

Before stating our main theorem, we need to define what it means for a (numerical)
function to be definable in the λ-calculus. This requires some care to handle partial functions.

Since there are combinators for translating Church numerals to Barendregt numerals and
vice-versa, it does not matter which numerals we pick. We pick the Church numerals because
primitive recursion is definable without using a fixed-point combinator.

Definition 5.16. A function (partial or total) f : Nn → N is λ-definable if for all m1, . . .,
mn ∈ N, there is a combinator (a closed λ-term) F with the following properties:

(1) The value f(m1, . . . ,mn) is defined if and only if Fcm1 · · · cmn reduces to a β-normal
form (necessarily unique by the Church–Rosser theorem).

(2) If f(m1, . . . ,mn) is defined, then

Fcm1 · · · cmn

∗←→β cf(m1,...,mn).

In view of the Church–Rosser theorem (Theorem 5.1) and the fact that cf(m1,...,mn) is a
β-normal form, we can replace

Fcm1 · · · cmn

∗←→β cf(m1,...,mn)

by
Fcm1 · · · cmn

∗−→β cf(m1,...,mn)

5.6. λ-DEFINABILITY OF THE COMPUTABLE FUNCTIONS 143

Note that the termination behavior of f on inputs m1, . . . ,mn has to match the reduction
behavior of Fcm1 · · · cmn , namely f(m1, . . . ,mn) is undefined if no reduction sequence from
Fcm1 · · · cmn reaches a β-normal form. Condition (2) ensures that if f(m1, . . . ,mn) is defined,
then the correct value cf(m1,...,mn) is computed by some reduction sequence from Fcm1 · · · cmn .
If we only care about total functions then we require that Fcm1 · · · cmn reduces to a β-normal
for all m1, . . . ,mn and (2). A stronger and more elegant version of λ-definabilty that better
captures when a function is undefined for some input is considered in Section 5.7.

We have the following remarkable theorems.

Theorem 5.10. If a total function f : Nn → N is λ-definable, then it is (total) computable.
If a partial function f : Nn → N is λ-definable, then it is partial computable.

Although Theorem 5.10 is intuitively obvious since computation by β-reduction sequences
are “clearly” computable, a detailed proof is long and very tedious. One has to define
primitive recursive functions to mimick β-conversion, etc. Most books sweep this issue under
the rug. Barendregt observes that the “λ-calculus is recursively axiomatized,” which implies
that the graph of the function beeing defined is recursively enumerable, but no details are
provided; see Barendregt [3] (Chapter 6, Theorem 6.3.13). Kleene (1936) provides a detailed
and very tedious proof. This is an amazing paper, but very hard to read. If the reader is
not content she/he should work out the details over many long lonely evenings.

Theorem 5.11. (Kleene, 1936) If a (total) function f : Nn → N is computable, then it is
λ-definable. If a (partial) function f : Nn → N is is partial computable, then it is λ-definable.

Proof. First we assume all functions to be total. There are several steps.
Step 1 . The base functions are λ-definable.
We already showed that Zc computes Z and that Succc computes S. Observe that Un

i

given by

Un
i = λx1 · · ·xn. xi

computes P n
i .

Step 2 . Closure under composition.
If g is λ-defined by the combinator G and h1, . . . , hm are λ-defined by the combinators

H1, . . . , Hm, then g ◦ (h1, . . . , hm) is λ-defined by

F = λx1 · · ·xn. G(H1x1 · · · xn) . . . (Hmx1 · · ·xn).

Since the functions are total, there is no problem.
Step 3 . Closure under primitive recursion.
We could use a fixed-point combinator but the combinator Iter and pairing do the job.

If f is defined by primitive recursion from g and h, and if G λ-defines g and H λ-defines h,
then f is λ-defined by

F = λnx1 · · ·xm. π1

(
Iter n λz. 〈H π1z π2z x1 · · ·xm, Succc(π2z)〉 〈Gx1 · · ·xm, c0〉

)
.

144 CHAPTER 5. THE LAMBDA-CALCULUS

The reason F works is that we can prove by induction that(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)n〈Gcn1 · · · cnm , c0〉 +−→β 〈cf(n,n1,...,nm), cn〉.

For the base case n = 0,(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)0〈Gcn1 · · · cnm , c0〉
+−→β 〈Gcn1 · · · cnm , c0〉 = 〈cg(n1,...,nm), c0〉 = 〈cf(0,n1,...,nm), c0〉.

For the induction step,(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)n+1〈Gcn1 · · · cnm , c0〉
=
(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)n〈Gcn1 · · · cnm , c0〉
)

+−→β

(
λz. 〈H π1z π2z cn1 · · · cnm , Succc(π2z)〉

)
〈cf(n,n1,...,nm), cn〉

+−→β 〈Hcf(n,n1,...,nm) cn cn1 · · · cnm , Succc cn〉
+−→β 〈ch(f(n,n1,...,nm),n,n1,...,nm), cn+1〉 = 〈cf(n+1,n1,...,nm), cn+1〉.

Since the functions are total, there is no problem.
We can also show that primitive recursion can be achieved using a fixed-point combinator.

Define the combinators J and F by

J = λfxx1 · · ·xm. if IsZerocxthenGx1 · · ·xmelseH(f(Predcx)x1 · · ·xm)(Predc x)x1 · · ·xm,

and
F = ΘJ.

Then F λ-defines f , and since the functions are total, there is no problem. This method
must be used if we use the Barendregt numerals.

Step 4. Closure under minimization.
Suppose f is total and defined by minimization from g and that g is λ-defined by G.
Define the combinators J and F by

J = λfxx1 · · ·xm. if IsZerocGxx1 · · ·xm then x else f(Succc x)x1 · · ·xm

and
F = ΘJ.

It is not hard to check that

F cn cn1 . . . cnn

+−→β

{
cn if g(n, n1, . . . , nm) = 0

F cn+1 cn1 · · · cnn otherwise,

5.7. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 145

and we can use this to prove that F λ-defines f . Since we assumed that f is total, some
least n will be found. We leave the details as an exercise.

This finishes the proof that every total computable function is λ-definable.
To prove the result for the partial computable functions we appeal to the Kleene normal

form: every partial computable function f : Nm → N is computable as

f = g ◦ µh,

for some primitive recursive functions g : N→ N and h : Nm+1 → N. Then our previous proof
yields combinators G and H that λ-define g and h. The minimization of h may fail but since
g is a total function of a single argument, f(n1, . . . , nm) is defined iff g(µn[h(n, n1, . . . , nm) =
0]) is defined so it should be clear that F computes f , but the reader may want to provide a
rigorous argument. A detailed proof is given in Hindley and Seldin [21] (Chapter 4, Theorem
4.18).

Combining Theorem 5.10 and Theorem 5.11 we have established the remarkable result
that the set of λ-definable total functions is exactly the set of (total) computable functions,
and similarly for partial functions. So the λ-calculus has universal computing power.

Remark: With some work, it is possible to show that lists can be represented in the λ-
calculus. Since a Turing machine tape can be viewed as a list, it should be possible (but
very tedious) to simulate a Turing machine in the λ-calculus. This simulation should be
somewhat analogous to the proof that a Turing machine computes a computable function
(defined à la Herbrand–Gödel–Kleene).

Since the λ-calculus has the same power as Turing machines we should expect some
undecidabity results analogous to the undecidability of the halting problem or Rice’s theorem.
We state the following analog of Rice’s theorem without proof. It is a corollary of a theorem
known as the Scott–Curry theorem.

Theorem 5.12. (D. Scott) Let A be any nonempty set of λ-terms not equal to the set of all
λ-terms. If A is closed under β-reduction, then it is not computable (not recursive).

Theorem 5.12 is proven in Barendregt [3] (Chapter 6, Theorem 6.6.2) and Barendregt
[4].

As a corollary of Theorem 5.12 it is undecidable whether a λ-term has a β-normal form,
a result originally proved by Church. This is an analog of the undecidability of the halting
problem, but it seems more spectacular because the syntax of λ-terms is really very simple.
The problem is that β-reduction is very powerful and elusive.

5.7 Definability of Functions in Typed Lambda-Calculi

In the pure λ-calculus, some λ-terms have no β-normal form, and worse, it is undecidable
whether a λ-term has a β-normal form. In contrast, by Theorem ??, every raw λ-term that

146 CHAPTER 5. THE LAMBDA-CALCULUS

type-checks in the simply-typed λ-calculus has a β-normal form. Thus it is natural to ask
whether the natural numbers are definable in the simply-typed λ-calculus because if the
answer is positive, then the numerical functions definable in the simply-typed λ-calculus are
guaranteed to be total.

This indeed possible. If we pick any base type σ, then we can define typed Church
numerals cn as terms of type Natσ = (σ → σ)→ (σ → σ), by

cn = λf : (σ → σ). λx : σ. fn(x).

The notion of λ-definable function is defined just as before. Then we can define Add and
Mult as terms of type Natσ → (Natσ → Natσ) essentially as before, but surprise, not
much more is definable. Among other things, strong typing of terms restricts the iterator
combinator too much. It was shown by Schwichtenberg and Statman that the numerical
functions definable in the simply-typed λ-calculus are the extended polynomials; see Statman
[39] and Troelstra and Schwichtenberg [41]. The extended polynomials are the smallest class
of numerical functions closed under composition containing

1. The constant functions 0 and 1.

2. The projections.

3. Addition and multiplication.

4. The function IsZeroc.

Is there a way to get a larger class of total functions?
There are indeed various ways of doing this. One method is to add the natural numbers

and the booleans as data types to the simply-typed λ-calculus, and to also add product
types, an iterator combinator, and some new reduction rules. This way we obtain a system
equivalent to Gödel’s system T . A large class of numerical total functions containing the
primitive recursive functions is definable in this system; see Girard–Lafond–Taylor [18].
Although theoretically interesting, this is not a practical system.

Another wilder method is to allow more general types to the simply-typed λ-calculus,
the so-called second-order types or polymorphic types . In addition to base types, we allow
type variables (often denoted X, Y, . . .) ranging over simple types and new types of the form
∀X. σ.3

Example 5.17. The type ∀X. (X → X) is such a new type, and so is

∀X. (X → ((X → X)→ X)).

Actually, the second-order types that we just defined are special cases of the QBF (quan-
tified boolean formulae) arising in complexity theory restricted to implication and universal
quantifiers; see Section 12.3. Remarkably, the other connectives ∧,∨,¬ and ∃ are definable

3Barendregt and others used Greek letters to denote type variables but we find this confusing.

5.7. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 147

in terms of → (as a logical connective, ⇒) and ∀; see Troelstra and Schwichtenberg [41]
(Chapter 11).

Remark: The type
Nat = ∀X. (X → ((X → X)→ X)).

can be chosen to represent the type of the natural numbers. The type of the natural numbers
can also be chosen to be

∀X. ((X → X)→ (X → X)).

This makes essentially no difference but the first choice has some technical advantages.
There is also a new form of type abstraction, ΛX.M , and of type application, Mσ, where

M is a λ-term and σ is a type. There are two new typing rules:

Γ . M : σ

Γ . (ΛX.M) : ∀X. σ (type abstraction)

provided that X does not occur free in any of the types in Γ, and

Γ . M : ∀X. σ
Γ . (Mτ) : σ[X := τ]

(type application)

where τ is any type (and no capture of variable takes place).
From the point of view where types are viewed as propositions and λ-terms are viewed as

proofs, type abstraction is an introduction rule and type application is an elimination rule,
both for the second-order quantifier ∀.

We also have a new reduction rule

(ΛX.M)σ −→β∀ M [X := σ]

that corresponds to a new form of redundancy in proofs having to do with a ∀-elimination
immediately following a ∀-introduction. Here in the substitution M [X := τ], all free occur-
rences of X in M and the types in M are replaced by τ .

Example 5.18. We have

(ΛX.λf : (X → X). λx : X.λg : ∀Y. (Y → Y). gX fx)[X := τ]

= λf : (τ → τ). λx : τ. λg : ∀Y. (Y → Y). gτ xf.

For technical details, see Gallier [15].

This new typed λ-calculus is the second-order polymorphic lambda calculus . It was in-
vented by Girard (1972) who named it system F ; see Girard [19, 20], and it is denoted
λ2 by Barendregt. From the point of view of logic, Girard’s system is a proof system for

intuitionistic second-order propositional logic. We define
+−→λ2 and

∗−→λ2 as the relations

+−→λ2 = (−→β ∪ −→β∀)
+

∗−→λ2 = (−→β ∪ −→β∀)
∗.

148 CHAPTER 5. THE LAMBDA-CALCULUS

A variant of system F was also introduced independently by John Reynolds (1974) but
for very different reasons.

The intuition behind terms of type ∀X. σ is that a term M of type ∀X. σ is a sort of
generic function such that for any type τ , the function Mτ is a specialized version of type
σ[X := τ] of M .

For example, M could be the function that appends an element to a list, and for specific
types such as the natural numbers Nat, strings String, trees Tree, etc., the functions MNat,
MString, MTree, are the specialized versions of M to lists of elements having the specific
data types Nat, String,Tree.

Example 5.19. If σ is any type, we have the closed term

Aσ = λx : σ. λf : (σ → σ). fx,

of type σ → ((σ → σ)→ σ), such that for every term F of type σ → σ and every term a of
type σ,

AσaF
+−→λ2 Fa.

Since Aσ has the same behavior for all types σ, it is natural to define the generic function
A given by

A = ΛX.λx : X.λf : (X → X). fx,

which has type ∀X. (X → ((X → X) → X)), and then Aσ has the same behavior as Aσ.
We will see shortly that A is the Church numeral c1 in λ2.

Remarkably, system F is strongly normalizing , which means that every λ-term typable in
system F has a β-normal form. The proof of this theorem is hard and was one of Girard’s
accomplishments in his dissertation, Girard [20]. The Church–Rosser property also holds
for system F. The proof technique used to prove that system F is strongly normalizing is
thoroughly analyzed in Gallier [15].

We stated earlier that deciding whether a simple type σ is provable, that is, whether
there is a closed λ-term M that type-checks in the simply-typed λ-calculus such that the
judgement .M : σ is provable is a hard problem. Indeed Statman proved that this problem
is P-space complete; see Statman [38] and Section 12.4.

It is natural so ask whether it is decidable whether given any second-order type σ, there
is a closed λ-term M that type-checks in system F such that the judgement . M : σ is
provable (if σ is viewed as a second-order logical formula, the problem is to decide whether σ
is provable). Surprisingly the answer is no; this problem (called inhabitation) is undecidable.
This result was proven by Löb around 1976, see Barendregt [4].

This undecidability result is troubling and at first glance seems paradoxical. Indeed,
viewed as a logical formula, a second-order type σ is a QBF (a quantified boolean formula),
and if we assign the truth values F and T to the boolean variables in it, we can decide
whether such a proposition is valid in exponential time and polynomial space (in fact, we
will see that later QBF validity is P-space complete). This seems in contradiction with the
fact that provability is undecidable.

5.7. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 149

But the proof system corresponding to system F is an intuitionistic proof system, so
there are (non-quantifed) propositions that are valid in the truth-value semantics but not
provable in intuitionistic propositional logic. The set of second-order propositions provable
in intuitionistic second-order logic is a proper subset of the set of valid QBF (under the
truth-value semantics), and it is not computable. So there is no paradox after all.

Going back to the issue of computability of numerical functions, a version of the Church
numerals can be defined as

cn = ΛX.λx : X.λf : (X → X). fn(x). (∗c1)

Observe that cn has type Nat. Also note that variables x and f now appear in the order x, f
in the λ-binder, as opposed to f, x as in Definition 5.8.

Inspired by the definition of Succ given in Section 5.4, we can define the successor
function on the natural numbers as

Succ = λn : Nat.ΛX.λx : X.λf : (X → X). f(nX xf).

Note how n, which is of type Nat = ∀X. (X → ((X → X) → X)), is applied to the type
variable X in order to become a term nX of type X → ((X → X) → X), so that nX xf
has type X, thus f(nX xf) also has type X.

For every type σ, every term F of type σ → σ and every term a of type σ, we have

cnσ aF =
(
ΛX.λx : X.λf : (X → X). fn(x)

)
σ aF

+−→λ2

(
λx : σ. λf : (σ → σ). fn(x)

)
aF

+−→λ2 F
n(a);

that is,

cnσ aF
+−→λ2 F

n(a). (∗c2)

So cnσ iterates F n times starting with a. As a consequence,

Succ cn =
(
λn : Nat.ΛX.λx : X.λf : (X → X). f(nX xf)

)
cn

+−→λ2 ΛX.λx : X.λf : (X → X). f(cnX xf)
+−→λ2 ΛX.λx : X.λf : (X → X). f(fn(x))

= ΛX.λx : X.λf : (X → X). fn+1(x) = cn+1.

We can also define addition of natural numbers as

Add = λm : Nat. λn : Nat.ΛX.λx : X.λf : (X → X). (mX f(nX xf))f.

Note how m and n, which are of type Nat = ∀X. (X → ((X → X) → X)), are applied to
the type variable X in order to become terms mX and nX of type X → ((X → X)→ X),

150 CHAPTER 5. THE LAMBDA-CALCULUS

so that nX xf has type X, thus f(nX xf) also has type X, and mX f(nX xf) has type
(X → X)→ X, and finally (mX f(nX xf))f has type X.

Many of the constructions that can be performed in the pure λ-calculus can be mimicked
in system F, which explains its expressive power.

For example, for any two second-order types σ and τ , we can define a pairing function
〈−,−〉 (to be very precise, 〈−,−〉σ,τ) given by

〈−,−〉 = λu : σ. λv : τ.ΛX.λf : σ → (τ → X). fuv,

of type σ →
(
τ →

(
∀X. ((σ → (τ → X)) → X)

))
. Given any term M of type σ and any

term N of type τ , we have

〈−,−〉σ,τMN
∗−→λ2 ΛX.λf : σ → (τ → X). fMN.

Thus we define 〈M,N〉 as

〈M,N〉 = ΛX.λf : σ → (τ → X). fMN,

and the type
∀X. ((σ → (τ → X))→ X)

of 〈M,N〉 is denoted by σ × τ . As a logical formula it is equivalent to σ ∧ τ , which means
that if we view σ and τ as (second-order) propositions, then

σ ∧ τ ≡ ∀X. ((σ → (τ → X))→ X)

is provable intuitionistically. This is a special case of the result that we mentioned earlier:
the connectives ∧,∨,¬ and ∃ are definable in terms of → (as a logical connective, ⇒) and
∀.

Proposition 5.13. The connectives ∧,∨,¬,⊥ and ∃ are definable in terms of → and ∀,
which means that the following equivalences are provable intuitionistically, where X is not
free in σ or τ :

σ ∧ τ ≡ ∀X.
(
(σ → (τ → X))→ X

)
σ ∨ τ ≡ ∀X.

(
(σ → X)→ ((τ → X)→ X)

)
⊥ ≡ ∀X.X
¬σ ≡ σ → ∀X.X
∃Y. σ ≡ ∀X.

(
(∀Y. (σ → X))→ X

)
.

We leave the proof as an exercise, or see Troelstra and Schwichtenberg [41] (Chapter 11).

Remark: The rule of type application implies that ⊥→ σ is intuitionistically provable for
all propositions (types) σ. So in second-order logic there is no difference between minimal
and intuitionistic logic.

5.7. DEFINABILITY OF FUNCTIONS IN TYPED LAMBDA-CALCULI 151

We also have two projections π1 and π2 (to be very precise πσ×τ1 and πσ×τ2) given by

π1 = λg : σ × τ. gσ(λx : σ. λy : τ. x)

π2 = λg : σ × τ. gτ(λx : σ. λy : τ. y).

It is easy to check that π1 has type (σ × τ) → σ and that π2 has type (σ × τ) → τ . The
reader should check that for any M of type σ and any N of type τ we have

π1〈M,N〉 +−→λ2 M and π2〈M,N〉 +−→λ2 N.

Example 5.20. We have

π1〈M,N〉 =
(
λg : σ × τ. gσ(λx : σ. λy : τ. x)

)(
ΛX.λf : σ → (τ → X). fMN

)
+−→λ2

(
ΛX.λf : σ → (τ → X). fMN

)
σ(λx : σ. λy : τ. x)

+−→λ2

(
λf : σ → (τ → σ). fMN

)
(λx : σ. λy : τ. x)

+−→λ2 (λx : σ. λy : τ. x)MN
+−→λ2 (λy : τ.M)N
+−→λ2 M.

The booleans can be defined as

T = ΛX.λx : X.λy : X. x

F = ΛX.λx : X.λy : X. y,

both of type Bool = ∀X. (X → (X → X)). We also define if then else as

if then else = ΛX.λz : Bool. zX

of type ∀X.Bool→ (X → (X → X)).
It is easy that for any type σ and any two terms M and N of type σ we have

(if T thenM elseN)σ
+−→λ2 M

(if F thenM elseN)σ
+−→λ2 N,

where we write (if T thenM elseN)σ instead of (if then else) σTMN (and similarly for the
other term).

Example 5.21. We have

(if T thenM elseN)σ =
(
ΛX.λz : Bool. zX

)
σTMN

+−→λ2

(
λz : Bool. zσ

)
TMN

+−→λ2

(
Tσ
)
MN

=
((

ΛX.λx : X.λy : X. x
)
σ
)
MN

+−→λ2

(
λx : σ. λy : σ. x

)
MN

+−→λ2 M.

152 CHAPTER 5. THE LAMBDA-CALCULUS

Lists, trees, and other inductively data stuctures are also representable in system F; see
Girard–Lafond–Taylor [18].

We can also define an iterator Iter given by

Iter = ΛX.λu : X.λf : (X → X). λz : Nat. zX uf

of type ∀X. (X → ((X → X)→ (Nat→ X))). The idea is that given f of type σ → σ and
u of type σ, the term Iterσ ufcn iterates f n times over the input u.

It is easy to show that for any term t of type Nat we have

Iterσ ufc0
+−→λ2 u

Iterσ uf(Succc t)
+−→λ2 f(Iterσ uft),

and that

Iterσ ufcn
+−→λ2 f

n(u).

Then mimicking what we did in the pure λ-calculus, we can show that the primitive
recursive functions are λ-definable in system F . Actually, higher-order primitive recursion
is definable. So, for example, Ackermann’s function is definable.

Remarkably, the class of numerical functions definable in system F is a class of (total)
computable functions much bigger than the class of primitive recursive functions. This class
of functions was characterized by Girard as the functions that are provably-recursive in a
formalization of arithmetic known as intuitionistic second-order arithmetic; see Girard [20],
Troelstra and Schwichtenberg [41] and Girard–Lafond–Taylor [18]. It can also be shown
(using a diagonal argument) that there are (total) computable functions not definable in
system F.

From a theoretical point of view, every (total) function that we will ever want to compute
is definable in system F. However, from a practical point of view, programming in system F
is very tedious and usually leads to very inefficient programs. Nevertheless polymorphism is
an interesting paradigm which had made its way in certain programming languages.

Type systems even more powerful than system F have been designed, the ultimate system
being the calculus of constructions due to Huet and Coquand, but these topics are beyond
the scope of these notes.

One last comment has to do with the use of the simply-typed λ-calculus as a the core
of a programming language. In the early 1970’s Dana Scott defined a system named LCF
based on the the simply-typed λ-calculus and obtained by adding the natural numbers and
the booleans as data types, product types, and a fixed-point operator. Robin Milner then
extended LCF, and as a by-product, defined a programming language known as ML, which
is the ancestor of most functional programming languages. A masterful and thorough expo-
sition of type theory and its use in programming language design is given in Pierce [32].

We now revisit the problem of defining the partial computable functions.

5.8. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS 153

5.8 Head Normal-Forms and the Partial Computable

Functions

One defect of the proof of Theorem 5.11 in the case where a computable function is partial
is the use of the Kleene normal form. The difficulty has to do with composition. Given
a partial computable function g λ-defined by a closed term G and a partial computable
function h λ-defined by a closed term H (for simplicity we assume that both g and h have
a single argument), it would be nice if the composition h ◦ g was represented by λx.H(Gx).
This is true if both g and h are total, but false if either g or h is partial as shown by the
following example from Barendregt [3] (Chapter 2, §2).

Example 5.22. If g is the function undefined everywhere and h is the constant func-
tion 0, then g is λ-defined by G = KΩ and h is λ-defined by H = K c0, with Ω =
(λx. (xx))(λx. (xx)). We have

λx.H(Gx) = λx.K c0(KΩx)
+−→β λx.Kc0Ω

+−→β λx. c0,

but h ◦ g = g is the function undefined everywhere, and λx. c0 represents the total function
h, so λx.H(Gx) does not λ-define h ◦ g.

It turns out that the λ-definability of the partial computable functions can be obtained
in a more elegant fashion without having recourse to the Kleene normal form by capturing
the fact that a function is undefined for some input is a more subtle way. The key notion
is the notion of head normal form, which is more general than the notion of β-normal form.
As a consequence, there a fewer λ-terms having no head normal form than λ-terms having
no β-normal form, and we capture a stronger form of divergence.

Recall that a λ-term is either a variable x, or an application (MN), or a λ-abstraction
(λx.M). We can sharpen this characterization as follows.

Proposition 5.14. The following properties hold:

(1) Every application term M is of the form

M = (N1N2 · · ·Nn−1)Nn, n ≥ 2,

where N1 is not an application term.

(2) Every abstraction term M is of the form

M = λx1 · · ·xn. N, n ≥ 1,

where N is not an abstraction term.

(3) Every λ-term M is of one of the following two forms:

M = λx1 · · ·xn. xM1 · · ·Mm, m, n ≥ 0 (a)

M = λx1 · · ·xn. (λx.M0)M1 · · ·Mm, m ≥ 1, n ≥ 0, (b)

where x is a variable.

154 CHAPTER 5. THE LAMBDA-CALCULUS

Proof. (1) Suppose that M is an application M = M1M2. We proceed by induction on the
depth of M1. For the base case M1 must be variables and we are done. For the induction
step, if M1 is a λ-abstraction, we are done. If M1 is an application, then by the induction
hypothesis it is of the form

M1 = (N1N2 · · ·Nn−1)Nn, n ≥ 2,

where N1 is not an application term, and then

M = M1M2 = ((N1N2 · · ·Nn−1)Nn)M2 n ≥ 2,

where N1 is not an application term.
The proof of (2) is similar.
(3) We proceed by induction on the depth of M . If M is a variable, then we are in Case

(a) with m = n = 0.
If M is an application, then by (1) it is of the form M = N1N2 · · ·Np with N1 not an

application term. This means that either N1 is a variable, in which case we are in Case (a)
with n = 0, or N1 is an abstraction, in which case we are in Case (b) also with n = 0.

If M is an abstraction λx.N , then by the induction hypothesis N is of the form (a) or
(b), and by adding one more binder λx in front of these expressions we preserve the shape
of (a) and (b) by increasing n by 1.

Example 5.23. The terms, I,K,K∗,S, the Church numerals cn, if then else, 〈M,N〉, π1, π2,
Iter, Succc, Add and Mult as in Proposition 5.5, are λ-terms of type (a). However, PredK,
Ω = (λx. (xx))(λx. (xx)), Y (the Curry Y-combinator), Θ (the Turing Θ-combinator) are
of type (b).

Proposition 5.14 motivates the following definition.

Definition 5.17. A λ-term M is a head normal form (for short hnf) if it is of the form (a),
namely

M = λx1 · · ·xn. xM1 · · ·Mm, m, n ≥ 0,

where x is a variable called the head variable.
A λ-term M has a head normal form if there is some head normal form N such that

M
∗−→β N .

In a term M of the form (b),

M = λx1 · · ·xn. (λx.M0)M1 · · ·Mm, m ≥ 1, n ≥ 0,

the subterm (λx.M0)M1 is called the head redex of M .

Example 5.24. In addition to the terms of type (a) that we listed after Proposition 5.14,
the term λx. xΩ is a head normal form. It is the head normal form of the term λx. (Ix)Ω,
which has no β-normal form.

5.8. HEAD NORMAL-FORMS AND THE PARTIAL COMPUTABLE FUNCTIONS 155

Not every term has a head normal form. For example, the term

Ω = (λx. (xx))(λx. (xx))

has no head normal form. Every β-normal form must be a head normal form, but the
converse is false as we saw with

M = λx. xΩ,

which is a head normal form but has no β-normal form.
Note that a head redex of a term is a leftmost redex, but not conversely, as shown by the

term λx. x((λy. y)x).
A term may have more than one head normal form but here is a way of obtaining a head

normal form (if there is one) in a systematic fashion.

Definition 5.18. The relation −→h, called one-step head reduction, is defined as follows:
For any two terms M and N , if M contains a head redex (λx.M0)M1, which means that M
is of the form

M = λx1 · · ·xn. (λx.M0)M1 · · ·Mm, m ≥ 1, n ≥ 0,

then M −→h N with

N = λx1 · · ·xn. (M0[x := M1])M2 · · ·Mm.

We denote by
+−→h the transitive closure of −→h and by

∗−→h the reflexive and transitive
closure of −→h.

Given a term M containing a head redex, the head reduction sequence of M is the uniquely
determined sequence of one-step head reductions

M = M0 −→h M1 −→h · · · −→h Mn −→h · · · .

If the head reduction sequence reaches a term Mn which is a head normal form we say that
the sequence terminates , and otherwise we say that M has an infinite head reduction.

The following result is shown in Barendregt [3] (Chapter 8, §3).

Theorem 5.15. (Wadsworth) A λ-term M has a head normal form if and only if the head
reduction sequence terminates.

In some intuitive sense, a λ-term M that does not have any head normal form has a
strong divergence behavior with respect to β-reduction.

Remark: There is a notion more general than the notion of head normal form which comes
up in functional languages (for example, Haskell). A λ-term M is a weak head normal form
if it of one of the two forms

λx.N or yN1 · · ·Nm

156 CHAPTER 5. THE LAMBDA-CALCULUS

where y is a variable These are exactly the terms that do not have a redex of the form
(λx.M0)M1N1 · · ·Nm. Every head normal form is a weak head normal form, but there are
many more weak head normal forms than there are head normal forms since a term of the
form λx.N where N is arbitrary is a weak head normal form, but not a head normal form
unless N is of the form λx1 · · ·xn. xM1 · · ·Mm, with m,n ≥ 0.

Reducing to a weak head normal form is a lazy evaluation strategy.

There is also another useful notion which turns out to be equivalent to having a head
normal form.

Definition 5.19. A closed λ-term M is solvable if there are closed terms N1, . . . , Nn such
that

MN1 · · ·Nn
∗−→β I.

A λ-term M with free variables x1, . . . , xm is solvable if the closed term λx1 · · ·xm.M is
solvable. A term is unsolvable if it is not solvable.

The following result is shown in Barendregt [3] (Chapter 8, §3).

Theorem 5.16. (Wadsworth) A λ-term M has a head normal form if and only if is it
solvable.

Actually, the proof that having a head normal form implies solvable is not hard.
We are now ready to revise the notion of λ-definability of numerical functions.

Definition 5.20. A function (partial or total) f : Nn → N is strongly λ-definable if for all
m1, . . ., mn ∈ N, there is a combinator (a closed λ-term) F with the following properties:

(1) If the value f(m1, . . . ,mn) is defined, then Fcm1 · · · cmn reduces to the β-normal form
cf(m1,...,mn).

(2) If f(m1, . . . ,mn) is undefined, then Fcm1 · · · cmn has no head normal form, or equiva-
lently, is unsolvable.

Observe that in Case (2), when the value f(m1, . . . ,mn) is undefined, the divergence
behavior of Fcm1 · · · cmn is stronger than in Definition 5.16. Not only Fcm1 · · · cmn has no
β-normal form, but actually it has no head normal form.

The following result is proven in Barendregt [3] (Chapter 8, §4). The proof does not use
the Kleene normal form. Instead, it makes clever use of the term KII. Another proof is
given in Krivine [25] (Chapter II).

Theorem 5.17. Every partial or total computable function is strongly λ-definable. Con-
versely, every strongly λ-definable function is partial computable.

Making sure that a composition g ◦ (h1, . . . , hm) is defined for some input x1, . . . , xn iff all
the hi(x1, . . . , xn) and g(h1(x1, . . . , xn), . . . , hm(x1, . . . , xn)) are defined is tricky. The term
KII comes to the rescue! If g is strongly λ-definable by G and the hi are strongly λ-definable
by Hi, then it can be shown that the combinator F given by

F = λx1 · · ·xn. (H1x1 · · ·xnKII) · · · (Hmx1 · · ·xnKII)(G(H1x1 · · ·xn) · · · (G(Hmx1 · · ·xn))

strongly λ-defines F ; see Barendregt [3] (Chapter 8, Lemma 8.4.6).

Chapter 6

Recursion Theory; More Advanced
Topics

This chapter is devoted to three advanced topics of recursion theory:

(1) The recursion theorem.

(2) The extended Rice theorem.

(3) Creative and productive sets and their use in proving a strong version of Gödel’s first
incompleteness theorem.

The recursion theorem is a deep result and an important technical tool in recursion
theory.

The extended Rice theorem gives a characterization of the sets of partial computable
functions that are listable in terms of extensions of partial computable functions with finite
domains.

Productive and creative sets arise when dealing with truth and provability in arithmetic.
The “royal road” to Gödel’s first incompleteness theorem is to first prove that for any proof
system for arithmetic that only proves true statements (and is rich enough), the set of true
sentences of arithmetic is productive. Productive sets are not listable in a strong sense, so
we deduce that it is impossible to axiomatize the set of true sentences of arithmetic in a
computable manner. The set of provable sentences of arithmetic is creative, which implies
that it is impossible to decide whether a sentence of arithmetic is provable. This also implies
that there are true sentences F such that neither F nor ¬F are provable.

6.1 The Recursion Theorem

The recursion theorem, due to Kleene, is a fundamental result in recursion theory. Let f be
a total computable function. Then it turns out that there is some n such that

ϕn = ϕf(n).

157

158 CHAPTER 6. RECURSION THEORY; MORE ADVANCED TOPICS

To understand why such a mysterious result is interesting, consider the recursive definition
of the factorial function fact(n) = n! given by

fact(0) = 1

fact(n+ 1) = (n+ 1)fact(n).

The trick is to define the partial computable computable function g (defined on N2) given
by

g(m, 0) = 1

g(m,n+ 1) = (n+ 1)ϕm(n)

for all m,n ∈ N. By the s-m-n Theorem, there is a computable function f such that

g(m,n) = ϕf(m)(n) for all m,n ∈ N.

Then the equations above become

ϕf(m)(0) = 1

ϕf(m)(n+ 1) = (n+ 1)ϕm(n).

Since f is (total) recursive, there is some m0 such that ϕm0 = ϕf(m0), and for m0 we get

ϕm0(0) = 1

ϕm0(n+ 1) = (n+ 1)ϕm0(n),

so the partial recursive function ϕm0 satisfies the recursive definition of factorial , which
means that it is a fixed point of the recursive equations defining factorial. Since factorial is
a total function, ϕm0 = fact, that is, factorial is a total computable function.

More generally, if a function h (over Nk) is defined in terms of recursive equations of the
form

h(z1, . . . , zk) = t(h(y1, . . . , yk))

where y1, . . . , yk, z1, . . . , zk are expressions in some variables x1, . . . , xk ranging over N and
where t is an expression containing recursive occurrences of h, if we can show that the
equations

g(m, z1, . . . , zk) = t(ϕm(y1, . . . , yk))

define a partial computable function g, then we can use the above trick to put them in the
form

ϕf(m)(z1, . . . , zk) = t(ϕm(y1, . . . , yk)).

for some computable function f . Such a formalism is decribed in detail in Chapter XI of
Kleene I.M [23]. By the recursion theorem, there is some m0 such that ϕm0 = ϕf(m0), so ϕm0

satisfies the recursive equations

ϕm0(z1, . . . , zk) = t(ϕm0(y1, . . . , yk)),

6.1. THE RECURSION THEOREM 159

and ϕm0 is a fixed point of these recursive equations. If we can show that ϕm0 is total, then
we found the fixed point of this set of recursive equations and h = ϕm0 is a total computable
function. If ϕm0 is a partial function, it is still a fixed point. However in general there is
more than one fixed point and we don’t which one ϕm0 is (it could be the partial function
undefined everywhere).

Theorem 6.1. (Recursion Theorem, Version 1) Let ϕ0, ϕ1, . . . be any acceptable indexing
of the partial computable functions. For every total computable function f , there is some n
such that

ϕn = ϕf(n).

Proof. Consider the function θ defined such that

θ(x, y) = ϕuniv(ϕuniv(x, x), y) for all x, y ∈ N.

The function θ is partial computable, and there is some index j such that ϕj = θ. By the
s-m-n Theorem, there is a computable function g such that

ϕg(x)(y) = θ(x, y).

Consider the function f◦g. Since it is computable, there is some indexm such that ϕm = f◦g.
Let

n = g(m).

Since ϕm is total, ϕm(m) is defined, and we have

ϕn(y) = ϕg(m)(y) = θ(m, y) = ϕuniv(ϕuniv(m,m), y) = ϕϕuniv(m,m)(y)

= ϕϕm(m)(y) = ϕf◦g(m)(y) = ϕf(g(m))(y) = ϕf(n)(y),

for all y ∈ N. Therefore, ϕn = ϕf(n), as desired.

The recursion theorem can be strengthened as follows.

Theorem 6.2. (Recursion Theorem, Version 2) Let ϕ0, ϕ1, . . . be any acceptable indexing
of the partial computable functions. There is a total computable function h such that for all
x ∈ N, if ϕx is total, then

ϕϕx(h(x)) = ϕh(x).

Proof. The computable function g obtained in the proof of Theorem 6.1 satisfies the condition

ϕg(x) = ϕϕx(x),

and it has some index i such that ϕi = g. Recall that c is a computable composition function
such that

ϕc(x,y) = ϕx ◦ ϕy.
It is easily verified that the function h defined such that

h(x) = g(c(x, i)) for all x ∈ N

does the job.

160 CHAPTER 6. RECURSION THEORY; MORE ADVANCED TOPICS

A third version of the recursion Theorem is given below.

Theorem 6.3. (Recursion Theorem, Version 3) For all n ≥ 1, there is a total computable
function h of n + 1 arguments, such that for all x ∈ N, if ϕx is a total computable function
of n+ 1 arguments, then

ϕϕx(h(x,x1,...,xn),x1,...,xn) = ϕh(x,x1,...,xn),

for all x1, . . . , xn ∈ N.

Proof. Let θ be the function defined such that

θ(x, x1, . . . , xn, y) = ϕϕx(x,x1,...,xn)(y) = ϕuniv(ϕuniv(x, x, x1, . . . , xn), y)

for all x, x1, . . . , xn, y ∈ N. By the s-m-n Theorem, there is a computable function g such
that

ϕg(x,x1,...,xn) = ϕϕx(x,x1,...,xn).

It is easily shown that there is a computable function c such that

ϕc(i,j)(x, x1, . . . , xn) = ϕi(ϕj(x, x1, . . . , xn), x1, . . . , xn)

for any two partial computable functions ϕi and ϕj (viewed as functions of n+ 1 arguments)
and all x, x1, . . . , xn ∈ N. Let ϕi = g, and define h such that

h(x, x1, . . . , xn) = g(c(x, i), x1, . . . , xn),

for all x, x1, . . . , xn ∈ N. We have

ϕh(x,x1,...,xn) = ϕg(c(x,i),x1,...,xn) = ϕϕc(x,i)(c(x,i),x1,...,xn),

and using the fact that ϕi = g,

ϕϕc(x,i)(c(x,i),x1,...,xn) = ϕϕx(ϕi(c(x,i),x1,...,xn),x1,...,xn),

= ϕϕx(g(c(x,i),x1,...,xn),x1,...,xn),

= ϕϕx(h(x,x1,...,xn),x1,...,xn).

As a first application of the recursion theorem, we can show that there is an index n such
that ϕn is the constant function with output n. Loosely speaking, ϕn prints its own name.
Let f be the computable function such that

f(x, y) = x

for all x, y ∈ N. By the s-m-n Theorem, there is a computable function g such that

ϕg(x)(y) = f(x, y) = x

6.1. THE RECURSION THEOREM 161

for all x, y ∈ N. By the Theorem 6.1, there is some n such that

ϕg(n) = ϕn,

the constant function with value n.

As a second application, we get a very short proof of Rice’s theorem. Let C be such that
PC 6= ∅ and PC 6= N, and let j ∈ PC and k ∈ N− PC . Define the function f as follows:

f(x) =

{
j if x /∈ PC ,
k if x ∈ PC ,

If PC is computable, then f is computable. By the recursion theorem (Theorem 6.1), there
is some n such that

ϕf(n) = ϕn.

But then we have

n ∈ PC iff f(n) /∈ PC
by definition of f , and thus,

ϕf(n) 6= ϕn,

a contradiction. Hence, PC is not computable.

As a third application, we prove the following proposition.

Proposition 6.4. Let C be a set of partial computable functions and let

A = {x ∈ N | ϕx ∈ C}.

The set A is not reducible to its complement A.

Proof. Assume that A ≤ A. Then there is a computable function f such that

x ∈ A iff f(x) ∈ A

for all x ∈ N. By the recursion theorem, there is some n such that

ϕf(n) = ϕn.

But then,

ϕn ∈ C iff n ∈ A iff f(n) ∈ A iff ϕf(n) ∈ C,

contradicting the fact that

ϕf(n) = ϕn.

162 CHAPTER 6. RECURSION THEORY; MORE ADVANCED TOPICS

The recursion theorem can also be used to show that functions defined by recursive
definitions other than primitive recursion are partial computable, as we discussed a the
beginning of this section. This is the case for the function known as Ackermann’s function
discussed in Section 1.9 and defined recursively as follows:

f(0, y) = y + 1,

f(x+ 1, 0) = f(x, 1),

f(x+ 1, y + 1) = f(x, f(x+ 1, y)).

It can be shown that this function is not primitive recursive. Intuitively, it outgrows all
primitive recursive functions. However, f is computable, but this is not so obvious. We can
use the recursion theorem to prove that f is computable. Using the technique described at
the beginning of this section consider the following definition by cases:

g(n, 0, y) = y + 1,

g(n, x+ 1, 0) = ϕuniv(n, x, 1),

g(n, x+ 1, y + 1) = ϕuniv(n, x, ϕuniv(n, x+ 1, y)).

Clearly, g is partial computable. By the s-m-n Theorem, there is a computable function h
such that

ϕh(n)(x, y) = g(n, x, y).

The equations defining g yield

ϕh(n)(0, y) = y + 1,

ϕh(n)(x+ 1, 0) = ϕn(x, 1),

ϕh(n)(x+ 1, y + 1) = ϕn(x, ϕn(x+ 1, y)).

By the recursion theorem, there is an m such that

ϕh(m) = ϕm.

Therefore, the partial computable function ϕm(x, y) satisfies the equations

ϕm(0, y) = y + 1,

ϕm(x+ 1, 0) = ϕm(x, 1),

ϕm(x+ 1, y + 1) = ϕm(x, ϕm(x+ 1, y))

defining Ackermann’s function. We showed in Section 1.9 that ϕm(x, y) is a total function,
and thus, f = ϕm and Ackermann’s function is a total computable function.

Hence, the recursion theorem justifies the use of certain recursive definitions. However,
note that there are some recursive definitions that are only satisfied by the completely un-
defined function.

In the next section, we prove the extended Rice theorem.

6.2. EXTENDED RICE THEOREM 163

6.2 Extended Rice Theorem

The extended Rice theorem characterizes the sets of partial computable functions C such that
PC is listable (c.e., r.e.). First, we need to discuss a way of indexing the partial computable
functions that have a finite domain. Using the uniform projection function Π (see Definition
3.3), we define the primitive recursive function F such that

F (x, y) = Π(y + 1,Π1(x) + 1,Π2(x)).

We also define the sequence of partial functions P0, P1, . . . as follows:

Px(y) =
{
F (x, y)− 1 if 0 < F (x, y) and y < Π1(x) + 1,
undefined otherwise.

Proposition 6.5. Every Px is a partial computable function with finite domain, and every
partial computable function with finite domain is equal to some Px.

The proof is left as an exercise. The easy part of the extended Rice theorem is the
following lemma. Recall that given any two partial functions f : A→ B and g : A→ B, we
say that g extends f iff f ⊆ g, which means that g(x) is defined whenever f(x) is defined,
and if so, g(x) = f(x).

Proposition 6.6. Let C be a set of partial computable functions. If there is a listable
(c.e., r.e.) set A such that ϕx ∈ C iff there is some y ∈ A such that ϕx extends Py, then
PC = {x | ϕx ∈ C} is listable (c.e., r.e.).

Proof. Proposition 6.6 can be restated as

PC = {x | ∃y ∈ A, Py ⊆ ϕx}

is listable. If A is empty, so is PC , and PC is listable. Otherwise, let f be a computable
function such that

A = range(f).

Let ψ be the following partial computable function:

ψ(z) =
{

Π1(z) if Pf(Π2(z)) ⊆ ϕΠ1(z),
undefined otherwise.

It is clear that
PC = range(ψ).

To see that ψ is partial computable, write ψ(z) as follows:

ψ(z) =


Π1(z) if ∀w ≤ Π1(f(Π2(z)))

[F (f(Π2(z)), w) > 0⇒ ϕΠ1(z)(w) = F (f(Π2(z)), w)− 1],

undefined otherwise.

This completes the proof.

164 CHAPTER 6. RECURSION THEORY; MORE ADVANCED TOPICS

To establish the converse of Proposition 6.6, we need two propositions.

Proposition 6.7. If PC is listable (c.e., r.e.) and ϕ ∈ C, then there is some Py ⊆ ϕ such
that Py ∈ C.

Proof. Assume that PC is listable and that ϕ ∈ C. By an s-m-n construction, there is a
computable function g such that

ϕg(x)(y) =

{
ϕ(y) if ∀z ≤ y[¬T (x, x, z)],
undefined if ∃z ≤ y[T (x, x, z)],

for all x, y ∈ N. Observe that if x ∈ K, then ϕg(x) is a finite subfunction of ϕ, and if x ∈ K,
then ϕg(x) = ϕ. Assume that no finite subfunction of ϕ is in C. Then

x ∈ K iff g(x) ∈ PC

for all x ∈ N, that is, K ≤ PC . Since PC is listable, K would also be listable, a contradiction.

As a corollary of Proposition 6.7, we note that TOTAL is not listable.

Proposition 6.8. If PC is listable (c.e., r.e.), ϕ ∈ C, and ϕ ⊆ ψ, where ψ is a partial
computable function, then ψ ∈ C.

Proof. Assume that PC is listable. We claim that there is a computable function h such that

ϕh(x)(y) =

{
ψ(y) if x ∈ K,
ϕ(y) if x ∈ K,

for all x, y ∈ N. Assume that ψ /∈ C. Then

x ∈ K iff h(x) ∈ PC

for all x ∈ N, that is, K ≤ PC , a contradiction, since PC is listable. Therefore, ψ ∈ C. To
find the function h we proceed as follows: Let ϕ = ϕj and define Θ such that

Θ(x, y, z) =

{
ϕ(y) if T (j, y, z) ∧ ¬T (x, y, w), for 0 ≤ w < z
ψ(y) if T (x, x, z) ∧ ¬T (j, y, w), for 0 ≤ w < z
undefined otherwise.

Observe that if x = y = j, then Θ(j, j, z) is multiply defined, but since ψ extends ϕ, we
get the same value ψ(y) = ϕ(y), so Θ is a well defined partial function. Clearly, for all
(m,n) ∈ N2, there is at most one z ∈ N so that Θ(x, y, z) is defined, so the function σ
defined by

σ(x, y) =
{
z if (x, y, z) ∈ dom(Θ)
undefined otherwise

6.2. EXTENDED RICE THEOREM 165

is a partial computable function. Finally, let

θ(x, y) = Θ(x, y, σ(x, y)),

a partial computable function. It is easy to check that

θ(x, y) =

{
ψ(y) if x ∈ K,
ϕ(y) if x ∈ K,

for all x, y ∈ N. By the s-m-n Theorem, there is a computable function h such that

ϕh(x)(y) = θ(x, y)

for all x, y ∈ N.

Observe that Proposition 6.8 yields a new proof that TOTAL is not listable (not c.e., not
r.e.). Finally we can prove the extended Rice theorem.

Theorem 6.9. (Extended Rice Theorem) The set PC is listable (c.e., r.e.) iff there is a
listable (c.e., r.e) set A such that

ϕx ∈ C iff ∃y ∈ A (Py ⊆ ϕx).

Proof. Let PC = dom(ϕi). Using the s-m-n Theorem, there is a computable function k such
that

ϕk(y) = Py for all y ∈ N.

Define the listable set A such that

A = dom(ϕi ◦ k).

Then
y ∈ A iff ϕi(k(y)) ↓ iff Py ∈ C.

Next, using Proposition 6.7 and Proposition 6.8, it is easy to see that

ϕx ∈ C iff ∃y ∈ A (Py ⊆ ϕx).

Indeed, if ϕx ∈ C, by Proposition 6.7, there is a finite subfunction Py ⊆ ϕx such that Py ∈ C,
but

Py ∈ C iff y ∈ A,
as desired. On the other hand, if

Py ⊆ ϕx

for some y ∈ A, then
Py ∈ C,

and by Proposition 6.8, since ϕx extends Py, we get

ϕx ∈ C.

166 CHAPTER 6. RECURSION THEORY; MORE ADVANCED TOPICS

6.3 Creative and Productive Sets; Incompleteness in

Arithmetic

In this section, we discuss some special sets that have important applications in logic: creative
and productive sets. These notions were introduced by Post and Dekker (1944, 1955). The
concepts to be described are illustrated by the following situation. Assume that

Wx ⊆ K

for some x ∈ N (recall that Wx was introduced in Definition 4.7). We claim that

x ∈ K −Wx.

Indeed, if x ∈ Wx, then ϕx(x) is defined, and by definition of K, we get x /∈ K, a contradic-
tion. Therefore, ϕx(x) must be undefined, that is,

x ∈ K −Wx.

