Overview

- Extracting paraphrases from parallel corpora
- Syntactic constraints
- Results of manual evaluation
I do not believe in mutilating dead bodies.

no soy partidaria de mutilar cadáveres
Extracting paraphrases from Bilingual parallel corpora

I do not believe in mutilating dead bodies

no soy partidaria de mutilar cadáveres

El mar arroja tantos cadáveres de inmigrantes ilegales ahogados a la playa...

So many corpses of drowned illegals get washed up on beaches...
Extracting paraphrases from Bilingual parallel corpora

I do not believe in mutilating dead bodies

El mar arroja tantos cadáveres de inmigrantes ilegales ahogados a la playa...

So many corpses of drowned illegals get washed up on beaches...
Extracting paraphrases from Bilingual parallel corpora

I do not believe in mutilating dead bodies!

dead bodies → corpses, carcasses, bodies, skeletons, people
Good examples

- military force → force, forces, peace-keeping personnel, armed forces, military forces, defense
- sooner or later → eventually, at some point
- wish to clarify → want to make perfectly clear, would like to ask, would like to comment on, would like to mention, would like to deal with, would comment on
- every other → any other, all, other, every, all other, everyone else, others, all the others
Bad examples

- **are perfectly entitled** → perfectly entitled, have every right, right, are, has a legitimate, call for, has, legitimate right, have the right

- **for small-scale projects** → small-scale projects, small, of, only trifling amounts are at stake, for projects, for smaller-scale projects, to, for smaller projects

- **groundwork for** → for, groundwork, to, basis for, the, basis, preparation, foundations for, that

- **create equal** → equal, to create a, create, to create equality, same, created, conditions
Paraphrase probability

\[\hat{e}_2 = \arg \max_{e_2 \neq e_1} p(e_2 | e_1) \]
Paraphrase probability

\[
\hat{e}_2 = \arg \max_{e_2: e_2 \neq e_1} p(e_2 | e_1)
\]

\[
p(e_2 | e_1) = \sum_f p(f | e_1)p(e_2 | f, e_1)
\approx \sum_f p(f | e_1)p(e_2 | f)
\]
Paraphrase probability

\[\hat{e}_2 = \arg \max_{e_2: e_2 \neq e_1} p(e_2 | e_1) \]

\[p(e_2 | e_1) = \sum_f p(f | e_1) p(e_2 | f, e_1) \]

\[\approx \sum_f p(f | e_1) p(e_2 | f) \]

\[p(f | e) = \frac{\text{count}(e, f)}{\sum_f \text{count}(e, f)} \]
Phrase extraction with Unaligned words

el proyecto europeo no ha conseguido la igualdad de oportunidades

the european project has failed to create equal opportunities
Phrase extraction with Unaligned words

el proyecto europeo no ha conseguido
the european project has failed to create
la igualdad igual
opportunities

la igualdad = equal
Phrase extraction with Unaligned words

el proyecto europeo no ha conseguido = the european project has failed to create equal

la igualdad de oportunidades = equal opportunities
Phrase extraction with Unaligned words

el proyecto europeo no ha conseguido la igualdad de oportunidades
the european project