The above situation can be generalized as follows.

Definition 6.1. A set A ⊆ N is productive iff there is a total computable function f such
that for every listable set Wx,

if Wx ⊆ A then f(x) ∈ A−Wx for all x ∈ N.

The function f is called the productive function of A. A set A is creative if it is listable (c.e.,
r.e.) and if its complement A is productive.

As we just showed, K is creative and K is productive. It is also easy to see that TOTAL
is productive. But TOTAL is worse than K, because by Proposition 4.20, TOTAL is not
listable.

The following facts are immediate consequences of the definition.

(1) A productive set is not listable (not c.e., not r.e.), since A 6= Wx for all listable sets Wx

(the image of the productive function f is a subset of A −Wx, which can’t be empty
since f is total).

(2) A creative set is not computable (not recursive).

Productiveness is a technical way of saying that a nonlistable set A is not listable in a
rather strong and constructive sense. Indeed, there is a computable function f such that
no matter how we attempt to approximate A with a listable set Wx ⊆ A, then f(x) is an
element in A not in Wx.

6.3. CREATIVE AND PRODUCTIVE SETS; INCOMPLETENESS 167

Remark: In Rogers [36] (Chapter 7, Section 3), the definition of a productive set only
requires the productive function f to be partial computable. However, it is proven in Theorem
XI of Rogers that this weaker requirement is equivalent to the stronger requirement of
Definition 6.1.

Creative and productive sets arise in logic. The set of theorems of a logical theory is
often creative. For example, the set of theorems in Peano’s arithmetic is creative, and the
set of true sentences of Peano’s arithmetic is productive. This yields incompleteness results.
We will return to this topic at the end of this section.

Proposition 6.10. If a set A is productive, then it has an infinite listable (c.e., r.e.) subset.

Proof. We first give an informal proof. Let f be the computable productive function of A.
We define a computable function g as follows: Let x0 be an index for the empty set, and let

g(0) = f(x0).

Assuming that
{g(0), g(1), . . . , g(y)}

is known, let xy+1 be an index for this finite set, and let

g(y + 1) = f(xy+1).

Since Wxy+1 ⊆ A, we have f(xy+1) ∈ A.

For the formal proof, following Rogers [36] (Chapter 7, Section 7, Theorem X), we use
the following facts whose proof is left as an exercise:

(1) There is a computable function u such that

Wu(x,y) = Wx ∪Wy.

(2) There is a computable function t such that

Wt(x) = {x}.

Letting x0 be an index for the empty set, we define the function h as follows:

h(0) = x0,

h(y + 1) = u(t(f(y)), h(y)).

We define g such that
g = f ◦ h.

It is easily seen that g does the job.

168 CHAPTER 6. RECURSION THEORY; MORE ADVANCED TOPICS

Another important property of productive sets is the following.

Proposition 6.11. If a set A is productive, then K ≤ A.

Proof. Let f be a productive function for A. Using the s-m-n Theorem, we can find a
computable function h such that

Wh(y,x) =

{
{f(y)} if x ∈ K,
∅ if x ∈ K.

The above can be restated as follows:

ϕh(y,x)(z) =

{
1 if x ∈ K and z = f(y),
undefined if x ∈ K,

for all x, y, z ∈ N. By the third version of the recursion theorem (Theorem 6.3), there is a
computable function g such that

Wg(x) = Wh(g(x),x) for all x ∈ N.

Let
k = f ◦ g.

We claim that
x ∈ K iff k(x) ∈ A for all x ∈ N.

Subtituting g(x) for y in the equation for Wh(y,x) and using the fact that Wg(x) = Wh(g(x),x)

and k(x) = f(g(x)), we get

Wg(x) =

{
{f(g(x))} = {k(x)} if x ∈ K,
∅ if x ∈ K.

Because f is a productive function for A, if x ∈ K, then Wg(x) = ∅ ⊆ A, so k(x) = f(g(x)) ∈
A. Conversely, assume that k(x) = f(g(x)) ∈ A. If x ∈ K, then Wg(x) = {f(g(x))}, so
Wg(x) ⊆ A, and since f is a productive function for A, we have f(g(x)) ∈ A − Wg(x) =
A − {f(g(x))}, a contradiction. Therefore, x /∈ K and the reduction is achieved. Thus,
K ≤ A.

Using Part (1) of Proposition 6.12 stated next we obtain the converse of Proposition 6.11.
Thus a set A is productive iff K ≤ A. This fact is recorded in the next proposition.

The following results can also be shown.

Proposition 6.12. The following facts hold.

(1) If A is productive and A ≤ B, then B is productive.

(2) A is creative iff A is complete.

6.3. CREATIVE AND PRODUCTIVE SETS; INCOMPLETENESS 169

(3) A is creative iff A is equivalent to K.

(4) A is productive iff K ≤ A.

Part (1) is easy to prove; see Rogers [36] (Chapter 7, Theorem V(b)). Part (2) is proven
in Rogers [36] (Chapter 11, Corollary V). Part (3) follows from Part (2) since K is complete.
Part (4) follows from Proposition 6.11 and Part (1).

We conclude with a discussion of the significance of the notions of productive and creative
sets to logic. A more detailed discussion can be found in Rogers [36] (Chapter 7, Section
8). In Section ?? we discussed Peano arithmetic and the reader is invited to review it. It is
convenient to add a countable set of constants 0, 1, 2, . . . , denoting the natural numbers to
the language of arithmetic, and the new axioms

Sn(0) = n, n ∈ N.

By a now fairly routine process (using a pairing function and an extended pairing function),
it is possible to assign a Gödel number #(A) to every first-order sentence A in the language
of arithmetic; see Enderton [11] (Chapter III) or Kleene I.M. [23] (Chapter X). With some
labor, it is possible to construct a formula Fx with one free variable x having the following
property:

n ∈ K iff (Fn is true in N)

n /∈ K iff (Fn is false in N) iff (¬Fx is true in N).

One should not underestimate the technical difficulty of this task. One of Gödel’s most
original steps in proving his first incompleteness theorem was to define a variant of the
formula Fx. Later on, simpler proofs were given, but they are still very technical. The brave
reader should attempt to solve Exercises 7.64 and 7.65 in Rogers [36].

Observe that the sentences Fn are special kinds of sentences of arithmetic but of couse
there are many more sentences of arithmetic. The following “basic lemma” from Rogers [36]
(Chapter 7, Section 8) is easily shown.

Proposition 6.13. For any two subsets S and T of N, if T is listable and if S ∩ T is
productive, then S is productive. In particular, if T is computable and if S ∩T is productive,
then S is productive.

With a slight abuse of notation, we say that a set T is sentences of arithmetic is com-
putable (resp. listable) iff the set of Gödel numbers #(A) of sentences A in T is computable
(resp. listable). Then the following remarkable (historically shocking) facts hold.

Theorem 6.14. (Unaxiomatizability of arithmetic) The following facts hold.

(1) The set of sentences of arithmetic true in N is a productive set. Consequently, the set
of true sentences is not listable.

170 CHAPTER 6. RECURSION THEORY; MORE ADVANCED TOPICS

(2) The set of sentences of arithmetic false in N is a productive set. Consequently, the set
of false sentences is not listable.

Proof sketch. (1) It is easy to show that the set {¬Fx | x ∈ N} is computable. Since

{n ∈ N | ¬Fn is true in N} = K

is productive and

{A | A is true in N} ∩ {¬Fx | x ∈ N} = {¬Fx | ¬Fx is true in N}
= {¬Fx | x ∈ K},

by Proposition 6.13, the set {A | A is true in N} is also productive.

(2) It is also easy to show that the set {Fx | x ∈ N} is computable. Since

{n ∈ N | Fn is false in N} = K

is productive and

{A | A is false in N} ∩ {Fx | x ∈ N} = {Fx | Fx is false in N}
= {Fx | x ∈ K},

by Proposition 6.13, the set {A | A is false in N} is also productive.

Definition 6.2. A proof system for arithmetic is axiomatizable if the set of provable sen-
tences is listable.

Since the set of provable sentences of an axiomatizable proof system is listable, Theo-
rem 6.14 annihilates any hope of finding an axiomatization of arithmetic. Theorem 6.14
also shows that it is impossible to decide effectively (algorithmically) whether a sentence of
arithmetic is true. In fact the set of true sentences of arithmetic is not even listable.

If we consider proof systems for arithmetic, such as Peano arithmetic, then creative sets
show up.

Definition 6.3. A proof system for arithmetic is sound if every provable sentence is true
(in N). A proof system is consistent if there is no sentence A such that both A and ¬A are
provable.

Clearly, a sound proof system is consistent.

Assume that a proof system for arithmetic is sound and strong enough so that the for-
mula Fx with the free variable x introduced just before Proposition 6.13 has the following
properties:

n ∈ K iff (Fn is provable)

n /∈ K iff (Fn is not provable).

Peano arithmetic is such a proof system. Then we have the following theorem.

6.3. CREATIVE AND PRODUCTIVE SETS; INCOMPLETENESS 171

Theorem 6.15. (Undecidability of provability in arithmetic) Consider any axiomatizable
proof system for arithmetic satisfying the hypotheses stated before the statement of the theo-
rem. The following facts hold.

(1) The set of unprovable sentences of arithmetic is a productive set. Consequently, the
set of unprovable sentences is not listable.

(2) The set of provable sentences of arithmetic is a creative set. Consequently, the set of
provable sentences is not computable.

Proof sketch. (1) It is easy to show that the set {Fx | x ∈ N} is computable. Since

{n ∈ N | Fn is not provable} = K

is productive and

{A | A is not provable} ∩ {Fx | x ∈ N} = {Fx | Fx is not provable}
= {Fx | x ∈ K},

by Proposition 6.13, the set {A | A is not provable} is also productive.

(2) Since our proof system is axiomatizable, the set of provable sentences is listable, and
by (1), its complement is productive, so the set of provable sentences is creative.

As a corollary of Theorem 6.15, there is no algorithm to decide whether a sentence of
arithmetic is provable or not. But things are worse. Because the set of unprovable sentences
of arithmetic is productive, there is a recursive function f , which for any attempt to find a
listable subset W of the nonprovable sentences of arithmetic, produces another nonprovable
sentence not in W .

Theorem 6.15 also implies Gödel’s first incompleteness theorem. Indeed, it is immediately
seen that the set {Fx | ¬Fx is provable} is listable (because {¬Fx | x ∈ N} is computable
and {A | A is provable} is listable). But since our proof system is assumed to be sound, ¬Fx
provable implies that Fx is not provable, so by

n /∈ K iff (Fn is not provable),

we have
{x ∈ N | ¬Fx is provable} ⊆ {x ∈ N | Fx is not provable} = K.

Since K is productive and {x ∈ N | ¬Fx is provable} is listable, we have

Wy = {x ∈ N | ¬Fx is provable}

for some y, and if f is the productive function associated with K, then for x0 = f(y) we
have

Fx0 ∈ {Fx | Fx is not provable} − {¬Fx | ¬Fx is provable},

172 CHAPTER 6. RECURSION THEORY; MORE ADVANCED TOPICS

that is, both Fx0 and ¬Fx0 are not provable. Furthermore, since

n /∈ K iff (Fn is not provable)

and
n /∈ K iff (Fn is false in N)

we see that Fx0 is false in N, and so ¬Fx0 is true in N. In summary, we proved the following
result.

Theorem 6.16. (Incompleteness in arithmetic (Gödel 1931)) Consider any axiomatizable
proof system for arithmetic satisfying the hypotheses stated earlier. Then there exists a
sentence F of arithmetic (F = ¬Fx0) such that neither F nor ¬F are provable. Furthermore,
F is true in N.

Theorem 6.15 holds under the weaker assumption that the proof system is consistent (as
opposed to sound), and that there is a formula G with one free variable x such that

n ∈ K iff (Gn is provable).

The formula G is due to Rosser. The incompleteness theorem (Theorem 6.16) also holds
under the weaker assumption of consistency. See also Kleene [24] (Chapter 5, Theorem VIII
and Corollary 1).

To summarize informally the above negative results:

1. No (effective) axiomatization of mathematics can exactly capture all true statements
of arithmetic.

2. From any (effective) axiomatization which yields only true statements of arithmetic, a
new true statement can be found not provable in that axiomatization.

Fact (2) is what inspired Post to use the term creative for the type of sets arising in
Definition 6.1. Indeed, one has to be creative to capture truth in arithmetic.

Another (relatively painless) way to prove incompleteness results in arithmetic is to use
Diophantine definability; see Section 7.8.

Chapter 7

Listable Sets and Diophantine Sets;
Hilbert’s Tenth Problem

7.1 Diophantine Equations and Hilbert’s

Tenth Problem

There is a deep and a priori unexpected connection between the theory of computable and
listable sets and the solutions of polynomial equations involving polynomials in several vari-
ables with integer coefficients. These are polynomials in n ≥ 1 variables x1, . . . , xn which
are finite sums of monomials of the form

axk11 · · ·xknn ,
where k1, . . . , kn ∈ N are nonnegative integers, and a ∈ Z is an integer (possibly negative).
The natural number k1 + · · ·+ kn is called the degree of the monomial axk11 · · ·xknn .

For example, if n = 3, then

1. 5, −7, are monomials of degree 0.

2. 3x1, −2x2, are monomials of degree 1.

3. x1x2, 2x2
1, 3x1x3, −5x2

2, are monomials of degree 2.

4. x1x2x3, x
2
1x3, −x3

2, are monomials of degree 3.

5. x4
1, −x2

1x
2
3, x1x

2
2x3, are monomials of degree 4.

It is convenient to introduce multi-indices, where an n-dimensional multi-index is an
n-tuple α = (k1, . . . , kn) with n ≥ 1 and ki ∈ N. Let |α| = k1 + · · ·+ kn. Then we can write

xα = xk11 · · ·xknn .
For example, for n = 3,

x(1,2,1) = x1x
2
2x3, x

(0,2,2) = x2
2x

2
3.

173

174 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Definition 7.1. A polynomial P (x1, . . . , xn) in the variables x1, . . . , xn with integer coeffi-
cients is a finite sum of monomials of the form

P (x1, . . . , xn) =
∑
α

aαx
α,

where the α’s are n-dimensional multi-indices, and with aα ∈ Z. The maximum of the
degrees |α| of the monomials aαx

α is called the total degree of the polynomial P (x1, . . . , xn).
The set of all such polynomials is denoted by Z[x1, . . . , xn].

Sometimes, we write P instead of P (x1, . . . , xn). We also use variables x, y, z etc. instead
of x1, x2, x3,

For example, 2x− 3y − 1 is a polynomial of total degree 1, x2 + y2 − z2 is a polynomial
of total degree 2, and x3 + y3 + z3 − 29 is a polynomial of total degree 3, and 2x4 + xyz − 1
is a polynomial of total degree 4.

Mathematicians have been interested for a long time in the problem of solving equations
of the form

P (x1, . . . , xn) = 0,

with P ∈ Z[x1, . . . , xn], seeking only integer solutions for x1, . . . , xn. What this means is that
we try to find n-tuples of integers (a1, . . . , an) ∈ Zn such that when we assign the value ai to
the variable xi for i = 1, . . . , n in the polynomial P (x1, . . . , xn) and evaluate P (a1, . . . , an)
we obtain P (a1, . . . , an) = 0.

Diophantus of Alexandria, a Greek mathematician of the 3rd century, was one of the
first to investigate such equations. For this reason, seeking integer solutions of polynomials
in Z[x1, . . . , xn] is referred to as solving Diophantine equations .

This problem is not as simple as it looks. The equation

2x− 3y − 1 = 0

obviously has the solution x = 2, y = 1, and more generally x = −1 + 3a, y = −1 + 2a, for
any integer a ∈ Z.

The equation
x2 + y2 − z2 = 0

has the solution x = 3, y = 4, z = 5, since 32 + 42 = 9 + 16 = 25 = 52. More generally, the
reader should check that

x = t2 − 1, y = 2t, z = t2 + 1

is a solution for all t ∈ Z.

Even solving quadratic Diophantine equations can be harder than it looks. For example,
it can be shown that the smallest positive solution to the equation

x2 − 73y2 − 1 = 0

7.1. DIOPHANTINE EQUATIONS; HILBERT’S TENTH PROBLEM 175

is

x = 2, 281, 249, y = 267, 000.

See Niven, Zuckermann and Montgomery [30], Section 7.8. The above equation is a special
case of what is known as Pell’s equation, x2−d2y2 = 1. It plays a crucial role in the negative
solution of Hilbert’s tenth problem (see below).

The equation

x3 + y3 + z3 − 29 = 0

has the solution x = 3, y = 1, z = 1.

What about the equation

x3 + y3 + z3 − 30 = 0?

Amazingly, the only known integer solution is

(x, y, z) = (−283059965,−2218888517, 2220422932),

discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant, and M. Beck, following an approach
suggested by N. Elkies.

And what about solutions of the equation

x3 + y3 + z3 − 33 = 0?

Until 2019 it was still an open problem but Andrew Booker found the following amazing
solution:

(8, 866, 128, 975, 287, 528)3+(−8, 778, 405, 442, 862, 239)3+(−2, 736, 111, 468, 807, 040)3 = 33.

In 1900, at the International Congress of Mathematicians held in Paris, the famous
mathematician David Hilbert presented a list of ten open mathematical problems. Soon
after, Hilbert published a list of 23 problems. The tenth problem is this:

Hilbert’s tenth problem (H10)

Find an algorithm that solves the following problem:

Given as input a polynomial P ∈ Z[x1, . . . , xn] with integer coefficients, return YES or
NO, according to whether there exist integers a1, . . . , an ∈ Z so that P (a1, . . . , an) = 0; that
is, the Diophantine equation P (x1, . . . , xn) = 0 has a solution.

It is important to note that at the time Hilbert proposed his tenth problem, a rigorous
mathematical definition of the notion of algorithm did not exist. In fact, the machinery
needed to even define the notion of algorithm did not exist. It is only around 1930 that
precise definitions of the notion of computability due to Turing, Church, and Kleene were
formulated, and soon after shown to be all equivalent.

176 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

So to be precise, the above statement of Hilbert’s tenth should say: find a RAM program
(or equivalently a Turing machine) that solves the following problem: ...

In 1970, the following somewhat surprising resolution of Hilbert’s tenth problem was
reached:

Theorem (Davis-Putnam-Robinson-Matiyasevich)

Hilbert’s tenth problem is undecidable; that is, there is no algorithm for solving Hilbert’s
tenth problem.

In 1962, Davis, Putnam and Robinson had shown that if a fact known as Julia Robinson
hypothesis could be proven, then Hilbert’s tenth problem would be undecidable. At the time,
the Julia Robinson hypothesis seemed implausible to many, so it was a surprise when in 1970
Matiyasevich found a set satisfying the Julia Robinson hypothesis, thus completing the proof
of the undecidability of Hilbert’s tenth problem. It is also a bit startling that Matiyasevich’s
set involves the Fibonacci numbers.

A detailed account of the history of the proof of the undecidability of Hilbert’s tenth
problem can be found in Martin Davis’ classical paper Davis [8].

Even though Hilbert’s tenth problem turned out to have a negative solution, the knowl-
edge gained in developing the methods to prove this result is very significant. What was
revealed is that polynomials have considerable expressive powers. This is what we discuss
in the next section.

7.2 Diophantine Sets and Listable Sets

We begin by showing that if we can prove that the version of Hilbert’s tenth problem with
solutions restricted to belong to N is undecidable, then Hilbert’s tenth problem (with solutions
in Z is undecidable).

Proposition 7.1. If we had an algorithm for solving Hilbert’s tenth problem (with solutions
in Z), then we would have an algorithm for solving Hilbert’s tenth problem with solutions
restricted to belong to N (that is, nonnegative integers).

Proof. The above statement is not at all obvious, although its proof is short with the help of
some number theory. Indeed, by a theorem of Lagrange (Lagrange’s four square theorem),
every natural number m can be represented as the sum of four squares,

m = a2
0 + a2

1 + a2
2 + a2

3, a0, a1, a2, a3 ∈ Z.

For a proof, see Niven, Zuckermann and Montgomery [30] (Section 6.4, Theorem 6.26) and
Davenport [6] (Chapter V, Section 4). Davenport’s proof is more elementary.

We reduce Hilbert’s tenth problem restricted to solutions in N to Hilbert’s tenth problem
(with solutions in Z). Given a Diophantine equation P (x1, . . . , xn) = 0, we can form the
polynomial

Q = P (u2
1 + v2

1 + y2
1 + z2

1 , . . . , u
2
n + v2

n + y2
n + z2

n)

7.2. DIOPHANTINE SETS AND LISTABLE SETS 177

in the 4n variables ui, vi, yi, zi (1 ≤ i ≤ n) obtained by replacing xi by u2
i + v2

i + y2
i + z2

i for
i = 1, . . . , n. If Q = 0 has a solution (p1, q1, r1, s1, . . . , pn, qn, rn, sn,) with pi, qi, ri, si ∈ Z,
then if we set ai = p2

i + q2
i + r2

i + s2
i , obviously P (a1, . . . , an) = 0 with ai ∈ N. Conversely, if

P (a1, . . . , an) = 0 with ai ∈ N, then by Lagrange’s theorem there exist some pi, qi, ri, si ∈ Z
(in fact N) such that ai = p2

i + q2
i + r2

i + s2
i for i = 1, . . . , n, and the equation Q = 0 has the

solution (p1, q1, r1, s1, . . . , pn, qn, rn, sn,) with pi, qi, ri, si ∈ Z. Therefore Q = 0 has a solution
(p1, q1, r1, s1, . . . , pn, qn, rn, sn,) with pi, qi, ri, si ∈ Z iff P = 0 has a solution (a1, . . . , an) with
ai ∈ N. If we had an algorithm to decide whether Q has a solution with its components
in Z, then we would have an algorithm to decide whether P = 0 has a solution with its
components in N.

As consequence, the contrapositive of Proposition 7.1 shows that if the version of Hilbert’s
tenth problem restricted to solutions in N is undecidable, so is Hilbert’s original problem
(with solutions in Z).

In fact, the Davis-Putnam-Robinson-Matiyasevich theorem establishes the undecidability
of the version of Hilbert’s tenth problem restricted to solutions in N. From now on, we restrict
our attention to this version of Hilbert’s tenth problem.

A key idea is to use Diophantine equations with parameters to define sets of numbers.

Example 7.1. For example, consider the polynomial

P1(a, y, z) = (y + 2)(z + 2)− a.

For a ∈ N fixed, the equation (y + 2)(z + 2)− a = 0, equivalently

a = (y + 2)(z + 2),

has a solution for some y, z ∈ N iff a is composite. The variables a, y, z do not play the same
role. When we try to solve the equation (y + 2)(z + 2) − a = 0, we assume that a is fixed
and we look for values of y and z that solve the equation. To distinguish between the roles
of a and y, z we call y and z parameters. If no solution exists for y, z, then we reject a, that
is, we do not include it in the set that we are trying to define. Otherwise we include a in the
set that we are defining, namely the set of composites.

Example 7.2. If we now consider the polynomial

P2(a, y, z) = y(2z + 3)− a,

for a ∈ N fixed, the equation y(2z + 3)− a = 0, equivalently

a = y(2z + 3),

has a solution for some y, z ∈ N iff a is not a power of 2. Thus the equation of this example,
where y and z are parameters defines the natural numbers that are not a power of 2.

178 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Example 7.3. For a slightly more complicated example, consider the polynomial

P3(a, y) = 3y + 1− a2,

where y is the parameter. We leave it as an exercise to show that the natural numbers a for
which there is some y ∈ N such that 3y + 1− a2 = 0, equivalently

(a− 1)(a+ 1) = 3y,

are of the form a = 3k + 1 or a = 3k + 2, for any k ∈ N.

In the first case, if we let S1 be the set of composite natural numbers, then we can write

S1 = {a ∈ N | (∃y, z)((y + 2)(z + 2)− a = 0)},

where it is understood that the existentially quantified variables y, z take their values in N.

In the second case, if we let S2 be the set of natural numbers that are not powers of 2,
then we can write

S2 = {a ∈ N | (∃y, z)(y(2z + 3)− a = 0)}.

In the third case, if we let S3 be the set of natural numbers that are congruent to 1 or 2
modulo 3, then we can write

S3 = {a ∈ N | (∃y)(3y + 1− a2 = 0)}.

A more explicit Diophantine definition for S3 is

S3 = {a ∈ N | (∃y)((a− 3y − 1)(a− 3y − 2) = 0)}.

The natural generalization is as follows.

Definition 7.2. A set S ⊆ N of natural numbers is Diophantine (or Diophantine definable)
if there is a polynomial P (x, y1, . . . , yn) ∈ Z[x, y1, . . . , yn], with n ≥ 01 such that

S = {a ∈ N | (∃y1, . . . , yn)(P (a, y1, . . . , yn) = 0)},

where it is understood that the existentially quantified variables y1, . . . , yn (the parameters)
take their values in N. Thus a ∈ S iff there exist some natural numbers (b1, . . . , bn) ∈ Nn

such that P (a, b1, . . . , bn) = 0. More generally, a relation R ⊆ Nm is Diophantine (m ≥ 2) if
there is a polynomial P (x1, . . . , xm, y1, . . . , yn) ∈ Z[x1, . . . , xm, y1, . . . , yn], with n ≥ 0, such
that

R = {(a1, . . . , am) ∈ Nm | (∃y1, . . . , yn)(P (a1, . . . , am, y1, . . . , yn) = 0)},
where it is understood that the existentially quantified variables y1, . . . , yn (parameters) take
their values in N. Thus (a1, . . . am) ∈ R iff there exist some natural numbers (b1, . . . , bn) ∈ Nn

such that P (a1, . . . , am, b1, . . . , bn) = 0.

1We have to allow n = 0. Otherwise singleton sets would not be Diophantine.

7.2. DIOPHANTINE SETS AND LISTABLE SETS 179

It is important to note that the simpler definition in which n = 0 (there are no parameters)
yields a notion which is far too restrictive. Indeed, given a polynomial P (x) of a single
variable x, there are only finitely many a ∈ N such that P (a) = 0. Thus we only obtain
finite sets. Similarly, given a polynomial P (x1, . . . , xn) with n ≥ 2, for any a1, . . . , an−1 ∈ N,
there there are only finitely many an ∈ N such that P (a1, . . . , an) = 0. Again, this class of
relations is too restrictive.

The definition of Diophantine definability has the following interpretation as a computa-
tional mechanism for defining a set S ⊆ N in terms of acceptance or rejection. Given a ∈ N,
we can view the search for natural numbers (b1, . . . , bm) ∈ Nm such that P (a, b1, . . . , bm) = 0
as a computation. If a solution (b1, . . . , bm) is found (making P (a, b1, . . . , bm) = 0), then
a is accepted, and by definition a ∈ S. If either it can be established that the equation
P (a, y1, . . . , ym) = 0 has no solution (for y1, . . . , ym) or if the search goes on forever, then a
is rejected and a /∈ S. The undecidability of Hilbert’s tenth implies that we can’t decide if
the second alternative arises. Mathematically it is appealing that we obtain a model of com-
putability with universal power that does not require any machine model for its definition.

In Definition 7.2, to define when a set S ⊆ N is Diophantine we used the variables
y1, . . . , yn to denote the parameters occurring in the polynomial P (x, y1, . . . , yn). We did
this because in generalizing this notion to m-ary relations it is natural to replace the single
variable x by x1, . . . , xm, so the use of the variables y1, . . . , yn prevents a clash with the
variables x1, . . . , xm. However, when we define a set S to be Diophantine we often use the
variables x1, . . . , xn instead of y1, . . . , yn since there is very little risk of confusing the variable
x with the variables x1, . . . , xm.

Example 7.4. The strict order relation a1 < a2 is defined as follows:

a1 < a2 iff (∃y)(a1 + 1 + y − a2 = 0),

and the divisibility relation a1 | a2 (a1 divides a2) is defined as follows:

a1 | a2 iff (∃z)(a1z − a2 = 0).

Example 7.5. What about the ternary relation R ⊆ N3 given by

(a1, a2, a3) ∈ R if a1 | a2 and a1 < a3?

At first glance it is not obvious how to “convert” a conjunction of Diophantine definitions
into a single Diophantine definition, but we can do this using the following squaring trick:
given any n ≥ 2 Diophantine equations in the variables x1, . . . , xm,

P1 = 0, P2 = 0, . . . , Pn = 0, (∗)

observe that (∗) has a solution (a1, . . . , am), which means that Pi(a1, . . . , am) = 0 for i =
1, . . . , n, iff the single equation

P 2
1 + P 2

2 + · · ·+ P 2
n = 0 (∗∗)

180 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

also has the solution (a1, . . . , am), namely

(P 2
1 + P 2

2 + · · ·+ P 2
n)(a1, . . . am) = P1(a1, . . . am)2 + · · ·+ Pn(a1, . . . am)2 = 0.

This is because, since the P1(a1, . . . , am)2 for i = 1 . . . , n, are all nonnegative, their sum is
equal to zero iff they are all equal to zero, that is Pi(a1, . . . , am)2 = 0 for i = 1 . . . , n, which
is equivalent to Pi(a1, . . . , am) = 0 for i = 1 . . . , n.

As a consequence, the set S ⊆ N defined by n polynomials P1, . . . , Pn in Z[x, y1, . . . , yp]
as

{a ∈ N | (∃y1, . . . , yp)(P1(a, y1, . . . , yp) = 0, . . . , Pn(a, y1, . . . , yp) = 0)}
is actually the Diophantine set defined by

{a ∈ N | (∃y1, . . . , yp)(P1(a, y1, . . . , yp)
2 + · · ·+ Pn(a, y1, . . . , yp)

2 = 0)}.

This method also applies to relations R ⊆ Nm with m ≥ 2, where we use polynomials
P1(x1, . . . , xm, y1, . . . , yp), . . . , Pn(x1, . . . , xm, y1, . . . , yp) in Z[x1, . . . , xm, y1, . . . , yp].

Using this trick, we see that

(a1, a2, a3) ∈ R iff (∃u, v)((a1u− a2)2 + (a1 + 1 + v − a3)2 = 0).

We can use the above technique to show that the Diophantine sets are closed under
intersection.

Since (P1P2)(a1, . . . , am) = 0 iff P1(a1, . . . , am) = 0 or P2(a1, . . . , am) = 0, using this
fact it is easily shown that the Diophantine sets are closed under union. However, they are
not closed under complementation. This is not easy to show directly but it is an immediate
consequence of Theorem 7.8 which asserts that the family of Diophantine sets and the family
of listable sets coincide.

We can also define the notion of Diophantine function.

7.3 Diophantine Funtions

Definition 7.3. A partial function f : Nn → N is Diophantine iff its graph {(a1, . . . , an,
an+1) ⊆ Nn+1 | an+1 = f(a1, . . . , an)} is Diophantine. This means that there is a polyno-
mial P (x1, . . . , xn+1, y1, . . . , yp) ∈ Z[x1, . . . , xn+1, y1, . . . , yp], with p ≥ 0, such that an+1 =
f(a1, . . . , an) iff there exist some natural numbers (b1, . . . , bp) ∈ Np such that P (a1, . . . , an+1,
b1, . . . , bp) = 0. A function f : Nn → N is Diophantine iff it is Diophantine as a partial
function and if it is total, that is, for all (a1, . . . , an) ∈ Nn, if an+1 = f(a1, . . . , an), then the
equation P (a1, . . . , an+1, y1, . . . , yp) = 0 has a solution (in the variables y1, . . . , yp)).

7.4. GCD’S, BEZOUT IDENTITY, CHINESE REMAINDER THEOREM 181

Example 7.6. The pairing function J and the projection functions K,L due to Cantor
introduced in Section 3.1 are Diophantine, since

z = J(x, y) iff (x+ y)(x+ y + 1) + 2x− 2z = 0

x = K(z) iff (∃y)((x+ y)(x+ y + 1) + 2x− 2z = 0)

y = L(z) iff (∃x)((x+ y)(x+ y + 1) + 2x− 2z = 0).

The definition of J uses no parameter but the definitions of K and L use one parameter.

How extensive is the family of Diophantine sets? The remarkable fact proven by Davis-
Putnam-Robinson-Matiyasevich is that they coincide with the listable sets (the recursively
enumerable sets). This is a highly nontrivial result. Actually, the crucial point is that a
total function is Diophantine iff it is computable. Then this result can be used to prove that
a set is Diophantine iff it is listable.

The proof that a total function is Diophantine iff it is computable uses a bit of arithmetic
that we now review.

7.4 GCD’s, Bezout Identity, Chinese Remainder The-

orem

Recall the notion of divisibility from Example 7.4.

Definition 7.4. Given any two integers m,n ∈ Z, we say that m divides n, often written
m | n, if there is some q ∈ Z such that n = mq. In this case, we call n a multiple of m.
If m 6= 0, the integer q such that n = mq is unique and it is called the quotient and it is
denoted by n/m.

Observe that if 0 divides n, namely n = 0q for some q, then n = 0. So only 0 is divisible
by 0. On the other hand, since 0 = 0q for all q ∈ Z, 0 is divisible by all integers. So even
though 0 is divisible by 0, the quotient 0/0 is undefined since 0 = 0q for all q ∈ Z. We
usually avoid division by 0.

Definition 7.5. Given any two integers m,n ∈ Z, the greatest nonnegative common divisor
(for short gcd) of m and n is the unique natural number d ∈ N such that:

(i) The number d divides both m and n.

(ii) For any h ∈ Z, if h divides m and n, then h divides d.

The gcd of m and n is denoted as gcd(m,n).

The reader should check that gcd(0, 0) = 0, gcd(a, 0) = |a| if a 6= 0, and gcd(0, b) = |b| if
b 6= 0.

182 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Example 7.7. Since 15 = 3× 5 and 21 = 3× 7, we see that gcd(15, 21) = 3.

Since 657 = 9 × 73 and 963 = 9 × 107, we see that 9 is a divisor of 657 and 963. Since
73 and 107 are prime (check this fact), 9 is the gcd of 657 and 963.

The following result gives a useful characterization of the gcd in terms of a linear equation.

Proposition 7.2. (Bezout Identity) For any two integers m,n ∈ Z, there is a unique natural
number d ∈ N and some integers a, b ∈ Z, such that d divides both m and n and

am+ bn = d.

We have d = 0 iff m = 0 and n = 0. Furthermore, d is the nonnegative gcd of m and n.

Proof. If d = 0, since d divides both m and m, we must have m = n = 0, and a, b can be
chosen arbitrarily. Conversely, if m = n = 0, then for any a, b ∈ Z, we have d = a0 + b0 = 0.

Let us now assume that m 6= 0 or n 6= 0. Consider the set of integers

J = {hm+ kn | h, k ∈ Z}.

For h = 1 and k = 0 we have m ∈ J, and for h = 0 and k = 1 we have n ∈ J. Since either
m 6= 0 or n 6= 0, we see that J contains some positive natural number (if m > 0 we are done,
else if m < 0 then (−1)m ∈ J, with a similar reasoning with n 6= 0). Since J contains some
positive natural number, it contains a smallest one, say d.

We claim that
J = dZ = {dk | k ∈ Z}. (†B)

Since d ∈ J, by definition of J, we have dZ ⊆ J.

Conversely pick any s ∈ J. If we divide s by d, we obtain

s = dq + r,

for some q ∈ Z and some r such that 0 ≤ r < d. If r > 0, since s ∈ J and d ∈ J, they can be
expressed as s = h1m+ k1n and d = h2m+ k2n for some h1, h2, k1, k2 ∈ Z. Then we have

r = s− dq = h1m+ k1n− (h2m+ k2n)q = (h1 − h2q)m+ (k1 − k2q)n,

which shows that r ∈ J. But then we have r ∈ J with r > 0 and r < d, contradicting the
fact that d is the smallest positive integer in J. Therefore r = 0, and we proved that s ∈ dZ.
Consequently, (†B) holds. Since m,n ∈ J = dZ, we see that d divides both m and n. Since
d ∈ J, there exist a, b ∈ Z such that

am+ bn = d.

By construction, d ∈ N divides m and n. If any d′ ∈ Z divides both m and n, since
d = am+ bn, d′ also divides d. Therefore d is the nonnegative gcd of m and n.

7.4. GCD’S, BEZOUT IDENTITY, CHINESE REMAINDER THEOREM 183

Example 7.8. We saw in Example 7.7 that gcd(15, 21) = 3. We see immediately that

3× 15 + (−2)× 21 = 3

We also found that gcd(657, 963) = 9. The reader will check that

22× 657 + (−15)× 963 = 9.

A good algorithmic method for finding gcd’s and numbers a, b such that am + bn =
gcd(m,n) is the Euclidean algorithm; see Niven, Zuckermann and Montgomery [30], Theorem
1.11. For example, we find that

gcd(42823, 6409) = 17

and that
(−22)× 42823 + 147× 6409 = 17.

Definition 7.6. Given any two integers m,n ∈ Z, not both zero, we say that m and n are
relatively prime if gcd(m,n) = 1.

Proposition 7.2 has the following very useful corollary.

Proposition 7.3. (Bezout Criterion) Given any two integers m,n ∈ Z, not both zero, m
and n are relatively prime if and only if there exists some integers a, b ∈ Z such that

am+ bn = 1.

Proof. If m 6= 0 or n 6= 0 and d = gcd(m,n) = 1, then Proposition 7.2 implies that exists
some integers a, b ∈ Z such that

am+ bn = 1.

Conversely, any integer d dividing both m and n must divide 1, so gcd(m,n) = 1.

Example 7.9. It is easy to check that 42823 = 17 × 2519 and 6409 = 17 × 377. Since
gcd(42823, 6409) = 17, we must have gcd(2519, 377) = 1, so 2519 and 377 are relatively
prime. We also have

(−22)× 2519 + 147× 377 = 1.

Neither 2519 nor 377 is prime, as the reader should check.

We now prove a classical result (and a gem) of elementary number theory.

Theorem 7.4. (Chinese Remainder Theorem) Let n1, . . . , nm (m ≥ 1) be any positive inte-
gers that are pairwise relatively prime (which means that ni and nj are relatively prime for
all i < j), and let a1, . . . , am be any integers (ai ∈ Z). Then there is some x ∈ Z such that

x ≡ ai (mod ni) i = 1, . . . ,m. (C)

If x0 is any solution of the system of congruences (C), then x ∈ Z is a solution of the system
(C) iff x ≡ x0 (mod n), where n = n1 · · ·nm.

184 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Proof. The proof given in Niven, Zuckermann and Montgomery [30] is one of the simplest
proofs we are aware of; see Section 2.3, Theorem 2.18. It relies on two simple facts about
gcd’s:

(1) If m, p, q are positive natural numbers and if m is relatively prime with p and q, then
m is relatively prime with pq. This follows easily from Proposition 7.3. See Niven,
Zuckermann and Montgomery [30], Theorem 1.8.

(2) If m and n are positive natural numbers and if m and n are relatively prime, then
there is some integer x such that mx ≡ 1 (mod n). Again, this follows immediately
from Proposition 7.3. See Niven, Zuckermann and Montgomery [30], Theorem 2.9.

The case where m = 1 is trivial since we can can pick x = a1, so we assume that m ≥ 2.
Let n = n1 · · ·nm. Each n/ni is a natural number, and by induction using (1), we see that
gcd(n/nj, nj) = 1 for j = 1, . . . ,m. Hence by (2), there is some integer bj such that

(n/nj)bj ≡ 1 (mod nj), j = 1, . . . ,m. (1)

Since n/nj contains ni for i 6= j, we have

(n/nj)bj ≡ 0 (mod ni), i 6= j. (2)

We claim that a solution of the system of congruences (C) is given by

x0 =
m∑
j=1

n

nj
bjaj, (3)

as we now verify. By (1), we have (n/nj)bjaj ≡ aj (mod nj) for j = 1, . . . ,m, and by (2)
(n/nj)bjaj ≡ 0 (mod ni) if i 6= j, so from (3) by taking the residue modulo ni we get

x0 ≡
n

ni
biai ≡ ai (mod ni),

which means that x0 is a solution of the system (C).

If x ∈ Z is another solution of the system

x ≡ ai (mod ni) i = 1, . . . ,m, (C)

then by subtraction we obtain

x ≡ x0 (mod ni), i = 1, . . . ,m,

which is easily seen to be equivalent to x ≡ x0 (mod n). Finally, if x ≡ x0 (mod n), then
we deduce immediately that x is a solution of the system (C).

7.5. PROOF OF THE DPRM: MAIN STEPS 185

Remark: If m,n > 0 and gcd(m,n) = 1, an inverse x of m modulo n, namely an inte-
ger x such that mx ≡ 1 (mod n), can be computed using the Euclidean algorithm; see
Niven, Zuckermann and Montgomery [30], Theorem 1.11. Thus the proof of Theorem 7.4 is
constructive.

Example 7.10. Consider the system of congruences

x ≡ 5 (mod 7)

x ≡ 7 (mod 11)

x ≡ 3 (mod 13).

We easily check that n1 = 7, n2 = 11, n3 = 13 are pairwise relatively prime. We also have
a1 = 5, a2 = 7, a3 = 3, and n = 7× 11× 13 = 1001. The reader should check that

(−2)× n2n3 + 21× n1 = 1

4× n1n3 + (−33)× n2 = 1

(−1)× n1n2 + 6× n3 = 1.

Consequently, we can pick b1 = −2 as the inverse of n2n3 modulo n1, b2 = 4 as the inverse
of n1n3 modulo n2, and b3 = −1 as the inverse of n1n2 modulo n3. Theorem 7.4 tells us that
a solution is given by

x0 = 11× 13× (−2)× 5 + 7× 13× 4× 7 + 7× 11× (−1)× 3 = 887.

We can then check that x0 = 887 works, and since 887 < 1001, it is the smallest positive
solution.

7.5 Proof of the DPRM: Main Steps

The easier direction is the following result.

Proposition 7.5. Every Diophantine (total) function is computable. Every Diophantine
subset of N is listable (recursively enumerable).

Proof sketch. First we propose an informal argument for the second statement. Suppose S
is given as

S = {a ∈ N | (∃x1, . . . , xn)(P (a, x1, . . . , xn) = 0)},
Using the extended pairing function 〈x1, . . . , xn〉n of Section 3.1, we enumerate all n-tuples
(x1, . . . , xn) ∈ Nn, and during this process we compute P (a, x1, . . . , xn). If P (a, x1, . . . , xn)
is zero, then we output a, else we go on. This way, S is the range of a computable function,
and it is listable.

A more rigorous argument of Proposition 7.5 presented by Martin Davis in [8] proceeds
by first proving that if a total function is Diophantine, then it is computable. Then in a
second step it is shown that a Diophantine set is listable. To prove this it is necessary to
tweak the characterization of a listable set as follows.

186 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Proposition 7.6. A set S ⊆ N is listable iff there are two (total) computable functions
f, g : N× N→ N such that

S = {a ∈ N | (∃x)(f(a, x) = g(a, x))}.
Proof. If S = ∅, then we let f be the constant function equal to 0 and g be the constant
function equal to 1. If S 6= ∅ is listable, then by Definition 4.6 (see also Proposition 4.9),
there is a total computable function h : N→ N such that S is equal to the range of h. If we
let f be given by f(a, x) = a and g(a, x) = h(x) for all a, x ∈ N, then

S = range(h) = {a ∈ N | (∃x)(a = h(x))} = {a ∈ N | (∃x)(f(a, x) = g(a, x))}.
Conversely, assume that

S = {a ∈ N | (∃x)(f(a, x) = g(a, x))}
with f, g total computable. Observe that for any fixed a ∈ N, the equation f(a, x) = g(a, x)
has a solution x ∈ N iff the function

h(x) = min x(f(a, x) = g(a, x))

is defined, so S is equal to the domain of h. Since f and g are computable and the equality
predicate is primitive recursive, the function h is partial computable and by Proposition 4.9,
its domain dom(h) = S is listable.

A key technical result used in the proof of Proposition 7.5 and Theorem 7.8 is the se-
quence number theorem. This is a variant of a result that Gödel proved to establish his first
incompleteness theorem.

Theorem 7.7. (Sequence Number Theorem) There is a (total) Diophantine function (i, u) 7→
S(i, u) such that

(1) S(i, u) ≤ u for all i, u ∈ N.

(2) For any N ∈ N − {0} and any sequence (a1, . . . , an) ∈ NN , there is some u ∈ N such
that

S(i, u) = ai for 1 ≤ i ≤ N.

We have w = S(i, u) iff w is the remainder of the division of K(u) by 1 + iL(u).

Sketch of proof. Theorem 7.7 is Theorem 1.3 in Davis [8]. The proof needs a slight adjust-
ment because Davis assumes that all numbers in question are positive natural numbers, but
we don’t. The function (i, u) 7→ w = S(i, u) is defined by the following set of equations
where z, v are the parameters:

2u = (x+ y)(x+ y + 1) + 2x

x = w + z(1 + iy)

1 + iy = w + v + 1.

7.5. PROOF OF THE DPRM: MAIN STEPS 187

In view of Example 7.6, we have u = J(x, y), so

x = K(u) and y = L(u).

The third equation asserts that w < 1 + iy, so together with the second equation x =
w + z(1 + iy), we deduce that w is the remainder of the division of x by 1 + iy 6= 0.
Thus the above equations define a total function S. The second equation implies that
w ≤ x = K(u) ≤ u, which is (1).

To prove Condition (2) we use the Chinese remainder theorem, Theorem 7.4.

One might worry that Davis assumes that the numbers ai are strictly positive, but as we
just saw the Chinese remainder theorem is valid even if ai = 0, so there is no problem.

We can now prove that Condition (2) holds as follows. Consider any sequence (a1, . . . , aN)
∈ NN . If N = 1, pick y = a1 + 1 and proceed to the step where the Chinese remainder
theorem is used. If N ≥ 2, choose y ∈ N so that y > ai for i = 1, . . . , N and y is divisible by
i for i = 1, . . . , N − 1. For example y = (max{ai} + 1)(N − 1)! will do. We claim that the
natural numbers 1 + y, 1 + 2y, . . . , 1 +Ny are pairwise relatively prime.

If not, some natural number d ≥ 1 divides both 1 + iy and 1 + jy for some i, j such that
1 ≤ i < j ≤ N . Then d divides j(1 + iy)− i(1 + jy) = j − i, which implies that 1 ≤ d < N .
However y was chosen so that it is divisible by k for k = 1, . . . , N − 1, so d would divide y,
and since d also divides 1 + iy, we must have d = 1.

We can now apply the Chinese remainder theorem with ni = 1 + id for i = 1, . . . , N .
Therefore there is some x ∈ N such that

x ≡ a1 (mod 1 + y)

x ≡ a2 (mod 1 + 2y)

...

x ≡ aN (mod 1 +Ny).

Let u = J(x, y) so that x = K(u) and y = L(u). We have

K(u) ≡ ai (mod 1 + iL(u)), i = 1, . . . , N.

By definition of y, we also have ai < y = L(u) < 1 + iL(u), and then we see that ai is the
remainder of the division of K(u) by 1 + iL(u), which is equal to S(i, u) by definition of
S.

Interestingly, Davis states that the function S is primitive recursive, but does not provide
a proof. However, a proof can be extracted from his book Davis [7]; see Chapter 3, Sections
1 and 2.

The proof that S is primitive recursive uses the remainder function rem : N × N → N
defined such that if n > 0, then rem(m,n) = r is the remainder of the division of m by n,

188 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

namely the unique r ∈ N such that r < n and m = nq+r for some q ∈ N, else rem(m, 0) = m.
We leave it as an exercise to prove that rem is primitive recursive. Using rem we define S
as

S(i, u) = rem(K(u), 1 + iL(u)).

See the proof of Theorem 2.4 in Davis [7], observing that since here the index i ranges from
1 to N , the term 1 + L(u)(i+ 1) of Davis’ proof can be replaced by 1 + iL(u).

Let us now assume that the total function f : Nm → N is Diophantine, so that there is a
polynomial P (x1, . . . , xn, z, y1, . . . , yp) such that

c = f(a1, . . . , an) iff (∃b1, . . . , bp)(P (a1, . . . , am, c, b1, . . . , bp) = 0).

By grouping the monomials with positive coefficients together and the monomials with neg-
ative coefficients together we can write

P (x1, . . . , xn, z, y1, . . . , yp) = Q(x1, . . . , xn, z, y1, . . . , yp)−R(x1, . . . , xn, z, y1, . . . , yp),

where Q(x1, . . . , xn, z, y1, . . . , yp) and R(x1, . . . , xn, z, y1, . . . , yp) have positive integer coeffi-
cients . Using Q and R we can express the definition of f as

c = f(a1, . . . , an) iff (∃b1, . . . , bp)(Q(a1, . . . , am, c, b1, . . . , bp) = R(a1, . . . , am, c, b1, . . . , bp)).

Using the sequence number theorem we we can find u ∈ N such that c = S(1, u), b1 =
S(2, u), . . . , bp = S(p+ 1, u), and we deduce that

f(a1, . . . , an) = S(1,minu[Q(a1, . . . , am, S(1, u), S(2, u), . . . , S(p+ 1, u))

= R(a1, . . . , am, S(1, u), S(2, u), . . . , S(p+ 1, u))]).

Now we explained before that the polynomials Q and R having positive integer coefficients
compute primitive recursive functions, which are special kinds of total functions. Since S
is also primitive recursive, using the fact that the computable functions are closed under
composition and minimization if it yields a total function (which is the case since f is
assumed to be total), we deduce that f is computable.

We can now tackle Diophantine sets. Assume that S is Diophantine so that there is a
polynomial P (x, y1, . . . , yp) such that

a ∈ S iff (∃b1, . . . , bp)(P (a, b1, . . . , bp) = 0).

As above, we can write

P (x, y1, . . . , yp) = Q(x, y1, . . . , yp)−R(x, y1, . . . , yp),

where Q(x, y1, . . . , yp) and R(x, y1, . . . , yp) have positive integer coefficients . Then we have

a ∈ S iff (∃b1, . . . , bp)(Q(a, b1, . . . , bp) = R(a, b1, . . . , bp)),

7.5. PROOF OF THE DPRM: MAIN STEPS 189

and by the sequence number theorem we can find u ∈ N such that b1 = S(1, u), . . . , bp =
S(p, u), so

a ∈ S iff (∃u)(Q(a, S(1, u), . . . , S(p, u)) = R(a, S(1, u), . . . , S(p, u))).

Since Q and R compute primitive recursive functions and S is primitive recursive, by Propo-
sition 7.6, S is listable

The main theorem of the theory of Diophantine sets and functions is the following deep
result.

Theorem 7.8. (Davis-Putnam-Robinson-Matiyasevich, 1970) Every total computable func-
tion is Diophantine. Every listable subset of N is Diophantine.

Theorem 7.8 is often referred to as the DPRM theorem. A complete proof of Theorem
7.8 is provided in Davis [8]. We provide all the steps except the most technical one, the fact
that the exponential function h(n, k) = nk is Diophantine.

Almost complete proof. As noted by Davis, although the proof is certainly long and non-
trivial, it only uses elementary facts of number theory, nothing more sophisticated than the
Chinese remainder theorem. Nevetherless, the proof is a tour de force.

One of the most difficult steps is to show that the exponential function h(n, k) = nk

is Diophantine. This is done using the Pell equation. According to Martin Davis, the
proof given in Davis [8] uses a combination of ideas from Matiyasevich and Julia Robinson.
Matiyasevich’s proof used the Fibonacci numbers.

We now provide details for all the steps of the proof, except the first one.

Step 1 . The most difficult and most technical step is to prove that the exponential function
(n, k) 7→ nk is Diophantine. This involves proving twenty four “easy lemmas,” which takes six
pages (this is Section 2). The fact that the exponential function is Diophantine is established
in Section 3; this is Theorem 3.3 (Section 3 has four pages).

There is a small issue, which is that Davis [8] assumes that all variables range over positive
integers , so his proof that the exponential function h(n, k) = nk is Diophantine works only
for n, k > 0. However, as in the 1976 survey paper by Davis, Matiyasevich and Robinson
[9], we assume that the variables may take the value 0, that is, belong to N. This problem
is easily taken care of. If E is the set of Equations I-XII (with parameters) listed on Pages
244 and 247 of Davis [8] in which the variables (n, k,m) define the exponential function h in
the sense that there are values of the parameters that satisfy E iff m = h(n, k) = nk, create
the new equation with the extra new parameters n′, k′, k′′,

((n− n′ − 1)2 + (k − k′ − 1)2 + E2)(k2 + (m− 1)2)(n2 + (k − k′′ − 1)2 +m2) = 0. (∗)

The above equation has a solution with respect to the parameters iff

(n− n′ − 1)2 + (k − k′ − 1)2 + E2 = 0 (∗1)

190 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

or
k2 + (m− 1)2 = 0 (∗2)

or
n2 + (k − k′′ − 1)2 +m2 = 0. (∗3)

The Equation (∗1) is equivalent to

n = n′ + 1

k = k′ + 1

E = 0,

which are equivalent to
n > 0, k > 0, E = 0. (∗4)

These equations have a solution in the parameters iff n, k > 0 and m = nk.

The Equation (∗2) is equivalent to

k = 0, m = 1, (∗5)

which defines the exponential for k = 0 since n0 = 1 for all n ∈ N.

The Equation (∗3) is equivalent to

n = 0

k = k′′ + 1

m = 0,

which is equivalent to
n = 0, k > 0, m = 0, (∗6)

which define the exponential for n = 0 and k > 0 since 0k = 0 for all k > 0. In summary,
the Equation (∗) defines the exponential function m = nk for all m, k ∈ N.

Step 2 . Use the fact that the exponential is Diophantine to prove that two crucial functions
are Diophantine:

f(n, k) =

(
n

k

)
g(n) = n!.

This is proven in Theorem 4.1. We prove that the functions f and g are Diophantine provided
that the exponential function is Diophantine in Section 7.7.

At this stage we know that the Diophantine relations are closed under conjunction,
disjunction, and existential quantifiers. In order to prove that the Diophantine functions are
closed under primitive recursion and minimization (if the function obtained by minimization
is total) it is critical to prove closure under bounded universal quantification. This is the
next step.

Step 3 .

7.5. PROOF OF THE DPRM: MAIN STEPS 191

Definition 7.7. Call a predicate (relation) ϕ a Diophantine predicate if it is of the form

ϕ(x1, . . . , xn) ≡ (∃y1, . . . , yp)(P (x1, . . . , xm, y1, . . . , yp) = 0)

where P (x1, . . . , xm, y1, . . . , yp) is a polynomial with integer coefficients.

Of course, for any (a1, . . . , am) ∈ Nm, ϕ(a1, . . . , am) holds (equivalently (a1, . . . , am) ∈ ϕ)
iff there is some (b1, . . . , bp) ∈ Np such that P (a1, . . . , am, b1, . . . , bp) = 0.

It is convenient to abbreviate (∃y1, . . . , yp) as (∃y). Given two Diophantine predicates
ϕ = (∃u)(P (x1, . . . , xm, u) = 0) and ψ = (∃v)(Q(x1, . . . , xm, v) = 0) over the same variables
x1, . . . , xm, we define the predicates

ϕ ∧ ψ ≡ (∃u)(P (x1, . . . , xm, u) = 0) ∧ (∃v)(Q(x1, . . . , xm, v) = 0)

ϕ ∨ ψ ≡ (∃u)(P (x1, . . . , xm, u) = 0) ∨ (∃v)(Q(x1, . . . , xm, v) = 0)

∃zϕ ≡ ∃z(∃u)(P (x1, . . . , xm, u) = 0),

where z is any variable occurring or not in ϕ. We may rename variables so that u and v are
disjoint and that z does not occur in u.

The above predicates are Diophantine (using the squaring trick and the product trick)
because

ϕ ∧ ψ ≡ (∃u)(∃v)(P (x1, . . . , xm, u)2 +Q(x1, . . . , xm, v)2 = 0)

ϕ ∨ ψ ≡ (∃u)(∃v)(P (x1, . . . , xm, u)Q(x1, . . . , xm, v) = 0)

∃zϕ ≡ ∃z(∃u)(P (x1, . . . , xm, u) = 0).

Observe that if z = xi for some variable xi, then m ≥ 2 and ∃zϕ is a predicate only involving
the variables x1, . . . , xi−1, xi+1, . . . , xm, so that it defines a subset of Nm−1. We will use these
closure properties when constructing Diophantine predicates.

In general universal quantification applied to a Diophantine predicate does not yield a
Diophantine predicate, but bounded universal quantification does.

Definition 7.8. Given a polynomial P (y, z, x1, . . . , xm, y1, . . . , yp) with integer coefficients,
the bounded existentially quantified predicate

(∃z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds iff for any a1, . . . , am ∈ N and any b ∈ N, there is some c ≤ b and some b1, . . . , bp ∈
N such that P (b, c, a1, . . . , am, b1, . . . , bp) = 0 holds. The bounded universally quantified
predicate

(∀z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds iff for any a1, . . . , am ∈ N and any b ∈ N, for every c ≤ b, there are some b1, . . . , bp ∈ N
such that P (b, c, a1, . . . , am, b1, . . . , bp) = 0 holds.

192 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Proposition 7.9. Given a polynomial P (y, z, x1, . . . , xm, y1, . . . , yp) with integer coefficients,
the predicate

(∀z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds iff the predicate

(∃u)(∀z ≤ y)(∃y1 ≤ u) · · · (∃yp ≤ u)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds.

Proof. The second statement obviously implies the first. If the predicate

(∀z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds, then for any b ∈ N and any a1, . . . , am ∈ N, for each k = 0, . . . , b, there exist
b

(k)
1 , . . . , b

(k)
p ∈ N such that P (b, k, a1, . . . , am, b

(k)
1 , . . . , b

(k)
p) = 0 for k = 0, . . . , b. If we pick

u = max{b(k)
j | 0 ≤ k ≤ b, 1 ≤ j ≤ p},

then
(∃u)(∀z ≤ y)(∃y1 ≤ u) · · · (∃yp ≤ u)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds.

We have the following key theorem.

Theorem 7.10. (Bounded Quantifier Theorem) Given any polynomial P (y, z, x1, . . . , xm,
y1, . . . , yp) with integer coefficients, the bounded existentially quantified predicate

(∃z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

and the bounded universally quantified predicate

(∀z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

are also Diophantine.

Recall that x ≤ y is Diophantine definable as y = x + x′. The first statement is easy to
prove since

(∃z ≤ y)(∃y1, . . . , yp)(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0)

holds iff
(∃z, y1, . . . , yp)[(P (y, z, x1, . . . , xm, y1, . . . , yp) = 0) ∧ (z ≤ y)].

The proof of the second statement is far more complicated. In particular is uses the fact
that the factorial function n 7→ n! and the binomial

(
n
k

)
are Diophantine (both of which

use the fact that the exponential function (n, k) 7→ nk is Diophantine). One proof is given
in Davis [8]; see Theorem 5.1. A slightly shorter proof is given in Davis, Matiyasevich and
Robinson [9]; see Section 4. Here is this crucial result and its very beautiful and clever proof.

7.5. PROOF OF THE DPRM: MAIN STEPS 193

Proposition 7.11. Let P (x, y, k, z1, . . . , zν) be a polynomial with x, y and k among its pa-
rameters and z1, . . . , zν its variables. Then

(∀k ≤ x)(∃z1 ≤ y) · · · (∃zν ≤ y)(P (x, y, k, z1, . . . , zν) = 0) (†1)

holds if and only if

(∃b1, . . . , bν)

[(
b1

y + 1

)
≡ · · · ≡

(
bν

y + 1

)
≡ P (x, y,Q!− 1, b1, . . . , bν)

≡ 0

(
mod

(
Q!− 1

x+ 1

))]
(†2)

holds, where Q(x, y) is a polynomial such that

Q(x, y) > |P (x, y, k, z1, . . . , zν)|+ 2x+ y + 1, (∗1)

for all k ≤ x and all z1 ≤ y, . . . , zν ≤ y. Also b1, . . . , bν may be chosen such that bi ≤
(
Q!−1
x+1

)
.

Proof. Consider the product(
Q!− 1

x+ 1

)
=

(Q!− 1)!

(x+ 1)!(Q!− 1− (x+ 1))!
=

(Q!− 1)(Q!− 2) · · · (Q!− 1− (x+ 1) + 1)

(x+ 1)!

= (Q!− 1)

(
Q!

2
− 1

)
· · ·
(

Q!

x+ 1
− 1

)
.

Since Q(x, y) > |P (x, y, k, z1, . . . , zν)| + 2x + y + 1 ≥ 2x + 2 > x + 1, all the factors on the
right-hand side are integers.

Claim 1 . If a prime p divides
(
Q!−1
x+1

)
, then p > Q.

For this we prove that every prime p ≤ Q divides Q!/(k + 1) for all k ≤ x. Indeed, since
Q ≥ 2x+ 2 and k ≤ x, we have 2(k + 1) ≤ 2x+ 2, so

Q! = Q(Q− 1) · · · (2x+ 2) · · · 2(k + 1) · · · (k + 1)k!.

If p = k+ 1, then k+ 1 still occurs in Q!/(k+ 1), and if p ≤ Q and p 6= k+ 1, then p occurs
in Q!/(k + 1).

Now if a prime p divides
(
Q!−1
x+1

)
, then p divides some factor Q!

k+1
− 1 (with k ≤ x), so if

p ≤ Q, then from the previous fact p divides Q!/(k + 1), which implies that p divides 1, a
contradiction.

Claim 2 . Any two distinct factors Q!
i+1
− 1 and Q!

j+1
− 1 (i, j ≤ x) are relatively prime.

If a prime p divides both Q!
i+1
− 1 and Q!

j+1
− 1, then Q!

i+1
− 1 = k1p and Q!

j+1
− 1 = k2p for

some natural numbers k1, k2, so

Q!− i− 1 = k1(i+ 1)p, Q!− j − 1 = k2(j + 1)p,

194 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

and by substraction
j − i = (k1(i+ 1)− k2(j + 1))p,

which means that p divides |j − i|. However, i, j ≤ Q and by Claim 1, p > Q, so i = j,
which means that Q!

i+1
− 1 and Q!

j+1
− 1 (i, j ≤ x) are relatively prime if i 6= j.

Claim 3 . If a prime pk divides Q!
k+1
− 1 (k ≤ x), then

Q!− 1 ≡ k (mod pk).

Since Q!
k+1
− 1 = qpk for some natural number q, we have Q!− k − 1 = q(k + 1)pk, so

Q!− 1 = k + q(k + 1)pk,

namely Q!− 1 ≡ k (mod pk).

Claim 4 . For any choice of a prime pk dividing Q!
k+1
− 1 for k ≤ x, we have

P (x, y,Q!− 1, b1, . . . , bν) ≡ P (x, y, k,Rem(b1, pk), . . . ,Rem(bν , pk)) (mod pk), k ≤ x, (∗2)

where Rem(bi, pk) is the remainder of the division of bi by pk.

Claim 4 follows immediately from Claim 3 by taking residues modulo pk in the polynomial
P (x, y,Q!− 1, b1, . . . , bν).

We are now ready for the proof itself.

Step a. First we prove that (†2) implies (†1). Assume that there exists some natural numbers
b1, . . . , bν such that(

b1

y + 1

)
≡ · · · ≡

(
bν

y + 1

)
≡ P (x, y,Q!− 1, b1, . . . , bν) ≡ 0

(
mod

(
Q!− 1

x+ 1

))
.

Since any chosen prime pk dividing Q!
k+1
− 1 also divides divides

(
Q!−1
x+1

)
, we deduce from the

congruence (
bi

y + 1

)
≡ 0

(
mod

(
Q!− 1

x+ 1

))
that pk divides bi(bi − 1) · · · (bi − y) for i = 1, . . . , ν, so pk divides some factor bi − h with
h ≤ y, which implies that Rem(bi, pk) ≤ y for i = 1, . . . , ν. By (∗1) and Claim 1, we have

|P (x, y, k,Rem(b1, pk), . . . ,Rem(bν , pk))| ≤ Q < pk. (∗3)

By hypothesis, since pk divides
(
Q!−1
x+1

)
, we have

P (x, y,Q!− 1, b1, . . . , bν) ≡ 0 (mod pk),

for all k ≤ x, and by (∗2) and (∗3), we deduce that

P (x, y, k,Rem(b1, pk), . . . ,Rem(bν , pk)) = 0,

7.5. PROOF OF THE DPRM: MAIN STEPS 195

which is (†1) of our proposition with zi = Rem(bi, pk).

Step b. Now we prove that (†1) implies (†2). Suppose that there are some natural numbers
z1k ≤ y, . . . , zνk ≤ y such that

P (x, y, k, z1k, . . . , zνk) = 0, for all k ≤ x. (∗4)

Since there are finitely many tuples of natural numbers (k, z1, . . . , zν) such that k ≤ x and
zi ≤ y for i = 1, . . . , ν, we can find a polynomial Q(x, y) satisfying (∗1). For example, we
can choose Q(x, y) = 2x+ y+ 2 +C, for C ≥ 0 large enough. By Claim 2, since the distinct
factors Q!

i+1
−1 and Q!

j+1
−1 (i, j ≤ x) are relatively prime, by the Chinese remainder theorem

(Theorem 7.4) there exist b1, . . . , bν <
(
Q!−1
x+1

)
such that

bi ∼= zik

(
mod

Q!

k + 1
− 1

)
, k ≤ x. (∗5)

Since zik ≤ y, one of the factors in the product zik(zik−1) · · · (zik−y) is zero, so (∗5) implies
that

bi(bi − 1) · · · (bi − y) ∼= 0

(
mod

Q!

k + 1
− 1

)
, 1 ≤ i ≤ ν. (∗6)

By Claim 2, since the divisors Q!
k+1
− 1 are pairwise relatively prime, their product

(
Q!−1
x+1

)
divides bi(bi − 1) · · · (bi − y), that is,

bi(bi − 1) · · · (bi − y) ≡ 0

(
mod

(
Q!− 1

x+ 1

))
, 1 ≤ i ≤ ν, x ≤ k.

By Claim 1 and (∗1) , since all the primes dividing
(
Q!−1
x+1

)
(k ≤ x) are greater than Q > y+1,

we deduce that (
bi

y + 1

)
≡ 0

(
mod

(
Q!− 1

x+ 1

))
, 1 ≤ i ≤ ν. (∗7)

Finally, since

Q!− 1− k = (k + 1)

(
Q!

k + 1
− 1

)
,

we have

Q!− 1 ≡ k

(
mod

Q!

k + 1
− 1

)
,

so by (∗5), we have

P (x, y,Q!− 1, b1, . . . , bν) ≡ P (x, y, k, z1k, . . . , zνk)

(
mod

Q!

k + 1
− 1

)
. (∗8)

Since by hypothesis (∗4), P (x, y, k, z1k, . . . , zνk) = 0, and the moduli Q!
k+1
− 1 are pairwise

relatively prime, we conclude that

P (x, y,Q!− 1, b1, . . . , bν) ≡ 0

(
mod

(
Q!− 1

x+ 1

))
. (∗9)

But (∗7) and (∗9) are the conjuncts in (†2) of our proposition, and this finishes the proof.

196 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Since by Step 2 the factorial function and the binomial coefficient functions are Diophan-
tine, and since the divisibility relation n ≡ 0 (mod m) is Diophantine (since n ≡ 0 (mod m)
iff (∃k)(n = km)), the right-hand side (†2) in Proposition 7.11 is Diophantine. This proves
the hard part of Theorem 7.10, namely that applying bounded universal quantification to a
Diophantine predicate yields a Diophantine predicate.

Davis et al. [9] (Section 4) show how Theorem 7.10 can be used to construct a Diophantine
polynomial F with one parameter a such that the equation F = 0 has a solution for any
fixed a > 0 iff some planar graph cannot be colored with a colors. The positive solution of
the four color conjecture implies that the equation F = 0 has no solution for a = 4 (for sure,
it has no solution for a = 5).

We have completed the hard work and the next step is relatively simple in comparison.

Step 4 . To prove that every (total) computable function is Diophantine, we simply have
to prove that the base functions are Diophantine and that the Diophantine functions are
closed under (extended) composition, primitive recursion, and minimization (yielding total
functions). Since the class of computable functions is the smallest class with these properties,
it is contained in the class of Diophantine functions.

(1) The zero function y = Z(x) is defined by the Diophantine equation

y = 0.

The successor function y = Succ(x) = x+ 1 is defined by the Diophantine equation

y = x+ 1.

The projection function y = P n
i (x1, . . . , xn) is defined by the Diophantine equation

y = xi.

(2) Suppose that the m functions gi : Nn → N are Diophantine and that f : Nm → N is
also Diophantine. This means that each gi has a Diophantine definition

(∃yi)(Pi(x1, . . . , xn, zi, yi) = 0)

which holds iff zi = gi(x1, . . . , xn), where yi denotes a sequence of parameters, and f
has a Diophantine definition

(∃t)(Q(u1, . . . , um, v, t) = 0)

which holds iff v = f(u1, . . . , vm), where t denotes a sequence of parameters. By
renaming the parameters we may assume that they are disjoint and also disjoint from
the variables z. Then the Diophantine definition

(∃z)(∃y1) · · · (∃ym)(∃t)[(P1(x1, . . . , xn, z1, y1) = 0) ∧ · · · ∧ (Pm(x1, . . . , xn, zm, ym) = 0)

∧ (Q(z1, . . . , zm, v, t) = 0)]

7.5. PROOF OF THE DPRM: MAIN STEPS 197

holds iff
v = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

We can use the squaring trick to convert the conjunction of equations into a single
equation. This proves closure under composition.

(3) Suppose g : Nm → N and h : Nm+2 → N are Diophantine. We wish to define f : Nm+1 →
N by primitive recursion by

f(0, x1, . . . , xm) = g(x1, . . . , xm)

f(x+ 1, x1, . . . , xm) = h(x, f(x, x1, . . . , xm), x1, . . . , xm).

This is achieved using the sequence number theorem and the bounded quantifier the-
orem as follows. Assume that g has a Diophantine definition

(∃s)(P (x1, . . . , xm, v, s) = 0)

which holds iff v = g(x1, . . . , xm), where s denotes a sequence of parameters, and h has
a Diophantine definition

(∃z)(Q(t1, t2, x1, . . . , xm, w, z) = 0)

which holds iff w = h(t1, t2, x1, . . . , xm), where z denotes a sequence of parameters. We
rename variables so that s and z are disjoint. Theorem 7.7 shows that S is Diophantine,
so we claim that the Diophantine definition

∃u [∃v ((v = S(1, u)) ∧ (∃s)(P (x1, . . . , xm, v, s) = 0))

∧ (∀t ≤ x)[(t = x) ∨ ∃w((w = S(t+ 2, u))

∧ (∃z)(Q(t, S(t+ 1, u), x1, . . . , xm, w, z) = 0))]

∧ (y = S(x+ 1, u))]

holds iff
y = f(x, x1, . . . , xm).

We used the fact that the Diophantine predicates are closed under conjunction, dis-
junction, existential quantification, and composition. The equations v = S(1, u), w =
S(t + 2, u) and y = S(x + 1, u) should be replaced by the Diophantine definition of
S from Theorem 7.7, and the equation Q(t, S(t + 1, u), x1, . . . , xm, w, z) = 0 involves
a composition so it should also use the Diophantine definition of S. We leave the
details and the verification that this works to the reader. The idea is that u is used
to record the values f(0, x1, . . . , xm), . . . , f(x, x1, . . . , xm) as S(1, u), . . . , S(x + 1, u).
Since in Theorem 7.7 the index i used to index sequences starts from 1 and not 0,
as t ranges from 0 to x have to use the index t + 1 which ranges from 1 to x + 1.
This is also the reason why we have to compute S(t+ 2, u) = f(t+ 1, x1 . . . , xm) from
S(t+ 1, u) = f(t, x1, . . . , xm).

198 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Since A =⇒ B is logically equivalent to ¬A ∨B, the formula

(∀t ≤ x)[(t = x) ∨ ∃w((w = S(t+ 2, u)) ∧ (∃z)(Q(t, S(t+ 1, u), x1, . . . , xm, w, z) = 0))]

asserts that for all t such that 0 ≤ t ≤ x, if t 6= x, so in fact if 0 ≤ t < x, then

[∃w((w = S(t+ 2, u)) ∧ (∃z)(Q(t, S(t+ 1, u), x1, . . . , xm, w, z) = 0))]

holds. Since S(t+ 1, u) = f(t, x1, . . . , xm), the Diophantine definition

(∃z)(Q(t, S(t+ 1, u), x1, . . . , xm, w, z) = 0))]

computes w = h(t, f(t, x1, . . . , xm), x1, . . . , xm) = f(t+ 1, x1 . . . , xm), which is saved in
S(t+ 2, u).

(4) Assume that g : Nm+1 → N is Diophantine and that for all (a1, . . . , am) ∈ Nm there
is some a ∈ N such that g(a, a1, . . . , am) = 0. We wish to show that the function
f : Nm → N given by minimization as

f(a1, . . . , am) = min x (g(x, a1, . . . am) = 0)

is also Diophantine. Assume that g has a Diophantine definition

(∃s)(P (x, x1, . . . , xm, z, s) = 0)

which holds iff z = g(x, x1, . . . , xm), where s denotes a sequence of parameters. We
claim that the Diophantine definition

(∃s)(P (y, x1, . . . , xm, 0, s) = 0)

∧ [(∀t ≤ y)[(t = y) ∨ ∃z(∃u) ((P (t, x1, . . . , xm, z, u) = 0) ∧ (z > 0)]]

holds if

y = f(a1, . . . , am) = min x (g(x, a1, . . . am) = 0).

The predicate

(∃s)(P (y, x1, . . . , , xm, 0, s) = 0)

asserts that g(y, x1, . . . , xm) = 0, and the predicate

(∀t ≤ y)[(t = y) ∨ ∃z(∃u) ((P (t, x1, . . . , xm, z, u) = 0) ∧ (z > 0)]

asserts that g(t, x1, . . . , xm) > 0 for all t < y, so y is indeed the smallest number for
which g(y, x1, . . . , xm) = 0.

7.5. PROOF OF THE DPRM: MAIN STEPS 199

Therefore we have finally proven that every (total) computable function is Diophantine.

Step 5 . Every listable set is Diophantine.

By Proposition 7.6, a set S ⊆ N is listable iff there are two (total) computable functions
f, g : N× N→ N such that

S = {a ∈ N | (∃x)(f(a, x) = g(a, x))}.

But then

a ∈ S iff ∃x∃z((z = f(a, x)) ∧ (z = g(a, x))).

By Step 4, the computable functions f and g have Diophantine definitions

(∃u)(P (y, x, z, u) = 0)

iff z = f(y, x) and

(∃v)(Q(y, x, z, v) = 0)

iff z = g(y, x), so a ∈ S has the Diophantine definition

∃x∃z[(∃u)(P (a, x, z, u) = 0) ∧ (∃v)(Q(a, x, z, v) = 0)].

This is the famous result that we were seeking.

Using some results from the theory of computation it is now easy to deduce that Hilbert’s
tenth problem is undecidable. To achieve this, recall that there are listable sets that are not
computable. For example, it is shown in Lemma 4.11 that K = {x ∈ N | ϕx(x) is defined}
is listable but not computable. Since K is listable, by Theorem 7.8, it is defined by some
Diophantine equation

P (a, x1, . . . , xn) = 0,

which means that

K = {a ∈ N | (∃x1 . . . , xn)(P (a, x1, . . . , xn) = 0)}.

We have the following strong form of the undecidability of Hilbert’s tenth problem, in the
sense that it shows that Hilbert’s tenth problem is already undecidable for a fixed Diophan-
tine equation in one parameter.

Theorem 7.12. There is no algorithm which takes as input the polynomial P (a, x1, . . . , xn)
defining K and any natural number a ∈ N and decides whether

P (a, x1, . . . , xn) = 0.

Consequently, Hilbert’s tenth problem is undecidable.

200 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Proof. If there was such an algorithm, then K would be decidable, a contradiction.

Any algorithm for solving Hilbert’s tenth problem could be used to decide whether or
not P (a, x1, . . . , xn) = 0, but we just showed that there is no such algorithm.

It is an open problem whether Hilbert’s tenth problem is undecidable if we allow rational
solutions (that is, x1, . . . , xn ∈ Q).

Alexandra Shlapentokh proved that various extensions of Hilbert’s tenth problem are
undecidable. These results deal with some algebraic number theory beyond the scope of
these notes. Incidentally, Alexandra was an undergraduate at Penn, and she worked on a
logic project for me (finding a Gentzen system for a subset of temporal logic).

Having now settled once and for all the undecidability of Hilbert’s tenth problem, we
now briefly explore some interesting consequences of Theorem 7.8.

The fact that a set is listable if and only if it is Diophantine also holds for m-ary relations.

7.6 The DPRM For Relations

Definition 7.9. A relation R ⊆ Nm (m ≥ 2) is listable if the set

R̂ = {〈x1, . . . , xm〉m ∈ N | (x1, . . . , xm) ∈ R}

is listable, where 〈x1, . . . , xm〉m is the extended pairing function of Definition 3.2.

Proposition 7.6 is easily generalized to the following characterization of listable relations.

Proposition 7.13. A relation R ⊆ Nm (m ≥ 2) is listable iff there are two (total) computable
functions f, g : Nm+1 → N such that

R = {(a1, . . . am) ∈ Nm | (∃x)(f(a1, . . . , am, x) = g(a1, . . . , am, x))}.

Proof. If R = ∅, then we let f be the constant function equal to 0 and g be the constant
function equal to 1. If R 6= ∅ is listable, then by Definition 4.6 (see also Proposition 4.9),

there is a total computable function h : N → N such that R̂ is equal to the range of h.
If we let f be given by f(a1, . . . , am, x) = 〈a1, . . . , am〉m (which is primitive recursive) and
g(a1, . . . , am, x) = h(x) for all a, x ∈ N, then

R = {(a1, . . . , am) ∈ Nm | (∃x)(〈a1, . . . , am〉m = h(x))}
= {(a1, . . . , am) ∈ Nm | (∃x)(f(a1, . . . , am, x) = g(a1, . . . , am, x))}.

Conversely, assume that

R = {(a1, . . . am) ∈ Nm | (∃x)(f(a1, . . . , am, x) = g(a1, . . . , am, x))}

7.6. THE DPRM FOR RELATIONS 201

with f, g total computable. Using the uniform projection function Π of Definition 3.3, which
is primitive recursive, we have

R̂ = {a ∈ N | (∃x)(f(Π(1,m, a), . . . ,Π(m,m, a), x) = g(Π(1,m, a), . . . ,Π(m,m, a), x))}.

As a composition of (total) computable functions, f̂ and ĝ given by

f̂(a, x) = f(Π(1,m, a), . . . ,Π(m,m, a), x)

ĝ(a, x) = g(Π(1,m, a), . . . ,Π(m,m, a), x)

are total computable, so by Proposition 7.6 the set R̂ is listable.

Using Proposition 7.13 it is easy to generalize the DPRM to relations.

Theorem 7.14. (DPRM for Relations) A relation R ⊆ Nm (m ≥ 2) is listable if and only
if it is Diophantine.

Proof. Assume that R is Diophantine so that there is a polynomial P (x1, . . . , xm, y1, . . . , yp)
such that

(a1, . . . , am) ∈ R iff (∃b1, . . . , bp)(P (a1, . . . , am, b1, . . . , bp) = 0).

By grouping monomials with the same sign together we can write

P (x1, . . . , xm, y1, . . . , yp) = Q(x1, . . . , xm, y1, . . . , yp)−R(x1, . . . , xm, y1, . . . , yp),

whereQ(x1, . . . , xm, y1, . . . , yp) andR(x1, . . . , xm, y1, . . . , yp) have positive integer coefficients.
Then we have

(a1, . . . , am) ∈ R iff (∃b1, . . . , bp)(Q(a1, . . . , am, b1, . . . , bp) = R(a1, . . . , am, b1, . . . , bp)),

and by the sequence number theorem we can find u ∈ N such that b1 = S(1, u), . . . , bp =
S(p, u), so

(a1, . . . , am) ∈ R iff (∃u)(Q(a1, . . . , am, S(1, u), . . . , S(p, u))

= R(a1, . . . , am, S(1, u), . . . , S(p, u))).

Since Q and R compute primitive recursive functions and S is primitive recursive, by Propo-
sition 7.13, R is listable.

Conversely, assume that R is listable. By Proposition 7.13, a relation R ⊆ Nm is listable
iff there are two (total) computable functions f, g : Nm+1 → N such that

R = {(a1, . . . am) ∈ Nm | (∃x)(f(a1, . . . , am, x) = g(a1, . . . , am, x))}.
But then

(a1, . . . , am) ∈ R iff ∃x∃z((z = f(a1, . . . , am, x)) ∧ (z = g(a1, . . . , am, x))).

By Theorem 7.8, the computable functions f and g have Diophantine definitions and we
finish the proof as in Step 5 of Theorem 7.8 to obtain a Diophantine definition of R.

202 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

7.7 Some Applications of the DPRM Theorem

The first application of the DRPM theorem is a particularly striking way of defining the
listable subsets of N as the nonnegative ranges of polynomials with integer coefficients. This
result is due to Hilary Putnam.

Theorem 7.15. For every listable subset S of N, there is some polynomial Q(x, x1, . . . , xn)
with integer coefficients such that

S = {Q(a, b1, . . . , bn) | Q(a, b1, . . . , bn) ∈ N, a, b1, . . . , bn ∈ N}.

Proof. By the DPRM theorem (Theorem 7.8), there is some polynomial P (x, x1, . . . , xn)
with integer coefficients such that

S = {a ∈ N | (∃x1, . . . , xn)(P (a, x1, . . . , xn) = 0)}.

Let Q(x, x1, . . . , xn) be given by

Q(x, x1, . . . , xn) = (x+ 1)(1− P 2(x, x1, . . . , xn))− 1.

We claim that Q satisfies the statement of the theorem. If a ∈ S, then P (a, b1, . . . , bn) = 0
for some b1, . . . , bn ∈ N, so

Q(a, b1, . . . , bn) = (a+ 1)(1− 0)− 1 = a.

This shows that all a ∈ S show up the the nonnegative range of Q. Conversely, assume that
Q(a, b1, . . . , bn) ≥ 0 for some a, b1, . . . , bn ∈ N. Then by definition of Q we must have

(a+ 1)(1− P 2(a, b1, . . . , bn))− 1 ≥ 0,

that is,
(a+ 1)(1− P 2(a, b1, . . . , bn)) ≥ 1,

and since a ∈ N, this implies that P 2(a, b1, . . . , bn) < 1, but since P is a polynomial with in-
teger coefficients and a, b1, . . . , bn ∈ N, the expression P 2(a, b1, . . . , bn) must be a nonnegative
integer, so we must have

P (a, b1, . . . , bn) = 0,

which shows that a ∈ S.

Remark: It should be noted that in general, the polynomials Q arising in Theorem 7.15
may take on negative integer values, and to obtain all listable sets, we must restrict ourself
to their nonnegative range.

As an example, the set S3 of natural numbers that are congruent to 1 or 2 modulo 3 is
given by

S3 = {a ∈ N | (∃y)(3y + 1− a2 = 0)}.

7.7. SOME APPLICATIONS OF THE DPRM THEOREM 203

so by Theorem 7.15, S3 is the nonnegative range of the polynomial

Q(x, y) = (x+ 1)(1− (3y + 1− x2)2))− 1

= −(x+ 1)((3y − x2)2 + 2(3y − x2)))− 1

= (x+ 1)(x2 − 3y)(2− (x2 − 3y))− 1.

Observe that Q(x, y) takes on negative values. For example, Q(0, 0) = −1. Also, in order
for Q(x, y) to be nonnegative, (x2 − 3y)(2 − (x2 − 3y)) must be positive, but this can only
happen if x2 − 3y = 1, that is, x2 = 3y + 1, which is the original equation defining S3.

There is no miracle. The nonnegativity of Q(x, x1, . . . , xn) must subsume the solvability
of the equation P (x, x1, . . . , xn) = 0.

A particularly interesting listable set is the set of primes. By Theorem 7.15, in theory,
the set of primes is the positive range of some polynomial with integer coefficients.

Remarkably, some explicit polynomials have been found. This is a nontrivial task. In
particular, the process involves showing that the exponential function is definable, which
was the stumbling block to the completion of the DPRM theorem for many years.

We now explain how to express primality in terms of equations, provided that we allow
free uses of the exponential function. The key idea is to express primality using the Bezout
identity (Proposition 7.2). We will obtain a set of equations involving the function factorial
(s!). The factorial function can be equationally defined using the binomial coefficient

(
t
s

)
,

which in turn can be defined equationally in terms of the exponential function. This is as
far as we will go, since proving that the exponential function is Diophantine definable is a
long and complicated process.

Recall that Proposition 7.2 (the Bezout identity) implies that for any two integers m,n ∈
Z, if d = gcd(m,n), then there are some integers a, b ∈ Z such that

am+ bn = d.

If both m,n > 0, then d > 0, so if we write m = q1d and n = q2d (with q1, q2 ∈ N), then
for any k ∈ Z we also have

(a+kq2)m+(b−kq1)n = am+bn+kq2m−kq1n = am+bn+kq2q1d−kq1q2d = am+bn = d.

As a consequence, if a < 0, in which case we must have b > 0, we can pick k ∈ Z large
enough so that a+kq2 ≥ 0 and b−kq1 ≤ 0, that is kq2 ≥ −a and kq1 ≥ b, so k ≥ max(−a, b)
will do. Therefore, if m > 0 and n > 0, we may assume that a ≥ 0 and b ≤ 0, or equivalently
that the equation

am− bn = d (∗B)

holds for some a, b ∈ N.

204 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Remark: By picking k > max(−a, b) we can ensure that a > 0 and b < 0 in am + bn = d,
but we don’t need this stronger condition. Also, if m = 0 and n > 0, or m > 0 and n = 0,
the condition (∗B) needs to be replaced by

am− bn = d or bn− am = d,

for some m,n ∈ N.

Now m,n > 0 are relatively prime iff gcd(d) = 1, which by the Bezout identity and the
above discussion is equivalent to the fact that the equation

am− bn = 1

has a solution for some m,n ∈ N. We can now apply this fact to assert that a number p is
prime.

Observe that by the Bezout identity, if p = s + 1 and q = s!, then we can assert that p
and q are relatively prime (gcd(p, q) = 1) as the fact that the Diophantine equation

ap− bq = 1

is satisfied for some a, b ∈ N. Then p ∈ N is prime iff p ≥ 2 and p has no divisor h such that
1 < h < p iff p ≥ 2 and gcd(p, q) = gcd(p, (p− 1)!) = 1. We leave the details an an exercise.

Then it is not hard to see that p ∈ N is prime iff the following set (P) of equations has
a solution for a, b, s, r, q ∈ N:

p = s+ 1

p = r + 2

q = s!

ap− bq = 1.

(P)

The problem with the above is that the equation q = s! is not Diophantine. The next
step is to show that the factorial function is Diophantine, and this involves a lot of work.
One way to proceed is to show that the above system is equivalent to a system allowing the
use of the exponential function exp(m,n) = mn.

The first trick is express the factorial function in terms of the exponential function and
the binomial coefficient. Indeed, for t ≥ s ∈ N (with s ≥ 1 fixed), since(

t

s

)
=

t!

s!(t− s)! =
t(t− 1) · · · (t− s+ 1)

s!
,

we have

s! =
t(t− 1) · · · (t− s+ 1)(

t
s

) .

7.7. SOME APPLICATIONS OF THE DPRM THEOREM 205

For s = 1 we have

s! =
t1(
t
1

)
since 1! = 1 and

t1(
t
1

) =
t

t
= 1.

For s ≥ 2, if we replace every term in the product in the numerator by t, we deduce that

s! ≤ ts(
t
s

) =
s!ts

t(t− 1) · · · (t− s+ 1)

= s!

(
1 +

1

t− 1

)
· · ·
(

1 +
s− 1

t− s+ 1

)
.

Observe that if let t go to infinity, then for k = 1, . . . , s− 1

lim
t7→∞

(
1 +

k

t− k

)
= 1,

which implies that

lim
t7→∞

(
1 +

1

t− 1

)
· · ·
(

1 +
s− 1

t− s+ 1

)
= 1,

and so

lim
t7→∞

ts(
t
s

) = s!.

More precisely, it is not hard to see that if t ≥ 2ss+2, then(
1 +

1

t− 1

)
· · ·
(

1 +
s− 1

t− s+ 1

)
≤ 1 +

1

ss−1
,

with ss−1 > s! (since s ≥ 2), and so

s! =

⌊
ts(
t
s

)⌋ = q, (∗!)

where q the largest natural number (the floor) such that

q ≤ ts(
t
s

) < q + 1.

As we already know, the above formula also holds for s = 1. But then after some thinking
we can show that q = s! is equivalent to the following equations (where all the variables

206 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

range over N):

t = 2ss+2 (1)

ts = qu+ w (2)

u =

(
t

s

)
(3)

u = w + x+ 1. (4)

For s = 0, since 02 = 0, the first equation yields t = 0, and then by the third equation,
u =

(
0
0

)
= 1. The fourth equation forces w = x = 0. Since 00 = 1, the second equation

yields q = 1, which is indeed 0!.

Let us now assume that s ≥ 1. From (2) and (3) we have

q =
ts(
t
s

) − w(
t
s

) ,
so

q ≤ ts(
t
s

) .
By (2) and (4) we have

ts = qu+ w = qu+ u− x− 1 = (q + 1)u− x− 1,

so using (3) we get

q + 1 =
ts(
t
s

) +
x+ 1(

t
s

) ,

which implies that
ts(
t
s

) < q + 1,

and since by (1), t = 2ss+2, we get

q =

⌊
ts(
t
s

)⌋ = s!

This astute maneuver shows that s! is equationally definable if we allow the exponential
function exp(m,n) = mn and the binomial coefficient

(
t
s

)
.

Actually, another trick shows that the binomial coefficients are definable in terms of the
exponential function too. Since

(y + 1)t =
t∑
i=0

(
t

i

)
yi,

7.7. SOME APPLICATIONS OF THE DPRM THEOREM 207

if y is large enough, in fact y > 2t will do, then it turns out that the binomial coefficients(
t
i

)
are the digits in the expansion of (y + 1)t in base y.

We claim that u =
(
t
s

)
is equivalent to the following system of equations (where all the

variables range over N):

y = 2t + 1 (5)

z = y + 1 (6)

zt = `ys+1 + uys +m (7)

u+ v = 2t (8)

m+ n+ 1 = ys. (9)

If t = 0, then Equations (5) and (6) yield y = 2, z = 3. Equation (7) yields

1 = `2s+1 + u2s +m.

Since ys+1 = 2s+1 ≥ 2, we must have ` = 0.

If s = 0, then ys = 20 = 1 and Equation (9) yields m + n + 1 = 1, so m = n = 0. We
have 2t = 20 = 1, so Equation (7) implies that u = 1, and then v = 0. We get

(
0
0

)
= u = 1,

as desired.

If s ≥ 1, then ys = 2s ≥ 2, so we must have u = 0. Then Equation (9) implies that
m = 1, and then n = 2s − 1 and v = 1. We get

(
0
s

)
= u = 0, as desired.

If t ≥ 1 and s > t, we claim that y > 2t implies that (y + 1)t < ys. This is because

(y + 1)t < (y + y)t = (2y)t = 2tyt < yt+1.

Assume that t ≥ 1 and s > t. Since z = y + 1 and the equation y = 2t + 1 implies that
y > 2t, the equation

(y + 1)t = zt = `ys+1 + uys +m

and the fact that (y + 1)t < ys implies that ` = u = 0. Then m = (y + 1)t, v = 2t, and
n = ys − (y + 1)t − 1, which is a natural number since (y + 1)t < ys. Therefore

(
t
s

)
= u = 0

if 1 ≤ t < s, as desired.

Finally, assume that t ≥ 1 and 0 ≤ s ≤ t. Using the binomial formula, we have

(y + 1)t =
t∑

k=0

(
t

t− k

)
yt−k

=
t−s−1∑
k=0

(
t

t− k

)
yt−k +

(
t

s

)
ys +

t∑
k=t−s+1

(
t

t− k

)
yt−k

=

(t−s−1∑
k=0

(
t

t− k

)
yt−s−1−k

)
ys+1 +

(
t

s

)
ys +

t∑
k=t−s+1

(
t

t− k

)
yt−k.

208 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

The equation y = 2t+1 implies that y > 2t, and since
(
t
k

)
≤ 2t < y (because of the well-known

identity
∑t

k=0

(
t
k

)
= 2t), we deduce that

(
t
s

)
is the coefficient of ys in the representation of

(y + 1)t in base y > 2t. Consequently, the unique solutions of the equation

(y + 1)t = zt = `ys+1 + uys +m

are

m =
t∑

k=t−s+1

(
t

t− k

)
yt−k

u =

(
s

t

)
` =

t−s−1∑
k=0

(
t

t− k

)
yt−s−1−k.

Since they appear in the representation of (y + 1)t in base y, the numbers u and v satisfy
the inequalities

m < ys

u ≤ 2t,

so the equations

u+ v = 2t

m+ n+ 1 = ys

are satisfied. Therefore, there is a unique solution u =
(
t
s

)
, as desired.

In summary, the binomial coefficients can be equationally defined by the Equations (5)–
(9) (with s, t ∈ N) and the factorial function can be equationally defined by the Equations
(1)–(2) and (4)–(9). In both cases we allow the use of the exponential function. Since
the equation q = s! in the set (P) of four equations stated earlier can be replaced by the
equations (1)–(2) and (4)–(9) we deduce that any prime p is equationally defined, provided
that we allow the use of the exponential function.

The final step is to show that the exponential function can be eliminated in favor of
polynomial equations. This is the hardest step which was overcome by Matyasevich by
building up on results of Robinson.

We refer the interested reader to the remarkable expository paper by Davis, Matiyasevich
and Robinson [9] for details. Here is a polynomial of total degree 25 in 26 variables (due to

7.8. GÖDEL’S INCOMPLETENESS THEOREM 209

J. Jones, D. Sato, H. Wada, D. Wiens) which produces the primes as its positive range:

(k + 2)
[
1− ([wz + h+ j − q]2 + [(gk + 2g + k + 1)(h+ j) + h− z]2

+ [16(k + 1)3(k + 2)(n+ 1)2 + 1− f 2]2

+ [2n+ p+ q + z − e]2 + [e3(e+ 2)(a+ 1)2 + 1− o2]2

+ [(a2 − 1)y2 + 1− x2]2 + [16r2y4(a2 − 1) + 1− u2]2

+ [((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2]2

+ [(a2 − 1)l2 + 1−m2]2 + [ai+ k + 1− l − i]2 + [n+ l + v − y]2

+ [p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m]2

+ [q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x]2

+ [z + pl(a− p) + t(2ap− p2 − 1)− pm]2)
]
.

Around 2004, Nachi Gupta, an undergraduate student at Penn, and I tried to produce
the prime 2 as one of the values of the positive range of the above polynomial. It turns out
that this leads to values of the variables that are so large that we never succeeded!

Other interesting applications of the DPRM theorem are the re-statements of famous
open problems, such as the Riemann hypothesis, as the unsolvability of certain Diophantine
equations. For all this, see Davis, Matiyasevich and Robinson [9]. One may also obtain a
nice variant of Gödel’s incompleteness theorem.

7.8 Gödel’s Incompleteness Theorem

Gödel published his famous incompleteness theorem in 1931. At the time, his result rocked
the mathematical world, and certainly the community of logicians.

In order to understand why his result had such impact one needs to step back in time.
In the late 1800’s, Hilbert had advanced the thesis that it should be possible to completely
formalize mathematics in such a way that every true statement should be provable “me-
chanically.” In modern terminology, Hilbert believed that one could design a theorem prover
that should be complete. His quest is known as Hilbert’s program. In order to achieve his
goal, Hilbert was led to investigate the notion of proof, and with some collaborators includ-
ing Ackerman, Hilbert developed a significant amount of what is known as proof theory .
When the young Gödel announced his incompleteness theorem, Hilbert’s program came to
an abrupt halt. Even the quest for a complete proof system for arithmetic was impossible.

It should be noted that when Gödel proved his incompleteness theorem, computability
theory basically did not exist, so Gödel had to start from scratch. His proof is really a tour
de force. Gödel’s theorem also triggered extensive research on the notion of computability
and undecidability between 1931 and 1936, the major players being Church, Gödel himself,
Herbrand, Kleene, Rosser, Turing, and Post.

210 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

In this section we will give a (deceptively) short proof that relies on the DPRM and the
existence of universal functions. The proof is short because the hard work lies in the proof
of the DPRM!

The first step is to translate the fact that there is a universal partial computable function
ϕuniv (see Proposition 3.7), such that for all x, y ∈ N, if ϕx is the xth partial computable
function, then

ϕx(y) = ϕuniv(x, y).

Also recall from Definition 4.7 that for any acceptable indexing of the partial computable
functions, the listable (c.e. r.e.) sets Wx are given by

Wx = dom(ϕx), x ∈ N.

Since ϕuniv is a partial computable function, it can be converted into a Diophantine
equation so that we have the following result.

Theorem 7.16. (Universal Equation Theorem) There is a Diophantine equation
U(m, a, x1, . . . xν) = 0 such that for every listable (c.e., r.e.) set Wm (m ∈ N) we have

a ∈ Wm iff (∃x1, . . . , xν)(U(m, a, x1, . . . , xν) = 0).

Proof. We have
Wm = {a ∈ N | (∃x1)(ϕuniv(m, a) = x1)},

and since ϕuniv is partial computable, by the DPRM (Theorem 7.8), there is Diophantine
polynomial U(m, a, x1, . . . , xν) such that

x1 = ϕuniv(m, a) iff (∃x2, . . . , xν)(U(m, a, x1, . . . , xν) = 0),

and so
Wm = {a ∈ N | (∃x1, . . . , xν)(U(m, a, x1, . . . , xν) = 0)},

as claimed.

The Diophantine equation U(m, a, x1, . . . xν) = 0 is called a universal Diophantine equa-
tion. It is customary to denote U(m, a, x1, . . . xν) by Pm(a, x1, . . . , xν).

Gödel’s incompleteness theorem applies to sets of logical (first-order) formulae of arith-
metic built from the mathematical symbols 0, S,+, ·, < and the logical connectives ∧,∨,¬,⇒
,=,∀,∃. Recall that logical equivalence, ≡, is defined by

P ≡ Q iff (P ⇒ Q) ∧ (Q⇒ P).

The term
S(S(· · · (S︸ ︷︷ ︸

n

(0)) · · ·))

7.8. GÖDEL’S INCOMPLETENESS THEOREM 211

is denoted by Sn(0), and represents the natural number n.

For example,
∃x(S(S(S(0))) < (S(S(0)) + x)),

∃x∃y∃z((0 < x) ∧ (0 < y) ∧ (0 < z) ∧ ((x · x+ y · y) = z · z)),

and

∀x∀y∀z((0 < x) ∧ (0 < y) ∧ (0 < z)⇒ ¬((x · x · x · x+ y · y · y · y) = z · z · z · z))

are formulae in the language of arithmetic. All three are true. The first formula is satisfied
by x = S(S(0)), the second by x = S3(0), y = S4(0) and z = S5(0) (since 32 + 42 = 9 + 16 =
25 = 52), and the third formula asserts a special case of Fermat’s famous theorem: for every
n ≥ 3, the equation xn + yn = zn has no solution with x, y, z ∈ N and x > 0, y > 0, z > 0.
The third formula corrresponds to n = 4. Even for this case, the proof is hard.

To be completely rigorous we should explain precisely what is a formal proof. Roughly
speaking, a proof system consists of axioms and inference rule. A proof is a certain kind of
tree whose nodes are labeled with formulae, and this tree is constructed in such a way that
for every node some inference rule is applied. Proof systems are discussed in Chapter ??
and in more detail in Chapter ??. The reader is invited to review this material. Such proof
systems are also presented in Gallier [17, 16].

Given a polynomial P (x1, . . . , xm) in Z[x1, . . . , xm], we need a way to “prove” that some
natural numbers n1, . . . , nm ∈ N are a solution of the Diophantine equation

P (x1, . . . , xm) = 0,

which means that we need to have enough formulae of arithmetric to allow us to simplify
the expression P (n1, . . . , nm) and check whether or not it is equal to zero.

For example, if P (x, y) = 2x− 3y − 1, we have the solution x = 2 and y = 1. What we
do is to group all monomials with positive signs, 2x, and all monomials with negative signs,
3y + 1, plug in the values for x and y, simplify using the arithmetic tables for + and ·, and
then compare the results. If they are equal, then we proved that the equation has a solution.

In our language, x = S2(0), 2x = S2(0) · x, and y = S1(0), 3y+ 1 = S3(0) · y+ S(0). We
need to simplify the expressions

2x = S2(0) · S2(0) and 3y + 1 = S3(0) · S(0) + S(0).

Using the formulae

Sm(0) + Sn(0) = Sm+n(0)

Sm(0) · Sn(0) = Smn(0)

Sm(0) < Sn(0) iff m < n,

212 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

with m,n ∈ N, we simplify S2(0) · S2(0) to S4(0), S3(0) · S(0) + S(0) to S4(0), and we see
that the results are equal.

In general, given a polynomial P (x1, . . . , xm) in Z[x1, . . . , xm], we write it as

P (x1, . . . , xm) = Ppos(x1, . . . , xm)− Pneg(x1, . . . , xm),

where Ppos(x1, . . . , xm) consists of the monomials with positive coefficients, and −Pneg(x1,
. . . , xm) consists of the monomials with negative coefficients. Next we plug in Sn1(0), . . .,
Snm(0) in Ppos(x1, . . . , xm), and evaluate using the formulae for the addition and multiplica-
tion tables obtaining a term of the form Sp(0). Similarly, we plug in Sn1(0), . . . , Snm(0) in
Pneg(x1, . . . , xm), and evaluate using the formulae for the addition and multiplication tables
obtaining a term of the form Sq(0). Then, since exactly one of the formulae

Sp(0) = Sq(0), or Sp(0) < Sq(0), or Sq(0) < Sp(0)

is true, we obtain a proof that either P (n1, . . . , nm) = 0 or P (n1, . . . , nm) 6= 0.

A more economical way that does use not an infinite number of formulae expressing the
addition and multiplication tables is to use various axiomatizations of arithmetic.

One axiomatization known as Robinson arithmetic (R. M. Robinson (1950)) consists of
the following seven axioms:

∀x¬(S(x) = 0)

∀x∀y((S(x) = S(y))⇒ (x = y))

∀y((y = 0) ∨ ∃x(S(x) = y))

∀x(x+ 0 = x)

∀x∀y(x+ S(y) = S(x+ y))

∀x(x · 0 = 0)

∀x∀y(x · S(y) = x · y + x).

Peano arithmetic is obtained from Robinson arithmetic by adding a rule schema express-
ing induction:

[ϕ(0) ∧ ∀n(ϕ(n)⇒ ϕ(n+ 1))]⇒ ∀mϕ(m),

where ϕ(x) is any (first-order) formula of arithmetic. To deal with <, we also have the axiom

∀x∀y(x < y ≡ ∃z(S(z) + x = y)).

It is easy to prove that the formulae

Sm(0) + Sn(0) = Sm+n(0)

Sm(0) · Sn(0) = Smn(0)

Sm(0) < Sn(0) iff m < n,

7.8. GÖDEL’S INCOMPLETENESS THEOREM 213

are provable in Robinson arithmetic, and thus in Peano arithmetic (with m,n ∈ N).

Gödel’s incompleteness applies to sets A of formulae of arithmetic that are “nice” and
strong enough. A set A of formulae is nice if it is listable and consistent (see Definition 6.3),
which means that it is impossible to prove ϕ and ¬ϕ from A for some formula ϕ. In other
words, A is free of contradictions.

Since the axioms of Peano arithmetic are obviously true statements about N and since
the induction principle holds for N, the set of all formulae provable in Robinson arithmetic
and in Peano arithmetic is consistent.

As in Section 6.3, it is possible to assign a Gödel number #(A) to every first-order
sentence A in the language of arithmetic; see Enderton [11] (Chapter III) or Kleene I.M.
[23] (Chapter X). With a slight abuse of notation, we say that a set T is sentences of
arithmetic is computable (resp. listable) iff the set of Gödel numbers #(A) of sentences A
in T is computable (resp. listable). It can be shown that the set of all formulae provable in
Robinson arithmetic and in Peano arithmetic are listable.

Here is a rather strong version of Gödel’s incompleteness from Davis, Matiyasevich and
Robinson [9].

Theorem 7.17. (Gödel’s Incompleteness Theorem) Let A be a set of formulae of arithmetic
satisfying the following properties:

(a) The set A is consistent.

(b) The set A is listable (c.e., r.e.)

(c) The set A is strong enough to prove all formulae

Sm(0) + Sn(0) = Sm+n(0)

Sm(0) · Sn(0) = Smn(0)

Sm(0) < Sn(0) iff m < n,

for all m,n ∈ N.

Then we can construct a Diophantine equation F (x1, . . . , xν) = 0 corresponding to A such
that F (x1, . . . , xν) = 0 has no solution with x1, . . . , xν ∈ N but the formula

¬(∃x1, . . . , xν)(F (x1, . . . , xν) = 0) (∗)

is not provable from A. In other words, there is a true statement of arithmetic not provable
from A; that is, A is incomplete.

Proof. Define the subset A ⊆ N as follows:

A = {a ∈ N | ¬(∃x1, . . . , xν)(Pa(a, x1, . . . , xν) = 0) is provable from A}, (∗∗)

214 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

where Pm(a, x1, . . . , xν) is defined just after Theorem 7.16. Because by (b) A is listable, it
is easy to see (because the set of formulae provable from a listable set is listable) that A is
listable, so by the DPRM A is Diophantine, and by Theorem 7.16, there is some k ∈ N such
that

A = Wk = {a ∈ N | (∃x1, . . . , xν)(Pk(a, x1, . . . , xν) = 0).

The trick is now to see whether k ∈ Wk or not. We claim that k /∈ Wk.

We proceed by contradiction. Assume that k ∈ Wk. This means that

(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0), (†1)

and since A = Wk, by (∗∗), that

¬(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0) is provable from A. (†2)

By (†1) and (c), since the equation Pk(k, x1, . . . , xν) = 0 has a solution, we can prove the
formula

(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0)

from A. By (†2), the formula ¬(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0) is provable from A, but
since (∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0) is also provable from A, this contradicts the fact
that A is consistent (which is hypothesis (a)).

Therefore we must have k /∈ Wk. This means that Pk(k, x1, . . . , xν) = 0 has no solution
with x1, . . . , xν ∈ N, and since A = Wk, the formula

¬(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0)

is not provable from A, since otherwise, by definition of A = Wk, we would have k ∈ Wk,
contradicting the fact that k /∈ Wk.

Remark: Going back to the proof of Theorem 6.16, observe that A plays the role of {Fx |
¬Fx is provable}, that k plays the role of x0, and that the fact that

¬(∃x1, . . . , xν)(Pk(k, x1, . . . , xν) = 0)

is not provable from A corresponds to ¬Fx0 being true.

As a corollary of Theorem 7.17, since the theorems provable in Robinson arithmetic
satisfy (a), (b), (c), we deduce that there are true theorems of arithmetic not provable in
Robinson arithmetic; in short, Robinson arithmetic is incomplete. Since Robinson arith-
metic does not have induction axioms, this shows that induction is not the culprit behind
incompleteness. Since Peano arithmetic is an extension (consistent) of Robinson arithmetic,
it is also incomplete. This is Gödel’s original incompleteness theorem, but Gödel had to
develop from scratch the tools needed to prove his result, so his proof is very different (and
a tour de force).

7.8. GÖDEL’S INCOMPLETENESS THEOREM 215

But the situation is even more dramatic. Adding a true unprovable statement to a
set A satisfying (a), (b), (c) preserves properties (a), (b), (c), so there is no escape from
incompleteness (unless perhaps we allow unreasonable sets of formulae violating (b)). The
reader should compare this situation with the results given by Theorem 6.14 and Theorem
6.15.

Gödel’s incomplenetess theorem is a negative result, in the sense that it shows that there
is no hope of obtaining proof systems capable of proving all true statements for various
mathematical theories such as arithmetic. We can also view Gödel’s incomplenetess theorem
positively as evidence that mathematicians will never be replaced by computers! There is
always room for creativity.

The true but unprovable formulae arising in Gödel’s incompleteness theorem are rather
contrived and by no means “natural.” For many years after Gödel’s proof was published
logicians looked for natural incompleteness phenomena. In the early 1980’s such results
were found, starting with a result of Kirby and Paris. Harvey Friedman then found more
spectacular instances of natural incompleteness, one of which involves a finite miniaturization
of Kruskal’s tree theorem. The proof of such results uses some deep methods of proof theory
involving a tool known as ordinal notations. A survey of such results can be found in Gallier
[12].

216 CHAPTER 7. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Chapter 8

The Post Correspondence Problem;
Applications to Undecidability
Results

8.1 The Post Correspondence Problem

The Post correspondence problem (due to Emil Post) is another undecidable problem that
turns out to be a very helpful tool for proving problems in logic or in formal language theory
to be undecidable.

Definition 8.1. Let Σ be an alphabet with at least two letters. An instance of the Post Cor-
respondence problem (for short, PCP) is given by two nonempty sequences U = (u1, . . . , um)
and V = (v1, . . . , vm) of strings ui, vi ∈ Σ∗. Equivalently, an instance of the PCP is a
sequence of pairs (u1, v1), . . . , (um, vm).

The problem is to find whether there is a (finite) sequence (i1, . . . , ip), with ij ∈ {1, . . . ,m}
for j = 1, . . . , p, so that

ui1ui2 · · ·uip = vi1vi2 · · · vip .
Example 8.1. Consider the following problem:

(abab, ababaaa), (aaabbb, bb), (aab, baab), (ba, baa), (ab, ba), (aa, a).

There is a solution for the string 1234556:

abab aaabbb aab ba ab ab aa = ababaaa bb baab baa ba ba a.

If you are not convinced that this is a hard problem, try solving the following instance
of the PCP:

{(aab, a), (ab, abb), (ab, bab), (ba, aab).}
The shortest solution is a sequence of length 66.

We are beginning to suspect that this is a hard problem. Indeed, it is undecidable!

217

218 CHAPTER 8. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

Theorem 8.1. (Emil Post, 1946) The Post correspondence problem is undecidable, provided
that the alphabet Σ has at least two symbols.

There are several ways of proving Theorem 8.1, but the strategy is more or less the same:
reduce the halting problem to the PCP, by encoding sequences of ID’s as partial solutions of
the PCP. In Machtey and Young [28] (Section 2.6), the undecidability of the PCP is shown
by demonstrating how to simulate the computation of a Turing machine as a sequence of
ID’s. We give a proof involving special kinds of RAM programs (called Post machines in
Manna [29]), which is an adaptation of a proof due to Dana Scott presented in Manna [29]
(Section 1.5.4, Theorem 1.8).

Proof. The first step of the proof is to show that a RAM program with p ≥ 2 registers can be
simulated by a RAM program using a single register. The main idea of the simulation is that
by using the instructions add, tail, and jmp, it is possible to perform cyclic permutations
on the string held by a register.

First we can also assume that RAM programs only uses instructions of the form

(1j) N addj X
(2) N tail X
(6ja) N X jmpj N1a
(6jb) N X jmpj N1b
(7) N continue

We can simulate p ≥ 2 registers with a single register, by encoding the contents r1, . . . , rp
of the p registers as the string

r1#r2# · · ·#rp,
using a single marker #. For instance, if p = 2, the effect of the instruction addb on register
R1 is achieved as follows: Assuming that the initial contents are

aab#baba

using cyclic permutations (also inserting or deleting # whenever necessary), we get

aab#baba

ab#baba#a

b#baba#aa

baba#aab

baba#aabb (add b on the right)

aba#aabb#b

ba#aabb#ba

a#aabb#bab

aabb#baba

8.1. THE POST CORRESPONDENCE PROBLEM 219

Similarly, the effect of the instruction tail on register R2 is achieved as follows

aab#baba

ab#baba#a

b#baba#aa

baba#aab

aba#aab (delete the leftmost letter)

ba#aab#a

a#aab#ab

aab#aba

Since the halting problem for RAM programs is undecidable and since every RAM pro-
gram can be simulated by another RAM with a single register, the halting problem for RAM
programs with a single register is undecidable.

The second step of the proof is to reduce the halting problem for RAM programs with
one register to the PCP (over an alphabet with at least two symbols).

Recall that Σ = {a1, . . . , ak}. First, it is easily shown that every RAM program P (with
a single register X) is equivalent to a RAM program P ′ such that all instructions are labeled
with distinct line numbers, and such that there is only one occurrence of the instruction
continue at the end of the program.

In order to obtain a reasonably simple reduction of the halting problem for RAM programs
with a single register to the PCP, we modify the jump instructions as follows: the new
instruction

JmpN1, . . . , Nk, Nk+1

tests whether head(X) = aj, with 1 ≤ j ≤ k. Since there is a single register X, it is
omitted in the instruction Jmp. If head(X) = aj, then jump to the instruction labeled Nj

and perform the tail instruction so that X = tail(X), otherwise if X = ε (which implies
that j = k + 1), jump to the instruction labeled Nk+1. The instruction tail is eliminated.
We leave it as an exercise to show how to simulate the new instruction

JmpN1, . . . , Nk, Nk+1

using the instructions tail, jmpj Na and jmpj Nb, and vice-versa. From now on we will use
the second version using the instructions

JmpN1, . . . , Nk, Nk+1.

For the purpose of deciding whether a RAM program terminates, we may assume without
loss of generality that we deal with programs that clear the register X when they halt. In

220 CHAPTER 8. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

fact, by adding an extra symbol # to the alphabet (which now has k + 1 symbols), we may
also assume that in every instruction

JmpN1, . . . , Nk+1, Nk+2,

Nk+2 is the line number of the last instruction in the RAM program, which must be a
continue. This implies that the program clears the register X before it halts. We can
execute the instruction addk+1 X at the very beginning of the program and perform an
addk+1 X after each tail instruction to make sure that in the new program the register X
always has # as its rightmost symbol. When the original program performs an instruction

JmpN1, . . . , Nk+1, Nk+2

with X = ε, the new program performs the instruction

JmpN1, . . . , Nk+2, N1.

SinceX is never empty during execution of the new program, the line numberN1 is irrelevant.
Finally, when the original program halts, the new program clears the register X and then
jumps to the last continue. We leave the details as an exercise.

From now on, we assume that Σ = {a1, . . . , ak,#}. Given a RAM program P sat-
isfying all the restrictions described above, we construct an instance of the PCP as fol-
lows. Assume that P has q lines numbered N1, . . . , Nq. The alphabet ∆ of the PCP is
∆ = Σ ∪ {∗, N0, N1, . . . , Nq}. Indeed, the construction requires one more line number N0 to
force a solution of the PCP to start with some specified pair.

The lists U and V are constructed so that given any nonempty input x = x1 · · ·xm (with
xi ∈ Σ), the only possible U -lists u and V -lists v that could lead to a solution are of the
form

u = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin

and
v = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin wn ∗Nin+1 ∗,

where each wi is of the form

wi = ∗ wi,1 ∗ · · · ∗ wi,ni
or wi = ε,

with
w0 = ∗ x1 ∗ x2 ∗ · · · ∗ xm,

where wi,j ∈ Σ, 1 ≤ j ≤ ni, 1 ≤ i ≤ n.

The sequence N1, . . . , Nin+1 is the sequence of line numbers of the instructions executed
by the RAM program P after n steps, started on input x, and wj is the value of the (single)
register X just after executing the jth step, i.e., the instruction at line number Nij . We
make sure that the V -list is always ahead of the U -list by one instruction.

8.1. THE POST CORRESPONDENCE PROBLEM 221

The lists U and V are defined according to the following rules. Rather than defining U
and V explicitly, we define the pairs (ui, vi), where ui ∈ U and vi ∈ V .

To get started: we have the initial pair

(N0, N0 ∗ x1 ∗ x2 ∗ · · · ∗ xm ∗N1 ∗).

To simulate an instruction
Ni addj X,

create the pair
(∗Ni, aj ∗Ni+1 ∗), for all a ∈ Σ.

To simulate an instruction of the form

Ni JmpN1, . . . , Nk+1, Nk+2,

create the pairs
(∗Ni ∗ aj, Nj ∗), 1 ≤ j ≤ k + 1,

and
(∗Ni ∗Nq, Nq).

To build up the register contents, we need pairs

(∗ a, a ∗), for all a ∈ Σ.

Note that we used the alphabet ∆ = Σ ∪ {∗, N0, N1, . . . , Nq}, which uses more than 2
symbols in general. Let us finish our reduction for an instance of the PCP over the alphabet
∆. Then after this construction is finished we will explain how to convert the instance of
the PCP that we obtained to an instance of the PCP over a two-symbol alphabet.

The pairs of the PCP are designed so that the only possible U -lists u and V -lists v that
could lead to a solution are of the form

u = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin

and
v = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin wn ∗Nin+1 ∗,

where each wi is of the form

wi = ∗ wi,1 ∗ · · · ∗ wi,ni
or wi = ε,

with
w0 = ∗ x1 ∗ x2 ∗ · · · ∗ xm,

222 CHAPTER 8. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

where wi,j ∈ Σ, 1 ≤ j ≤ ni, 1 ≤ i ≤ n, and where v is an encoding of n steps of the
computation of the RAM program P on input x = x1 · · ·xm, and u lags behind v by one
step.

For example, let us see how the U -list and the V -list are updated, assuming that Nin is
the following instruction:

Nin addb X

Just after execution of the instruction at line number Nin , we have

u = N0 w0 ∗N1 w1 ∗ · · · ∗ Nin−1

and
v = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin ∗ .

Since wn−1 = ∗wn−1,1 ∗ · · · ∗ wn−1,nn−1 , using the pairs

(∗wn−1,1, wn−1,1∗), (∗wn−1,2, wn−1,2 ∗), · · · , (∗wn−1,nn−1 , wn−1,nn−1 ∗),

we get
u = N0 w0 ∗N1 w1 ∗ · · · ∗ Nin−1 wn−1

and
v = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin wn−1 ∗ .

Next we use the pair
(∗Nin , b ∗Nin+1 ∗)

simulating addb, and we get

u = N0 w0 ∗N1 w1 ∗ · · · ∗ Nin−1 wn−1 ∗Nin

and
v = N0 w0 ∗N1 w1 ∗ · · · ∗Nin−1 wn−1 ∗Nin wn−1 ∗ b ∗Nin+1 ∗ .

Observe that the only chance for getting a solution of the PCP is to start with the pairs
involving N0. It is easy to see that the PCP constructed from P has a solution iff P halts
on input x. However, the halting problem for RAM’s with a single register is undecidable,
and thus, the PCP over the alphabet ∆ is also undecidable.

It remains to show that we can recode the instance of the PCP that we obtained over
the alphabet ∆ = Σ ∪ {∗, N0, N1, . . . , Nq} as an instance of the PCP over the alphabet
{a1, ∗}. To achieve this, we recode each symbol ai in Σ as ∗ai1 (with ak+1 = #) and each
Nj as ∗ak+j+2

1 . This way, we are only using the alphabet ∆ = {a1, ∗}. We need the second
character ∗, whose purpose is to avoid trivial solutions of the form

(u, u).

8.2. SOME UNDECIDABILITY RESULTS FOR CFG’S 223

This could happen if we had used pairs (a, a) to build up the register. Then we substitute
∗ai1 for ai and ∗ak+j+2

1 for Nj in the pairs that we created. Observe that the pairs (∗a, a∗)
become pairs involving longer strings. It is easy to see that the original PCP over ∆ has a
solution iff the new PCP over {a1, ∗} has a solution, so the PCP over two-letter alphabet is
undecidable.

In the next two sections we present some undecidability results for context-free grammars
and context-free languages.

8.2 Some Undecidability Results for CFG’s

Theorem 8.2. It is undecidable whether a context-free grammar is ambiguous.

Proof. We reduce the PCP to the ambiguity problem for CFG’s. Given any instance U =
(u1, . . . , um) and V = (v1, . . . , vm) of the PCP, let c1, . . . , cm be m new symbols, and consider
the following languages:

LU = {ui1 · · ·uipcip · · · ci1 | 1 ≤ ij ≤ m,

1 ≤ j ≤ p, p ≥ 1},
LV = {vi1 · · · vipcip · · · ci1 | 1 ≤ ij ≤ m,

1 ≤ j ≤ p, p ≥ 1},

and LU,V = LU ∪ LV .

We can easily construct a CFG, GU,V , generating LU,V . The productions are:

S −→ SU

S −→ SV

SU −→ uiSUci

SU −→ uici

SV −→ viSV ci

SV −→ vici.

It is easily seen that the PCP for (U, V) has a solution iff LU ∩LV 6= ∅ iff G is ambiguous.

Remark: As a corollary, we also obtain the following result: it is undecidable for arbitrary
context-free grammars G1 and G2 whether L(G1) ∩ L(G2) = ∅ (see also Theorem 8.4).

Recall that the computations of a Turing Machine, M , can be described in terms of
instantaneous descriptions, upav.

224 CHAPTER 8. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

We can encode computations

ID0 ` ID1 ` · · · ` IDn

halting in a proper ID, as the language, LM , consisting all of strings

w0#wR1 #w2#wR3 # · · ·#w2k#w
R
2k+1,

or

w0#wR1 #w2#wR3 # · · ·#w2k−2#wR2k−1#w2k,

where k ≥ 0, w0 is a starting ID, wi ` wi+1 for all i with 0 ≤ i < 2k + 1 and w2k+1 is proper
halting ID in the first case, 0 ≤ i < 2k and w2k is proper halting ID in the second case.

The language LM turns out to be the intersection of two context-free languages L0
M and

L1
M defined as follows:

(1) The strings in L0
M are of the form

w0#wR1 #w2#wR3 # · · ·#w2k#w
R
2k+1

or

w0#wR1 #w2#wR3 # · · ·#w2k−2#wR2k−1#w2k,

where w2i ` w2i+1 for all i ≥ 0, and w2k is a proper halting ID in the second case.

(2) The strings in L1
M are of the form

w0#wR1 #w2#wR3 # · · ·#w2k#w
R
2k+1

or

w0#wR1 #w2#wR3 # · · ·#w2k−2#wR2k−1#w2k,

where w2i+1 ` w2i+2 for all i ≥ 0, w0 is a starting ID, and w2k+1 is a proper halting ID
in the first case.

Theorem 8.3. Given any Turing machine M , the languages L0
M and L1

M are context-free,
and LM = L0

M ∩ L1
M .

Proof. We can construct PDA’s accepting L0
M and L1

M . It is easily checked that LM =
L0
M ∩ L1

M .

As a corollary, we obtain the following undecidability result:

Theorem 8.4. It is undecidable for arbitrary context-free grammars G1 and G2 whether
L(G1) ∩ L(G2) = ∅.

8.2. SOME UNDECIDABILITY RESULTS FOR CFG’S 225

Proof. We can reduce the problem of deciding whether a partial recursive function is unde-
fined everywhere to the above problem. By Rice’s theorem, the first problem is undecidable.

However, this problem is equivalent to deciding whether a Turing machine never halts
in a proper ID. By Theorem 8.3, the languages L0

M and L1
M are context-free. Thus, we can

construct context-free grammars G1 and G2 so that L0
M = L(G1) and L1

M = L(G2). Then
M never halts in a proper ID iff LM = ∅ iff (by Theorem 8.3), LM = L(G1)∩L(G2) = ∅.

Given a Turing machineM , the language LM is defined over the alphabet ∆ = Γ∪Q∪{#}.
The following fact is also useful to prove undecidability:

Theorem 8.5. Given any Turing machine M , the language ∆∗ − LM is context-free.

Proof. One can easily check that the conditions for not belonging to LM can be checked by
a PDA.

As a corollary, we obtain:

Theorem 8.6. Given any context-free grammar, G = (V,Σ, P, S), it is undecidable whether
L(G) = Σ∗.

Proof. We can reduce the problem of deciding whether a Turing machine never halts in a
proper ID to the above problem.

Indeed, given M , by Theorem 8.5, the language ∆∗ − LM is context-free. Thus, there is
a CFG, G, so that L(G) = ∆∗ − LM . However, M never halts in a proper ID iff LM = ∅ iff
L(G) = ∆∗.

As a consequence, we also obtain the following:

Theorem 8.7. Given any two context-free grammar, G1 and G2, and any regular language,
R, the following facts hold:

(1) L(G1) = L(G2) is undecidable.

(2) L(G1) ⊆ L(G2) is undecidable.

(3) L(G1) = R is undecidable.

(4) R ⊆ L(G2) is undecidable.

In contrast to (4), the property L(G1) ⊆ R is decidable!

226 CHAPTER 8. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

8.3 More Undecidable Properties of Languages;

Greibach’s Theorem

We discuss a nice theorem of S. Greibach, which is a sort of version of Rice’s theorem for
families of languages.

Let L be a countable family of languages. We assume that there is a coding function
c : L → N and that this function can be extended to code the regular languages (all alphabets
are subsets of some given countably infinite set).

We also assume that L is effectively closed under union, and concatenation with the
regular languages.

This means that given any two languages L1 and L2 in L, we have L1 ∪ L2 ∈ L, and
c(L1 ∪ L2) is given by a recursive function of c(L1) and c(L2), and that for every regular
language R, we have L1R ∈ L, RL1 ∈ L, and c(RL1) and c(L1R) are recursive functions of
c(R) and c(L1).

Given any language, L ⊆ Σ∗, and any string, w ∈ Σ∗, we define L/w by

L/w = {u ∈ Σ∗ | uw ∈ L}.

Theorem 8.8. (Greibach) Let L be a countable family of languages that is effectively closed
under union and concatenation with the regular languages, and assume that the problem
L = Σ∗ is undecidable for L ∈ L and any given sufficiently large alphabet Σ. Let P be any
nontrivial property of languages that is true for the regular languages, so that if P (L) holds
for any L ∈ L, then P (L/a) also holds for any letter a. Then P is undecidable for L.

Proof. Since P is nontrivial for L, there is some L0 ∈ L so that P (L0) is false.

Let Σ be large enough, so that L0 ⊆ Σ∗, and the problem L = Σ∗ is undecidable for
L ∈ L.

We show that given any L ∈ L, with L ⊆ Σ∗, we can construct a language L1 ∈ L, so
that L = Σ∗ iff P (L1) holds. Thus, the problem L = Σ∗ for L ∈ L reduces to property P
for L, and since for Σ big enough, the first problem is undecidable, so is the second.

For any L ∈ L, with L ⊆ Σ∗, let

L1 = L0#Σ∗ ∪ Σ∗#L.

Since L is effectively closed under union and concatenation with the regular languages, we
have L1 ∈ L.

If L = Σ∗, then L1 = Σ∗#Σ∗, a regular language, and thus, P (L1) holds, since P holds
for the regular languages.

Conversely, we would like to prove that if L 6= Σ∗, then P (L1) is false.

8.4. UNDECIDABILITY OF VALIDITY IN FIRST-ORDER LOGIC 227

Since L 6= Σ∗, there is some w /∈ L. But then,

L1/#w = L0.

Since P is preserved under quotient by a single letter, by a trivial induction, if P (L1) holds,
then P (L0) also holds. However, P (L0) is false, so P (L1) must be false.

Thus, we proved that L = Σ∗ iff P (L1) holds, as claimed.

Greibach’s theorem can be used to show that it is undecidable whether a context-free
grammar generates a regular language.

It can also be used to show that it is undecidable whether a context-free language is
inherently ambiguous.

8.4 Undecidability of Validity in First-Order Logic

The PCP can also be used to give a quick proof of Church’s famous result stating that validity
in first-order logic is undecidable. Here we are considering first-order formulae as defined
in Section ??. Given a first-order language L consisting of constant symbols c, function
symbols f , and predicate symbols P , a first-order structure M consists of a nonempty
domain M , of an assigment of some element of cM ∈ M to every constant symbol c, of a
function fM : Mn →M to every n-ary function symbol f , and to a boolean-valued function
PM : Mm → {T,F} to any m-ary predicate symbol P .

Then given any assignment ρ : X →M to the first-order variables xi ∈ X, we can define
recursively the truth value ϕM[ρ] of every first-order formula ϕ. If ϕ is a sentence, which
means that ϕ has no free variables, then the truth value ϕM[ρ] is independent of ρ, so we
simply write ϕM. Details can be found in Gallier [17], Enderton [11], or Shoenfield [37]. The
formula ϕ is valid in M if ϕM[ρ] = T for all ρ. We also say thatM is a model of ϕ and we
write

M |= ϕ.

The formula ϕ is valid (or universally valid) if it is valid in every first-order structure M;
this denoted by

|= ϕ.

The validity problem in first-order logic is to decide whether there is algorithm to decide
whether any first-order formula is valid.

Theorem 8.9. (Church, 1936) The validity problem for first-order logic is undecidable.

Proof. The following proof due to R. Floyd is given in Manna [29] (Section 2.16). The proof
consists in reducing the PCP over the alphabet {0, 1} to the validity problem. Given an
instance S = (U, V) of the PCP, we construct a first-order sentence ΦS (using a computable

228 CHAPTER 8. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

function) such that S has a solution if and only if ΦS is valid. Since the PCP is undecidable,
so is the validity problem for first-order logic.

For this construction, we need a constant symbol a, two unary function symbols f0 and
f1, and a binary predicate symbol P . We denote the term

fsp(· · · (fs2(fs1(x)) · · ·)

as fs1s2···sp , where si ∈ {0, 1}. Suppose S is the set of pairs

S = {(u1, v1), . . . , (um, vm)}.

The key ingredent is the sentence

ΦS ≡
(m∧
i=1

P (fui(a), fvi(a)) ∧ ∀x∀y
(
P (x, y)⇒

m∧
i=1

P (fui(x), fvi(x))
))

⇒ ∃zP (z, z).

We claim that the PCP S has a solution iff ΦS is valid.

Step 1 . We prove that if ΦS is valid, then the PCP has a solution. Consider the first-
order structure M with domain {0, 1}∗, with aM = ε, (f0)M is concatenation on the right
with 0 ((f0)M(x) = x0), (f1)M is concatenation on the right with 1 ((f1)M(x) = x1), and

P (x, y) = T iff x = ui1ui2 · · ·uin , y = vi1vi2 · · · vin ,

for some nonempty sequence i1, i2, . . . , in with 1 ≤ ij ≤ m.

Since ΦS is valid, it must be valid in M, but then we see immediately that both

m∧
i=1

P (fui(a), fvi(a))

and

∀x∀y
(
P (x, y)⇒

m∧
i=1

P (fui(x), fvi(x))
)

are valid in M, thus
∃zP (z, z)

is also valid in M. This means that there is some nonempty sequence i1, i2, . . . , in with
1 ≤ ij ≤ m such that

z = ui1ui2 · · ·uin = vi1vi2 · · · vin ,
and so we have a solution of the PCP.

Step 2 . We prove that if the PCP has a solution, then ΦS is valid. Let i1, i2, . . . , in be a
nonempty sequence with 1 ≤ ij ≤ m such that

ui1ui2 · · ·uin = vi1vi2 · · · vin ,

8.4. UNDECIDABILITY OF VALIDITY IN FIRST-ORDER LOGIC 229

which means that i1, i2, . . . , in is a solution of the PCP S. We prove that for every first-order
structure M, if

m∧
i=1

P (fui(a), fvi(a))

and

∀x∀y
(
P (x, y)⇒

m∧
i=1

P (fui(x), fvi(x))
)

are valid in M, then
∃zP (z, z)

is also valid inM. But then ΦS is valid in every first-order structureM, and thus it is valid.

To finish the proof, assume that M is any first-order structure such that

m∧
i=1

P (fui(a), fvi(a)) (∗1)

and

∀x∀y
(
P (x, y)⇒

m∧
i=1

P (fui(x), fvi(x))
)

(∗2)

are valid in M. Using (∗1), by repeated application on (∗2), we deduce that

P (fui1ui2 ···uin (a), fvi1vi2 ···vin (a)),

is valid in M. For example, since (ui1 , vi1) is a pair in the PCP instance, by (∗1) the
proposition P (fui1 (a), fvi1 (a)) holds, so by (∗2) with x = fui1 (a) and v = fvi1 (a), we get the
implication

P (fui1 (a), fvi1 (a))⇒
m∧
i=1

P (fui(fui1 (a)), fvi(fvi1 (a))),

and since P (fui1 (a), fvi1 (a)) holds, we deduce that
∧m
i=1 P (fui(fui1 (a)), fvi(fvi1 (a))) holds,

and consequently P (fui2 (fui1 (a)), fvi2 (fvi1 (a))) = P (fui1ui2 (a), fvi1v21 (a)) holds.

Since by hypothesis
ui1ui2 · · ·uin = vi1vi2 · · · vin ,

we deduce that ∃zP (z, z) is valid in M, and so ΦS is valid in M, as claimed.

There are other ways of proving Church’s theorem. Among other sources, see Shoenfield
[37] (Section 6.8) and Machtey and Young [28] (Chapter 4, theorem 4.3.6). These proofs are
rather long and involve complicated arguments. Floyd’s proof has the virtue of being quite
short and transparent, if we accept the undecidability of the PCP.

Lewis shows the stronger result than even with a single unary function symbol f , one
constant a, and one binary predicate symbol P , the validity problem is undecidable; see

230 CHAPTER 8. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

Lewis [26] (Chapter IIC). Lewis’ proof is a very clever reduction of a tiling problem. Lewis’
book also contains an extensive classification of undecidable classes of first-order sentences.
On the positive side, Dreben and Goldfarb [10] contains a very complete study of classes of
first-order sentences for which the validity problem is decidable.

Chapter 9

Computational Complexity;
P and NP

9.1 The Class P
In the previous two chapters, we clarified what it means for a problem to be decidable
or undecidable. This chapter is heavily inspired by Lewis and Papadimitriou’s excellent
treatment [27].

In principle, if a problem is decidable, then there is an algorithm (i.e., a procedure that
halts for every input) that decides every instance of the problem.

However, from a practical point of view, knowing that a problem is decidable may be
useless, if the number of steps (time complexity) required by the algorithm is excessive, for
example, exponential in the size of the input, or worse.

For instance, consider the traveling salesman problem, which can be formulated as follows:

We have a set {c1, . . . , cn} of cities, and an n×n matrix D = (dij) of nonnegative integers,
the distance matrix , where dij denotes the distance between ci and cj, which means that
dii = 0 and dij = dji for all i 6= j.

The problem is to find a shortest tour of the cities, that is, a permutation π of {1, . . . , n}
so that the cost

C(π) = dπ(1)π(2) + dπ(2)π(3) + · · ·+ dπ(n−1)π(n) + dπ(n)π(1)

is as small as possible (minimal).

One way to solve the problem is to consider all possible tours, i.e., n! permutations.
Actually, since the starting point is irrelevant, we need only consider (n− 1)! tours, but this
still grows very fast. For example, when n = 40, it turns out that 39! exceeds 1045, a huge
number.

231

232 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Consider the 4× 4 symmetric matrix given by

D =


0 2 1 1
2 0 1 1
1 1 0 3
1 1 3 0

 ,

and the budget B = 4. The tour specified by the permutation

π =

(
1 2 3 4
1 4 2 3

)
has cost 4, since

c(π) = dπ(1)π(2) + dπ(2)π(3) + dπ(3)π(4) + dπ(4)π(1)

= d14 + d42 + d23 + d31

= 1 + 1 + 1 + 1 = 4.

The cities in this tour are traversed in the order

(1, 4, 2, 3, 1).

Remark: The permutation π shown above is described in Cauchy’s two-line notation,

π =

(
1 2 3 4
1 4 2 3

)
,

where every element in the second row is the image of the element immediately above it in
the first row: thus

π(1) = 1, π(2) = 4, π(3) = 2, π(4) = 3.

Thus, to capture the essence of practically feasible algorithms, we must limit our com-
putational devices to run only for a number of steps that is bounded by a polynomial in the
length of the input.

We are led to the definition of polynomially bounded computational models.

We talked about problems being decidable in polynomial time. Obviously, this is equiv-
alent to deciding some property of a certain class of objects, for example, finite graphs.

Our framework requires that we first encode these classes of objects as strings (or num-
bers), since P consists of languages.

Thus, when we say that a property is decidable in polynomial time, we are really talking
about the encoding of this property as a language. Thus, we have to be careful about these
encodings, but it is rare that encodings cause problems.

9.2. DIRECTED GRAPHS, PATHS 233

Definition 9.1. A deterministic Turing machine M is said to be polynomially bounded if
there is a polynomial p(X) so that the following holds: for every input x ∈ Σ∗, there is no
ID IDn so that

ID0 ` ID1 `∗ IDn−1 ` IDn, with n > p(|x|),
where ID0 = q0x is the starting ID.

A language L ⊆ Σ∗ is polynomially decidable if there is a polynomially bounded Turing
machine that accepts L. The family of all polynomially decidable languages is denoted by
P .

Remark: Even though Definition 9.1 is formulated for Turing machines, it can also be
formulated for other models, such as RAM programs. The reason is that the conversion of
a Turing machine into a RAM program (and vice versa) produces a program (or a machine)
whose size is polynomial in the original device.

The following proposition, although trivial, is useful:

Proposition 9.1. The class P is closed under complementation.

Of course, many languages do not belong to P . One way to obtain such languages is
to use a diagonal argument. But there are also many natural languages that are not in P ,
although this may be very hard to prove for some of these languages.

Let us consider a few more problems in order to get a better feeling for the family P .

9.2 Directed Graphs, Paths

Recall that a directed graph, G, is a pair G = (V,E), where E ⊆ V × V . Every u ∈ V is
called a node (or vertex) and a pair (u, v) ∈ E is called an edge of G.

We will restrict ourselves to simple graphs , that is, graphs without edges of the form
(u, u); equivalently, G = (V,E) is a simple graph if whenever (u, v) ∈ E, then u 6= v.

Given any two nodes u, v ∈ V , a path from u to v is any sequence of n+ 1 edges (n ≥ 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 0, a path from u to v is simply a single edge, (u, v).)

A graph G is strongly connected if for every pair (u, v) ∈ V × V , there is a path from u
to v. A closed path, or cycle, is a path from some node u to itself.

We will restrict out attention to finite graphs, i.e. graphs (V,E) where V is a finite set.

Definition 9.2. Given a graph G, an Eulerian cycle is a cycle in G that passes through
all the nodes (possibly more than once) and every edge of G exactly once. A Hamiltonian
cycle is a cycle that passes through all the nodes exactly once (note, some edges may not be
traversed at all).

234 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Eulerian Cycle Problem: Given a graph G, is there an Eulerian cycle in G?

Hamiltonian Cycle Problem: Given a graph G, is there an Hamiltonian cycle in G?

9.3 Eulerian Cycles

The following graph is a directed graph version of the Königsberg bridge problem, solved by
Euler in 1736.

The nodes A,B,C,D correspond to four areas of land in Königsberg and the edges to
the seven bridges joining these areas of land.

B

A

C

D

Figure 9.1: A directed graph modeling the Königsberg bridge problem.

The problem is to find a closed path that crosses every bridge exactly once and returns
to the starting point.

In fact, the problem is unsolvable, as shown by Euler, because some nodes do not have
the same number of incoming and outgoing edges (in the undirected version of the problem,
some nodes do not have an even degree.)

It may come as a surprise that the Eulerian Cycle Problem does have a polynomial time
algorithm, but that so far, not such algorithm is known for the Hamiltonian Cycle Problem.
The reason why the Eulerian Cycle Problem is decidable in polynomial time is the following
theorem due to Euler:

Theorem 9.2. A graph G = (V,E) has an Eulerian cycle iff the following properties hold:

(1) The graph G is strongly connected.

(2) Every node has the same number of incoming and outgoing edges.

9.4. HAMILTONIAN CYCLES 235

Proving that properties (1) and (2) hold if G has an Eulerian cycle is fairly easy. The
converse is harder, but not that bad (try!).

Theorem 9.2 shows that it is necessary to check whether a graph is strongly connected.
This can be done by computing the transitive closure of E, which can be done in polynomial
time (in fact, O(n3)).

Checking property (2) can clearly be done in polynomial time. Thus, the Eulerian cy-
cle problem is in P . Unfortunately, no theorem analogous to Theorem 9.2 is known for
Hamiltonian cycles.

9.4 Hamiltonian Cycles

A game invented by Sir William Hamilton in 1859 uses a regular solid dodecahedron whose
twenty vertices are labeled with the names of famous cities.

The player is challenged to “travel around the world” by finding a closed cycle along
the edges of the dodecahedron which passes through every city exactly once (this is the
undirected version of the Hamiltonian cycle problem). See Figure 9.2.

Figure 9.2: A tour “around the world.”

236 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

In graphical terms, assuming an orientation of the edges between cities, the graph D
shown in Figure 9.2 is a plane projection of a regular dodecahedron and we want to know
if there is a Hamiltonian cycle in this directed graph. Finding a Hamiltonian cycle in this
graph does not appear to be so easy!

A solution is shown in Figure 9.3 below.

v18
v17

v11
v12 v13

v10
v6

v5

v4

v14

v19

v9

v8

v7 v3

v2

v15

v16

v1

v20

Figure 9.3: A Hamiltonian cycle in D.

9.5 Propositional Logic and Satisfiability

We define the syntax and the semantics of propositions in conjunctive normal form (CNF).

The syntax has to do with the legal form of propositions in CNF. Such propositions are
interpreted as truth functions, by assigning truth values to their variables.

We begin by defining propositions in CNF. Such propositions are constructed from a
countable set, PV, of propositional (or boolean) variables , say

PV = {x1, x2, . . . , },

9.5. PROPOSITIONAL LOGIC AND SATISFIABILITY 237

using the connectives ∧ (and), ∨ (or) and ¬ (negation).

Definition 9.3. We define a literal (or atomic proposition), L, as L = x or L = ¬x, also
denoted by x, where x ∈ PV.

A clause, C, is a disjunction of pairwise distinct literals,

C = (L1 ∨ L2 ∨ · · · ∨ Lm).

Thus, a clause may also be viewed as a nonempty set

C = {L1, L2, . . . , Lm}.
We also have a special clause, the empty clause, denoted ⊥ or (or {}). It corresponds to
the truth value false.

A proposition in CNF, or boolean formula, P , is a conjunction of pairwise distinct clauses

P = C1 ∧ C2 ∧ · · · ∧ Cn.

Thus, a boolean formula may also be viewed as a nonempty set

P = {C1, . . . , Cn},
but this time, the comma is interpreted as conjunction. We also allow the proposition ⊥,
and sometimes the proposition > (corresponding to the truth value true).

For example, here is a boolean formula:

P = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)}.

In order to interpret boolean formulae, we use truth assignments.

Definition 9.4. We let BOOL = {F,T}, the set of truth values , where F stands for false and
T stands for true. A truth assignment (or valuation), v, is any function v : PV→ BOOL.

Example 9.1. The function vF : PV→ BOOL given by

vF (xi) = F for all i ≥ 1

is a truth assigmnent, and so is the function vT : PV→ BOOL given by

vT (xi) = T for all i ≥ 1.

The function v : PV→ BOOL given by

v(x1) = T

v(x2) = F

v(x3) = T

v(xi) = T for all i ≥ 4

is also a truth assignment.

238 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Definition 9.5. Given a truth assignment v : PV→ BOOL, we define the truth value v̂(X)
of a literal, clause, and boolean formula, X, using the following recursive definition:

(1) v̂(⊥) = F, v̂(>) = T.

(2) v̂(x) = v(x), if x ∈ PV.

(3) v̂(x) = v(x), if x ∈ PV, where v(x) = F if v(x) = T and v(x) = T if v(x) = F.

(4) v̂(C) = F if C is a clause and iff v̂(Li) = F for all literals Li in C, otherwise T.

(5) v̂(P) = T if P is a boolean formula and iff v̂(Cj) = T for all clauses Cj in P , otherwise
F.

Since a boolean formula P only contains a finite number of variables, say {xi1 , . . . , xin},
one should expect that its truth value v̂(P) depends only on the truth values assigned by
the truth assignment v to the variables in the set {xi1 , . . . , xin}, and this is indeed the case.
The following proposition is easily shown by induction on the depth of P (viewed as a tree).

Proposition 9.3. Let P be a boolean formula containing the set of variables {xi1 , . . . , xin}.
If v1 : PV→ BOOL and v2 : PV→ BOOL are any truth assignments agreeing on the set of
variables {xi1 , . . . , xin}, which means that

v1(xij) = v2(xij) for j = 1, . . . , n,

then v̂1(P) = v̂2(P).

In view of Proposition 9.3, given any boolean formula P , we only need to specify the
values of a truth assignment v for the variables occurring on P .

Example 9.2. Given the boolean formula

P = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)},

we only need to specify v(x1), v(x2), v(x3). Thus there are 23 = 8 distinct truth assignments:

F,F,F T,F,F

F,F,T T,F,T

F,T,F T,T,F

F,T,T T,T,T.

In general, there are 2n distinct truth assignments to n distinct variables.

Example 9.3. Here is an example showing the evaluation of the truth value v̂(P) for the
boolean formula

P = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1) ∧ (x1 ∨ x2 ∨ x3)

= {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)},

9.5. PROPOSITIONAL LOGIC AND SATISFIABILITY 239

and the truth assignment

v(x1) = T, v(x2) = F, v(x3) = F.

For the literals, we have

v̂(x1) = T, v̂(x2) = F, v̂(x3) = F, v̂(x1) = F, v̂(x2) = T, v̂(x3) = T,

for the clauses

v̂(x1 ∨ x2 ∨ x3) = v̂(x1) ∨ v̂(x2) ∨ v̂(x3) = T ∨ F ∨ F = T,

v̂(x1 ∨ x2) = v̂(x1) ∨ v̂(x2) = F ∨ F = F,

v̂(x2 ∨ x3) = v̂(x2) ∨ v̂(x3) = T ∨ F = T,

v̂(x3 ∨ x1) = v̂(x3) ∨ v̂(x1) = T ∨T = T,

v̂(x1 ∨ x2 ∨ x3) = v̂(x1) ∨ v̂(x2) ∨ v̂(x3) = F ∨T ∨T = T,

and for the conjunction of the clauses,

v̂(P) = v̂(x1 ∨ x2 ∨ x3) ∧ v̂(x1 ∨ x2) ∧ v̂(x2 ∨ x3) ∧ v̂(x3 ∨ x1) ∧ v̂(x1 ∨ x2 ∨ x3)

= T ∧ F ∧T ∧T ∧T = F.

Therefore, v̂(P) = F.

Definition 9.6. We say that a truth assignment v satisfies a boolean formula P , if v̂(P) = T.
In this case, we also write

v |= P.

A boolean formula P is satisfiable if v |= P for some truth assignment v, otherwise, it is
unsatisfiable. A boolean formula P is valid (or a tautology) if v |= P for all truth assignments
v, in which case we write

|= P.

One should check that the boolean formula

P = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (x2 ∨ x3), (x3 ∨ x1), (x1 ∨ x2 ∨ x3)}

is unsatisfiable.

One may think that it is easy to test whether a proposition is satisfiable or not. Try it,
it is not that easy!

As a matter of fact, the satisfiability problem, testing whether a boolean formula is
satisfiable, also denoted SAT, is not known to be in P . Moreover, it is an NP-complete
problem (see Section 9.6). Most people believe that the satisfiability problem is not in P ,
but a proof still eludes us!

Before we explain what is the class NP , we state the following result.

240 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Proposition 9.4. The satisfiability problem for clauses containing at most two literals (2-
satisfiability, or 2-SAT) is solvable in polynomial time.

Proof sketch. The first step consists in observing that if every clause in P contains at most
two literals, then we can reduce the problem to testing satisfiability when every clause has
exactly two literals.

Indeed, if P contains some clause (x), then any valuation satisfying P must make x true.
Then all clauses containing x will be true, and we can delete them, whereas we can delete x
from every clause containing it, since x is false.

Similarly, if P contains some clause (x), then any valuation satisfying P must make x
false. Then all clauses containing x will be true, and we can delete them, whereas we can
delete x from every clause containing it.

Thus in a finite number of steps, either all the clauses were satisfied and P is satisfiable,
or we get the empty clause and P is unsatisfiable, or we get a set of clauses with exactly two
literals. The number of steps is clearly linear in the number of literals in P . Here are some
examples illustrating the three possible oucomes.

(1) Consider the conjunction of clauses

P1 = (x1 ∨ x2) ∧ (x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

We must set x2 to T, so (x1 ∨ x2) becomes (x1) and (x2 ∨ x3) becomes T and can be
deleted. We now have

P = (x1) ∧ (x1 ∨ x3).

We must set x1 to T, so (x1 ∨ x3) becomes T and all the clauses are satisfied.

(2) Consider the conjunction of clauses

P2 = (x1) ∧ (x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3).

We must set x1 to T, so (x1 ∨ x2) becomes (x2). We now have

(x3) ∧ (x2) ∧ (x2 ∨ x3).

We must set x3 to T, so (x2 ∨ x3) becomes (¬x2). We now have

(x2) ∧ (x2).

We must set x2 to T, so (x2) becomes the empty clause, which means that P2 is
unsatisfiable.

For the second step, we construct a directed graph from P . The purpose of this graph is
to propagate truth. The nodes of this graph are the literals in P , and edges are defined as
follows:

9.6. THE CLASS NP , NP-COMPLETENESS 241

(1) For every clause (x ∨ y), there is an edge from x to y and an edge from y to x.

(2) For every clause (x ∨ y), there is an edge from x to y and an edge from y to x

(3) For every clause (x ∨ y), there is an edge from x to y and an edge from y to x.

Then it can be shown that P is unsatisfiable iff there is some x so that there is a cycle
containing x and x. As a consequence, 2-satisfiability is in P .

Example 9.4. Consider the following conjunction of clauses:

P = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3).

It is satisfied by any valuation v such that v(x1) = T, and if v(x2) = F then v(x3) = F. The
construction of the graph associated with P is shown in Figure 9.4.

x

x
1

x
2

3 x
3

x
3

xx
2

xx
1

x

x
1

x
2

3 x
3

x
3

xx
2

xx
1

x

x
1

x
2

3 x
3

x
3

xx
2

xx
1

x

x
1

x
2

3 x
3

x
3

xx
2

xx
1

xx
2 v x

1

xx
2 v x

1() ^

x
1

x
2

v

x1 x2v() ^x
3

x
3
v x

2
x
3

x
3
v x

2
()

Figure 9.4: The graph coresponding to the clauses of Example 9.4.

9.6 The Class NP, Polynomial Reducibility,

NP-Completeness

One will observe that the hard part in trying to solve either the Hamiltonian cycle problem
or the satisfiability problem, SAT, is to find a solution, but that checking that a candidate

242 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

solution is indeed a solution can be done easily in polynomial time.

This is the essence of problems that can be solved nondetermistically in polynomial time:
a solution can be guessed and then checked in polynomial time.

Definition 9.7. A nondeterministic Turing machine M is said to be polynomially bounded
if there is a polynomial p(X) so that the following holds: For every input x ∈ Σ∗, there is
no ID IDn so that

ID0 ` ID1 `∗ IDn−1 ` IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

A language L ⊆ Σ∗ is nondeterministic polynomially decidable if there is a polynomially
bounded nondeterministic Turing machine that accepts L. The family of all nondeterministic
polynomially decidable languages is denoted by NP .

Observe that Definition 9.7 has to do with testing membership of a string w in a language
L. Here the language L consists of the strings encodings all objects satisfying a given
property P . So in this sense, a reason (a certificate) why w ∈ L is not actually produced by
the machine. The machine just decides whether w ∈ L, that is, whether the object coded
by w satisfies the property P .

For example, if the problem is the satisfiability of sets of clauses, then L is the set SAT
of strings encoding all satisfiable propositions in CNF. Given any proposition P in CNF
encoded as a string s(P), a Turing machine accepting SAT will nondeterminiscally guess a
truth assignment, and check in polynomial time whether this truth assignment satisfies P .

In the case of clauses we can easily design such a language. The key point is that
we can represent the propositional variable xi as a string in binary, namely as the binary
representation bin(xi) of the number i. Our language for encoding clauses uses the alphabet

∆ = {0, 1,∧,∨,¬, (,)}.

The encoding s(P) (a string in ∆∗) of a proposition P in CNF is defined recursively as
follows.

(1) The variable xi is represented the binary representation s(xi) = bin(i) of the number
i.

(2) The literal ¬xi is represented by the string s(¬xi) = ¬s(xi) = ¬bin(i).

(3) The clause
C = (L1 ∨ · · · ∨ Lm)

is represented by the string

s(C) = (s(L1) ∨ · · · ∨ s(Lm)).

9.6. THE CLASS NP , NP-COMPLETENESS 243

(3) The proposition P in CNF
P = C1 ∧ · · · ∧ Cp

is represented by the string

s(P) = s(C1) ∧ · · · ∧ s(Cp).

Example 9.5. The proposition

P = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ ¬x3) ∧ (x2 ∨ x3)

is encoded by the string

s(P) = (1 ∨ 10 ∨ 11) ∧ (¬1 ∨ ¬10) ∧ (1 ∨ ¬11) ∧ (10 ∨ 11).

If we assign the truth value F to x1, to satisfy the clause (x1 ∨¬x3) we must assign F to
x3, and then to satisfy the clauses (x1 ∨ x2 ∨ x3) and (x2 ∨ x3), we must assign T to x2.

If we assign the truth value T to x1, to satisfy the clause (¬x1 ∨ ¬x2) we must assign F
to x2, and then to satisfy the clause (x2 ∨ x3), we must assign T to x3.

Therefore there are two truth assignments satisfying the proposition P ,

x1 := F, x2 := T, x3 := F

x1 := T, x2 := F, x3 := T.

The language SAT ⊆ ∆∗ consists of all string encodings s(P) of propositions that are
satisfiable. For example, the string

s(P) = (1 ∨ 10 ∨ 11) ∧ (¬1 ∨ ¬10) ∧ (1 ∨ ¬11) ∧ (10 ∨ 11)

belongs to the language SAT. On the other hand, the proposition

(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x1) ∧ (¬x1 ∨ ¬x2)

is not satisfiable, and thus its encoding

(1 ∨ 10) ∧ (¬1 ∨ 10) ∧ (¬10 ∨ 1) ∧ (¬1 ∨ ¬10)

does not belong to SAT.

Remark: The language consisting of all string encodings of propositions in CNF, satisfiable
or not, is a context-free language.

Note that a nondeterminitsic Turing machine operating in polynomial time accepting a
string in SAT encoding a satisfiable clause does not actually produce a truth assignment,

244 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

called a certificate, as output. The machine simply accepts or rejects s(P) depending on
whether P is satisfiable or not.

Similarly, if the problem is the existence of a Hamiltonian cycle, then L is the set of
strings encoding all directed graphs having a Hamiltonian cycle. Given any directed graph
G encoded as a string s(G), a Turing machine accepting L will nondeterminiscally guess a
cycle in G, and check in polynomial time whether this is a Hamiltonian cycle. But such a
Hamiltonian cycle (if any), called a certificate, is not actually produced as output.

Here is a way to encode a simple directed graph G = (V,E). A slight complication arises
with isolated nodes , which are the nodes u ∈ V such that there is no edge (u, v) ∈ E or
(v, u) ∈ E for some v ∈ V , in other words, the nodes that are not the endpoint of any edge.

If V = {v1, . . . , vn}, as in the case of clauses, we encode the node vi as the binary
representation s(vi) = bin(i) of the number i. We use alphabet

∆ = {0, 1,→, (,),#}.

The string encoding s(G) of the graph G = (V,E) is obtained by concatenating the strings
(s(vi) → s(vj)) in the order where (s(vi) → s(vj)) precedes (s(vk) → s(vl)) if either i = k
and j < l, or i < k, possibly followed by the string

#s(vi1)# · · ·#s(vik)

corresponding to the the isolated vertices, if any, where vi1 , . . . , vik are listed in increasing
order of the indices.

Example 9.6. Consider the graph G = (V,E) shown in Figure 9.5 where V = {v1, . . . , v5}
consists of five nodes and the set of edges is

E = {(v1, v2), (v1, v4), (v1, v5), (v2, v3), (v2, v4), (v3, v1), (v3, v4), (v4, v5), (v5, v3)}.

The string encoding of this graph is

s(G) = (1→ 10)(1→ 100)(1→ 101)(10→ 11)(10→ 100)(11→ 1)(11→ 100)

(100→ 101)(101→ 11).

Observe that the cycle v1 → v2 → v4 → v5 → v3 → v1 is a Hamiltonian cycle.

The language HAM ⊆ ∆∗ consists of all encodings s(G) of directed graphs G that have
a Hamiltonian cycle. Thus for the graph above, s(G) ∈ HAM.

It is possible to give an alternate definition of NP that explicitly involves certificates.
This definition relies on the notion of a polynomially balanced language; see Section 10.3,
Definition 10.3. The trick is to consider strings of form x; y ∈ Σ∗ (with x, y ∈ Σ∗, where ; is
a special symbol not in Σ), such that for some given polynomial p(X), we have |y| ≤ p(|x|).

9.6. THE CLASS NP , NP-COMPLETENESS 245

1

2

34

5

1

10

11100

101

Figure 9.5: A pentagonal graph with a Hamiltonian cycle.

If a language L′ consisting of strings of the form x; y with |y| ≤ p(|x|) (for some given p) is
in P , then the language

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}
is in NP , and every language in NP arises in this fashion; see Theorem 10.1. The set of
strings {y ∈ Σ∗ | x; y ∈ L′} can be regarded as the set of certificates for the fact that x ∈ L.
The fact that |y| ≤ p(|x|) ensures that the certificate y is not too big, so that L′ can be
accepted deterministically in polynomial time. We will come back to this point of view in
Section 10.3.

For example, going back to Example 9.5, examples of strings x; y are

(1 ∨ 10 ∨ 11) ∧ (¬1 ∨ ¬10) ∧ (1 ∨ ¬11) ∧ (10 ∨ 11); FTF

and
(1 ∨ 10 ∨ 11) ∧ (¬1 ∨ ¬10) ∧ (1 ∨ ¬11) ∧ (10 ∨ 11); TFT.

This time, a deterministic Turing machine accepts such strings in polynomial time by check-
ing that the certificates FTF or TFT satisfy the proposition.

For Example 9.6 dealing with Hamiltonian cycles, here is an example of a string x; y
where the certificate y is an encoding of a Hamiltonian cycle:

(1→ 10)(1→ 100)(1→ 101)(10→ 11)(10→ 100)(11→ 1)(11→ 100)

(100→ 101)(101→ 11); 1→ 10→ 100→ 101→ 11→ 1.

Returning to the definition of NP given in Definition 9.7, of course, we have the inclusion

P ⊆ NP ,

246 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

but whether or not we have equality is one of the most famous open problems of theoretical
computer science and mathematics.

In fact, the question P 6= NP is one of the open problems listed by the CLAY Institute,
together with the Poincaré conjecture and the Riemann hypothesis, among other problems,
and for which one million dollar is offered as a reward! Actually the Poincaré conjecture
was setlled by G. Perelman in 2006, but he rejected receiving the prize in 2010! He also
declined the Fields Medal which was awarded to him in 2006.

It is easy to check that SAT is in NP , and so is the Hamiltonian cycle problem.

As we saw in recursion theory, where we introduced the notion of many-one reducibility,
in order to compare the “degree of difficulty” of problems, it is useful to introduce the notion
of reducibility and the notion of a complete set.

Definition 9.8. A function f : Σ∗ → Σ∗ is polynomial-time computable if there is a polyno-
mial p(X) so that the following holds: there is a deterministic Turing machine M computing
it so that for every input x ∈ Σ∗, there is no ID IDn so that

ID0 ` ID1 `∗ IDn−1 ` IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

Given two languages L1, L2 ⊆ Σ∗, a polynomial-time reduction from L1 to L2 is a
polynomial-time computable function f : Σ∗ → Σ∗ so that for all u ∈ Σ∗,

u ∈ L1 iff f(u) ∈ L2.

The notation L1 ≤P L2 is often used to denote the fact that there is polynomial-time
reduction from L1 to L2. Sometimes, the notation L1 ≤Pm L2 is used to stress that this is a
many-to-one reduction (that is, f is not necessarily injective). This type of reduction is also
known as a Karp reduction.

A polynomial reduction f : Σ∗ → Σ∗ from a language L1 to a language L2 is a method
that converts in polynomial time every string u ∈ Σ∗ (viewed as an instance of a problem
A encoded by language L1) to a string f(u) ∈ Σ∗ (viewed as an instance of a problem B
encoded by language L2) in such way that membership in L1, that is u ∈ L1, is equivalent
to membership in L2, that is f(u) ∈ L2.

As a consequence, if we have a procedure to decide membership in L2 (to solve every
instance of problemB), then we have a procedure for solving membership in L1 (to solve every
instance of problem A), since given any u ∈ L1, we can first apply f to u to produce f(u),
and then apply our procedure to decide whether f(u) ∈ L2; the defining property of f says
that this is equivalent to deciding whether u ∈ L1. Furthermore, if the procedure for deciding
membership in L2 runs deterministically in polynomial time, since f runs deterministically
in polynomial time, so does the procedure for deciding membership in L1, and similarly if
the procedure for deciding membership in L2 runs non deterministically in polynomial time.

9.6. THE CLASS NP , NP-COMPLETENESS 247

For the above reason, we see that membership in L2 can be considered at least as hard
as membership in L1, since any method for deciding membership in L2 yields a method
for deciding membership in L1. Thus, if we view L1 an encoding a problem A and L2 as
encoding a problem B, then B is at least as hard as A.

The following version of Proposition 4.16 for polynomial-time reducibility is easy to prove.

Proposition 9.5. Let A,B,C be subsets of N (or Σ∗). The following properties hold:

(1) If A ≤P B and B ≤P C, then A ≤P C.

(2) If A ≤P B then A ≤P B.

(3) If A ≤P B and B ∈ NP, then A ∈ NP.

(4) If A ≤P B and A /∈ NP, then B /∈ NP.

(5) If A ≤P B and B ∈ P, then A ∈ P.

(6) If A ≤P B and A /∈ P, then B /∈ P.

Intuitively, we see that if L1 is a hard problem and L1 can be reduced to L2 in polynomial
time, then L2 is also a hard problem.

For example, one can construct a polynomial reduction from the Hamiltonian cycle prob-
lem to the satisfiability problem SAT. Given a directed graph G = (V,E) with n nodes, say
V = {1, . . . , n}, we need to construct in polynomial time a set F = τ(G) of clauses such that
G has a Hamiltonian cycle iff τ(G) is satisfiable. We need to describe a permutation of the
nodes that forms a Hamiltonian cycle. For this we introduce n2 boolean variables xij, with
the intended interpretation that xij is true iff node i is the jth node in a Hamiltonian cycle.

To express that at least one node must appear as the jth node in a Hamiltonian cycle,
we have the n clauses

(x1j ∨ x2j ∨ · · · ∨ xnj), 1 ≤ j ≤ n. (1)

The conjunction of these clauses is satisfied iff for every j = 1, . . . , n there is some node i
which is the jth node in the cycle. These n clauses can be produced in time O(n2).

To express that only one node appears in the cycle, we have the clauses

(xij ∨ xkj), 1 ≤ i, j, k ≤ n, i 6= k. (2)

Since (xij ∨ xkj) is equivalent to (xij ∧ xkj), each such clause asserts that no two distinct
nodes may appear as the jth node in the cycle. Let S1 be the set of all clauses of type (1)
or (2). These n3 clauses can be produced in time O(n3).

The conjunction of the clauses in S1 assert that exactly one node appear at the jth node
in the Hamiltonian cycle. We still need to assert that each node i appears exactly once in
the cycle. For this, we have the clauses

(xi1 ∨ xi2 ∨ · · · ∨ xin), 1 ≤ i ≤ n, (3)

248 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

and

(xij ∨ xik), 1 ≤ i, j, k ≤ n, j 6= k. (4)

Let S2 be the set of all clauses of type (3) or (4). These n3 clauses can be produced in time
O(n3).

The conjunction of the clauses in S1 ∪ S2 asserts that the xij represents a bijection of
{1, 2, . . . , n}, in the sense that for any truth assigment v satisfying all these clauses, i 7→ j
iff v(xij) = T defines a bijection of {1, 2, . . . , n}.

It remains to assert that this permutation of the nodes is a Hamiltonian cycle, which
means that if xij and xkj+1 are both true then there there must be an edge (i, k). By

contrapositive, this equivalent to saying that if (i, k) is not an edge of G, then (xij ∧ xkj+1)
is true, which as a clause is equivalent to (xij ∨ xkj+1).

Therefore, for all (i, k) such that (i, k) /∈ E (with i, k ∈ {1, 2, . . . , n}), we have the clauses

(xij ∨ xk j+1 (mod n)), j = 1, . . . , n. (5)

Let S3 be the set of clauses of type (5). These n clauses can be produced in time O(n2).

The conjunction of all the clauses in S1 ∪ S2 ∪ S3 is the boolean formula F = τ(G). It
can be produced in time O(n3).

We leave it as an exercise to prove that G has a Hamiltonian cycle iff F = τ(G) is
satisfiable.

Example 9.7. Here is an example of a graph with four nodes and four edges shown in
Figure 9.6. The Hamiltonian circuit is (x4, x3, x1, x2).

It is also possible to construct a reduction of the satisfiability problem to the Hamiltonian
cycle problem but this is harder. It is easier to construct this reduction in two steps by
introducing an intermediate problem, the exact cover problem, and to provide a polynomial
reduction from the satisfiability problem to the exact cover problem, and a polynomial
reduction from the exact cover problem to the Hamiltonian cycle problem. These reductions
are carried out in Section 10.2.

The above construction of a set F = τ(G) of clauses from a graph G asserting that G
has a Hamiltonian cycle iff F is satisfiable illustrates the expressive power of propositional
logic.

Remarkably, every language in NP can be reduced to SAT. Thus, SAT is a hardest
language in NP (since it is in NP).

Definition 9.9. A language L is NP-hard if there is a polynomial reduction from every
language L1 ∈ NP to L. A language L is NP-complete if L ∈ NP and L is NP-hard.

9.6. THE CLASS NP , NP-COMPLETENESS 249

x

x x

x1

2 3

4 start and finish node of the Hamiltonian cycle

16 Boolean variables

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44= T

= T

= T

= T

Figure 9.6: A directed graph with a Hamiltonian

Thus, an NP-hard language is as hard to decide as any language in NP .

Remark: There are NP-hard languages that do not belong to NP . Such languages are
really difficult. A standard example is K0, which encodes the halting problem. Since K0 is
not computable, it can’t be in NP . Furthermore, since every language L in NP is accepted
nondeterminsticaly in polynomial time p(X), for some polynomial p(X), for every input w
we can try all computations of length at most p(|w|) (there can be exponentially many, but
only a finite number), so every language in NP is computable. Finally, a Turing machine
which takes a clause as input and tries all possible truth assignments and loops iff there is no
satisfying assignment can be constructed. We can use this machine to show that 3-SAT can
be reduced in polynomial time to K0, the details are left as an exercise. Since K0 is defined
in terms of natural numbers and not strings, we need to assume that boolean propositions
are first encoded as natural numbers and that our Turing machine for testing satisfiability
operates on such numbers. Such a machine may not run in polynomial time because of the
steps needed for decoding but this does not matter. What is important is that the reduction
works in polynomnial time. An example of a computable NP-hard language not in NP will
be described after Theorem 9.7.

The importance of NP-complete languages stems from the following theorem which
follows immediately from Proposition 9.5.

Theorem 9.6. Let L be an NP-complete language. Then P = NP iff L ∈ P.

There are analogies between P and the class of computable sets, and NP and the class
of listable sets, but there are also important differences. One major difference is that the

250 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

family of computable sets is properly contained in the family of listable sets, but it is an open
problem whether P is properly contained in NP . We also know that a set L is computable
iff both L and L are listable, but it is also an open problem whether if both L ∈ NP and
L ∈ NP , then L ∈ P . This suggests defining

coNP = {L | L ∈ NP},

that is, coNP consists of all complements of languages in NP . Since P ⊆ NP and P is
closed under complementation,

P ⊆ coNP ,

and thus

P ⊆ NP ∩ coNP ,

but nobody knows whether the inclusion is proper. There are languages in NP ∩ coNP not
known to be in P ; see Section 10.3. It is unknown whether NP is closed under complemen-
tation, that is, nobody knows whether NP = coNP . This is considered unlikely. We will
come back to coNP in Section 10.3.

Next we prove a famous theorem of Steve Cook and Leonid Levin (proven independently):
SAT is NP-complete.

9.7 The Bounded Tiling Problem is NP-Complete

Instead of showing directly that SAT is NP-complete, which is rather complicated, we
proceed in two steps, as suggested by Lewis and Papadimitriou.

(1) First, we define a tiling problem adapted from H. Wang (1961) by Harry Lewis, and
we prove that it is NP-complete.

(2) We show that the tiling problem can be reduced to SAT.

We are given a finite set T = {t1, . . . , tp} of tile patterns , for short, tiles . We assume that
these tiles are unit squares. Copies of these tile patterns may be used to tile a rectangle of
predetermined size 2s× s (s > 1). However, there are constraints on the way that these tiles
may be adjacent horizontally and vertically.

The horizontal constraints are given by a relation H ⊆ T ×T , and the vertical constraints
are given by a relation V ⊆ T × T .

Thus, a tiling system is a triple T = (T , V,H) with V and H as above.

The bottom row of the rectangle of tiles is specified before the tiling process begins.

9.7. THE BOUNDED TILING PROBLEM IS NP-COMPLETE 251

Example 9.8. For example, consider the following tile patterns:

a
c ,

a
c

a
, c

a
,

d
e e ,

e
e

b
c d ,

b
c d

b
,

c
d e

c
,

d
e e

d
,

e
e

e

c
d e , c d

b
, d e

c
, e e

d
, e

e

The horizontal and the vertical constraints are that the letters on adjacent edges match
(blank edges do not match).

For s = 3, given the bottom row

a
c

b
c d

c
d e

d
e e

d
e e

e
e

we have the tiling shown below:

c
a

c d
b

d e
c

e e
d

e e
d

e
e

a
c

a

b
c d

b

c
d e

c

d
e e

d

d
e e

d

e
e

e

a
c

b
c d

c
d e

d
e e

d
e e

e
e

Formally, the problem is then as follows:

The Bounded Tiling Problem

Given any tiling system (T , V,H), any integer s > 1, and any initial row of tiles σ0 (of
length 2s)

σ0 : {1, 2, . . . , s, s+ 1, . . . , 2s} → T ,
find a 2s× s-tiling σ extending σ0, i.e., a function

σ : {1, 2, . . . , s, s+ 1, . . . , 2s} × {1, . . . , s} → T
so that

252 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

(1) σ(m, 1) = σ0(m), for all m with 1 ≤ m ≤ 2s.

(2) (σ(m,n), σ(m+ 1, n)) ∈ H, for all m with
1 ≤ m ≤ 2s− 1, and all n, with 1 ≤ n ≤ s.

(3) (σ(m,n), σ(m,n+ 1)) ∈ V , for all m with
1 ≤ m ≤ 2s, and all n, with 1 ≤ n ≤ s− 1.

Example 9.9. In this example the set of tiles is shown in Figure 9.7. The horizontal

Math ! ? IS

YesFun 😜 TILES

😯

🎉

Figure 9.7: A set of tiles

constraints are schematically illustrated in Figure 9.8

Math

{
(m,n) (m+1,n)

2s

{s

Mathσ(m,n) =

Fun

σ(m+1,n) = Fun

(σ(m,n), σ(m+1,n)) = (,)Math Fun e H

Figure 9.8: Schematic illustration of the horizontal constraints.

9.7. THE BOUNDED TILING PROBLEM IS NP-COMPLETE 253

and the vertical constraints are are schematically illustrated in Figure 9.9. The set of

Math

IS

{
(m,n)

(m,n+1)

2s

{s

σ(m,n) Math σ(m,n+1) IS= =

(σ(m,n), σ(m,n+1)) = (Math

IS) e V

Figure 9.9: Schematic illustration of the vertical constraints.

horizontal constraints is shown in Figure 9.10

(Math
,
IS) (Math

,
IS)

,
(,

IS)
,

Fun

(,)Yes Math (,)Math Fun
, (,)Fun !

(,)Fun ?

,

, (,)Fun 🎉 , (,)! 😜

(,)? 😯 , ,

Horizontal Constraints H

(,)😯😯 (,)😜😜

(,)🎉🎉

Figure 9.10: Horizontal constraints.

254 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

and the set of vertical constraints is shown in Figure. 9.11 A solution to the puzzle (tiling

Math !

?

Yes

Fun

Fun

Fun

(Math

IS)
,
(Math

IS) (IS)
,

(Math)
,

(IS)
,
() ()

,

Fun

,

()
,

?

Vertical Constraints V

🎉()😯

,

😯

😜()
Figure 9.11: Vertical constraints.

problem) is shown in Figure 9.12, assuming that the bottom row is given as part of the input.

😜Math IS Fun !

MathIS Fun ? 😯

MathYes FunIS 🎉

😜
😯

🎉

Figure 9.12: A solution to the tiling problem.

Formally, an instance of the tiling problem is a triple ((T , V,H), ŝ, σ0), where (T , V,H)
is a tiling system, ŝ is the string representation of the number s ≥ 2, in binary and σ0 is an
initial row of tiles (the bottom row).

For example, if s = 1025 (as a decimal number), then its binary representation is ŝ =
10000000001. The length of ŝ is log2 s+ 1.

Recall that the input must be a string. This is why the number s is represented by a
string in binary. If we only included a single tile σ0 in position (s+ 1, 1), then the length of

9.7. THE BOUNDED TILING PROBLEM IS NP-COMPLETE 255

the input ((T , V,H), ŝ, σ0) would be log2 s + 1 + C + 1 = log2 s + C + 2 for some constant
C corresponding to the length of the string encoding (T , V,H).

However, the rectangular grid has size 2s2, which is exponential in the length log2 s+C+2
of the input ((T , V,H), ŝ, σ0). Thus, it is impossible to check in polynomial time that a
proposed solution is a tiling.

However, if we include in the input the bottom row σ0 of length 2s, then the length of
input is log2 s + 1 + C + 2s = log2 s + C + 2s + 1 and the size 2s2 or the grid is indeed
polynomial in the size of the input.

Theorem 9.7. The tiling problem defined earlier is NP-complete.

Proof. Let L ⊆ Σ∗ be any language in NP and let u be any string in Σ∗. Assume that L is
accepted in polynomial time bounded by p(|u|).

We show how to construct an instance of the tiling problem, ((T , V,H)L, ŝ, σ0), where
s = p(|u|) + 2, and where the bottom row encodes the starting ID, so that u ∈ L iff the tiling
problem ((T , V,H)L, ŝ, σ0) has a solution.

First, note that the problem is indeed in NP , since we have to guess a rectangle of size
2s2, and that checking that a tiling is legal can indeed be done in O(s2), where s is bounded
by the the size of the input ((T , V,H), ŝ, σ0), since the input contains the bottom row of 2s
symbols (this is the reason for including the bottom row of 2s tiles in the input!).

The idea behind the definition of the tiles is that, in a solution of the tiling problem, the
labels on the horizontal edges between two adjacent rows represent a legal ID, xpay. In a
given row, the labels on vertical edges of adjacent tiles keep track of the change of state and
direction.

Let Γ be the tape alphabet of the TM, M . As before, we assume that M signals that it
accepts u by halting with the output 1 (true).

From M , we create the following tiles:

(1) For every a ∈ Γ, tiles
a

a

(2) For every a ∈ Γ, the bottom row uses tiles

a
,

q0, a

where q0 is the start state.

256 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

(3) For every instruction (p, a, b, R, q) ∈ δ, for every c ∈ Γ, tiles

b
q, R

p, a
,

q, c
q, R

c

(4) For every instruction (p, a, b, L, q) ∈ δ, for every c ∈ Γ, tiles

q, c
q, L

c
,

b
q, L

p, a

(5) For every halting state, p, tiles
p, 1

p, 1

The purpose of tiles of type (5) is to fill the 2s × s rectangle iff M accepts u. Since
s = p(|u|) + 2 and the machine runs for at most p(|u|) steps, the 2s × s rectangle can be
tiled iff u ∈ L.

The vertical and the horizontal constraints are that adjacent edges have the same label
(or no label).

If u = u1 · · ·uk, the initial bottom row σ0, of length 2s, is

B
· · ·

q0, u1

· · ·
uk

· · ·
B

where the tile labeled q0, u1 is in position s+ 1.

The example below illustrates the construction:

Example 9.10.

B

B
. . .

B
f,R

q, c

f, 1
f,R

1
. . .

B

B

B

B
. . .

q, c
q, L

c

1
q, L

p, a
. . .

B

B

B

B
. . .

c
p, R

r, b

p, a
p, R

a
. . .

B

B

9.8. THE COOK-LEVIN THEOREM 257

We claim that u = u1 · · ·uk is accepted by M iff the tiling problem just constructed has
a solution.

The upper horizontal edge of the first (bottom) row of tiles represents the starting con-
figuation Bsq0uB

s−|u|. By induction, we see that after i (i ≤ p(|u|) = s− 2) steps the upper
horizontal edge of the (i + 1)th row of tiles represents the current ID xpay reached by the
Turing machine; see Example 9.10. Since the machine runs for at most p(|u|) steps and since
s = p(|u|) + 2, when the computation stops, at most the lowest p(|u|) + 1 = s − 1 rows of
the the 2s× s rectangle have been tiled. Assume the machine M stops after r ≤ s− 2 steps.
Then the lowest r+ 1 rows have been tiled, and since no further instruction can be executed
(since the machine entered a halting state), the remaining s− r−1 rows can be filled iff tiles
of type (5) can be used iff the machine stopped in an ID containing a pair p 1 where p is a
halting state. Therefore, the machine M accepts u iff the 2s× s rectangle can be tiled.

Remark:

(1) The problem becomes harder if we only specify a single tile σ0 as input, instead of
a row of length 2s. If s is specified in binary (or any other base, but not in tally
notation), then the 2s2 grid has size exponential in the length log2 s + C + 2 of the
input ((T , V,H), ŝ, σ0), and this tiling problem is actually NEXP-complete! The class
NEXP is the family of languages that can be accepted by a nondeterministic Turing
machine that runs in time bounded by 2p(|x|), for every x, where p is a polynomial;
see the remark after Definition 10.5. By the time hierarchy theorem (Cook, Seiferas,
Fischer, Meyer, Zak), it is known that NP is properly contained in NEXP ; see Pa-
padimitriou [31] (Chapters 7 and 20) and Arora and Barak [2] (Chapter 3, Section 3.2).
Then the tiling problem with a single tile as input is a computable NP-hard problem
not in NP .

(2) If we relax the finiteness condition and require that the entire upper half-plane be tiled,
i.e., for every s > 1, there is a solution to the 2s× s-tiling problem, then the problem
is undecidable.

In 1972, Richard Karp published a list of twenty one NP-complete problems.

9.8 The Cook–Levin Theorem: SAT is NP-Complete

We finally prove the Cook-Levin theorem.

Theorem 9.8. (Cook, 1971, Levin, 1973) The satisfiability problem SAT is NP-complete.

Proof. We reduce the tiling problem to SAT. Given a tiling problem, ((T , V,H), ŝ, σ0), we
introduce boolean variables

xmnt,

for all m with 1 ≤ m ≤ 2s, all n with 1 ≤ n ≤ s, and all tiles t ∈ T .

258 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

The intuition is that xmnt = T iff tile t occurs in some tiling σ so that σ(m,n) = t.

We define the following clauses:

(1) For all m,n in the correct range, as above,

(xmnt1 ∨ xmnt2 ∨ · · · ∨ xmntp),

for all p tiles in T .

This clause states that every position in σ is tiled.

(2) For any two distinct tiles t 6= t′ ∈ T , for all m,n in the correct range, as above,

(xmnt ∨ xmnt′).

This clause states that a position may not be occupied by more than one tile.

(3) For every pair of tiles (t, t′) ∈ T × T −H, for all m with 1 ≤ m ≤ 2s − 1, and all n,
with 1 ≤ n ≤ s,

(xmnt ∨ xm+1nt′).

This clause enforces the horizontal adjacency constraints.

(4) For every pair of tiles (t, t′) ∈ T × T − V , for all m with 1 ≤ m ≤ 2s, and all n, with
1 ≤ n ≤ s− 1,

(xmnt ∨ xmn+1 t′).

This clause enforces the vertical adjacency constraints.

(5) For all m with 1 ≤ m ≤ 2s,
(xm1σ0(m)).

This clause states that the bottom row is correctly tiled with σ0.

It is easily checked that the tiling problem has a solution iff the conjunction of the clauses
just defined is satisfiable. Thus, SAT is NP-complete.

We sharpen Theorem 9.8 to prove that 3-SAT is also NP-complete. This is the satisfia-
bility problem for clauses containing at most three literals.

We know that we can’t go further and retain NP-completeteness, since 2-SAT is in P .

Theorem 9.9. (Cook, 1971) The satisfiability problem 3-SAT is NP-complete.

Proof. We have to break “long clauses”

C = (L1 ∨ · · · ∨ Lk),

i.e., clauses containing k ≥ 4 literals, into clauses with at most three literals, in such a way
that satisfiability is preserved.

9.8. THE COOK-LEVIN THEOREM 259

Example 9.11. For example, consider the following clause with k = 6 literals:

C = (L1 ∨ L2 ∨ L3 ∨ L4 ∨ L5 ∨ L6).

We create 3 new boolean variables y1, y2, y3, and the 4 clauses

(L1 ∨ L2 ∨ y1), (y1 ∨ L3 ∨ y2), (y2 ∨ L4 ∨ y3), (y3 ∨ L5 ∨ L6).

Let C ′ be the conjunction of these clauses. We claim that C is satisfiable iff C ′ is.

Assume that C ′ is satisfiable but C is not. If so, in any truth assigment v, v(Li) = F,
for i = 1, 2, . . . , 6. To satisfy the first clause, we must have v(y1) = T., Then to satisfy the
second clause, we must have v(y2) = T, and similarly satisfy the third clause, we must have
v(y3) = T. However, since v(L5) = F and v(L6) = F, the only way to satisfy the fourth
clause is to have v(y3) = F, contradicting that v(y3) = T. Thus, C is indeed satisfiable.

Let us now assume that C is satisfiable. This means that there is a smallest index i such
that Li is satisfied.

Say i = 1, so v(L1) = T. Then if we let v(y1) = v(y2) = v(y3) = F, we see that C ′ is
satisfied.

Say i = 2, so v(L1) = F and v(L2) = T. Again if we let v(y1) = v(y2) = v(y3) = F, we
see that C ′ is satisfied.

Say i = 3, so v(L1) = F, v(L2) = F, and v(L3) = T. If we let v(y1) = T and
v(y2) = v(y3) = F, we see that C ′ is satisfied.

Say i = 4, so v(L1) = F, v(L2) = F, v(L3) = F, and v(L4) = T. If we let v(y1) = T,
v(y2) = T and v(y3) = F, we see that C ′ is satisfied.

Say i = 5, so v(L1) = F, v(L2) = F, v(L3) = F, v(L4) = F, and v(L5) = T. If we let
v(y1) = T, v(y2) = T and v(y3) = T, we see that C ′ is satisfied.

Say i = 6, so v(L1) = F, v(L2) = F, v(L3) = F, v(L4) = F, v(L5) = F, and v(L6) = T.
Again, if we let v(y1) = T, v(y2) = T and v(y3) = T, we see that C ′ is satisfied.

Therefore if C is satisfied, then C ′ is satisfied in all cases.

In general, for every long clause, create k − 3 new boolean variables y1, . . . yk−3, and the
k − 2 clauses

(L1 ∨ L2 ∨ y1), (y1 ∨ L3 ∨ y2), (y2 ∨ L4 ∨ y3), · · · ,
(yk−4 ∨ Lk−2 ∨ yk−3), (yk−3 ∨ Lk−1 ∨ Lk).

Let C ′ be the conjunction of these clauses. We claim that C is satisfiable iff C ′ is.

Assume that C ′ is satisfiable, but that C is not. Then for every truth assignment v, we
have v(Li) = F, for i = 1, . . . , k.

260 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

However, C ′ is satisfied by some v, and the only way this can happen is that v(y1) = T,
to satisfy the first clause. Then v(y1) = F, and we must have v(y2) = T, to satisfy the
second clause.

By induction, we must have v(yk−3) = T, to satisfy the next to the last clause. However,
the last clause is now false, a contradiction.

Thus, if C ′ is satisfiable, then so is C.

Conversely, assume that C is satisfiable. If so, there is some truth assignment, v, so that
v(C) = T, and thus, there is a smallest index i, with 1 ≤ i ≤ k, so that v(Li) = T (and so,
v(Lj) = F for all j < i).

Let v′ be the assignment extending v defined so that

v′(yj) = F if max{1, i− 1} ≤ j ≤ k − 3,

and v′(yj) = T, otherwise.

It is easily checked that v′(C ′) = T.

Another version of 3-SAT can be considered, in which every clause has exactly three
literals. We will call this the problem exact 3-SAT.

Theorem 9.10. (Cook, 1971) The satisfiability problem for exact 3-SAT is NP-complete.

Proof. A clause of the form (L) is satisfiable iff the following four clauses are satisfiable:

(L ∨ u ∨ v), (L ∨ u ∨ v), (L ∨ u ∨ v), (L ∨ u ∨ v)

where u, v are new variables. A clause of the form (L1 ∨ L2) is satisfiable iff the following
two clauses are satisfiable:

(L1 ∨ L2 ∨ u), (L1 ∨ L2 ∨ u).

Thus, we have a reduction of 3-SAT to exact 3-SAT.

We now make some remarks about the conversion of propositions to CNF and about the
satisfiability and validity of arbitrary propositions.

9.9 Satisfiability of Arbitrary Propositions and CNF

The satisfiability problem for arbitrary propositions belongs to NP because if we can guess
a truth assignment v satisfying a proposition A, then evaluating the truth value of A under
v can certainly be done in polynomial time. Since a proposition in CNF is a special kind
of proposition and since the satisfiability problem for propositions in CNF (SAT) is NP-
complete, the satisfiability problem for arbitrary propositions is also NP-complete.

9.9. SATISFIABILITY OF ARBITRARY PROPOSITIONS AND CNF 261

Since the satisfiability problem for propositions in CNF is NP-complete, there is a
polynomial-time reduction that takes an arbitrary proposition A and produces a propo-
sition A′ in CNF such that A is satisfiable iff A′ is satisfiable. In general, given a proposition
A, a proposition A′ in CNF equivalent to A may have an exponential length in the size of A.
However, using new variables, there is an algorithm to convert a proposition A to another
proposition A′ (containing the new variables) whose length is polynomial in the length of A
and such that A is satisfiable iff A′ is satisfiable.

We will explain how to convert an arbitrary proposition A to an equivalent proposition in
CNF, and also how to construct in polynomial time a proposition A′ such that A is satisfiable
iff A′ is satisfiable. We also briefly discuss the issue of uniqueness of the CNF. In short, it is
not unique!

Recall the definition of arbitrary propositions.

Definition 9.10. The set of propositions (over the connectives ∨, ∧, and ¬) is defined
inductively as follows:

(1) Every propositional letter, x ∈ PV, is a proposition (an atomic proposition).

(2) If A is a proposition, then ¬A is a proposition.

(3) If A and B are propositions, then (A ∨B) is a proposition.

(4) If A and B are propositions, then (A ∧B) is a proposition.

Two propositions A and B are equivalent , denoted A ≡ B, if

v |= A iff v |= B

for all truth assignments, v. It is easy to show that A ≡ B iff the proposition

(¬A ∨B) ∧ (¬B ∨ A)

is valid.

Definition 9.11. A proposition P is in conjunctive normal form (CNF) if it is a conjunction
P = C1 ∧ · · · ∧ Cn of propositions Cj which are disjunctions of literals (a literal is either a
variable x or the negation ¬x (also denoted x) of a variable x).

A proposition P is in disjunctive normal form (DNF) if it is a disjunction P = D1∨· · ·∨
Dn of propositions Dj which are conjunctions of literals.

There are propositions such that any equivalent proposition in CNF has size exponential
in terms of the original proposition.

262 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Example 9.12. Here is such an example:

A = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ · · · ∨ (x2n−1 ∧ x2n).

Observe that it is in DNF. We will prove a little later that any CNF for A contains 2n

occurrences of variables.

Proposition 9.11. Every proposition A is equivalent to a proposition A′ in CNF.

There are several ways of proving Proposition 9.11. One method is algebraic, and consists
in using the algebraic laws of boolean algebra. First one may convert a proposition to
negation normal form, or nnf .

Definition 9.12. A proposition is in negation normal form or nnf if all occurrences of ¬
only appear in front of propositional variables, but not in front of compound propositions.

Any proposition can be converted to an equivalent one in nnf by using the de Morgan
laws:

¬(A ∨B) ≡ (¬A ∧ ¬B)

¬(A ∧B) ≡ (¬A ∨ ¬B)

¬¬A ≡ A.

Observe that if A has n connectives, then the equivalent formula A′ in nnf has at most 2n−1
connectives. Then a proposition in nnf can be converted to CNF,

A nice method to convert a proposition in nnf to CNF is to construct a tree whose nodes
are labeled with sets of propositions using the following (Gentzen-style) rules:

P,∆ Q,∆

(P ∧Q),∆

and
P,Q,∆

(P ∨Q),∆

where ∆ stands for any set of propositions (even empty), and the comma stands for union.
Thus, it is assumed that (P ∧Q) /∈ ∆ in the first case, and that (P ∨Q) /∈ ∆ in the second
case.

Since we interpret a set, Γ, of propositions as a disjunction, a valuation, v, satisfies Γ iff
it satisfies some proposition in Γ.

Observe that a valuation v satisfies the conclusion of a rule iff it satisfies both premises
in the first case, and the single premise in the second case. Using these rules, we can build
a finite tree whose leaves are labeled with sets of literals.

9.9. SATISFIABILITY OF ARBITRARY PROPOSITIONS AND CNF 263

By the above observation, a valuation v satisfies the proposition labeling the root of the
tree iff it satisfies all the propositions labeling the leaves of the tree.

But then, a CNF for the original proposition A (in nnf, at the root of the tree) is the
conjunction of the clauses appearing as the leaves of the tree. We may exclude the clauses
that are tautologies, and we may discover in the process that A is a tautology (when all
leaves are tautologies).

Example 9.13. An illustration of the above method to convert the proposition

A = (x1 ∧ y1) ∨ (x2 ∧ y2)

is shown below:

x1, x2 x1, y2

x1, x2 ∧ y2

y1, x2 y1, y2

y1, x2 ∧ y2

x1 ∧ y1, x2 ∧ y2

(x1 ∧ y1) ∨ (x2 ∧ y2)

We obtain the CNF

B = (x1 ∨ x2) ∧ (x1 ∨ y2) ∧ (y1 ∨ x2) ∧ (y1 ∨ y2).

Remark: Rules for dealing for ¬ can also be created. In this case, we work with pairs of
sets of propositions,

Γ→ ∆,

where, the propositions in Γ are interpreted conjunctively, and the propositions in ∆ are
interpreted disjunctively. We obtain a sound and complete proof system for propositional
logic (a “Gentzen-style” proof system, see Logic for Computer Science, Gallier [17]).

Going back to our “bad” proposition A from Example 9.12, by induction, we see that
any tree for A has 2n leaves.

However, the following result holds.

Proposition 9.12. For any proposition A, we can construct in polynomial time a formula
A′ in CNF, so that A is satisfiable iff A′ is satisfiable, by creating new variables.

Sketch of proof. First we convert A to nnf, which yields a proposition at most twice as long.
Then we proceed recursively. For a conjunction C∧D, we apply recursively the procedure to
C and D. The trick is that for a disjunction C ∨D, first we apply recursively the procedure
to C and D obtain

(C1 ∧ · · · ∧ Cm) ∨ (D1 ∧ · · · ∧Dn)

where the Ci’s and the Dj’s are clauses. Then we create

(C1 ∨ y) ∧ · · · ∧ (Cm ∨ y) ∧ (D1 ∨ y) ∧ · · · ∧ (Dn ∨ y),

264 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

where y is a new variable.

It can be shown that the number of new variables required is at most quadratic in the
size of A. For details on this construction see Hopcroft, Motwani and Ullman [22] (Section
10.3.3), but beware that the proof on page 455 contains a mistake. Repair the mistake.

Example 9.14. Consider the proposition

A = (x1 ∧ ¬x2) ∨ ((¬x1 ∧ x2) ∨ (x2 ∨ x3)).

First, since x1 and ¬x2 are clauses, we get

A1 = x1 ∧ ¬x2.

Since ¬x1, x2 and x2 ∨ x3 are clauses, from (¬x1 ∧ x2) ∨ (x2 ∨ x3) we construct

A2 = (¬x1 ∨ y1) ∧ (x2 ∨ y1) ∧ (x2 ∨ x3 ∨ ¬y1).

Next, since A1 and A2 are conjunctions of clauses, we construct

A′ = (x1 ∨ y2) ∧ (¬x2 ∨ y2) ∧ (¬x1 ∨ y1 ∨ ¬y2) ∧ (x2 ∨ y1 ∨ ¬y2) ∧ (x2 ∨ x3 ∨ ¬y1 ∨ ¬y2),

a conjunction of clauses which is satisfiable iff A is satisfiable.

Warning: In general, the proposition A′ is not equivalent to the proposition A.

Remark: Other authors, including Hoprcoft, Motwani, and Ullman, prove that the satisfia-
bility problem for arbitrary propositions is NP-complete, by showing how the computation
of a nondeterministic Turing machine (operating in polynomial time) can be simulated us-
ing propositions. For this simulation to work, it appears that propositions that are not in
CNF are required. Then Proposition 9.12 is used to show that the satisfiability problem for
propositions in CNF (SAT) is also NP-complete.

In our approach, since we have already shown that the bounded tiling problem is NP-
complete, in the second step to reduce the tiling problem to SAT we only need clauses to
perform the reduction. Thus we don’t need Proposition 9.12 to prove that SAT is NP-
complete.

We just observed that the satisfiability problems for propositions in CNF is as hard as
the satisfiability problems for arbitrary propositions. However, the situation is completely
different for the validity problem. Indeed, a proposition P = C1 ∧ · · · ∧ Cm in CNF is valid
iff every conjunct Ci is valid. But each Ci is clause, namely a disjunction of literals

Ci = Li1 ∨ · · · ∨ Lini
,

where Li,j is either a variable x or the negation ¬x of a variable. But such a disjunction is
valid iff some variable and its negation both occur in Ci. This is because if all the Lij were

9.9. SATISFIABILITY OF ARBITRARY PROPOSITIONS AND CNF 265

variables, we could falsify Ci by assigning the truth value F to all of them, and if all the Lij
were negations of variables, we could falsify Ci by assigning the truth value T to all of them.
Therefore, the validity problem for proposition in CNF is in P .

This does not help to obtain a polynomial time algorithm to test the validity of arbitrary
propositions because converting a proposition to a CNF may yield a proposition whose size
is exponential in terms of the size of the original proposition. We can view the method using
the Gentzen rules described earlier for building a tree from a proposition P in nnf as an
attempt to demonstrate that the proposition P is valid. If this attempt fails, then we obtain
a CNF for P , so our efforts are not wasted.

The question of uniqueness of the CNF is a bit tricky. For example, the proposition

A = (u ∧ (x ∨ y)) ∨ (¬u ∧ (x ∨ y))

has

A1 = (u ∨ x ∨ y) ∧ (¬u ∨ x ∨ y)

A2 = (u ∨ ¬u) ∧ (x ∨ y)

A3 = x ∨ y,

as equivalent propositions in CNF!

We can get a unique CNF equivalent to a given proposition if we do the following:

(1) Let Var(A) = {x1, . . . , xm} be the set of variables occurring in A.

(2) Define a maxterm w.r.t. Var(A) as any disjunction of m pairwise distinct literals
formed from Var(A), and not containing both some variable xi and its negation ¬xi.

(3) Then it can be shown that for any proposition A that is not a tautology, there is a
unique proposition in CNF equivalent to A, whose clauses consist of maxterms formed
from Var(A).

The above definition can yield strange results. For instance, the CNF of any unsatisfiable
proposition with m distinct variables is the conjunction of all of its 2m maxterms! The above
notion does not cope well with minimality.

For example, according to the above, the CNF of

A = (u ∧ (x ∨ y)) ∨ (¬u ∧ (x ∨ y))

should be
A1 = (u ∨ x ∨ y) ∧ (¬u ∨ x ∨ y).

266 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Chapter 10

Some NP-Complete Problems

10.1 Statements of the Problems

In this chapter we will show that certain classical algorithmic problems are NP-complete.
This chapter is heavily inspired by Lewis and Papadimitriou’s excellent treatment [27]. In
order to study the complexity of these problems in terms of resource (time or space) bounded
Turing machines (or RAM programs), it is crucial to be able to encode instances of a prob-
lem P as strings in a language LP . Then an instance of a problem P is solvable iff the
corresponding string belongs to the language LP . This implies that our problems must have
a yes–no answer, which is not always the usual formulation of optimization problems where
what is required is to find some optimal solution, that is, a solution minimizing or maximiz-
ing so objective (cost) function F . For example the standard formulation of the traveling
salesman problem asks for a tour (of the cities) of minimal cost.

Fortunately, there is a trick to reformulate an optimization problem as a yes–no answer
problem, which is to explicitly incorporate a budget (or cost) term B into the problem, and
instead of asking whether some objective function F has a minimum or a maximum w, we
ask whether there is a solution w such that F (w) ≤ B in the case of a minimum solution,
or F (w) ≥ B in the case of a maximum solution.

If we are looking for a minimum of F , we try to guess the minimum value B of F and
then we solve the problem of finding w such that F (w) ≤ B. If our guess for B is too small,
then we fail. In this case, we try again with a larger value of B. Otherwise, if B was not too
small we find some w such that F (w) ≤ B, but w may not correspond to a minimum of F ,
so we try again with a smaller value of B, and so on. This yields an approximation method
to find a minimum of F .

Similarly, if we are looking for a maximum of F , we try to guess the maximum value B
of F and then we solve the problem of finding w such that F (w) ≥ B. If our guess for B
is too large, then we fail. In this case, we try again with a smaller value of B. Otherwise,
if B was not too large we find some w such that F (w) ≥ B, but w may not correspond
to a maximum of F , so we try again with a greater value of B, and so on. This yields an

267

268 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

approximation method to find a maximum of F .

We will see several examples of this technique in Problems 5–8 listed below.

The problems that will consider are

(1) Exact Cover

(2) Hamiltonian Cycle for directed graphs

(3) Hamiltonian Cycle for undirected graphs

(4) The Traveling Salesman Problem

(5) Independent Set

(6) Clique

(7) Node Cover

(8) Knapsack, also called subset sum

(9) Inequivalence of ∗-free Regular Expressions

(10) The 0-1-integer programming problem

We begin by describing each of these problems.

(1) Exact Cover

We are given a finite nonempty set U = {u1, . . . , un} (the universe), and a family
F = {S1, . . . , Sm} of m ≥ 1 nonempty subsets of U . The question is whether there is
an exact cover , that is, a subfamily C ⊆ F of subsets in F such that the sets in C are
disjoint and their union is equal to U .

For example, let U = {u1, u2, u3, u4, u5, u6}, and let F be the family

F = {{u1, u3}, {u2, u3, u6}, {u1, u5}, {u2, u3, u4}, {u5, u6}, {u2, u4}}.

The subfamily
C = {{u1, u3}, {u5, u6}, {u2, u4}}

is an exact cover.

It is easy to see that Exact Cover is in NP . To prove that it is NP-complete,
we will reduce the Satisfiability Problem to it. This means that we provide a
method running in polynomial time that converts every instance of the Satisfiability
Problem to an instance of Exact Cover, such that the first problem has a solution
iff the converted problem has a solution.

10.1. STATEMENTS OF THE PROBLEMS 269

(2) Hamiltonian Cycle (for Directed Graphs)

Recall that a directed graph G is a pair G = (V,E), where E ⊆ V × V . Elements of
V are called nodes (or vertices). A pair (u, v) ∈ E is called an edge of G. We will
restrict ourselves to simple graphs , that is, graphs without edges of the form (u, u);
equivalently, G = (V,E) is a simple graph if whenever (u, v) ∈ E, then u 6= v.

Given any two nodes u, v ∈ V , a path from u to v is any sequence of n+1 edges (n ≥ 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 0, a path from u to v is simply a single edge, (u, v).)

A directed graph G is strongly connected if for every pair (u, v) ∈ V × V , there is a
path from u to v. A closed path, or cycle, is a path from some node u to itself. We
will restrict out attention to finite graphs, i.e. graphs (V,E) where V is a finite set.

Definition 10.1. Given a directed graph G, a Hamiltonian cycle is a cycle that passes
through all the nodes exactly once (note, some edges may not be traversed at all).

Hamiltonian Cycle Problem (for Directed Graphs): Given a directed graph G,
is there an Hamiltonian cycle in G?

Is there is a Hamiltonian cycle in the directed graph D shown in Figure 10.1?

Finding a Hamiltonian cycle in this graph does not appear to be so easy! A solution
is shown in Figure 10.2 below.

It is easy to see that Hamiltonian Cycle (for Directed Graphs) is in NP . To
prove that it is NP-complete, we will reduce Exact Cover to it. This means that we
provide a method running in polynomial time that converts every instance of Exact
Cover to an instance of Hamiltonian Cycle (for Directed Graphs) such that the
first problem has a solution iff the converted problem has a solution. This is perphaps
the hardest reduction.

270 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

Figure 10.1: A tour “around the world.”

v18
v17

v11
v12 v13

v10
v6

v5

v4

v14

v19

v9

v8

v7 v3

v2

v15

v16

v1

v20

Figure 10.2: A Hamiltonian cycle in D.

10.1. STATEMENTS OF THE PROBLEMS 271

(3) Hamiltonian Cycle (for Undirected Graphs)

Recall that an undirected graph G is a pair G = (V,E), where E is a set of subsets
{u, v} of V consisting of exactly two distinct elements. Elements of V are called nodes
(or vertices). A pair {u, v} ∈ E is called an edge of G.

Given any two nodes u, v ∈ V , a path from u to v is any sequence of n nodes (n ≥ 2)

u = u1, u2, . . . , un = v

such that {ui, ui+1} ∈ E for i = 1, . . . , n− 1. (If n = 2, a path from u to v is simply a
single edge, {u, v}.)

An undirected graph G is connected if for every pair (u, v) ∈ V × V , there is a path
from u to v. A closed path, or cycle, is a path from some node u to itself.

Definition 10.2. Given an undirected graph G, a Hamiltonian cycle is a cycle that
passes through all the nodes exactly once (note, some edges may not be traversed at
all).

Hamiltonian Cycle Problem (for Undirected Graphs): Given an undirected
graph G, is there an Hamiltonian cycle in G?

An instance of this problem is obtained by changing every directed edge in the directed
graph of Figure 10.1 to an undirected edge. The directed Hamiltonian cycle given in
Figure 10.1 is also an undirected Hamiltonian cycle of the undirected graph of Figure
10.3.

We see immediately that Hamiltonian Cycle (for Undirected Graphs) is in NP .
To prove that it is NP-complete, we will reduce Hamiltonian Cycle (for Directed
Graphs) to it. This means that we provide a method running in polynomial time
that converts every instance of Hamiltonian Cycle (for Directed Graphs) to
an instance of Hamiltonian Cycle (for Undirected Graphs) such that the first
problem has a solution iff the converted problem has a solution. This is an easy
reduction.

(4) Traveling Salesman Problem

We are given a set {c1, c2, . . . , cn} of n ≥ 2 cities, and an n × n matrix D = (dij) of
nonnegative integers, where dij is the distance (or cost) of traveling from city ci to city
cj. We assume that dii = 0 and dij = dji for all i, j, so that the matrix D is symmetric
and has zero diagonal.

Traveling Salesman Problem: Given some n × n matrix D = (dij) as above and
some integer B ≥ 0 (the budget of the traveling salesman), find a permutation π of
{1, 2, . . . , n} such that

c(π) = dπ(1)π(2) + dπ(2)π(3) + · · ·+ dπ(n−1)π(n) + dπ(n)π(1) ≤ B.

272 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

Figure 10.3: A tour “around the world,” undirected version.

The quantity c(π) is the cost of the trip specified by π. The Traveling Salesman
Problem has been stated in terms of a budget so that it has a yes or no answer, which
allows us to convert it into a language. A minimal solution corresponds to the smallest
feasible value of B.

Example 10.1. Consider the 4× 4 symmetric matrix given by

D =


0 2 1 1
2 0 1 1
1 1 0 3
1 1 3 0

 ,

and the budget B = 4. The tour specified by the permutation

π =

(
1 2 3 4
1 4 2 3

)
has cost 4, since

c(π) = dπ(1)π(2) + dπ(2)π(3) + dπ(3)π(4) + dπ(4)π(1)

= d14 + d42 + d23 + d31

= 1 + 1 + 1 + 1 = 4.

10.1. STATEMENTS OF THE PROBLEMS 273

The cities in this tour are traversed in the order

(1, 4, 2, 3, 1).

It is clear that the Traveling Salesman Problem is in NP . To show that it is NP-
complete, we reduce the Hamiltonian Cycle Problem (Undirected Graphs) to it.
This means that we provide a method running in polynomial time that converts every
instance of Hamiltonian Cycle Problem (Undirected Graphs) to an instance of
the Traveling Salesman Problem such that the first problem has a solution iff the
converted problem has a solution.

(5) Independent Set

The problem is this: Given an undirected graph G = (V,E) and an integer K ≥ 2,
is there a set C of nodes with |C| ≥ K such that for all vi, vj ∈ C, there is no edge
{vi, vj} ∈ E?

A maximal independent set with 3 nodes is shown in Figure 10.4. A maximal solution

Figure 10.4: A maximal Independent Set in a graph.

corresponds to the largest feasible value of K. The problem Independent Set is
obviously in NP . To show that it is NP-complete, we reduce Exact 3-Satisfiability
to it. This means that we provide a method running in polynomial time that converts
every instance of Exact 3-Satisfiability to an instance of Independent Set such
that the first problem has a solution iff the converted problem has a solution.

274 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

(6) Clique

The problem is this: Given an undirected graph G = (V,E) and an integer K ≥ 2,
is there a set C of nodes with |C| ≥ K such that for all vi, vj ∈ C, there is some
edge {vi, vj} ∈ E? Equivalently, does G contain a complete subgraph with at least K
nodes?

A maximal clique with 4 nodes is shown in Figure 10.5. A maximal solution corresponds

Figure 10.5: A maximal Clique in a graph.

to the largest feasible value of K. The problem Clique is obviously in NP . To show
that it isNP-complete, we reduce Independent Set to it. This means that we provide
a method running in polynomial time that converts every instance of Independent
Set to an instance of Clique such that the first problem has a solution iff the converted
problem has a solution.

(7) Node Cover

The problem is this: Given an undirected graph G = (V,E) and an integer B ≥ 2, is
there a set C of nodes with |C| ≤ B such that C covers all edges in G, which means
that for every edge {vi, vj} ∈ E, either vi ∈ C or vj ∈ C?

A minimal node cover with 6 nodes is shown in Figure 10.6. A minimal solution corre-
sponds to the smallest feasible value of B. The problem Node Cover is obviously in
NP . To show that it is NP-complete, we reduce Independent Set to it. This means
that we provide a method running in polynomial time that converts every instance of

10.1. STATEMENTS OF THE PROBLEMS 275

Figure 10.6: A minimal Node Cover in a graph.

Independent Set to an instance of Node Cover such that the first problem has a
solution iff the converted problem has a solution.

The Node Cover problem has the following interesting interpretation: think of the
nodes of the graph as rooms of a museum (or art gallery etc.), and each edge as a
straight corridor that joins two rooms. Then Node Cover may be useful in assigning
as few as possible guards to the rooms, so that all corridors can be seen by a guard.

(8) Knapsack (also called Subset sum)

The problem is this: Given a finite nonempty set S = {a1, a2, . . . , an} of nonnegative
integers, and some integer K ≥ 0, all represented in binary, is there a nonempty subset
I ⊆ {1, 2, . . . , n} such that ∑

i∈I

ai = K?

A “concrete” realization of this problem is that of a hiker who is trying to fill her/his
backpack to its maximum capacity with items of varying weights or values.

It is easy to see that the Knapsack Problem is in NP . To show that it is NP-
complete, we reduce Exact Cover to it. This means that we provide a method running
in polynomial time that converts every instance of Exact Cover to an instance of
Knapsack Problem such that the first problem has a solution iff the converted problem
has a solution.

276 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

Remark: The 0 -1 Knapsack Problem is defined as the following problem. Given
a set of n items, numbered from 1 to n, each with a weight wi ∈ N and a value vi ∈ N,
given a maximum capacity W ∈ N and a budget B ∈ N, is there a set of n variables
x1, . . . , xn with xi ∈ {0, 1} such that

n∑
i=1

xivi ≥ B,

n∑
i=1

xiwi ≤ W.

Informally, the problem is to pick items to include in the knapsack so that the sum
of the values exceeds a given minimum B (the goal is to maximize this sum), and the
sum of the weights is less than or equal to the capacity W of the knapsack. A maximal
solution corresponds to the largest feasible value of B.

The Knapsack Problem as we defined it (which is how Lewis and Papadimitriou de-
fine it) is the special case where vi = wi for i = 1, . . . , n, the vi are pairwise distinct
(they form a set), and W = B. For this reason, it is also called the Subset Sum Prob-
lem. Clearly, the Knapsack (Subset Sum) Problem reduces to the 0 -1 Knapsack
Problem, and thus the 0 -1 Knapsack Problem is also NP-complete.

(9) Inequivalence of ∗-free Regular Expressions

Recall that the problem of deciding the equivalence R1
∼= R2 of two regular expressions

R1 and R2 is the problem of deciding whether R1 and R2 define the same language,
that is, L[R1] = L[R2]. Is this problem in NP?

In order to show that the equivalence problem for regular expressions is in NP we
would have to be able to somehow check in polynomial time that two expressions
define the same language, but this is still an open problem.

What might be easier is to decide whether two regular expressions R1 and R2 are
inequivalent . For this, we just have to find a string w such that either w ∈ L[R1]−L[R2]
or w ∈ L[R2] − L[R1]. The problem is that if we can guess such a string w, we still
have to check in polynomial time that w ∈ (L[R1]−L[R2])∪ (L[R2]−L[R1]), and this
implies that there is a bound on the length of w which is polynomial in the sizes of R1

and R2. Again, this is an open problem.

To obtain a problem in NP we have to consider a restricted type of regular expressions,
and it turns out that ∗-free regular expressions are the right candidate. A ∗-free regular
expression is a regular expression which is built up from the atomic expressions using
only + and ·, but not ∗. For example,

R = ((a+ b)aa(a+ b) + aba(a+ b)b)

10.1. STATEMENTS OF THE PROBLEMS 277

is such an expression.

It is easy to see that if R is a ∗-free regular expression, then for every string w ∈ L[R]
we have |w| ≤ |R|. In particular, L[R] is finite. The above observation shows that if
R1 and R2 are ∗-free and if there is a string w ∈ (L[R1]−L[R2])∪(L[R2]−L[R1]), then
|w| ≤ |R1| + |R2|, so we can indeed check this in polynomial time. It follows that the
inequivalence problem for ∗ -free regular expressions is in NP . To show that it is NP-
complete, we reduce the Satisfiability Problem to it. This means that we provide
a method running in polynomial time that converts every instance of Satisfiability
Problem to an instance of Inequivalence of Regular Expressions such that the
first problem has a solution iff the converted problem has a solution.

Observe that both problems of Inequivalence of Regular Expressions and Equiv-
alence of Regular Expressions are as hard as Inequivalence of ∗-free Regular
Expressions, since if we could solve the first two problems in polynomial time, then
we we could solve Inequivalence of ∗-free Regular Expressions in polynomial
time, but since this problem is NP-complete, we would have P = NP . This is very
unlikely, so the complexity of Equivalence of Regular Expressions remains open.

(10) 0-1 integer programming problem

Let A be any p× q matrix with integer coefficients and let b ∈ Zp be any vector with
integer coefficients. The 0-1 integer programming problem is to find whether a
system of p linear equations in q variables

a11x1 + · · ·+ a1qxq = b1

...
...

ai1x1 + · · ·+ aiqxq = bi
...

...

ap1x1 + · · ·+ apqxq = bp

with aij, bi ∈ Z has any solution x ∈ {0, 1}q, that is, with xi ∈ {0, 1}. In matrix form,
if we let

A =

a11 · · · a1q
...

. . .
...

ap1 · · · apq

 , b =

b1
...
bp

 , x =

x1
...
xq

 ,

then we write the above system as

Ax = b.

278 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

Example 10.2. Is there a solution x = (x1, x2, x3, x4, x5, x6) of the linear system


1 −2 1 3 −1 4
2 2 −1 0 1 −1
−1 1 2 3 −2 3
3 1 −1 2 −1 4
0 1 −1 1 1 2




x1

x2

x3

x4

x5

x6

 =


9
0
7
8
2


with xi ∈ {0, 1}?

Indeed, x = (1, 0, 1, 1, 0, 1) is a solution.

It is immediate that 0-1 integer programming problem is in NP . To prove that
it is NP-complete we reduce the bounded tiling problem to it. This means that
we provide a method running in polynomial time that converts every instance of the
bounded tiling problem to an instance of the 0-1 integer programming problem
such that the first problem has a solution iff the converted problem has a solution.

10.2 Proofs of NP-Completeness

(1) Exact Cover

To prove that Exact Cover is NP-complete, we reduce the Satisfiability Problem
to it:

Satisfiability Problem ≤P Exact Cover

Given a set F = {C1, . . . , C`} of ` clauses constructed from n propositional variables
x1, . . . , xn, we must construct in polynomial time (in the sum of the lengths of the
clauses) an instance τ(F) = (U,F) of Exact Cover such that F is satisfiable iff τ(F)
has a solution.

Example 10.3. If

F = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2), C4 = (x2 ∨ x3)},

then the universe U is given by

U = {x1, x2, x3, C1, C2, C3, C4, p11, p12, p21, p22, p23, p31, p41, p42},

10.2. PROOFS OF NP-COMPLETENESS 279

and the family F consists of the subsets

{p11}, {p12}, {p21}, {p22}, {p23}, {p31}, {p41}, {p42}
T1,F = {x1, p11}
T1,T = {x1, p21}
T2,F = {x2, p22, p31}
T2,T = {x2, p12, p41}
T3,F = {x3, p23}
T3,T = {x3, p42}
{C1, p11}, {C1, p12}, {C2, p21}, {C2, p22}, {C2, p23},
{C3, p31}, {C4, p41}, {C4, p42}.

The above construction is illustrated in Figure 10.7.

x1 x2 x3 C1 CC2 3 C4

p
11

p p p p p p p
12 21 22 23 31 41 42

x1 x2 x3 C1 CC2 3 C4

p
11

p p p p p p p
12 21 22 23 31 41 42

F = (x v x) (x v x v x) (x) (x v x)

Exact cover for F

1 12 2 2 23 3^ ^ ^

Figure 10.7: Construction of an exact cover from the set of clauses in Example 10.3.

It is easy to check that the set C consisting of the following subsets is an exact cover:

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}.

280 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

The general method to construct (U,F) from F = {C1, . . . , C`} proceeds as follows.
The size n of the input is the sum of the lengths of the clauses Ci as strings, Say

Cj = (Lj1 ∨ · · · ∨ Ljmj
)

is the jth clause in F , where Ljk denotes the kth literal in Cj and mj ≥ 1. The universe
of τ(F) is the set

U = {xi | 1 ≤ i ≤ n} ∪ {Cj | 1 ≤ j ≤ `} ∪ {pjk | 1 ≤ j ≤ `, 1 ≤ k ≤ mj}

where in the third set pjk corresponds to the kth literal in Cj. The universe U can be
constructed in time O(n2).

The following subsets are included in F :

(a) There is a set {pjk} for every pjk.

(b) For every boolean variable xi, the following two sets are in F :

Ti,T = {xi} ∪ {pjk | Ljk = xi}

which contains xi and all negative occurrences of xi, and

Ti,F = {xi} ∪ {pjk | Ljk = xi}

which contains xi and all its positive occurrences. Note carefully that Ti,T involves
negative occurrences of xi whereas Ti,F involves positive occurrences of xi.

(c) For every clause Cj, the mj sets {Cj, pjk} are in F .

The subsets in (a), (b), (c) can be constructed in time O(n3). It remains to prove that
F is satisfiable iff τ(F) has a solution. We claim that if v is a truth assignement that
satisfies F , then we can make an exact cover C as follows:

For each xi, we put the subset Ti,T in C iff v(xi) = T, else we we put the subset Ti,F
in C iff v(xi) = F. Also, for every clause Cj, we put some subset {Cj, pjk} in C for a
literal Ljk which is made true by v. By construction of Ti,T and Ti,F, this pjk is not in
any set in C selected so far. Since by hypothesis F is satisfiable, such a literal exists for
every clause. Having covered all xi and Cj, we put a set {pjk} in C for every remaining
pjk which has not yet been covered by the sets already in C.

Going back to Example 10.3, the truth assignment v(x1) = T, v(x2) = T, v(x3) = F
satisfies F , so we put

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}

10.2. PROOFS OF NP-COMPLETENESS 281

in C.

We leave as an exercise to check that the above procedure works.

Conversely, if C is an exact cover of τ(F), we define a truth assigment as follows:

For every xi, if Ti,T is in C, then we set v(xi) = T, else if Ti,F is in C, then we set
v(xi) = F. We leave it as an exercise to check that this procedure works.

Example 10.4. Given the exact cover

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42},

we get the satisfying assigment v(x1) = T, v(x2) = T, v(x3) = F .

If we now consider the proposition is CNF given by

F2 = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2), C4 = (x2 ∨ x3 ∨ x4)}

where we have added the boolean variable x4 to clause C4, then U also contains x4 and
p43 so we need to add the following subsets to F :

T4,F = {x4, p43}, T4,T = {x4}, {C4, p43}, {p43}.

The truth assigment v(x1) = T, v(x2) = T, v(x3) = F, v(x4) = T satisfies F2, so an
exact cover C is

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23}, T4,T = {x4},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}, {p43}.

The above construction is illustrated in Figure 10.8.

Observe that this time, because the truth assignment v makes both literals correspond-
ing to p42 and p43 true and since we picked p42 to form the subset {C4, p42}, we need
to add the singleton {p43} to C to cover all elements of U .

(2) Hamiltonian Cycle (for Directed Graphs)

To prove that Hamiltonian Cycle (for Directed Graphs) is NP-complete, we will
reduce Exact Cover to it:

Exact Cover ≤P Hamiltonian Cycle (for Directed Graphs)

We need to find an algorithm working in polynomial time that converts an instance
(U,F) of Exact Cover to a directed graph G = τ(U,F) such that G has a Hamiltonian
cycle iff (U,F) has an exact cover. The size n of the input (U,F) is |U |+ |F|.

282 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

x1 x2 x3 C1 CC2 3 C4

p
11

p p p p p p p
12 21 22 23 31 41 42

x1 x2 x3 C1 CC2 3 C4

p
11

p p p p p p p
12 21 22 23 31 41 42

F = (x v x) (x v x v x) (x) (x v x v x)

Exact cover for F

1 12 2 2 23 3^ ^ ^

p

p

43

43

4

x4

x4

Figure 10.8: Construction of an exact cover from the set of clauses in Example 10.4.

The construction of the graph G uses a trick involving a small subgraph Gad with 7
(distinct) nodes known as a gadget shown in Figure 10.9.

The crucial property of the graph Gad is that if Gad is a subgraph of a bigger graph
G in such a way that no edge of G is incident to any of the nodes u, v, w unless it
is one of the eight edges of Gad incident to the nodes u, v, w, then for any Hamil-
tonian cycle in G, either the path (a, u), (u, v), (v, w), (w, b) is traversed or the path
(c, w), (w, v), (v, u), (u, d) is traversed, but not both.

The reader should convince herself/himself that indeed, any Hamiltonian cycle that
does not traverse either the subpath (a, u), (u, v), (v, w), (w, b) from a to b or the sub-
path (c, w), (w, v), (v, u), (u, d) from c to d will not traverse one of the nodes u, v, w.
Also, the fact that node v is traversed exactly once forces only one of the two paths
to be traversed but not both. The reader should also convince herself/himself that a
smaller graph does not guarantee the desired property.

It is convenient to use the simplified notation with a special type of edge labeled with
the exclusive or sign ⊕ between the “edges” between a and b and between d and c, as
shown in Figure 10.10.

10.2. PROOFS OF NP-COMPLETENESS 283

a

d

u v w

b

c

Figure 10.9: A gadget Gad.

a

d

b

c

⊕

Figure 10.10: A shorthand notation for a gadget.

Whenever such a figure occurs, the actual graph is obtained by substituting a copy of
the graph Gad (the four nodes a, b, c, d must be distinct). This abbreviating device
can be extended to the situation where we build gadgets between a given pair (a, b)
and several other pairs (c1, d1), . . . , (cm, dm), all nodes being distinct, as illustrated in
Figure 10.11.

Either all three edges (c1, d1), (c2, d2), (c3, d3) are traversed or the edge (a, b) is tra-
versed, and these possibilities are mutually exclusive.

The graph G = τ(U,F) where U = {u1, . . . , un} (with n ≥ 1) and F = {S1, . . . , Sm}
(with m ≥ 1) is constructed as follows:

The graph G has m + n + 2 nodes {u0, u1, . . . , un, S0, S1, . . . , Sm}. Note that we have
added two extra nodes u0 and S0. For i = 1, . . . ,m, there are two edges (Si−1, Si)1

and (Si−1, Si)2 from Si−1 to Si. For j = 1, . . . , n, from uj−1 to uj, there are as many
edges as there are sets Si ∈ F containing the element uj. We can think of each edge
between uj−1 and uj as an occurrence of uj in a uniquely determined set Si ∈ F ; we
denote this edge by (uj−1, uj)i. We also have an edge from un to S0 and an edge from
Sm to u0, thus “closing the cycle.”

What we have constructed so far is not a legal graph since it may have many parallel

284 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

a b

d2 c2

d1

c1 d3

c3

⊕

⊕

⊕

Figure 10.11: A shorthand notation for several gadgets.

edges, but are going to turn it into a legal graph by pairing edges between the uj’s
and edges between the Si’s. Indeed, since each edge (uj−1, uj)i between uj−1 and uj
corresponds to an occurrence of uj in some uniquely determined set Si ∈ F (that
is, uj ∈ Si), we put an exclusive-or edge between the edge (uj−1, uj)i and the edge
(Si−1, Si)2 between Si−1 and Si, which we call the long edge. The other edge (Si−1, Si)1

between Si−1 and Si (not paired with any other edge) is called the short edge. Effec-
tively, we put a copy of the gadget graph Gad with a = uj−1, b = uj, c = Si−1, d = Si
for any pair (uj, Si) such that uj ∈ Si. The resulting object is indeed a directed graph
with no parallel edges. The graph G can be constructed from (U,F) in time O(n2).

Example 10.5. The above construction is illustrated in Figure 10.12 for the instance
of the exact cover problem given by

U = {u1, u2, u3, u4}, F = {S1 = {u3, u4}, S2 = {u2, u3, u4}, S3 = {u1, u2}}.

It remains to prove that (U,F) has an exact cover iff the graph G = τ(U,F) has a
Hamiltonian cycle. First, assume that G has a Hamiltonian cycle. If so, for every
j some unique “edge” (uj−1, uj)i is traversed once (since every uj is traversed once),
and by the exclusive-or nature of the gadget graphs, the corresponding long edge
(Si−1, Si)2 can’t be traversed, which means that the short edge (Si−1, Si)1 is traversed.
Consequently, if C consists of those subsets Si such that the short edge (Si−1, Si)1 is
traversed, then C consists of pairwise disjoint subsets whose union is U , namely C is
an exact cover.

In our example, there is a Hamiltonian where the blue edges are traversed between the
Si nodes, and the red edges are traversed between the uj nodes, namely

short (S0, S1), long (S1, S2), short (S2, S3), (S3, u0),

(u0, u1)3, (u1, u2)3, (u2, u3)1, (u3, u4)1, (u4, S0).

10.2. PROOFS OF NP-COMPLETENESS 285

The subsets corresponding to the short (Si−1, Si) edges are S1 and S3, and indeed
C = {S1, S3} is an exact cover.

Note that the exclusive-or property of the gadgets implies the following: since the
edge (u0, u1)3 must be chosen to obtain a Hamiltonian, the long edge (S2, S3) can’t be
chosen, so the edge (u1, u2)3 must be chosen, but then the edge (u1, u2)2 is not chosen
so the long edge (S1, S2) must be chosen, so the edges (u2, u3)2 and (u3, u4)2 can’t be
chosen, and thus edges (u2, u3)1 and (u3, u4)1 must be chosen.

Conversely, if C is an exact cover for (U,F), then consider the path in G obtained by
traversing each short edge (Si−1, Si)1 for which Si ∈ C, each edge (uj−1, uj)i such that
uj ∈ Si, which means that this edge is connected by a ⊕-sign to the long edge (Si−1, Si)2

(by construction, for each uj there is a unique such Si), and the edges (un, S0) and
(Sm, u0), then we obtain a Hamiltonian cycle. Observe that the long edges are the
inside edges joining the Si.

u0

u1

u2

u3

u4 S0

S1

S2

S3

⊕

⊕ ⊕

⊕

⊕

⊕

⊕

Figure 10.12: The directed graph constructed from the data (U,F) of Example 10.5.

286 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

In our example, the exact cover C = {S1, S3} yields the Hamiltonian

short (S0, S1), long (S1, S2), short (S2, S3), (S3, u0),

(u0, u1)3, (u1, u2)3, (u2, u3)1, (u3, u4)1, (u4, S0)

that we encountered earlier.

(3) Hamiltonian Cycle (for Undirected Graphs)

To show that Hamiltonian Cycle (for Undirected Graphs) is NP-complete we
reduce Hamiltonian Cycle (for Directed Graphs) to it:

Hamiltonian Cycle (for Directed Graphs) ≤P Hamiltonian Cycle (for Undi-
rected Graphs)

Given any directed graph G = (V,E) we need to construct in polynomial time an
undirected graph τ(G) = G′ = (V ′, E ′) such that G has a (directed) Hamiltonian cycle
iff G′ has a (undirected) Hamiltonian cycle. This is easy. We make three distinct
copies v0, v1, v2 of every node v ∈ V which we put in V ′, and for every edge (u, v) ∈ E
we create five edges {u0, u1}, {u1, u2}, {u2, v0}, {v0, v1}, {v1, v2} which we put in E ′, as
illustrated in the diagram shown in Figure 10.13.

u v u0 u1 u2 v0 v1 v2=⇒

Figure 10.13: Conversion of a directed graph into an undirected graph.

If the size n of the input is |V |+ |E|, then G′ is constructed in time O(n). The crucial
point about the graph G′ is that although there may be several edges adjacent to a
node u0 or a node u2, the only way to reach u1 from u0 is through the edge {u0, u1}
and the only way to reach u1 from u2 is through the edge {u1, u2}.

Suppose there is a Hamiltonian cycle in G′. If this cycle arrives at a node u0 from the
node u1, then by the above remark, the previous node in the cycle must be u2. Then
the predecessor of u2 in the cycle must be a node v0 such that there is an edge {u2, v0}
in G′ arising from an edge (u, v) in G. The nodes in the cycle in G′ are traversed in
the order (v0, u2, u1, u0) where v0 and u2 are traversed in the opposite order in which
they occur as the endpoints of the edge (u, v) in G. If so, consider the reverse of our
Hamiltonian cycle in G′, which is also a Hamiltonian cycle since G′ is unoriented. In
this cycle, we go from u0 to u1, then to u2, and finally to v0. In G, we traverse the
edge from u to v. In order for the cycle in G′ to be Hamiltonian, we must continue

10.2. PROOFS OF NP-COMPLETENESS 287

by visiting v1 and v2, since otherwise v1 is never traversed. Now the next node w0 in
the Hamiltonian cycle in G′ corresponds to an edge (v, w) in G, and by repeating our
reasoning we see that our Hamiltonian cycle in G′ determines a Hamiltonian cycle in
G. We leave it as an easy exercise to check that a Hamiltonian cycle in G yields a
Hamiltonian cycle in G′. The process of expanding a directed graph into an undirected
graph and the inverse process are illustrated in Figure 10.14 and Figure 10.15.

w u

v

G

u

u
2

u
1

0

v1

v0
v2

w1

w0

w2

w u

v

G

u

u
2

u
1

0

v1

v0
v2

w1

w0

w2

G’

Figure 10.14: Expanding the directed graph into an undirected graph.

(4) Traveling Salesman Problem

To show that the Traveling Salesman Problem is NP-complete, we reduce the
Hamiltonian Cycle Problem (Undirected Graphs) to it:

Hamiltonian Cycle Problem (Undirected Graphs) ≤P Traveling Salesman
Problem

This is a fairly easy reduction.

Given an undirected graph G = (V,E), we construct an instance τ(G) = (D,B) of
the Traveling Salesman Problem so that G has a Hamiltonian cycle iff the traveling
salesman problem has a solution. If we let n = |V |, we have n cities and the matrix

288 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

w0

w

w

1

2 u0 u1 u2

v
v1

2

v0

G’

w0

w

w

1

2 u

v
v1

2

v0

collapse u’s

w0

w

w

1

2 u

v

collapse v’s

w u

v

collapse w’sG

Figure 10.15: Collapsing the undirected graph onto a directed graph.

D = (dij) is defined as follows:

dij =


0 if i = j

1 if {vi, vj} ∈ E
2 otherwise.

We also set the budget B as B = n. The construction of (D,B) from G can be done
in time O(n2).

Any tour of the cities has cost equal to n plus the number of pairs (vi, vj) such that
i 6= j and {vi, vj} is not an edge of G. It follows that a tour of cost n exists iff there
are no pairs (vi, vj) of the second kind iff the tour is a Hamiltonian cycle.

The reduction from Hamiltonian Cycle Problem (Undirected Graphs) to the
Traveling Salesman Problem is quite simple, but a direct reduction of say Satis-
fiability to the Traveling Salesman Problem is hard. By breaking this reduction
into several steps made it simpler to achieve.

(5) Independent Set

10.2. PROOFS OF NP-COMPLETENESS 289

To show that Independent Set is NP-complete, we reduce Exact 3-Satisfiability
to it:

Exact 3-Satisfiability ≤P Independent Set

Recall that in Exact 3-Satisfiability every clause Ci has exactly three literals Li1, Li2,
Li3.

Given a set F = {C1, . . . , Cm} of m ≥ 2 such clauses, we construct in polynomial time
an undirected graph G = (V,E) such that F is satisfiable iff G has an independent set
C with at least K = m nodes.

For every i (1 ≤ i ≤ m), we have three nodes ci1, ci2, ci3 corresponding to the three
literals Li1, Li2, Li3 in clause Ci, so there are 3m nodes in V . The “core” of G consists
of m triangles, one for each set {ci1, ci2, ci3}. We also have an edge {cik, cj`} iff Lik and
Lj` are complementary literals. If the size n of the input is the sum of the lengths of
the clauses, then the construction of G can be done in time O(n2).

Example 10.6. Let F be the set of clauses

F = {C1 = (x1∨x2∨x3), C2 = (x1∨x2∨x3), C3 = (x1∨x2∨x3), C4 = (x1∨x2∨x3)}.

The graph G associated with F is shown in Figure 10.16.

x2 x3

x1

x2 x3

x1

x2 x3

x1

x2 x3

x1

Figure 10.16: The graph constructed from the clauses of Example 10.6.

It remains to show that the construction works. Since any three nodes in a triangle
are connected, an independent set C can have at most one node per triangle and thus
has at most m nodes. Since the budget is K = m, we may assume that there is an
independent set with m nodes. Define a (partial) truth assignment by

v(xi) =

{
T if Ljk = xi and cjk ∈ C
F if Ljk = xi and cjk ∈ C.

290 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

Since the non-triangle edges in G link nodes corresponding to complementary literals
and nodes in C are not connected, our truth assigment does not assign clashing truth
values to the variables xi. Not all variables may receive a truth value, in which case
we assign an arbitrary truth value to the unassigned variables. This yields a satisfying
assignment for F .

In Example 10.6, the set C = {c11, c22, c32, c41} corresponding to the nodes shown
in red in Figure 10.16 form an independent set, and they induce the partial truth
assignment v(x1) = T, v(x2) = F. The variable x3 can be assigned an arbitrary value,
say v(x3) = F, and v is indeed a satisfying truth assignment for F .

Conversely, if v is a truth assignment for F , then we obtain an independent set C of
size m by picking for each clause Ci a node cik corresponding to a literal Lik whose
value under v is T.

(6) Clique

To show that Clique is NP-complete, we reduce Independent Set to it:

Independent Set ≤P Clique

The key to the reduction is the notion of the complement of an undirected graph
G = (V,E). The complement Gc = (V,Ec) of the graph G = (V,E) is the graph
with the same set of nodes V as G but there is an edge {u, v} (with u 6= v) in
Ec iff {u, v} /∈ E. Then it is not hard to check that there is a bijection between
maximum independent sets in G and maximum cliques in Gc. The reduction consists
in constructing from a graph G its complement Gc, and then G has an independent
set iff Gc has a clique. Obviously, the reduction can be done in linear time.

This construction is illustrated in Figure 10.17, where a maximum independent set in
the graph G is shown in blue and a maximum clique in the graph Gc is shown in red.

Figure 10.17: A graph (left) and its complement (right).

10.2. PROOFS OF NP-COMPLETENESS 291

(7) Node Cover

To show that Node Cover is NP-complete, we reduce Independent Set to it:

Independent Set ≤P Node Cover

This time the crucial observation is that if N is an independent set in G, then the
complement C = V −N of N in V is a node cover in G. Thus there is an independent
set of size at least K iff there is a node cover of size at most n −K where n = |V | is
the number of nodes in V . The reduction leaves the graph unchanged and replaces K
by n−K. Obviously, the reduction can be done in linear time. An example is shown
in Figure 10.18 where an independent set is shown in blue and a node cover is shown
in red.

Figure 10.18: An inpendent set (left) and a node cover (right).

(8) Knapsack (also called Subset sum)

To show that Knapsack is NP-complete, we reduce Exact Cover to it:

Exact Cover ≤P Knapsack

Given an instance (U,F) of set cover with U = {u1, . . . , un} and F = {S1, . . . , Sm},
a family of subsets of U , we need to produce in polynomial time an instance τ(U,F)
of the Knapsack Problem consisting of k nonnegative integers a1, . . . , ak and another
integer K > 0 such that there is a subset I ⊆ {1, . . . , k} such that

∑
i∈I ai = K iff

there is an exact cover of U using subsets in F .

The trick here is the relationship between set union and integer addition.

Example 10.7. Consider the exact cover problem given by U = {u1, u2, u3, u4} and

F = {S1 = {u3, u4}, S2 = {u2, u3, u4}, S3 = {u1, u2}}.

292 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

We can represent each subset Sj by a binary string aj of length 4, where the ith bit
from the left is 1 iff ui ∈ Sj, and 0 otherwise. In our example

a1 = 0011

a2 = 0111

a3 = 1100.

Then the trick is that some family C of subsets Sj is an exact cover if the sum of the
corresponding numbers aj adds up to 1111 = 24 − 1 = K. For example,

C = {S1 = {u3, u4}, S3 = {u1, u2}}

is an exact cover and
a1 + a3 = 0011 + 1100 = 1111.

Unfortunately, there is a problem with this encoding which has to do with the fact
that addition may involve carry. For example, assuming four subsets and the universe
U = {u1, . . . , u6},

11 + 13 + 15 + 24 = 63,

in binary
001011 + 001101 + 001111 + 011000 = 111111,

but if we convert these binary strings to the corresponding subsets we get the subsets

S1 = {u3, u5, u6}
S2 = {u3, u4, u6}
S3 = {u3, u4, u5, u6}
S4 = {u2, u3},

which are not disjoint and do not cover U .

The fix is surprisingly simple: use base m (where m is the number of subsets in F)
instead of base 2.

Example 10.8. Consider the exact cover problem given by U = {u1, u2, u3, u4, u5, u6}
and F given by

S1 = {u3, u5, u6}
S2 = {u3, u4, u6}
S3 = {u3, u4, u5, u6}
S4 = {u2, u3},
S5 = {u1, u2, u4}.

10.2. PROOFS OF NP-COMPLETENESS 293

In base m = 5, the numbers corresponding to S1, . . . , S5 are

a1 = 001011

a2 = 001101

a3 = 001111

a4 = 011000

a5 = 110100.

This time,

a1 + a2 + a3 + a4 = 001011 + 001101 + 001111 + 011000 = 014223 6= 111111,

so {S1, S2, S3, S4} is not a solution. However

a1 + a5 = 001011 + 110100 = 111111,

and C = {S1, S5} is an exact cover.

Thus, given an instance (U,F) of Exact Cover where U = {u1, . . . , un} and F =
{S1, . . . , Sm} the reduction to Knapsack consists in forming the m numbers a1, . . . , am
(each of n bits) encoding the subsets Sj, namely aji = 1 iff ui ∈ Sj, else 0, and to let
K = 1 + m2 + · · · + mn−1, which is represented in base m by the string 11 · · · 11︸ ︷︷ ︸

n

. In

testing whether
∑

i∈I ai = K for some subset I ⊆ {1, . . . ,m}, we use arithmetic in
base m.

If a candidate solution C involves at most m− 1 subsets, then since the corresponding
numbers are added in base m, a carry can never happen. If the candidate solution
involves all m subsets, then a1 + · · ·+am = K iff F is a partition of U , since otherwise
some bit in the result of adding up these m numbers in base m is not equal to 1, even
if a carry occurs. Since the number K is written in binary, it takes time O(mn) to
produce ((a1, . . . , am), K) from (U,F).

(9) Inequivalence of ∗-free Regular Expressions

To show that Inequivalence of ∗-free Regular Expressions is NP-complete, we
reduce the Satisfiability Problem to it:

Satisfiability Problem ≤P Inequivalence of ∗-free Regular Expressions

We already argued that Inequivalence of ∗-free Regular Expressions is in NP
because if R is a ∗-free regular expression, then for every string w ∈ L[R] we have
|w| ≤ |R|. The above observation shows that if R1 and R2 are ∗-free and if there is a
string w ∈ (L[R1]−L[R2])∪ (L[R2]−L[R1]), then |w| ≤ |R1|+ |R2|, so we can indeed

294 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

check this in polynomial time. It follows that the inequivalence problem for ∗ -free
regular expressions is in NP .

We reduce the Satisfiability Problem to the Inequivalence of ∗-free Regular
Expressions as follows. For any set of clauses P = C1 ∧ · · · ∧Cp, if the propositional
variables occurring in P are x1, . . . , xn, we produce two ∗-free regular expressions R,
S over Σ = {0, 1}, such that P is satisfiable iff LR 6= LS. The expression S is actually

S = (0 + 1)(0 + 1) · · · (0 + 1)︸ ︷︷ ︸
n

.

The expression R is of the form

R = R1 + · · ·+Rp,

where Ri is constructed from the clause Ci in such a way that LRi
corresponds precisely

to the set of truth assignments that falsify Ci; see below.

Given any clause Ci, let Ri be the ∗-free regular expression defined such that, if xj and
xj both belong to Ci (for some j), then Ri = ∅, else

Ri = R1
i ·R2

i · · ·Rn
i ,

where Rj
i is defined by

Rj
i =


0 if xj is a literal of Ci
1 if xj is a literal of Ci
(0 + 1) if xj does not occur in Ci.

The construction of R from P takes linear time.

Example 10.9. If we apply the above conversion to the clauses of Example 10.3,
namely

F = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2), C4 = (x2 ∨ x3)},

we get

R1 = 0 · 1 · (0 + 1), R2 = 1 · 0 · 0, R3 = (0 + 1) · 0 · (0 + 1), R4 = (0 + 1) · 1 · 1.

Clearly, all truth assignments that falsify Ci must assign F to xj if xj ∈ Ci or assign
T to xj if xj ∈ Ci. Therefore, LRi

corresponds to the set of truth assignments that
falsify Ci (where 1 stands for T and 0 stands for F) and thus, if we let

R = R1 + · · ·+Rp,

10.3. SUCCINCT CERTIFICATES, coNP , AND EXP 295

then LR corresponds to the set of truth assignments that falsify P = C1 ∧ · · · ∧ Cp.
Since LS = {0, 1}n (all binary strings of length n), we conclude that LR 6= LS iff P is
satisfiable. Therefore, we have reduced the Satisfiability Problem to our problem
and the reduction clearly runs in polynomial time. This proves that the problem of
deciding whether LR 6= LS, for any two ∗-free regular expressions R and S is NP-
complete.

(10) 0-1 integer programming problem

It is easy to check that the problem is in NP .

To prove that the is NP-complete we reduce the bounded-tiling problem to it:

bounded-tiling problem ≤P 0-1 integer programming problem

Given a tiling problem, ((T , V,H), ŝ, σ0), we create a 0-1-valued variable xmnt, such
that xmnt = 1 iff tile t occurs in position (m,n) in some tiling. Write equations or
inequalities expressing that a tiling exists and then use “slack variables” to convert
inequalities to equations. For example, to express the fact that every position is tiled
by a single tile, use the equation ∑

t∈T

xmnt = 1,

for all m,n with 1 ≤ m ≤ 2s and 1 ≤ n ≤ s. We leave the rest as as exercise.

10.3 Succinct Certificates, coNP, and EXP
All the problems considered in Section 10.1 share a common feature, which is that for each
problem, a solution is produced nondeterministically (an exact cover, a directed Hamiltonian
cycle, a tour of cities, an independent set, a node cover, a clique etc.), and then this candidate
solution is checked deterministically and in polynomial time. The candidate solution is a
string called a certificate (or witness).

It turns out that membership on NP can be defined in terms of certificates. To be a
certificate, a string must satisfy two conditions:

1. It must be polynomially succinct , which means that its length is at most a polynomial
in the length of the input.

2. It must be checkable in polynomial time.

All “yes” inputs to a problem in NP must have at least one certificate, while all “no”
inputs must have none.

The notion of certificate can be formalized using the notion of a polynomially balanced
language.

296 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

Definition 10.3. Let Σ be an alphabet, and let “;” be a symbol not in Σ. A language
L′ ⊆ Σ∗; Σ∗ is said to be polynomially balanced if there exists a polynomial p(X) such that
for all x, y ∈ Σ∗, if x; y ∈ L′ then |y| ≤ p(|x|).

Suppose L′ is a polynomially balanced language and that L′ ∈ P . Then we can consider
the language

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.
The intuition is that for each x ∈ L, the set

{y ∈ Σ∗ | x; y ∈ L′}

is the set of certificates of x. For every x ∈ L, a Turing machine can nondeterministically
guess one of its certificates y, and then use the deterministic Turing machine for L′ to check in
polynomial time that x; y ∈ L′. Note that, by definition, strings not in L have no certificate.
It follows that L ∈ NP .

Conversely, if L ∈ NP and the alphabet Σ has at least two symbols, we can encode the
paths in the computation tree for every input x ∈ L, and we obtain a polynomially balanced
language L′ ⊆ Σ∗; Σ∗ with L′ in P such that

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.

The details of this construction are left as an exercise. In summary, we obtain the following
theorem.

Theorem 10.1. Let L ⊆ Σ∗ be a language over an alphabet Σ with at least two symbols, and
let “;” be a symbol not in Σ. Then L ∈ NP iff there is a polynomially balanced language
L′ ⊆ Σ∗; Σ∗ such that L′ ∈ P and

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.

Theorem 10.1 shows that the introduction of non-determinstic Turing machines is not
really needed to define the class NP , but this extreme point of view is not fruitful.

A striking illustration of the notion of succint certificate is illustrated by the set of
composite integers, namely those natural numbers n ∈ N that can be written as the product
pq of two numbers p, q ≥ 2 with p, q ∈ N. For example, the number

4, 294, 967, 297

is a composite!

This is far from obvious, but if an oracle gives us the certificate {6, 700, 417, 641}, it is
easy to carry out in polynomial time the multiplication of these two numbers and check that
it is equal to 4, 294, 967, 297. Finding a certificate is usually (very) hard, but checking that
it works is easy. This is the point of certificates.

10.3. SUCCINCT CERTIFICATES, coNP , AND EXP 297

We conclude this section with a brief discussion of the complexity classes coNP and
EXP .

By definition,

coNP = {L | L ∈ NP},
that is, coNP consists of all complements of languages in NP . Since P ⊆ NP and P is
closed under complementation,

P ⊆ coNP ,
so P ⊆ NP ∩ coNP , but nobody knows whether this inclusion is proper or whether NP is
closed under complementation, that is, nobody knows whether NP = coNP .

A language L is coNP-hard if every language in coNP is polynomial-time reducible to
L, and coNP-complete if L ∈ coNP and L is coNP-hard.

What can be shown is that if NP 6= coNP , then P 6= NP . However it is possible that
P 6= NP and yet NP = coNP , although this is considered unlikely.

We have P ⊆ NP ∩ coNP , but there are problems in NP ∩ coNP not known to be in
P . One of the most famous in the following problem:

Integer factorization problem:

Given an integer N ≥ 3, and another integer M (a budget) such that 1 < M < N , does
N have a factor d with 1 < d ≤M?

Proposition 10.2. The problem Integer factorization is in NP ∩ coNP.

Proof. That Integer factorization is in NP is clear. To show that Integer factorization
is in coNP , we can guess a factorization of N into distinct factors all greater than M , check
that they are prime using the results of Chapter 11 showing that testing primality is in NP
(even in P , but that’s much harder to prove), and then check that the product of these
factors is N .

It is widely believed that Integer factorization does not belong to P , which is the
technical justification for saying that this problem is hard. Most cryptographic algorithms
rely on this unproven fact. If Integer factorization was either NP-complete or coNP-
complete, then we would have NP = coNP , which is considered very unlikely.

Remark: If
√
N ≤M < N , the above problem is equivalent to asking whether N is prime.

A natural instance of a problem in coNP is the unsatisfiability problem for propositions
UNSAT = ¬SAT, namely deciding that a proposition P has no satisfying assignment.

Definition 10.4. A proposition P (in CNF) is falsifiable if there is some truth assigment v
such that v̂(P) = F.

298 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

It is obvious that the set of falsifiable propositions is in NP . Since a proposition P is
valid iff P is not falsifiable, the validity (or tautology) problem TAUT for propositions is in
coNP . In fact, the follolwing result holds.

Proposition 10.3. The problem TAUT is coNP-complete.

Proof. See Papadimitriou [31]. Since SAT is NP-complete, for every language L ∈ NP ,
there is a polynomial-time computable function f : Σ∗ → Σ∗ such that x ∈ L iff f(x) ∈ SAT.
Then x /∈ L iff f(x) /∈ SAT, that is, x ∈ L iff f(x) ∈ ¬SAT, which means that every
language L ∈ coNP is polynomial-time reducible to ¬SAT = UNSAT. But TAUT = {¬P |
P ∈ UNSAT}, so we have the polynomial-time computable function g given by g(x) = ¬f(x)
which gives us the reduction x ∈ L iff g(x) ∈ TAUT, which shows that TAUT is coNP-
complete.

Despite the fact that this problem has been extensively studied, not much is known about
its exact complexity.

The reasoning used to show that TAUT is coNP-complete can also be used to show the
following interesting result.

Proposition 10.4. If a language L is NP-complete, then its complement L is coNP-
complete.

Proof. By definition, since L ∈ NP , we have L ∈ coNP . Since L is NP-complete, for every
language L2 ∈ NP , there is a polynomial-time computable function f : Σ∗ → Σ∗ such that
x ∈ L2 iff f(x) ∈ L. Then x /∈ L2 iff f(x) /∈ L, that is, x ∈ L2 iff f(x) ∈ L, which means
that L is coNP-hard as well, thus coNP-complete.

The class EXP is defined as follows.

Definition 10.5. A deterministic Turing machine M is said to be exponentially bounded if
there is a polynomial p(X) such that for every input x ∈ Σ∗, there is no ID IDn such that

ID0 ` ID1 `∗ IDn−1 ` IDn, with n > 2p(|x|).

The class EXP is the class of all languages that are accepted by some exponentially bounded
deterministic Turing machine.

Remark: We can also define the class NEXP as in Definition 10.5, except that we allow
nondeterministic Turing machines.

One of the interesting features of EXP is that it contains NP .

Theorem 10.5. We have the inclusion NP ⊆ EXP.

10.3. SUCCINCT CERTIFICATES, coNP , AND EXP 299

Sketch of proof. Let M be some nondeterministic Turing machine accepting L in polynomial
time bounded by p(X). We can construct a deterministic Turing machine M ′ that operates
as follows: for every input x, M ′ simulates M on all computations of length 1, then on
all possible computations of length 2, and so on, up to all possible computations of length
p(|x|) + 1. At this point, either an accepting computation has been discovered or all compu-
tations have halted rejecting. We claim that M ′ operates in time bounded by 2q(|x|) for some
polynomial q(X). First, let r be the degree of nondeterminism of M , that is, the maximum
number of triples (b,m, q) such that a quintuple (p, q, b,m, q) is an instructions of M . Then
to simulate a computation of M of length `, M ′ needs O(`) steps—to copy the input, to
produce a string c in {1, . . . , r}`, and so simulate M according to the choices specified by c.
It follows that M ′ can carry out the simulation of M on an input x in

p(|x|)+1∑
`=1

r` ≤ (r + 1)p(|x|)+1

steps. Including the O(`) extra steps for each `, we obtain the bound (r + 2)p(|x|)+1. Then
we can pick a constant k such that 2k > r + 2, and with q(X) = k(p(X) + 1), we see that
M ′ operates in time bounded by 2q(|x|).

It is also immediate to see that EXP is closed under complementation. Furthermore the
strict inclusion P ⊂ EXP holds.

Theorem 10.6. We have the strict inclusion P ⊂ EXP.

Sketch of proof. We use a diagonalization argument to produce a language E such that
E /∈ P , yet E ∈ EXP . We need to code a Turing machine as a string, but this can certainly
be done using the techniques of Chapter 3. Let #(M) be the code of Turing machine M
and let #(x) be the code of x. Define E as

E = {#(M)#(x) |M accepts input x after at most 2|x| steps}.

We claim that E /∈ P . We proceed by contradiction. If E ∈ P , then so is the language
E1 given by

E1 = {#(M) |M accepts #(M) after at most 2|#(M)| steps}.

Since P is closed under complementation, we also have E1 ∈ P . Let M∗ be a deterministic
Turing machine accepting E1 in time p(X), for some polynomial p(X). Since p(X) is a
polynomial, there is some n0 such that p(n) ≤ 2n for all all n ≥ n0. We may also assume
that |#(M∗)| ≥ n0, since if not we can add n0 “dead states” to M∗.

Now what happens if we run M∗ on its own code #(M∗)?

It is easy to see that we get a contradiction, namely M∗ accepts #(M∗) iff M∗ rejects
#(M∗). We leave this verification as an exercise.

300 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

In conclusion, E1 /∈ P , which in turn implies that E /∈ P .

It remains to prove that E ∈ EXP . This is because we can construct a Turing machine
that can in exponential time simulate any Turing machine M on input x for 2|x| steps.

In summary, we have the chain of inclusions

P ⊆ NP ⊆ EXP ,

where the inclusions P ⊂ EXP is strict (by Theorem 10.6), but the left inclusion and the
right inclusion are both open problems, and we know that at least one of these two inclusions
is strict.

We also have the inclusions

P ⊆ NP ⊆ EXP ⊆ NEXP ,

where the inclusions P ⊂ EXP and NP ⊂ NEXP are strict. The strict inclusion NP ⊂
NEXP is a consequence of the time hierarchy theorem (Cook, Seiferas, Fischer, Meyer, Zak);
see Papadimitriou [31] (Chapters 7 and 20) and Arora and Barak [2] (Chapter 3, Section
3.2). The left inclusion and the right inclusion in NP ⊆ EXP ⊆ NEXP are both open
problems, but we know that at least one of these two inclusions is strict. It can be shown
that if EXP 6= NEXP , then P 6= NP ; see Papadimitriou [31].

Chapter 11

Primality Testing is in NP

11.1 Prime Numbers and Composite Numbers

Prime numbers have fascinated mathematicians and more generally curious minds for thou-
sands of years. What is a prime number? Well, 2, 3, 5, 7, 11, 13, . . . , 9973 are prime numbers.

Definition 11.1. A positive integer p is prime if p ≥ 2 and if p is only divisible by 1 and
p. Equivalently, p is prime if and only if p is a positive integer p ≥ 2 that is not divisible by
any integer m such that 2 ≤ m < p. A positive integer n ≥ 2 which is not prime is called
composite.

Observe that the number 1 is considered neither a prime nor a composite. For example,
6 = 2 · 3 is composite. Is 3 215 031 751 composite? Yes, because

3 215 031 751 = 151 · 751 · 28351.

Even though the definition of primality is very simple, the structure of the set of prime
numbers is highly nontrivial. The prime numbers are the basic building blocks of the natu-
ral numbers because of the following theorem bearing the impressive name of fundamental
theorem of arithmetic.

Theorem 11.1. Every natural number n ≥ 2 has a unique factorization

n = pi11 p
i2
2 · · · pikk ,

where the exponents i1, . . . , ik are positive integers and p1 < p2 < · · · < pk are primes.

Every book on number theory has a proof of Theorem 11.1. The proof is not difficult
and uses induction. It has two parts. The first part shows the existence of a factorization.
The second part shows its uniqueness. For example, see Apostol [1] (Chapter 1, Theorem
1.10).

How many prime numbers are there? Many! In fact, infinitely many.

301

302 CHAPTER 11. PRIMALITY TESTING IS IN NP

Theorem 11.2. The set of prime numbers is infinite.

Proof. The following proof attributed to Hermite only use the fact that every integer greater
than 1 has some prime divisor. We prove that for every natural number n ≥ 2, there is
some prime p > n. Consider N = n! + 1. The number N must be divisible by some prime
p (p = N is possible). Any prime p dividing N is distinct from 2, 3, . . . , n, since otherwise p
would divide N − n! = 1, a contradiction.

The problem of determining whether a given integer is prime is one of the better known
and most easily understood problems of pure mathematics. This problem has caught the
interest of mathematicians again and again for centuries. However, it was not until the 20th
century that questions about primality testing and factoring were recognized as problems of
practical importance and a central part of applied mathematics. The advent of cryptographic
systems that use large primes, such as RSA, was the main driving force for the development
of fast and reliable methods for primality testing. Indeed, in order to create RSA keys, one
needs to produce large prime numbers.

11.2 Methods for Primality Testing

The general strategy to test whether an integer n > 2 is prime or composite is to choose
some property, say A, implied by primality, and to search for a counterexample a to this
property for the number n, namely some a for which property A fails. We look for properties
for which checking that a candidate a is indeed a countexample can be done quickly.

A simple property that is the basis of several primality testing algorithms is the Fermat
test , namely

an−1 ≡ 1 (mod n),

which means that an−1 − 1 is divisible by n (see Definition 11.2 for the meaning of the
notation a ≡ b (mod n)). If n is prime, and if gcd(a, n) = 1, then the above test is indeed
satisfied; this is Fermat’s little theorem, Theorem 11.7.

Typically, together with the number n being tested for primality, some candidate coun-
terexample a is supplied to an algorithm which runs a test to determine whether a is really a
counterexample to property A for n. If the test says that a is a counterexample, also called
a witness , then we know for sure that n is composite.

For example, using the Fermat test, if n = 10 and a = 3, we check that

39 = 19683 = 10 · 1968 + 3,

so 39 − 1 is not divisible by 10, which means that

an−1 = 39 6≡ 1 (mod 10),

11.2. METHODS FOR PRIMALITY TESTING 303

and the Fermat test fails. This shows that 10 is not prime and that a = 3 is a witness of
this fact.

If the algorithm reports that a is not a witness to the fact that n is composite, does this
imply that n is prime? Unfortunately, no. This is because, there may be some composite
number n and some candidate counterexample a for which the test says that a is not a
countexample. Such a number a is called a liar .

For example, using the Fermat test for n = 91 = 7 · 13 and a = 3, we can check that

an−1 = 390 ≡ 1 (mod 91),

so the Fermat test succeeds even though 91 is not prime. The number a = 3 is a liar.

The other reason is that we haven’t tested all the candidate counterexamples a for n. In
the case where n = 91, it can be shown that 290 − 64 is divisible by 91, so the Fermat test
fails for a = 2, which confirms that 91 is not prime, and a = 2 is a witness of this fact.

Unfortunately, the Fermat test has the property that it may succeed for all candidate
counterexamples, even though n is composite. The number n = 561 = 3 · 11 · 17 is such a
devious number. It can be shown that for all a ∈ {2, . . . , 560} such that gcd(a, 561) = 1, we
have

a560 ≡ 1 (mod 561),

so all these a are liars.

Such composite numbers for which the Fermat test succeeds for all candidate counterex-
amples are called Carmichael numbers , and unfortunately there are infinitely many of them.
Thus the Fermat test is doomed. There are various ways of strengthening the Fermat test,
but we will not discuss this here. We refer the interested reader to Crandall and Pomerance
[5] and Gallier and Quaintance [14].

The remedy is to make sure that we pick a property A such that if n is composite, then at
least some candidate a is not a liar, and to test all potential countexamples a. The difficulty
is that trying all candidate countexamples can be too expensive to be practical.

There are two classes of primality testing algorithms:

(1) Algorithms that try all possible countexamples and for which the test does not lie.
These algorithms give a definite answer: n is prime or n is composite. Until 2002,
no algorithms running in polynomial time were known. The situation changed in
2002 when a paper with the title “PRIMES is in P,” by Agrawal, Kayal and Saxena,
appeared on the website of the Indian Institute of Technology at Kanpur, India. In
this paper, it was shown that testing for primality has a deterministic (nonrandomized)
algorithm that runs in polynomial time.

We will not discuss algorithms of this type here, and instead refer the reader to Crandall
and Pomerance [5] and Ribenboim [35].

304 CHAPTER 11. PRIMALITY TESTING IS IN NP

(2) Randomized algorithms. To avoid having problems with infinite events, we assume
that we are testing numbers in some large finite interval I. Given any positive integer
m ∈ I, some candidate witness a is chosen at random. We have a test which, given m
and a potential witness a, determines whether or not a is indeed a witness to the fact
that m is composite. Such an algorithm is a Monte Carlo algorithm, which means the
following:

(1) If the test is positive, then m ∈ I is composite. In terms of probabilities, this
is expressed by saying that the conditional probability that m ∈ I is composite
given that the test is positive is equal to 1. If we denote the event that some
positive integer m ∈ I is composite by C, then we can express the above as

Pr(C | test is positive) = 1.

(2) If m ∈ I is composite, then the test is positive for at least 50% of the choices for
a. We can express the above as

Pr(test is positive | C) ≥ 1

2
.

This gives us a degree of confidence in the test .

The contrapositive of (1) says that if m ∈ I is prime, then the test is negative. If we
denote by P the event that some positive integer m ∈ I is prime, then this is expressed
as

Pr(test is negative | P) = 1.

If we repeat the test ` times by picking independent potential witnesses, then the con-
ditional probability that the test is negative ` times given that n is composite, written
Pr(test is negative ` times | C), is given by

Pr(test is negative ` times | C) = Pr(test is negative | C)`

= (1− Pr(test is positive | C))`

≤
(

1− 1

2

)`
=

(
1

2

)`
,

where we used Property (2) of a Monte Carlo algorithm that

Pr(test is positive | C) ≥ 1

2

and the independence of the trials. This confirms that if we run the algorithm ` times, then
Pr(test is negative ` times | C) is very small . In other words, it is very unlikely that the test
will lie ` times (is negative) given that the number m ∈ I is composite.

11.3. MODULAR ARITHMETIC, THE GROUPS Z/nZ, (Z/nZ)∗ 305

If the probabilty Pr(P) of the event P is known, which requires knowledge of the distri-
bution of the primes in the interval I, then the conditional probability

Pr(P | test is negative ` times)

can be determined using Bayes’s rule.

A Monte Carlo algorithm does not give a definite answer. However, if ` is large enough
(say ` = 100), then the conditional probability that the number n being tested is prime given
that the test is negative ` times, is very close to 1.

Two of the best known randomized algorithms for primality testing are the Miller–Rabin
test and the Solovay–Strassen test . We will not discuss these methods here, and we refer
the reader to Gallier and Quaintance [14].

However, what we will discuss is a nondeterministic algorithm that checks that a number
n is prime by guessing a certain kind of tree that we call a Lucas tree (because this algorithm
is based on a method due to E. Lucas), and then verifies in polynomial time (in the length
log2 n of the input given in binary) that this tree constitutes a “proof” that n is indeed
prime. This shows that primality testing is in NP , a fact that is not obvious at all. Of
course, this is a much weaker result than the AKS algorithm, but the proof that the AKS
works in polynomial time (in log2 n) is much harder.

The Lucas test, and basically all of the primality-testing algorithms, use modular arith-
metic and some elementary facts of number theory such as the Euler-Fermat theorem, so we
proceed with a review of these concepts.

11.3 Modular Arithmetic, the Groups Z/nZ, (Z/nZ)∗

Recall the fundamental notion of congruence modulo n and its notation due to Gauss (circa
1802).

Definition 11.2. For any a, b ∈ Z, we write a ≡ b (mod m) iff a− b = km, for some k ∈ Z
(in other words, a− b is divisible by m), and we say that a and b are congruent modulo m.

For example, 37 ≡ 1 (mod 9), since 37 − 1 = 36 = 4 · 9. It can also be shown that
200250 ≡ 1 (mod 251), but this is impossible to do by brute force, so we will develop some
tools to either avoid such computations, or to make them tractable.

It is easy to check that congruence is an equivalence relation but it also satisfies the
following properties.

Proposition 11.3. For any positive integer m, for all a1, a2, b1, b2 ∈ Z, the following prop-
erties hold. If a1 ≡ b1 (modm) and a2 ≡ b2 (modm), then

(1) a1 + a2 ≡ b1 + b2 (modm).

306 CHAPTER 11. PRIMALITY TESTING IS IN NP

(2) a1 − a2 ≡ b1 − b2 (modm).

(3) a1a2 ≡ b1b2 (modm).

Proof. We only check (3), leaving (1) and (2) as easy exercises. Because a1 ≡ b1 (mod m)
and a2 ≡ b2 (modm), we have a1 = b1 + k1m and a2 = b2 + k2m, for some k1, k2 ∈ Z, so we
obtain

a1a2 − b1b2 = a1(a2 − b2) + (a1 − b1)b2

= (a1k2 + k1b2)m.

Proposition 11.3 allows us to define addition, subtraction, and multiplication on equiva-
lence classes modulo m.

Definition 11.3. Given any positive integer m, we denote by Z/mZ the set of equivalence
classes modulo m. If we write a for the equivalence class of a ∈ Z, then we define addition,
subtraction, and multiplication on residue classes as follows:

a+ b = a+ b

a− b = a− b
a · b = ab.

The above operations make sense because a+ b does not depend on the representatives
chosen in the equivalence classes a and b, and similarly for a− b and ab. Each equivalence
class a contains a unique representative from the set of remainders {0, 1, . . . ,m−1}, modulo
m, so the above operations are completely determined by m×m tables. Using the arithmetic
operations of Z/mZ is called modular arithmetic.

The addition tables of Z/nZ for n = 2, 3, 4, 5, 6, 7 are shown below.

n = 2
+ 0 1

0 0 1
1 1 0

n = 3
+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

n = 4
+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

n = 5
+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

n = 6
+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

n = 7
+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

11.3. MODULAR ARITHMETIC, THE GROUPS Z/nZ, (Z/nZ)∗ 307

It is easy to check that the addition operation + is commutative (abelian), associative,
that 0 is an identity element for +, and that every element a has −a as additive inverse,
which means that

a+ (−a) = (−a) + a = 0.

The set Z/nZ of residue classes modulo n is a group under addition, a notion defined formally
in Definition 11.4

It is easy to check that the multiplication operation · is commutative (abelian), associa-
tive, that 1 is an identity element for ·, and that · is distributive on the left and on the right
with respect to addition. We usually suppress the dot and write a b instead of a · b. The
multiplication tables of Z/nZ for n = 2, 3, . . . , 9 are shown below. Since 0 ·m = m · 0 = 0
for all m, these tables are only given for nonzero arguments.

n = 2
· 1

1 1

n = 3
· 1 2

1 1 2
2 2 1

n = 4
· 1 2 3

1 1 2 3
2 2 0 2
3 3 2 1

n = 5
· 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

n = 6
· 1 2 3 4 5

1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

n = 7
· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

n = 8
· 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 4 6 0 2 4 6
3 3 6 1 4 7 2 5
4 4 0 4 0 4 0 4
5 5 2 7 4 1 6 3
6 6 4 2 0 6 4 2
7 7 6 5 4 3 2 1

n = 9
· 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 4 6 8 1 3 5 7
3 3 6 0 3 6 0 3 6
4 4 8 3 7 2 6 1 5
5 5 1 6 2 7 3 8 4
6 6 3 0 6 3 0 6 3
7 7 5 3 1 8 6 4 2
8 8 7 6 5 4 3 2 1

308 CHAPTER 11. PRIMALITY TESTING IS IN NP

Examining the above tables, we observe that for n = 2, 3, 5, 7, which are primes, every
element has an inverse, which means that for every nonzero element a, there is some (actually,
unique) element b such that

a · b = b · a = 1.

For n = 2, 3, 5, 7, the set Z/nZ−{0} is an abelian group under multiplication (see Definition
11.4). When n is composite, there exist nonzero elements whose product is zero. For example,
when n = 6, we have 3 · 2 = 0, when n = 8, we have 4 · 4 = 0, when n = 9, we have 6 · 6 = 0.

For n = 4, 6, 8, 9, the elements a that have an inverse are precisely those that are relatively
prime to the modulus n (that is, gcd(a, n) = 1).

These observations hold in general. Recall the Bezout criterion (Proposition 7.3): two
nonzero integers m,n ∈ Z are relatively prime (gcd(m,n) = 1) iff there are integers a, b ∈ Z
such that

am+ bn = 1.

Proposition 11.4. Given any integer n ≥ 1, for any a ∈ Z, the residue class a ∈ Z/nZ is
invertible with respect to multiplication iff gcd(a, n) = 1.

Proof. If a has inverse b in Z/nZ, then a b = 1, which means that

ab ≡ 1 (mod n),

that is ab = 1 + nk for some k ∈ Z, which is the Bezout identity

ab− nk = 1

and implies that gcd(a, n) = 1. Conversely, if gcd(a, n) = 1, then by Bezout’s identity there
exist u, v ∈ Z such that

au+ nv = 1,

so au = 1− nv, that is,
au ≡ 1 (mod n),

which means that a u = 1, so a is invertible in Z/nZ.

We have alluded to the notion of a group. Here is the formal definition.

Definition 11.4. A group is a set G equipped with a binary operation · : G × G → G
that associates an element a · b ∈ G to every pair of elements a, b ∈ G, and having the
following properties: · is associative, has an identity element e ∈ G, and every element in G
is invertible (w.r.t. ·). More explicitly, this means that the following equations hold for all
a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

11.3. MODULAR ARITHMETIC, THE GROUPS Z/nZ, (Z/nZ)∗ 309

(G3) For every a ∈ G, there is some a−1 ∈ G such that a · a−1 = a−1 · a = e. (inverse).

A group G is abelian (or commutative) if

a · b = b · a for all a, b ∈ G.

It is easy to show that the element e satisfying property (G2) is unique, and for any
a ∈ G, the element a−1 ∈ G satisfying a · a−1 = a−1 · a = e required to exist by (G3) is
actually unique. This element is called the inverse of a.

The set of integers Z with the addition operation is an abelian group with identity
element 0. The set Z/nZ of residues modulo m is an abelian group under addition with
identity element 0. In general, Z/nZ − {0} is not a group under multiplication, because
some nonzero elements may not have an inverse. However, by Proposition 11.4, if p is prime,
then Z/nZ− {0} is an abelian group under multiplication.

When p is not prime, the subset of elements, shown in boldface in the multiplication
tables, forms an abelian group under multiplication.

Definition 11.5. The group (under multiplication) of invertible elements of the ring Z/nZ
is denoted by (Z/nZ)∗. Note that this group is abelian and only defined if n ≥ 2.

Definition 11.6. If G is a finite group, the number of elements in G is called the the order
of G.

Given a group G with identity element e, and any element g ∈ G, we often need to
consider the powers of g defined as follows.

Definition 11.7. Given a group G with identity element e, for any nonnegative integer n,
it is natural to define the power gn of g as follows:

g0 = e

gn+1 = g · gn.

Using induction, it is easy to show that

gmgn = gn+m

for all m,n ∈ N.

Since g has an inverse g−1, we can extend the definition of gn to negative powers. For
n ∈ Z, with n < 0, let

gn = (g−1)−n.

310 CHAPTER 11. PRIMALITY TESTING IS IN NP

Then it is easy to prove that

gi · gj = gi+j

(gi)−1 = g−i

gi · gj = gj · gi

for all i, j ∈ Z.

Given a finite group G of order n, for any element a ∈ G, it is natural to consider the
set of powers {e, a1, a2, . . . , ak, . . .}. A crucial fact is that there is a smallest positive s ∈ N
such that as = e, and that s divides n.

Proposition 11.5. Let G be a finite group of order n. For every element a ∈ G, the
following facts hold:

(1) There is a smallest positive integer s ≤ n such that as = e.

(2) The set {e, a, . . . , as−1} is an abelian group denoted 〈a〉.

(3) We have an = e, and the positive integer s divides n, More generally, for any positive
integer m, if am = e, then s divides m.

Proof. (1) Consider the sequence of n+ 1 elements

(e, a1, a2, . . . , an).

Since G only has n distinct elements, by the pigeonhole principle, there exist i, j such that
0 ≤ i < j ≤ n such that

ai = aj.

By multiplying both sides by (ai)−1 = a−i, we get

e = ai(ai)−1 = aj(ai)−1 = aja−i = aj−i.

Since 0 ≤ i < j ≤ n, we have 0 ≤ j − i ≤ n with aj−i = e. Thus there is some s with
0 < s ≤ n such that as = e, and thus a smallest such s.

(2) Since as = e, for any i, j ∈ {0, . . . , s−1} if we write i+ j = sq+ r with 0 ≤ r ≤ s−1,
we have

aiaj = ai+j = asq+r = asqar = (as)qar = eqar = ar,

so 〈a〉 is closed under multiplication. We have e ∈ 〈a〉 and the inverse of ai is as−i, so 〈a〉 is
a group. This group is obviously abelian.

(3) For any element g ∈ G, let g〈a〉 = {gak | 0 ≤ k ≤ s− 1}. Observe that for any i ∈ N,
we have

ai〈a〉 = 〈a〉.

We claim that for any two elements g1, g2 ∈ G, if g1〈a〉 ∩ g2〈a〉 6= ∅, then g1〈a〉 = g2〈a〉.

11.3. MODULAR ARITHMETIC, THE GROUPS Z/nZ, (Z/nZ)∗ 311

Proof of the claim. If g ∈ g1〈a〉 ∩ g2〈a〉, then there exist i, j ∈ {0, . . . , s− 1} such that

g1a
i = g2a

j.

Without loss of generality, we may assume that i ≥ j. By multipliying both sides by (aj)−1,
we get

g2 = g1a
i−j.

Consequently
g2〈a〉 = g1a

i−j〈a〉 = g1〈a〉,
as claimed.

It follows that the pairwise disjoint nonempty subsets of the form g〈a〉, for g ∈ G, form a
partition of G. However, the map ϕg from 〈a〉 to g〈a〉 given by ϕg(a

i) = gai has for inverse
the map ϕg−1 , so ϕg is a bijection, and thus the subsets g〈a〉 all have the same number of
elements s. Since these subsets form a partition of G, we must have n = sq for some q ∈ N,
which implies that an = e.

If gm = 1, then writing m = sq + r, with 0 ≤ r < s, we get

1 = gm = gsq+r = (gs)q · gr = gr,

so gr = 1 with 0 ≤ r < s, contradicting the minimality of s, so r = 0 and s divides m.

Definition 11.8. Given a finite group G of order n, for any a ∈ G, the smallest positive
integer s ≤ n such that as = e in (1) of Proposition 11.5 is called the order of a.

The Euler ϕ-function plays an important role in the theory of the groups (Z/nZ)∗.

Definition 11.9. Given any positive integer n ≥ 1, the Euler ϕ-function (or Euler totient
function) is defined such that ϕ(n) is the number of integers a, with 1 ≤ a ≤ n, which are
relatively prime to n; that is, with gcd(a, n) = 1.1

If p is prime, then by definition

ϕ(p) = p− 1.

We leave it as an exercise to show that if p is prime and if k ≥ 1, then

ϕ(pk) = pk−1(p− 1).

It can also be shown that if gcd(m,n) = 1, then

ϕ(mn) = ϕ(m)ϕ(n).

1We allow a = n to accomodate the special case n = 1.

312 CHAPTER 11. PRIMALITY TESTING IS IN NP

The above properties yield a method for computing ϕ(n), based on its prime factorization.
If n = pi11 · · · pikk , then

ϕ(n) = pi1−1
1 · · · pik−1

k (p1 − 1) · · · (pk − 1).

For example, ϕ(17) = 16, ϕ(49) = 7 · 6 = 42,

ϕ(900) = ϕ(22 · 32 · 52) = 2 · 3 · 5 · 1 · 2 · 4 = 240.

Proposition 11.4 shows that (Z/nZ)∗ has ϕ(n) elements. It also shows that Z/nZ− {0}
is a group (under multiplication) iff n is prime.

For any integer n ≥ 2, let (Z/nZ)∗ be the group of invertible elements of the ring Z/nZ.
This is a group of order ϕ(n). Then Proposition 11.5 yields the following result.

Theorem 11.6. (Euler) For any integer n ≥ 2 and any a ∈ {1, . . . , n − 1} such that
gcd(a, n) = 1, we have

aϕ(n) ≡ 1 (mod n).

In particular, if n is a prime, then ϕ(n) = n− 1, and we get Fermat’s little theorem.

Theorem 11.7. (Fermat’s little theorem) For any prime p and any a ∈ {1, . . . , p− 1}, we
have

ap−1 ≡ 1 (mod p).

Since 251 is prime, and since gcd(200, 252) = 1, Fermat’s little theorem implies our earlier
claim that 200250 ≡ 1 (mod 251), without making any computations.

Proposition 11.5 suggests considering groups of the form 〈g〉.

Definition 11.10. A finite group G is cyclic iff there is some element g ∈ G such that
G = 〈g〉. An element g ∈ G with this property is called a generator of G.

Even though, in principle, a finite cyclic group has a very simple structure, finding a
generator for a finite cyclic group is generally hard. For example, it turns out that the
multiplicative group (Z/pZ)∗ is a cyclic group when p is prime, but no efficient method for
finding a generator for (Z/pZ)∗ is known (besides a brute-force search).

Examining the multiplication tables for (Z/nZ)∗ for n = 3, 4, . . . , 9, we can check the
following facts:

1. 2 is a generator for (Z/3Z)∗.

2. 3 is a generator for (Z/4Z)∗.

3. 2 is a generator for (Z/5Z)∗.

11.4. THE LUCAS THEOREM 313

4. 5 is a generator for (Z/6Z)∗.

5. 3 is a generator for (Z/7Z)∗.

6. Every element of (Z/8Z)∗ satisfies the equation a2 = 1 (mod 8), thus (Z/8Z)∗ has no
generators.

7. 2 is a generator for (Z/9Z)∗.

More generally, it can be shown that the multiplicative groups (Z/pkZ)∗ and (Z/2pkZ)∗

are cyclic groups when p is an odd prime and k ≥ 1.

Definition 11.11. A generator of the group (Z/nZ)∗ (when there is one), is called a primitive
root modulo n.

As an exercise, the reader should check that the next value of n for which (Z/nZ)∗ has
no generator is n = 12.

The following theorem due to Gauss can be shown. For a proof, see Apostol [1] or Gallier
and Quaintance [14].

Theorem 11.8. (Gauss) For every odd prime p, the group (Z/pZ)∗ is cyclic of order p− 1.
It has ϕ(p− 1) generators.

According to Definition 11.11, the generators of (Z/pZ)∗ are the primitive roots modulo
p.

11.4 The Lucas Theorem

In this section we discuss an application of the existence of primitive roots in (Z/pZ)∗ where
p is an odd prime, known an the n− 1 test . This test due to E. Lucas determines whether a
positive odd integer n is prime or not by examining the prime factors of n− 1 and checking
some congruences.

The n− 1 test can be described as the construction of a certain kind of tree rooted with
n, and it turns out that the number of nodes in this tree is bounded by 2 log2 n, and that
the number of modular multiplications involved in checking the congruences is bounded by
2 log2

2 n.

When we talk about the complexity of algorithms dealing with numbers, we assume that
all inputs (to a Turing machine) are strings representing these numbers, typically in base
2. Since the length of the binary representation of a natural number n ≥ 1 is blog2 nc + 1
(or dlog2(n+ 1)e, which allows n = 0), the complexity of algorithms dealing with (nonzero)
numbers m,n, etc. is expressed in terms of log2m, log2 n, etc. Recall that for any real

314 CHAPTER 11. PRIMALITY TESTING IS IN NP

number x ∈ R, the floor of x is the greatest integer bxc that is less that or equal to x, and
the ceiling of x is the least integer dxe that is greater that or equal to x.

If we choose to represent numbers in base 10, since for any base b we have logb x =
lnx/ ln b, we have

log2 x =
ln 10

ln 2
log10 x.

Since (ln 10)/(ln 2) ≈ 3.322 ≈ 10/3, we see that the number of decimal digits needed to
represent the integer n in base 10 is approximately 30% of the number of bits needed to
represent n in base 2.

Since the Lucas test yields a tree such that the number of modular multiplications in-
volved in checking the congruences is bounded by 2 log2

2 n, it is not hard to show that testing
whether or not a positive integer n is prime, a problem denoted PRIMES, belongs to the
complexity class NP . This result was shown by V. Pratt [33] (1975), but Peter Freyd told
me that it was “folklore.” Since 2002, thanks to the AKS algorithm, we know that PRIMES
actually belongs to the class P , but this is a much harder result.

Here is Lehmer’s version of the Lucas result, from 1876.

Theorem 11.9. (Lucas theorem) Let n be a positive integer with n ≥ 2. Then n is prime
iff there is some integer a ∈ {1, 2, . . . , n− 1} such that the following two conditions hold:

(1) an−1 ≡ 1 (mod n).

(2) If n > 2, then a(n−1)/q 6≡ 1 (mod n) for all prime divisors q of n− 1.

Proof. First assume that Conditions (1) and (2) hold. If n = 2, since 2 is prime, we are
done. Thus assume that n ≥ 3, and let r be the order of a (we are working in the abelian
group (Z/nZ)∗). We claim that r = n− 1. The condition an−1 ≡ 1 (mod n) implies that r
divides n− 1. Suppose that r < n− 1, and let q be a prime divisor of (n− 1)/r (so q divides
n− 1). Since r is the order of a we have ar ≡ 1 (mod n), so we get

a(n−1)/q ≡ ar(n−1)/(rq) ≡ (ar)(n−1)/(rq) ≡ 1(n−1)/(rq) ≡ 1 (mod n),

contradicting Condition (2). Therefore, r = n− 1, as claimed.

We now show that n must be prime. Now an−1 ≡ 1 (mod n) implies that a and n are
relatively prime so by Euler’s theorem (Theorem 11.6),

aϕ(n) ≡ 1 (mod n).

Since the order of a is n− 1, we have n− 1 ≤ ϕ(n). If n ≥ 3 is not prime, then n has some
prime divisor p, but n and p are integers in {1, 2, . . . , n} that are not relatively prime to n,
so by definition of ϕ(n), we have ϕ(n) ≤ n − 2, contradicting the fact that n − 1 ≤ ϕ(n).
Therefore, n must be prime.

Conversely, assume that n is prime. If n = 2, then we set a = 1. Otherwise, pick a to be
any primitive root modulo p.

11.4. THE LUCAS THEOREM 315

Clearly, if n > 2 then we may assume that a ≥ 2. The main difficulty with the n − 1
test is not so much guessing the primitive root a, but finding a complete prime factorization
of n − 1. However, as a nondeterministic algorithm, the n − 1 test yields a “proof” that a
number n is indeed prime which can be represented as a tree, and the number of operations
needed to check the required conditions (the congruences) is bounded by c log2

2 n for some
positive constant c, and this implies that testing primality is in NP .

Before explaining the details of this method, we sharpen slightly Lucas theorem to deal
only with odd prime divisors.

Theorem 11.10. Let n be a positive odd integer with n ≥ 3. Then n is prime iff there
is some integer a ∈ {2, . . . , n − 1} (a guess for a primitive root modulo n) such that the
following two conditions hold:

(1b) a(n−1)/2 ≡ −1 (mod n).

(2b) If n− 1 is not a power of 2, then a(n−1)/2q 6≡ −1 (mod n) for all odd prime divisors q
of n− 1.

Proof. Assume that Conditions (1b) and (2b) of Theorem 11.10 hold. Then we claim that
Conditions (1) and (2) of Theorem 11.9 hold. By squaring the congruence a(n−1)/2 ≡ −1
(mod n), we get an−1 ≡ 1 (mod n), which is Condition (1) of Theorem 11.9. Since a(n−1)/2 ≡
−1 (mod n), Condition (2) of Theorem 11.9 holds for q = 2. Next, if q is an odd prime
divisor of n− 1, let m = a(n−1)/2q. Condition (1b) means that

mq ≡ a(n−1)/2 ≡ −1 (mod n).

Now if m2 ≡ a(n−1)/q ≡ 1 (mod n), since q is an odd prime, we can write q = 2k + 1 for
some k ≥ 1, and then

mq ≡ m2k+1 ≡ (m2)km ≡ 1km ≡ m (mod n),

and since mq ≡ −1 (mod n), we get

m ≡ −1 (mod n)

(regardless of whether n is prime or not). Thus we proved that if mq ≡ −1 (mod n) and
m2 ≡ 1 (mod n), thenm ≡ −1 (mod n). By contrapositive, we see that ifm 6≡ −1 (mod n),
then m2 6≡ 1 (mod n) or mq 6≡ −1 (mod n), but since mq ≡ a(n−1)/2 ≡ −1 (mod n) by
Condition (1a), we conclude that m2 ≡ a(n−1)/q 6≡ 1 (mod n), which is Condition (2) of
Theorem 11.9. But then Theorem 11.9 implies that n is prime.

Conversely, assume that n is an odd prime, and let a be any primitive root modulo n.
Then by little Fermat we know that

an−1 ≡ 1 (mod n),

316 CHAPTER 11. PRIMALITY TESTING IS IN NP

so

(a(n−1)/2 − 1)(a(n−1)/2 + 1) ≡ 0 (mod n).

Since n is prime, either a(n−1)/2 ≡ 1 (mod n) or a(n−1)/2 ≡ −1 (mod n), but since a generates
(Z/nZ)∗, it has order n − 1, so the congruence a(n−1)/2 ≡ 1 (mod n) is impossible, and
Condition (1b) must hold. Similarly, if we had a(n−1)/2q ≡ −1 (mod n) for some odd prime
divisor q of n− 1, then by squaring we would have

a(n−1)/q ≡ 1 (mod n),

and a would have order at most (n− 1)/q < n− 1, which is absurd.

11.5 Lucas Trees

If n is an odd prime, we can use Theorem 11.10 to build recursively a tree which is a proof,
or certificate, of the fact that n is indeed prime. We first illustrate this process with the
prime n = 1279.

Example 11.1. If n = 1279, then we easily check that n− 1 = 1278 = 2 · 32 · 71. We build
a tree whose root node contains the triple (1279, ((2, 1), (3, 2), (71, 1)), 3), where a = 3 is the
guess for a primitive root modulo 1279. In this simple example, it is clear that 3 and 71 are
prime, but we must supply proofs that these number are prime, so we recursively apply the
process to the odd divisors 3 and 71.

Since 3− 1 = 21 is a power of 2, we create a one-node tree (3, ((2, 1)), 2), where a = 2 is
a guess for a primitive root modulo 3. This is a leaf node.

Since 71−1 = 70 = 2·5·7, we create a tree whose root node is (71, ((2, 1), (5, 1), (7, 1)), 7),
where a = 7 is the guess for a primitive root modulo 71. Since 5 − 1 = 4 = 22, and
7− 1 = 6 = 2 · 3, this node has two successors (5, ((2, 2)), 2) and (7, ((2, 1), (3, 1)), 3), where
2 is the guess for a primitive root modulo 5, and 3 is the guess for a primitive root modulo
7.

Since 4 = 22 is a power of 2, the node (5, ((2, 2)), 2) is a leaf node.

Since 3 − 1 = 21, the node (7, ((2, 1), (3, 1)), 3) has a single successor, (3, ((2, 1)), 2),
where a = 2 is a guess for a primitive root modulo 3. Since 2 = 21 is a power of 2, the node
(3, ((2, 1)), 2) is a leaf node.

11.5. LUCAS TREES 317

To recap, we obtain the following tree:

(1279,
((2, 1), (3, 2), (71, 1)), 3)

wwnnn
nnn

nnn
nnn

n

))SSS
SSSS

SSSS
SSS

(3,
((2, 1)), 2)

(71,
((2, 1), (5, 1), (7, 1)), 7)

uukkkk
kkkk

kkkk
kkkk

k

((QQ
QQQ

QQQ
QQQ

Q

(5,
((2, 2)), 2)

(7,
((2, 1), (3, 1)), 3)

��
(3,

((2, 1)), 2)

We still have to check that the relevant congruences hold at every node. For the root
node (1279, ((2, 1), (3, 2), (71, 1)), 3), we check that

31278/2 ≡ 3864 ≡ −1 (mod 1279) (1b)

31278/(2·3) ≡ 3213 ≡ 775 (mod 1279) (2b)

31278/(2·71) ≡ 39 ≡ 498 (mod 1279). (2b)

Assuming that 3 and 71 are prime, the above congruences check that Conditions (1a) and
(2b) are satisfied, and by Theorem 11.10 this proves that 1279 is prime. We still have to
certify that 3 and 71 are prime, and we do this recursively.

For the leaf node (3, ((2, 1)), 2), we check that

22/2 ≡ −1 (mod 3). (1b)

For the node (71, ((2, 1), (5, 1), (7, 1)), 7), we check that

770/2 ≡ 735 ≡ −1 (mod 71) (1b)

770/(2·5) ≡ 77 ≡ 14 (mod 71) (2b)

770/(2·7) ≡ 75 ≡ 51 (mod 71). (2b)

Now we certified that 3 and 71 are prime, assuming that 5 and 7 are prime, which we now
establish.

For the leaf node (5, ((2, 2)), 2), we check that

24/2 ≡ 22 ≡ −1 (mod 5). (1b)

318 CHAPTER 11. PRIMALITY TESTING IS IN NP

For the node (7, ((2, 1), (3, 1)), 3), we check that

36/2 ≡ 33 ≡ −1 (mod 7) (1b)

36/(2·3) ≡ 31 ≡ 3 (mod 7). (2b)

We have certified that 5 and 7 are prime, given that 3 is prime, which we finally verify.

At last, for the leaf node (3, ((2, 1)), 2), we check that

22/2 ≡ −1 (mod 3). (1b)

The above example suggests the following definition.

Definition 11.12. Given any odd integer n ≥ 3, a pre-Lucas tree for n is defined inductively
as follows:

(1) It is a one-node tree labeled with (n, ((2, i0)), a), such that n− 1 = 2i0 , for some i0 ≥ 1
and some a ∈ {2, . . . , n− 1}.

(2) If L1, . . . , Lk are k pre-Lucas (with k ≥ 1), where the tree Lj is a pre-Lucas tree for some
odd integer qj ≥ 3, then the tree L whose root is labeled with (n, ((2, i0), ((q1, i1), . . .,
(qk, ik)), a) and whose jth subtree is Lj is a pre-Lucas tree for n if

n− 1 = 2i0qi11 · · · qikk ,
for some i0, i1, . . . , ik ≥ 1, and some a ∈ {2, . . . , n− 1}.

Both in (1) and (2), the number a is a guess for a primitive root modulo n.

A pre-Lucas tree for n is a Lucas tree for n if the following conditions are satisfied:

(3) If L is a one-node tree labeled with (n, ((2, i0)), a), then

a(n−1)/2 ≡ −1 (mod n).

(4) If L is a pre-Lucas tree whose root is labeled with (n, ((2, i0), ((q1, i1), . . . , (qk, ik)), a),
and whose jth subtree Lj is a pre-Lucas tree for qj, then Lj is a Lucas tree for qj for
j = 1, . . . , k, and

(a) a(n−1)/2 ≡ −1 (mod n).

(b) a(n−1)/2qj 6≡ −1 (mod n) for j = 1, . . . , k.

Since Conditions (3) and (4) of Definition 11.12 are Conditions (1b) and (2b) of Theorem,
11.10, we see that Definition 11.12 has been designed in such a way that Theorem 11.10 yields
the following result.

Theorem 11.11. An odd integer n ≥ 3 is prime iff it has some Lucas tree.

The issue is now to see how long it takes to check that a pre-Lucas tree is a Lucas tree.
For this, we need a method for computing xn mod n in polynomial time in log2 n. This is
the object of the next section.

11.6. ALGORITHMS FOR COMPUTING POWERS MODULO m 319

11.6 Algorithms for Computing Powers Modulo m

Let us first consider computing the nth power xn of some positive integer. The idea is to
look at the parity of n and to proceed recursively. If n is even, say n = 2k, then

xn = x2k = (xk)2,

so, compute xk recursively and then square the result. If n is odd, say n = 2k + 1, then

xn = x2k+1 = (xk)2 · x,
so, compute xk recursively, square it, and multiply the result by x.

What this suggests is to write n ≥ 1 in binary, say

n = b` · 2` + b`−1 · 2`−1 + · · ·+ b1 · 21 + b0,

where bi ∈ {0, 1} with b` = 1 or, if we let J = {j | bj = 1}, as

n =
∑
j∈J

2j.

Then we have
xn ≡ x

∑
j∈J 2j =

∏
j∈J

x2j modm.

This suggests computing the residues rj such that

x2j ≡ rj (modm),

because then,

xn ≡
∏
j∈J

rj (modm),

where we can compute this latter product modulo m two terms at a time.

For example, say we want to compute 999179 mod 1763. First, we observe that

179 = 27 + 25 + 24 + 21 + 1,

and we compute the powers modulo 1763:

99921 ≡ 143 (mod 1763)

99922 ≡ 1432 ≡ 1056 (mod 1763)

99923 ≡ 10562 ≡ 920 (mod 1763)

99924 ≡ 9202 ≡ 160 (mod 1763)

99925 ≡ 1602 ≡ 918 (mod 1763)

99926 ≡ 9182 ≡ 10 (mod 1763)

99927 ≡ 102 ≡ 100 (mod 1763).

320 CHAPTER 11. PRIMALITY TESTING IS IN NP

Consequently,

999179 ≡ 999 · 143 · 160 · 918 · 100 (mod 1763)

≡ 54 · 160 · 918 · 100 (mod 1763)

≡ 1588 · 918 · 100 (mod 1763)

≡ 1546 · 100 (mod 1763)

≡ 1219 (mod 1763),

and we find that

999179 ≡ 1219 (mod 1763).

Of course, it would be impossible to exponentiate 999179 first and then reduce modulo 1763.
As we can see, the number of multiplications needed is bounded by 2 log2 n, which is quite
good.

The above method can be implemented without actually converting n to base 2. If n is
even, say n = 2k, then n/2 = k, and if n is odd, say n = 2k + 1, then (n− 1)/2 = k, so we
have a way of dropping the unit digit in the binary expansion of n and shifting the remaining
digits one place to the right without explicitly computing this binary expansion. Here is an
algorithm for computing xn modm, with n ≥ 1, using the repeated squaring method.

An Algorithm to Compute xn modm Using Repeated Squaring

begin
u := 1; a := x;
while n > 1 do

if even(n) then e := 0 else e := 1;
if e = 1 then u := a · u mod m;
a := a2 mod m; n := (n− e)/2

endwhile;
u := a · u mod m

end

The final value of u is the result. The reason why the algorithm is correct is that after j
rounds through the while loop, a = x2j modm and

u =
∏

i∈J | i<j

x2i modm,

with this product interpreted as 1 when j = 0.

11.7. PRIMES IS IN NP 321

Observe that the while loop is only executed n − 1 times to avoid squaring once more
unnecessarily and the last multiplication a ·u is performed outside of the while loop. Also, if
we delete the reductions modulo m, the above algorithm is a fast method for computing the
nth power of an integer x and the time speed-up of not performing the last squaring step is
more significant. We leave the details of the proof that the above algorithm is correct as an
exercise.

11.7 PRIMES is in NP
Exponentiation modulo n can performed by repeated squaring, as explained in Section 11.6.
In that section, we observed that computing xm mod n requires at most 2 log2m modular
multiplications. Using this fact, we obtain the following result adapted from Crandall and
Pomerance [5].

Proposition 11.12. If p is any odd prime, then any pre-Lucas tree L for p has at most log2 p
nodes, and the number M(p) of modular multiplications required to check that the pre-Lucas
tree L is a Lucas tree is less than 2 log2

2 p.

Proof. Let N(p) be the number of nodes in a pre-Lucas tree for p. We proceed by complete
induction. If p = 3, then p− 1 = 21, any pre-Lucas tree has a single node, and 1 < log2 3.

Suppose the results holds for any odd prime less than p. If p − 1 = 2i0 , then any Lucas
tree has a single node, and 1 < log2 3 < log2 p. If p− 1 has the prime factorization

p− 1 = 2i0qi11 · · · qikk ,

then by the induction hypothesis, each pre-Lucas tree Lj for qj has less than log2 qj nodes,
so

N(p) = 1 +
k∑
j=1

N(qj) < 1 +
k∑
j=1

log2 qj = 1 + log2(q1 · · · qk) ≤ 1 + log2

(
p− 1

2

)
< log2 p,

establishing the induction hypothesis.

If r is one of the odd primes in the pre-Lucas tree for p, and r < p, then there is
some other odd prime q in this pre-Lucas tree such that r divides q − 1 and q ≤ p. We
also have to show that at some point, a(q−1)/2r 6≡ −1 (mod q) for some a, and at another
point, that b(r−1)/2 ≡ −1 (mod r) for some b. Using the fact that the number of modular
multiplications required to exponentiate to the power m is at most 2 log2m, we see that the
number of multiplications required by the above two exponentiations does not exceed

2 log2

(
q − 1

2r

)
+ 2 log2

(
r − 1

2

)
= 2 log2

(
(q − 1)(r − 1)

4r

)
< 2 log2 q − 4 < 2 log2 p.

322 CHAPTER 11. PRIMALITY TESTING IS IN NP

As a consequence, we have

M(p) < 2 log2

(
p− 1

2

)
+ (N(p)− 1)2 log2 p < 2 log2 p+ (log2 p− 1)2 log2 p = 2 log2

2 p,

as claimed.

The following impressive example is from Pratt [33].

Example 11.2. Let n = 474 397 531. It is easy to check that n − 1 = 474 397 531 − 1 =
474 397 530 = 2 · 3 · 5 · 2513. We claim that the following is a Lucas tree for n = 474 397 531:

(474 397 531, ((2, 1), (3, 1), (5, 1), (251, 3)), 2)

ssggggg
ggggg

ggggg
ggggg

g

�� ,,XXXXX
XXXXXX

XXXXXX
XXXXXX

X

(3, ((2, 1)), 2) (5, ((2, 2)), 2) (251, ((2, 1), (5, 3)), 6)

��
(5, ((2, 2)), 2)

To verify that the above pre-Lucas tree is a Lucas tree, we check that 2 is indeed a
primitive root modulo 474 397 531 by computing (using Mathematica) that

2474 397 530/2 ≡ 2237 198 765 ≡ −1 (mod 474 397 531) (1)

2474 397 530/(2·3) ≡ 279 066 255 ≡ 9 583 569 (mod 474 397 531) (2)

2474 397 530/(2·5) ≡ 247 439 753 ≡ 91 151 207 (mod 474 397 531) (3)

2474 397 530/(2·251) ≡ 2945 015 ≡ 282 211 150 (mod 474 397 531). (4)

The number of modular multiplications is: 27 in (1), 26 in (2), 25 in (3) and 19 in (4).

We have 251− 1 = 250 = 2 · 53, and we verify that 6 is a primitive root modulo 251 by
computing:

6250/2 ≡ 6125 ≡ −1 (mod 251) (5)

6250/(2·5) ≡ 610 ≡ 175 (mod 251). (6)

The number of modular multiplications is: 6 in (5), and 3 in (6).

We have 5− 1 = 4 = 22, and 2 is a primitive root modulo 5, since

24/2 ≡ 22 ≡ −1 (mod 5). (7)

This takes one multiplication.
We have 3− 1 = 2 = 21, and 2 is a primitive root modulo 3, since

22/2 ≡ 21 ≡ −1 (mod 3). (8)

This takes 0 multiplications.

Therefore, 474 397 531 is prime.

11.7. PRIMES IS IN NP 323

As nice as it is, Proposition 11.12 is deceiving, because finding a Lucas tree is hard.

Remark: Pratt [33] presents his method for finding a certificate of primality in terms of
a proof system. Although quite elegant, we feel that this method is not as transparent as
the method using Lucas trees, which we adapted from Crandall and Pomerance [5]. Pratt’s
proofs can be represented as trees, as Pratt sketches in Section 3 of his paper. However,
Pratt uses the basic version of Lucas’ theorem, Theorem 11.9, instead of the improved
version, Theorem 11.10, so his proof trees have at least twice as many nodes as ours.

As nice as it is, Proposition 11.12 is deceiving, because finding a Lucas tree is hard.

The following nice result was first shown by V. Pratt in 1975 [33].

Theorem 11.13. The problem PRIMES (testing whether an integer is prime) is in NP.

Proof. Since all even integers besides 2 are composite, we can restrict out attention to odd
integers n ≥ 3. By Theorem 11.11, an odd integer n ≥ 3 is prime iff it has a Lucas tree.
Given any odd integer n ≥ 3, since all the numbers involved in the definition of a pre-Lucas
tree are less than n, there is a finite (very large) number of pre-Lucas trees for n. Given a
guess of a Lucas tree for n, checking that this tree is a pre-Lucas tree can be performed in
O(log2 n), and by Proposition 11.12, checking that it is a Lucas tree can be done in O(log2

2 n).
Therefore PRIMES is in NP .

Of course, checking whether a number n is composite is in NP , since it suffices to guess
to factors n1, n2 and to check that n = n1n2, which can be done in polynomial time in log2 n.
Therefore, PRIMES ∈ NP ∩ coNP . As we said earlier, this was the situation until the
discovery of the AKS algorithm, which places PRIMES in P .

Remark: Altough finding a primitive root modulo p is hard, we know that the number of
primitive roots modulo p is ϕ(ϕ(p)). If p is large enough, this number is actually quite large.
According to Crandal and Pomerance [5] (Chapter 4, Section 4.1.1), if p is a prime and if
p > 200560490131, then p has more than p/(2 ln ln p) primitive roots.

324 CHAPTER 11. PRIMALITY TESTING IS IN NP

Chapter 12

Polynomial- Space Complexity; PS
and NPS

12.1 The Classes PS (or PSPACE) and

NPS (NPSPACE)

In this chapter we consider complexity classes based on restricting the amount of space used
by the Turing machine rather than the amount of time.

Definition 12.1. A deterministic or nondeterminitic Turing machine M is polynomial-space
bounded if there is a polynomial p(X) such that for every input x ∈ Σ∗, no matter how much
time it uses, the machine M never visits more than p(|x|) tape cells (symbols). Equivalently,
for every ID upav arising during the computation, we have |uav| ≤ p(|x|).

The class of languages L ⊆ Σ∗ accepted by some deterministic polynomial-space bounded
Turing machine is denoted by PS or PSPACE. Similarly, the class of languages L ⊆ Σ∗

accepted by some nondeterministic polynomial-space bounded Turing machine is denoted
by NPS or NPSPACE.

Obviously PS ⊆ NPS. Since a (time) polynomially bounded Turing machine can’t visit
more tape cells (symbols) than one plus the number of moves it makes, we have

P ⊆ PS and NP ⊆ NPS.

Nobody knows whether these inclusions are strict, but these are the most likely assump-
tions. Unlike the situation for time-bounded Turing machines where the big open problem
is whether P 6= NP , for time-bounded Turing machines, we have

PS = NPS.

Walter Savitch proved this result in 1970 (and it is known as Savitch’s theorem).

325

326 CHAPTER 12. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

Now Definition 12.1 does not say anything about the time-complexity of the Turing
machine, so such a machine could even run forever. However, the number of ID’s that a
polynomial-space bounded Turing machine can visit started on input x is a function of |x| of
the form sp(|x|)tp(|x|) for some constants s > 0 and t > 0, so by the pigeonhole principle, it
the number of moves is larger than a certain constant (c1+p(|x|) with c = s+ t), then some ID
must repeat. This fact can be used to show that there is a shorter computation accepting x
of length at most c1+p(|x|).

Proposition 12.1. For any deterministic or nondeterministic polynomial-space bouned Tur-
ing machine M with polynomal space bound p(X), there is a constant c > 1 such that for
every input x ∈ Σ∗, if M accepts x, then M accepts x in at most c1+p(|x|) steps.

Proof. Suppose there are t symbols in the tape alphabet and s states. Then the number
of distinct ID’s when only p(|x|) tape cells are used is at most sp(|x|)tp(|x|), because we can
choose one of s states, place the reading head in any of p(|x|) distinct positions, and there
are tp(|x|) strings of tape symbols of length p(|x|). If we let c = s+ t, by the binomial formula
we have

c1+p(|x|) = (s+ t)1+p(|x|) =

1+p(|x|)∑
k=0

(
1 + p(|x|)

k

)
skt1+p(|x|)−k)

= t1+p(|x|) + (1 + p(|x|))stp(|x|) + · · ·
Obviously (1 + p(|x|))stp(|x|) > sp(|x|)tp(|x|), so if the number of ID’s in the computation is
greater than c1+p(|x|), by the pigeonhole principle, two ID’s must be identical. By considering
a shortest accepting sequence of ID’s with n steps, we deduce that n ≤ c1+p(|x|), since
otherwise the preceding argument shows that the computation would be of the form

ID0 `∗ · · · `∗ IDh `+ IDk `∗ IDn

with IDh = IDk, so we would have an even shorter computation

ID0 `∗ · · · `∗ IDh `∗ IDn,

contradicting the minimality of the original computation.

Proposition 12.1 implies that languages in NPS are computable (in fact, primitive re-
cursive, and even in EXP). This still does not show that languages in NPS are accepted by
polynomial-space Turing machines that always halt within some time cq(|x|) for some polyno-
mial q(X). Such a result can be shown using a simulation involving a Turing machine with
two tapes.

Proposition 12.2. For any language L ∈ PS (resp. L ∈ NPS), there is deterministic
(resp. nondeterministic) polynomial-space bounded Turing machine M , a polynomal q(X)
and a constant c > 1, such that for every input x ∈ Σ∗, M accepts x in at most cq(|x|) steps.

A proof of Proposition 12.2 can be found in Hopcroft, Motwani and Ullman [22] (Section
11.2.2, Theorem 11.4).

We now turn to Savitch’s theorem.

12.2. SAVITCH’S THEOREM: PS = NPS 327

12.2 Savitch’s Theorem: PS = NPS
The key to the fact that PS = NPS is that given a polynomial-space bounded nonde-
terministic Turing machine M , there is a recursive method to check whether I `k J with
0 ≤ k ≤ m using at most log2m recursive calls, for any two ID’s I and J and any natural
number m ≥ 1, (that is, whether there is some computation of k ≤ m steps from I to J).

The idea is reminiscent of binary search, namely, to recursively find some intermediate
ID K such that I `m1 K and K `m2 J with m1 ≤ m/2 and m2 ≤ m/2 (here m/2 is the
integer quotient obtained by dividing m by 2). Because the Turing machine M is polynomial-
space bounded, for a given input x, we know from Proposition 12.1 that there are at most
c1+p(|x|) distinct ID’s, so the search is finite. We will intitially set m = c1+p(|x|), so at most
log2 c

1+p(|x|) = O(p(|x|) recursive calls will be made. We will show that each stack frame
takes O(p(|x|) space, so altogether the search uses O(p(|x|)2) amount of space. This is the
crux of Savitch’s argument.

The recursive procedure that deals with stack frames of the form [I, J,m] is shown below.

function reach(I, J,m) : boolean

begin

if m = 1 then

if I = J = K or I `1 J then
reach = true

else
reach = false

endif

else

for each possible ID K do

if reach(I,K,m/2) and reach(K, J,m/2) then

reach = true

else

reach = false

endif

endfor

endif

end

Even though the above procedure makes two recursive calls, they are performed sequen-
tially, so the maximum number of stack frames that may arise corresponds to the sequence

[I1, J1,m], [I2, J2,m/2], [I3, J3,m/4], [I4, J4,m/8], · · · , [Ik, Jk,m/2k−1], · · ·

which has length at most log2m. Using the procedure search, we obtain Savitch’s theorem.

328 CHAPTER 12. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

Theorem 12.3. (Savitch, 1970) The complexity classes PS and NPS are identical. In fact,
if L is accepted by the polynomial-space bounded nondeterministic Turing machine M with
space bound p(X), then there is a polynomial-space bounded deterministic Turing machine
D accepting L with space bound O(p(X)2).

Sketch of proof. Assume that L is accepted by the polynomial-space bounded nondetermin-
istic Turing machine M with space bound p(X). By Proposition 12.1 we may assume that
M accepts any input x ∈ L in at most c1+p(|x|) steps (for some c > 1). Set m = c1+p(|x|).

We can design a deterministic Turing machine D which determines (using the function
search) whether I0 `k J with k ≤ m where I0 = q0x is the starting ID, for all accepting ID’s
J , by enumerate all accepting ID’s J using at most p(|x|) tape cells, using a scratch tape.

As we explained above, the function search makes no more than log2 c
1+p(|x|) = O(p(|x|)

recursive calls, Each stack frame takesO(p(|x|) space. The reason is that every ID has at most
1 + p(|x|) tape cells and that if we write m = c1+p(|x|) in binary, this takes log2m = O(p(|x|)
tape cells. Since at most O(p(|x|) stack frames may arise and since each stack frame has size
at most O(p(|x|), the deterministic TM D uses at most O(p(|x|)2 space. For more details,
see Hopcroft, Motwani and Ullman [22] (Section 11.2.3, Theorem 11.5).

Savitch’s theorem and Proposition 12.1 show that PS = NPS ⊆ EXP . Whether this
inclusion is strict is an open problem. The present status of the relative containments of the
complexity classes that we have discussed so far is illustrated in Figure 12.1

Savitch’s theorem shows that nondeterminism does not help as far as polynomial space
is concerned, but we still don’t have a good example of a language in PS = NPS which is
not known to be in NP . The next section is devoted to such a problem. This problem also
turns out to be PS-complete, so we discuss this notion as well.

12.3 A Complete Problem for PS: QBF

Logic is a natural source of problems complete with respect to a number of complexity
classes: SAT is NP-complete (see Theorem 9.8), TAUT is coNP-complete (see Proposition
10.3). It turns out that the validity problem for quantified boolean formulae is PS-complete.
We will describe this problem shortly, but first we define PS-completeness.

Definition 12.2. A language L ⊆ Σ∗ is PS-complete if:

(1) L ∈ PS.

(2) For every language L2 ∈ PS, there is a polynomial-time computable function f : Σ∗ →
Σ∗ such that x ∈ L2 iff f(x) ∈ L, for all x ∈ Σ∗.

Observe that we require the reduction function f to be polynomial-time computable rather
than polynomial-space computable. The reason for this is that with this stronger form of
reduction we can prove the following proposition whose simple proof is left as an exercise.

12.3. A COMPLETE PROBLEM FOR PS: QBF 329

P NPP

NPco

Universe of computable (decidable) problems

Euler cycle
SAT

Exact Cover
Hamiltonian Cycle

Bounded Tiling

Traveling Salesman

Independent Set
Node Cover
Clique

Knapsack

0-1 Integer Programming

PS = NPS

QBF

Exp

NExp

TAUT

Integer Factorization

coNExp

intuitionistic provability

Figure 12.1: Relative containments of the complexity classes.

Proposition 12.4. Suppose L is a PS-complete language. Then the following facts hold:

(1) If L ∈ P, then P = PS.

(2) If L ∈ NP, then NP = PS.

The premises in Proposition 12.4 are very unlikely, but we never know!

We now define the class of quantified boolean formulae. These are actually second-order
formulae because we are allowed to quantify over propositional variables, which are 0-ary
(constant) predicate symbols. As we will see, validity is still decidable, but the fact that
we allow alternation of the quantifiers ∀ and ∃ makes the problem harder, in the sense that
testing validity or nonvalidity no longer appears to be doable in NP (so far, nobody knows
how to do this!).

Recall from Section 9.5 that we have a countable set PV of propositional (or boolean)

330 CHAPTER 12. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

variables ,
PV = {x1, x2, . . . , }.

Definition 12.3. A quantified boolean formula (for short QBF) is an expression A defined
inductively as follows:

(1) The constants > and ⊥ and every propositional variable xi are QBF’s called atomic
QBF’s.

(2) If B is a QBF, then ¬B is a QBF.

(3) If B and C are QBF’s, then (B ∨ C) is a QBF.

(4) If B and C are QBF’s, then (B ∧ C) is a QBF.

(5) If B is a QBF and if x is a propositional variable, then ∀xB is a QBF. The variable x
is said to be universally bound by ∀.

(6) If B is a QBF and if x is a propositional variable, then ∃xB is a QBF. The variable x
is said to be existentially bound by ∃.

(7) If allow the connective ⇒, and if B and C are QBF’s, then (B ⇒ C) is a QBF.

Example 12.1. The following formula is a QBF:

A = ∀x
(
∃y(x ∧ y) ∨ ∀z(¬x ∨ z)

)
.

As usual, we can define inductively the notion of free and bound variable as follows.

Definition 12.4. Given any QBF A, we define the set FV (A) of variables free in A and the
set BV (A) of variables bound in A as follows:

FV (⊥) = FV (>) = ∅
FV (xi) = {xi}
FV (¬B) = FV (B)

FV ((B ∗ C)) = FV (B) ∪ FV (C), ∗ ∈ {∨,∧,⇒}
FV (∀xB) = FV (B)− {x}
FV (∃xB) = FV (B)− {x},

and

BV (⊥) = BV (>) = ∅
BV (xi) = ∅
BV (¬B) = BV (B)

BV ((B ∗ C)) = BV (B) ∪BV (C), ∗ ∈ {∨,∧,⇒}
BV (∀xB) = BV (B) ∪ {x}
BV (∃xB) = BV (B) ∪ {x}.

A QBF A such that FV (A) = ∅ (A has no free variables) is said to be closed or a sentence.

12.3. A COMPLETE PROBLEM FOR PS: QBF 331

It should be noted that FV (A) and BV (A) may not be disjoint! For example, if

A = x1 ∨ ∀x1(¬x1 ∨ x2),

then FV (A) = {x1, x2} and BV (A) = {x1}. This situation is somewhat undesirable. Intu-
itively, A is “equivalent” to the QBF

A′ = x1 ∨ ∀x3(¬x3 ∨ x2),

with FV (A′) = {x1, x2} and BV (A′) = {x3}. Here equivalent means that A and A′ have the
same truth value for all truth assignments. To make all this precise we proceed as follows.

Definition 12.5. A substitution is a set of pairs ϕ = {(y1, A1), . . . , (ym, Am)} where the
variables y1, . . . , ym are distinct and A1, . . . , Am are arbitrary QBF’s. We write ϕ = [y1 :=
A1, . . . , ym := Am]. For any QBF B, we also denote by ϕ[yi := B] the substitution such that
yi := Ai is replaced by yi := B. In particular, ϕ[yi := yi] leaves yi unchanged.

Given a QBF A, the result of applying the substitution ϕ = [y1 := A1, . . . , ym := Am] to
A, denoted A[ϕ], is defined inductively as follows:

⊥ [ϕ] =⊥
>[ϕ] = >
x[ϕ] = Ai if x = yi, 1 ≤ i ≤ m

x[ϕ] = x if x /∈ {y1, . . . , ym}
(¬B)[ϕ] = (¬B)[ϕ]

(B ∗ C)[ϕ] = (B[ϕ] ∗ C[ϕ]), ∗ ∈ {∨,∧,⇒}
(∀xB)[ϕ] = ∀xB[ϕ[yi := yi]] if x = yi, 1 ≤ i ≤ m

(∀xB)[ϕ] = ∀xB[ϕ] if x /∈ {y1, . . . , ym}
(∃xB)[ϕ] = ∃xB[ϕ[yi := yi]] if x = yi, 1 ≤ i ≤ m

(∃xB)[ϕ] = ∃xB[ϕ] if x /∈ {y1, . . . , ym}.

Definition 12.6. A QBF A is rectified if distinct quantifiers bind distinct variables and if
BV (A) ∩ FV (A) = ∅.

Given a QBF A and any finite set V of variables, we can define recursively a new rectified
QBF A′ such that BV (A′) ∩ V = ∅.

(1) If A = >, or A =⊥, or A = xi, then A′ = A.

(2) If A = ¬B, then A′ = A.

(3) If A = (B∨C), then first we find recursively some rectified QBF B1 such that BV (B1)∩
V = ∅, then we find recursively some rectified QBF C1 such that BV (C1)∩ (FV (B1)∪
BV (B1)∪ V) = ∅, and we set A′ = (B1 ∨C1). We proceed similarly if A = (B ∧C) or
A = (B ⇒ C), with ∨ replaced by ∧ or ⇒.

332 CHAPTER 12. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

(4) If A = ∀xB, first we find recursively some rectified QBF B1 such that BV (B1)∩V = ∅,
and then we let A′ = ∀zB1[x := z] for some new variable z such that z /∈ FV (B1) ∪
BV (B1) ∪ V . Note that in this step it is possible that x /∈ FV (B).

(5) If A = ∃xB, first we find recursively some rectified QBF B1 such that BV (B1)∩V = ∅,
and then we let A′ = ∃zB1[x := z] for some new variable z such that z /∈ FV (B1) ∪
BV (B1) ∪ V . Note that in this step it is possible that x /∈ FV (B).

Given any QBF A, we find a rectified QBF A′ by applying the above procedure recursively
starting with A and V = ∅.

Recall that a truth assignment or valuation is a function v : PV → {T,F}. We also let
T = F and T = T.

Definition 12.7. Given a valuation v : PV→ {T,F}, we define truth value A[v] of a QBF
A inductively as follows.

⊥ [v] = F (1)

>[v] = T (2)

x[v] = v(x) (3)

(¬B)[v] = B[v] = F if B[v] = T else T if B[v] = F (4)

(B ∨ C)[v] = B[v] or C[v] (5)

(B ∧ C)[v] = B[v] and C[v] (6)

(B ⇒ C)[v] = B[v] or C[v] (7)

(∀xB)[v] = B[v[x := T]] andB[v[x := F]] (8)

(∃xB)[v] = B[v[x := T]] orB[v[x := F]]. (9)

If A[v] = T, we write say that v satisfies A and we write v |= A. If A[v] = T for all
valuations v , we say that A is valid and we write |= A.

As usual, we write A ≡ B iff (A⇒ B) ∧ (B ⇒ A) is valid.

In Clause (5) when evaluating (B ∨ C)[v], if B[v] = T, then we don’t need to evaluate
C[v], since Torb = T independently of b ∈ {T,F}, and so (B∨C)[v] = T. If B[v] = F, then
we need to evaluate C[v], and (B ∨C)[v] = T iff C[v] = T. Even though the above method
is more economical, we usually evaluate both B[v] and C[v] and then compute B[v] orC[v].

A similar discussion applies to evaluating (∃xB)[v] in Clause (9). If B[v[x := T]] = T,
then we don’t need to evaluate B[v[x := F]] and (∃xB)[v] = T. If B[v[x := T]] = F, then
we need to evaluate B[v[x := F]], and (∃xB)[v] = T iff B[v[x := F]] = T. Even though the
above method is more economical, we usually evaluate both B[v[x := T]] and B[v[x := F]]
and then compute B[v[x := T]] orB[v[x := F]].

12.3. A COMPLETE PROBLEM FOR PS: QBF 333

Example 12.2. Let us show that the QBF

A = ∀x
(
∃y(x ∧ y) ∨ ∀z(¬x ∨ z)

)
from Example 12.1 is valid. This is a closed formula so v is irrelevant. By Clause (8) of
Definition 12.7, we need to evaluate A[x := T] and A[x := F].

To evaluate A[x := T], by Clause (5) of Definition 12.7, we need to evaluate
(∃y(x ∧ y))[x := T] and (∀z(¬x ∨ z))[x := T].

To evaluate (∃y(x ∧ y))[x := T], by Clause (9) of Definition 12.7, we need to evaluate
(x ∧ y)[x := T, y := T] and (x ∧ y)[x := T, y := F].

We have (by Clause (6)) (x∧ y)[x := T, y := T] = TandT = T and (x∧ y)[x := T, y :=
F] = T and F = F, so

(∃y(x ∧ y))[x := T] = (x ∧ y)[x := T, y := T] or (x ∧ y)[x := T, y := F] = T or F = T. (1)

To evaluate (∀z(¬x ∨ z))[x := T], by Clause (8) of Definition 12.7, we need to evaluate
(¬x ∨ z)[x := T, z := T] and (¬x ∨ z)[x := T, z := F].

Using Clauses (4) and (5) of Definition 12.7, we have (¬x ∨ z)[x := T, z := T] =
T land T = T and (¬x ∨ z)[x := T, z := F] = T land F = F, so

(∀z(¬x ∨ z))[x := T] = (¬x ∨ z)[x := T, z := T] and (¬x ∨ z)[x := T, z := F] = F. (2)

By (1) and (2) we have

A[x := T] = (∃y(x ∧ y))[x := T] or (∀z(¬x ∨ z))[x := T] = T or F = T. (3)

Now we need to evaluate A[x := F]. By Clause (5) of Definition 12.7, we need to evaluate
(∃y(x ∧ y))[x := F] and (∀z(¬x ∨ z))[x := F].

To evaluate (∃y(x ∧ y))[x := F], by Clause (9) of Definition 12.7, we need to evaluate
(x ∧ y)[x := F, y := T] and (x ∧ y)[x := F, y := F].

We have (by Clause (6)) (x∧ y)[x := F, y := T] = F and T = F and (x∧ y)[x := F, y :=
F] = F and F = F, so

(∃y(x ∧ y))[x := F] = (x ∧ y)[x := F, y := T] or (x ∧ y)[x := F, y := F] = F or F = F. (4)

To evaluate (∀z(¬x ∨ z))[x := F], by Clause (8) of Definition 12.7, we need to evaluate
(¬x ∨ z)[x := F, z := T] and (¬x ∨ z)[x := F, z := F].

Using Clauses (4) and (5) of Definition 12.7, we have (¬x∨z)[x := F, z := T] = ForT =
T and (¬x ∨ z)[x := F, z := F] = F or F = T, so

(∀z(¬x ∨ z))[x := F] = (¬x ∨ z)[x := F, z := T] and (¬x ∨ z)[x := F, z := F] = T (5)

334 CHAPTER 12. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

By (4) and (5) we have

A[x := F] = (∃y(x ∧ y))[x := F] or (∀z(¬x ∨ z))[x := F] = F or T = T. (6)

Finally, by (3) and (6) we get

A[x := T] and A[x := F] = T and T = T, (7)

so A is valid.

The reader should observe that in evaluating

(∃xB)[v] = B[v[x := T]] orB[v[x := F]],

if (∃xB)[v] = T, it is only necessary to guess which of B[v[x := T]] or B[v[x := F]] evaluates
to T, so we can view the computation of A[v] as an AND/OR tree, where an AND node
corresponds to the evaluation of a formula (∀xB)[v], and an OR node corresponds to the
evaluation of a formula (∃xB)[v].

Evaluating the truth value A[v] of a QBF A can take exponential time in the size n of
A, but we will see that it only requires O(n2) space. Also, the validity of QBF’s of the form

∃x1∃x2 · · · ∃xmB

where B is quantifier-free and FV (B) = {x1, . . . , xm} is equivalent to SAT (the satisfiability
problem), and the validity of QBF’s of the form

∀x1∀x2 · · · ∀xmB

where B is quantifier-free and FV (B) = {x1, . . . , xm} is equivalent to TAUT (the validity
problem). This is why the validity problem for QBF’s is as hard as both SAT and TAUT.

We mention the following technical results. Part (1) and Part (2) are used all the time.

Proposition 12.5. Let A be any QBF.

(1) For any two valuations v1 and v2, if v1(x) = v2(x) for all x ∈ FV (A), then A[v1] =
A[v2]. In particular, if A is a sentence, then A[v] is independent of v.

(2) If A′ is any rectified QBF obtained from A, then A[v] = A′[v] for all valuations v; that
is, A ≡ A′.

(3) For any QBF A of the form A = ∀xB and any QBF C such that BV (B)∩FV (C) = ∅,
if A is valid, then B[x := C] is also valid.

(4) For any QBF B and any QBF C such that BV (B)∩FV (C) = ∅, if B[x := C] is valid,
then ∃xB is also valid.

12.3. A COMPLETE PROBLEM FOR PS: QBF 335

We also repeat Proposition 5.13 which states that the connectives ∧,∨,¬ and ∃ are
definable in terms of ⇒ and ∀. This shows the power of the second-order quantifier ∀.
Proposition 12.6. The connectives ∧,∨,¬,⊥ and ∃ are definable in terms of ⇒ and ∀,
which means that the following equivalences are valid, where x is not free in B or C:

B ∧ C ≡ ∀x
(
(B ⇒ (C ⇒ x))⇒ x

)
B ∨ C ≡ ∀x

(
(B ⇒ x)⇒ ((C ⇒ x)⇒ x)

)
⊥ ≡ ∀xx
¬B ≡ B ⇒ ∀xx
∃yB ≡ ∀x

(
(∀y(B ⇒ x))⇒ x

)
.

We now prove the first step in establishing that the validity problem for QBF’s is PS-
complete.

Proposition 12.7. Let A be any QBF of length n. Then for any valuation v, the truth value
A[v] can be evaluated in O(n2) space. Thus the validity problem for closed QBF’s is in PS.

Proof. The clauses of Definition 12.7 show that A[v] is evaluated recursively. In clauses
(5)-(9), even though two recursive calls are performed, it is only necessary to save one of the
two stack frames at a time. It follows that the stack will never contain more than n stack
frames, and each stack frame has size at most n. Thus only O(n2) space is needed. For more
details, see Hopcroft, Motwani and Ullman [22] (Section 11.3.4, Theorem 11.10).

Finally we state the main theorem proven by Meyer and Stockmeyer (1973).

Theorem 12.8. The validity problem for closed QBF’s is PS-complete.

We will not prove Theorem 12.8, mostly because it requires simulating the computation
of a polynomial-space bounded deterministic Turing machine, and this is very technical and
tedious. Most details of such a proof can be found in Hopcroft, Motwani and Ullman [22]
(Section 11.3.4, Theorem 11.11).

Let us simply make the following comment which gives a clue as to why QBF’s are helpful
in describing the simulation (for details, see Hopcroft, Motwani and Ullman [22] (Theorem
11.11)). It turns out that the idea behind the function reach presented in Section 12.2 plays
a key role. It is necessary to express for any two ID’s I and J and any i ≥ 1, that I `k J
with k ≤ i. This is achieved by defining N2i(I, J) as the following QBF:

N2i(I, J) = ∃K∀R∀S
((

(R = I ∧ S = K) ∨ (R = K ∧ S = J)
)
⇒ Ni(R, S)

)
.

Another interesting PS-complete problem due to Karp (1972) is the following. Given
any alphabet Σ, decide whether a regular expression R denotes Σ∗; that is, L[R] = Σ∗.

We conclude with some comments regarding some remarkable results of Statman re-
garding the connection between validity of closed QBF’s and provability in intuitionistic
propositional logic.

336 CHAPTER 12. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

12.4 Complexity of Provability in Intuitionistic

Propositional Logic

Recall that intuitionistic logic is obtained from classical logic by taking away the proof-by-
contradiction rule. The reader is strongly advised to review Chapter ??, especially Sections
??, ??, ??, ?? and ??, before proceeding.

Statman [38] shows how to reduce the validity problem for QBFs to provability in intu-
itionistic propositional logic. To simplify the construction we may assume that we consider
QBF’s in prenex form, which means that they are of the form

A = QnxnQn−1xn−1 · · ·Q1x1B0

where B0 is quantifier-free and Qi ∈ {∀,∃} for i = 1, . . . , n. We also assume that A is
rectified. It is easy to show that any QBF A is equivalent to some QBF A′ in prenex form
by adapting the method for converting a first-order formula to prenex form; see Gallier [17]
or Shoenfield [37].

Statman’s clever trick is to exploit some properties of intuitionistic provability that do
not hold for classical logic. One of these properties is that if a proposition B ∨C is provable
intuitionistically, we write `I B ∨ C, then either `I B or `I C, that is, either B is provable
or C is provable (of course, intuitionistically). This fact is used in the “easy direction” of
the proof of Theorem 12.9.

To illustrate the power of the above fact, in his construction, Statman associates the
proposition

(x⇒ B) ∨ (¬x⇒ B) (∗)
to the QBF ∃xB. Classically this is useless, because (∗) is classically valid, but if (∗) is
intuitionistically provable, then either x ⇒ B is provable or ¬x ⇒ B is intuitionistically
provable, but this implies that either x⇒ B is classically provable or ¬x⇒ B is classically
provable, and so either B[x := T] is valid or B[x := F] is valid, which means that ∃xB is
valid.

As a first step, Statman defines the proposition B+
k inductively as follows: for all k such

that 0 ≤ k ≤ n− 1,

B+
0 = ¬¬B0

B+
k+1 = (xk+1 ∨ ¬xk+1)⇒ B+

k if Qk+1 = ∀
B+
k+1 = (xk+1 ⇒ B+

k) ∨ (¬xk+1 ⇒ B+
k), if Qk+1 = ∃

and set A+ = B+
n . Obviously A+ is quantifier-free. We also let Bk+1 = Qk+1xk+1Bk for

k = 0, . . . n− 1, so that A = Bn.

The following example illustrates the above definition.

12.4. PROVABILITY IN INTUITIONISTIC PROPOSITIONAL LOGIC 337

Example 12.3. Consider the QBF is prenex form

A = ∃x3∀x2∃x1((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ x1)).

It is indeed valid, as we see by setting x3 = F, and if x2 = T then x1 = F, else if x2 = F
then x1 = T. We have

B+
0 = ¬¬((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ x1))

B+
1 = (x1 ⇒ B+

0) ∨ (¬x1 ⇒ B+
0)

B+
2 = (x2 ∨ ¬x2)⇒ B+

1

B+
3 = (x3 ⇒ B+

2) ∨ (¬x3 ⇒ B+
2),

and A+ = B+
3 .

Statman proves the following remarkable result (Statman [38], Proposition 1).

Theorem 12.9. For any closed QBF A in prenex form, A is valid iff `I A+; that is, A+ is
intuitionistically provable.

Proof sketch. Here is a sketch of Statman’s proof using the QBF of Example 12.3. First
assume the QBF A is valid. The first step is to eliminate existential quantifiers using a
variant of what is known as Skolem functions; see Gallier [17] or Shoenfield [37].

The process is to assign to the jth existential quantifier ∃xk from the left in the formula
Qnxn · · ·Q1x1B0 a boolean function Cj depending on the universal quantifiers ∀xi1 , . . . ,∀xip
to the left of ∃xk and defined such thatQnxn · · ·Qk+1xk+1∃xkBk−1 is valid iff ∀xi1 · · · ∀xiqBs

k−1

is valid, where Bs
k−1 is the result of substituting the functions C1, . . . , Cj associated with the

j existential quantifiers from the left for these existentially quantified variables.

We associate with ∃x3 the constant C1 such that C1 = F, and with ∃x1 the boolean
function C2(x2) given by

C2(T) = F, C2(F) = T.

The constant C1 and the function C2 are chosen so that

A = ∃x3∀x2∃x1((x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ x1))

is valid iff
As = ∀x2((C2(x2) ∨ x2) ∧ (¬C2(x2) ∨ ¬x2) ∧ (¬C1 ∨ C2(x2))) (S)

is valid. Indeed, since C1 = F, the clause (¬C1 ∨ C2(x2)) evaluates to T regardless of the
value of x2, and by definition of C2, the expression

∀x2(C2(x2) ∨ x2) ∧ (¬C2(x2) ∨ ¬x2))

also evaluates to T. We now build a tree of Gentzen sequents (from the root up) from the
expression in (S) which guides us in deciding which disjunct to pick when dealing with a
proposition B+

k associated with an existential quantifier. Here is the tree.

338 CHAPTER 12. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

¬x3, x2,¬x1 → B+
0

¬x3, x2 → ¬x1 ⇒ B+
0

¬x3, x2 → (x1 ⇒ B+
0) ∨ (¬x1 ⇒ B+

0)

¬x3,¬x2, x1 → B+
0

¬x3,¬x2 → x1 ⇒ B+
0

¬x3,¬x2 → (x1 ⇒ B+
0) ∨ (¬x1 ⇒ B+

0)

¬x3, x2 ∨ ¬x2 → B+
1

¬x3 → (x2 ∨ ¬x2)⇒ B+
1

→ ¬x3 ⇒ B+
2

→ (x3 ⇒ B+
2) ∨ (¬x3 ⇒ B+

2)

We will see that by adding subtrees proving the sequents in the leaf nodes, this tree
becomes an intuitionistic proof of A+. Note that this a proof in a Gentzen sequent style
formulation of intuitionistic logic (see Kleene [23], Gallier [13], Takeuti [40]), not a proof in
a natural deduction style proof system as in Section ??.

The tree is constructed from the bottom-up starting with → A+. For every leaf node in
the tree where a sequent is of the form

`n, . . . , `k+1 → (xk ⇒ B+
k−1) ∨ (¬xk ⇒ B+

k−1)

where `n, . . . , `k+1 are literals, we know that Qk = ∃ is the jth existential quantifier from the
left, so we use the boolean function Cj to determine which of the two disjuncts xk ⇒ B+

k−1

or ¬xk ⇒ B+
k−1 to keep. The function Cj depends on the value of the literals `n, . . . , `k+1

associated with universal quantifiers (where `i has the value T if `i = xi and `i has the
value F if `i = ¬xi). Even though Cj is independent of the value of the literals `i associ-
ated with existential quantifiers, to simplify notation we write Cj(`n, . . . , `k+1) for the value
of the function Cj. If Cj(`n, . . . , `k+1) = T, then we pick the disjunct xk ⇒ B+

k−1, else if
Cj(`n, . . . , `k+1) = F, then we pick the disjunct ¬xk ⇒ B+

k−1. Denote the literal correspond-
ing to the chosen disjunct by `k (`k = xk in the first case, `k = ¬xk in the second case).
Then we grow two new nodes

`n, . . . , `k+1 → `k ⇒ B+
k−1

and
`n, . . . , `k+1, `k → B+

k−1

above the (leaf) node

`n, . . . , `k+1 → (xk ⇒ B+
k−1) ∨ (¬xk ⇒ B+

k−1).

For every leaf node of the form

`n, . . . , `k+1 → (xk ∨ ¬xk)⇒ B+
k−1,

we grow the new node
`n, . . . , `k+1, xk ∨ ¬xk → B+

k−1,

12.4. PROVABILITY IN INTUITIONISTIC PROPOSITIONAL LOGIC 339

and then the two new nodes (both descendants of the above node, so there is branching in
the tree),

`n, . . . , `k+1, xk → B+
k−1 and `n, . . . , `k+1,¬xk → B+

k−1.

By induction from the bottom-up, since A is valid and since the tree was constructed in
terms of the constant C1 and the function C2 which ensure the validity of A, it is easy to see
that for every node `n, . . . , `k+1 → B+

k , the sequent `n, . . . , `k+1 → Bk (note, the right-hand
side is the original formula Bk) is classically valid, and thus classically provable (by the
completeness theorem for propositional logic). Consequently every leaf `n, . . . , `1 → B0 is
classically provable, so by Glivenko’s theorem (see Kleene [23] (Theorem 59), or Gallier [13]
(Section 13)), the sequent `n, . . . , `1 → ¬¬B0 is intuitionistically provable. But this is the
sequent `n, . . . , `1 → B+

0 so all the leaves of the tree are intuitionistically provable, and since
the tree is a deduction tree in a Gentzen sequent style formulation of intuitionistic logic (see
Kleene [23], Gallier [13], Takeuti [40]), the root A+ = B+

n is intuitionistically provable.

In the other direction, assume that A+ is intuitionistically provable. We use the fact that
if

`n, . . . , `k → A ∨B

is intuitionistically provable and the `i are literals, then either `n, . . . , `k → A is intuition-
istically provable or `n, . . . , `k → B is intuitionistically provable, and other proof rules of
intuitionistic logic (see Kleene [23], Gallier [13], Takeuti [40]), to build a proof tree just
as we did before. Then every sequent `n, . . . , `k+1 → B+

k is intuitionistically provable, thus
classically provable, and consequently classically valid. But this immediately implies (by
induction starting from the leaves) that `n, . . . , `k+1 → Bk is also classically valid for all k,
and thus A = Bn is valid.

Statman does not specifically state which proof system of intuitionistic logic is used in
Theorem 12.9. Careful inspection of the proof shows that we can construct proof trees in a
Gentzen sequent calculus as described in Gallier [13] (system Gi, Section 4) or Kleene [23]
(system G3a, Section 80, pages 481-482). This brings up the following issue: could we use
instead proofs in natural deduction style, as in Prawitz [34] or Gallier [13]? The answer is
yes, because there is a polynomial-time translation of intuitionistic proofs in Gentzen sequent
style to intuitionistic proofs in natural deduction style, as shown in Gallier [13], Section 5.
So Theorem 12.9 applies to a Gentzen sequent style proof system or to a natural deduction
style proof system.

The problem with the translation A 7→ A+ is that A+ may not have size polynomial in
the size (the length of A as a string) of A because in the case of an existential quantifier
the length of the formula B+

k+1 is more than twice the length of the formula B+
k , so Statman

introduces a second translation.

The proposition B†k is defined inductively as follows. Let y0, y1, . . . , yn be n + 1 new

340 CHAPTER 12. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

propositional variables. For all k such that 0 ≤ k ≤ n− 1,

B†0 = ¬¬B0 ≡ y0

B†k+1 = ((xk+1 ∨ ¬xk+1)⇒ yk) ≡ yk+1 if Qk+1 = ∀
B†k+1 = ((xk+1 ⇒ yk) ∨ (¬xk+1 ⇒ yk)) ≡ yk+1, if Qk+1 = ∃

and set
A∗ = B†0 ⇒ (B†1 ⇒ (· · · (B†n ⇒ yn) · · ·)).

It is easy to see that the translation A 7→ A∗ can be done in polynomial space. Statman
proves the following result (Statman [38], Proposition 2).

Theorem 12.10. For any closed QBF A in prenex form, `I A+ iff `I A∗; that is, A+ is
intuitionistically provable iff A∗ is intuitionistically provable.

Proof. First suppose the sequent → A+ is provable (in Kleene G3a). We claim that the
sequent

B†0, . . . , B
†
k → B+

k ≡ yk

is provable for k = 0, . . . , n. We proceed by induction on k. For the base case k = 0, we
have B†0 = (¬¬B0 ≡ y0) and B+

0 = ¬¬B0, so B†0 → (B+
0 ≡ y0) = (B+

0 ≡ y0)→ (B+
0 ≡ y0),

which is an axiom.

For the induction step, if Qk+1 = ∀, then

B+
k+1 = (xk+1 ∨ ¬xk+1)⇒ B+

k , B†k+1 = ((xk+1 ∨ ¬xk+1)⇒ yk) ≡ yk+1,

by the induction hypothesis
B†0, . . . , B

†
k → B+

k ≡ yk

is provable, and since the sequent

B†0, . . . , B
†
k, B

†
k+1 → B†k+1

is an axiom, by substituting B+
k for yk in B†k+1 = ((xk+1 ∨ ¬xk+1) ⇒ yk) ≡ yk+1 in the

conclusion of the above sequent, we deduce that

B†0, . . . , B
†
k, B

†
k+1 → ((xk+1 ∨ ¬xk+1)⇒ B+

k) ≡ yk+1

is provable. Since B+
k+1 = (xk+1 ∨ ¬xk+1)⇒ B+

k , we conclude that

B†0, . . . , B
†
k, B

†
k+1 → B+

k+1 ≡ yk+1

is provable.

If Qk+1 = ∃, then

B+
k+1 = (xk+1 ⇒ B+

k) ∨ (¬xk+1 ⇒ B+
k), B†k+1 = ((xk+1 ⇒ yk) ∨ (xk+1 ⇒ yk)) ≡ yk+1,

12.4. PROVABILITY IN INTUITIONISTIC PROPOSITIONAL LOGIC 341

by the induction hypothesis
B†0, . . . , B

†
k → B+

k ≡ yk

is provable, and since the sequent

B†0, . . . , B
†
k, B

†
k+1 → B†k+1

is an axiom, by substituting B+
k for yk in B†k+1 = ((xk+1 ⇒ yk)∨ (xk+1 ⇒ yk)) ≡ yk+1 in the

conclusion of the above sequent, we deduce that

B†0, . . . , B
†
k, B

†
k+1 → ((xk+1 ⇒ B+

k) ∨ (¬xk+1 ⇒ B+
k)) ≡ yk+1

is provable. Since B+
k+1 = (xk+1 ⇒ B+

k) ∨ (¬xk+1 ⇒ B+
k), we conclude that

B†0, . . . , B
†
k, B

†
k+1 → B+

k+1 ≡ yk+1

is provable. Therefore the induction step holds. For k = n, we see that the sequent

B†0, . . . , B
†
n → (B+

n ≡ yn) = B†0, . . . , B
†
n → (A+ ≡ yn)

is provable, and since by hypothesis → A+ is provable, we deduce that

B†0, . . . , B
†
n → yn

is provable. Finally we deduce that

A∗ = B†0 ⇒ (B†1 ⇒ (· · · (B†n ⇒ yn) · · ·))

is provable intuitionistically.

Conversely assume that A∗ = B†0 ⇒ (B†1 ⇒ (· · · (B†n ⇒ yn) · · ·)) is provable intuitionisti-
cally. Then using basic properties of intuitionistic provability, the sequent

B†0, . . . , B
†
n → yn

is provable intuitionistically. Now if we substitute B+
k+1 for yk+1 in B†k+1 for k = 0, . . . , n−1,

we see immediately that

B†k+1[yk+1 := B+
k+1] = B+

k+1 ≡ B+
k+1,

so the proof of
B†0, . . . , B

†
n → yn

yields a proof of
B+

0 ≡ B+
0 , . . . , B

+
n ≡ B+

n → B+
n ,

that is, a proof (intuitionistic) of B+
n = A+.

Remark: Note that we made implicit use of the cut rule several times, but by Gentzen’s
cut-elimination theorem this does not matter (see Gallier [13]).

342 CHAPTER 12. POLYNOMIAL-SPACE COMPLEXITY; PS AND NPS

Using Theorems 12.9 and 12.10 we deduce from the fact that validity of QBF’s is PS-
complete that provability in propositional intuitionistic logic is PS-hard (every problem in
PS reduces in polynomial time to provability in propositional intuitionistic logic). Using
results of Tarski and Ladner, it is can be shown that validity in Kripke models for propo-
sitional intuitionistic logic belongs to PS, so Statman proves the following result (Statman
[38], Section 2, Theorem).

Theorem 12.11. The problem of deciding whether a proposition is valid in all Kripke models
is PS-complete.

Theorem 12.11 also applies to any proof system for intuitionisic logic which is sound and
complete for Kripke semantics.

Theorem 12.12. The problem of deciding whether a proposition is intuitionistically provable
in any sound and complete proof system (for Kripke semantics) is PS-complete.

Theorem 12.12 applies to Gallier’s system Gi, to Kleene’s system G3a, and to natural
deduction systems. To prove that Gi is complete for Kripke semantics it is better to convert
proofs in Gi to proofs in a system due to Takeuti, the system denoted GKT i in Gallier [13];
see Section 9, Definition 9.3. Since there is a polynomial-time translation of proofs in Gi to
proofs in natural deduction, the latter system is also complete. This is also proven in van
Dalen [42].

Statman proves an even stronger remarkable result, namely that PS-completeness holds
even for propositions using only the connective ⇒ (Statman [38], Section 2, Proposition 3).

Theorem 12.13. There is an algorithm which given any proposition A constructs another
proposition A] only involving ⊥,⇒, such that that `I A iff `I A].

Theorem 12.13 is somewhat surprising in view of the fact that ∨,∧,⇒ are indepen-
dent connectives in propositional intuitionistic logic. Finally Statman obtains the following
beautiful result (Statman [38], Section 2, Theorem).

Theorem 12.14. The problem of deciding whether a proposition only involving ⊥,⇒ is valid
in all Kripke models, and intuitionistically provable in any sound and complete proof system,
is PS-complete.

We highly recommend reading Statman [38], but we warn the reader that this requires
perseverance.

Bibliography

[1] Tom M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in
Mathematics. Springer, first edition, 1976.

[2] Sanjeev Arora and Boaz Barak. Computational Complexity. A Modern Approach. Cam-
bridge University Press, first edition, 2009.

[3] H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. Studies in Logic No.
103. North-Holland, second revised edition, 1984.

[4] H.P. Barendregt. Lambda Calculi With Types. In Abramsky, Gabbay, and Maibaum,
editors, Handbook of Logic in Computer Science, pages 117–309. OUP, 1992.

[5] Richard Crandall and Carl Pomerance. Prime Numbers. A Computational Perspective.
Springer, second edition, 2005.

[6] H. Davenport. The Higher Arithmetic. Cambridge University Press, eighth edition,
2008.

[7] Martin Davis. Computability and Unsolvability. McGraw Hill, first edition, 1958.

[8] Martin Davis. Hilbert’s tenth problem is unsolvable. American Mathematical Monthly,
80(3):233–269, 1973.

[9] Martin Davis, Yuri Matijasevich, and Julia Robinson. Hilbert’s Tenth Problem. Dio-
phantine Equations: Positive Aspects of a Negative Solution. In Mathematical Devel-
opments Arising from Hilbert Problems, volume XXVIII, Part 2, pages 323–378. AMS,
1976.

[10] Burton Dreben and Warren D. Goldfarb. The Decision Problem. Solvable Classes of
Quantificational Formulas. Addison Wesley, first edition, 1979.

[11] Herbert B. Enderton. A Mathematical Introduction to Logic. Elsevier, second edition,
2001.

[12] Jean Gallier. What’s so special about Kruskal’s theorem and the ordinal Γ0? A survey
of some results in proof theory. Annals of Pure and Applied Logic, 53:199–260, 1991.

343

344 BIBLIOGRAPHY

[13] Jean Gallier. Constructive Logics. Part I: A Tutorial on Proof Systems and Typed
λ-Calculi. Theoretical Computer Science, 110(2):249–339, 1993.

[14] Jean Gallier and Jocelyn Quaintance. Notes on Primality Testing and Public Key Cryp-
tography. Part I: Randomized Algorithms, Miller–Rabin and Solovay–Strassen Tests.
Technical report, University of Pennsylvania, Levine Hall, Philadelphia, PA 19104, 2017.
pdf file available from http://www.cis.upenn.edu/∼jean/RSA-primality-testing.pdf.

[15] Jean H. Gallier. On Girard’s “candidats de reductibilité”. In P. Odifreddi, editor, Logic
And Computer Science, pages 123–203. Academic Press, London, New York, May 1990.

[16] Jean H. Gallier. Discrete Mathematics. Universitext. Springer Verlag, first edition, 2011.

[17] Jean H. Gallier. Logic For Computer Science; Foundations of Automatic Theorem Prov-
ing. Dover, second edition, 2015.

[18] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1989.

[19] Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse, et son ap-
plication à l’élimination des coupures dans l’analyse et la théorie des types. In J.E.
Fenstad, editor, Proc. 2nd Scand. Log. Symp., pages 63–92. North-Holland, 1971.

[20] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université de Paris VII, June 1972. Thèse
de Doctorat d’Etat.

[21] J.R. Hindley and J.P. Seldin. Introduction to Combinators and λ-Calculus, volume 1 of
London Mathematical Society Student texts. Cambridge University Press, 1986.

[22] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Automata Theory, Lan-
guages,and Computation. Addison Wesley, third edition, 2007.

[23] Stephen Kleene. Introduction to Metamathematics. North-Holland, seventh edition,
1952.

[24] Stephen Kleene. Mathematical Logic. Wiley, first edition, 1967.

[25] Jean-Louis Krivine. Lambda-calcul types et modèles. Masson, first edition, 1990.

[26] Harry R. Lewis. Unsolvable Classes of Quantificational Formulas. Addison Wesley, first
edition, 1979.

[27] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, second edition, 1997.

[28] Michael Machtey and Paul Young. An Introduction to the General Theory of Algorithms.
Elsevier North-Holland, first edition, 1978.

BIBLIOGRAPHY 345

[29] Zohar Manna. Mathematical Theory of Computation. Dover, first edition, 2003.

[30] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery. An Introduction to the
Theory of Numbers. Wiley, fifth edition, 1991.

[31] Christos H. Papadimitriou. Computational Complexity. Pearson, first edition, 1993.

[32] Benjamin C. Pierce. Types and Programming Languages. MIT Press, first edition, 2002.

[33] Vaughan R. Pratt. Every prime has a succinct certificate. SIAM Journal on Computing,
4(3):214–220, 1975.

[34] D. Prawitz. Natural deduction, a proof-theoretical study. Almquist & Wiksell, Stock-
holm, 1965.

[35] Paulo Ribenboim. The Little Book of Bigger Primes. Springer-Verlag, second edition,
2004.

[36] Hartley Jr. Rogers. Theory of Recursive Functions and Effective Computability. MIT
Press, first edition, 1987.

[37] Joseph Shoenfield. Mathematical Logic. Addison Wesley, first edition, 2001.

[38] Richard Statman. Intuitionistic propositional logic is polynomial-space complete. The-
oretical Computer Science, 9(1):67–72, 1979.

[39] Richard Statman. The typed λ-calculus is not elementary recursive. Theoretical Com-
puter Science, 9(1):73–81, 1979.

[40] G. Takeuti. Proof Theory, volume 81 of Studies in Logic. North-Holland, 1975.

[41] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

[42] D. van Dalen. Logic and Structure. Universitext. Springer Verlag, second edition, 1980.

346 BIBLIOGRAPHY

Symbol Index

(MN), 119
M [ϕ], 123
[x1 := N1, . . . , xn := Nn], 122
∗←→β, 125

−→β, 124
λx.M , 119
∗−→β, 125
+−→β, 125

347

348 SYMBOL INDEX

Index

α-conversion, 124
immediate, 124

α-reduction, 124
immediate, 124

β-conversion, 125
β-redex, 125
β-reduction, 124

immediate, 124
λ-abstraction, 119
λ-calculus, 119

pure, 119
untyped, 119

λ-term
closed, 121
raw simply-typed, 119

application, 119

combinator, 121
congruent, 305

modular arithmetic, 305, 306

redex, 125
repeated squaring, 320

substitution, 122

type, 146
second order, 146
polymorphic, 146

variable, 119
bound, 121
capture, 123
free, 121

349

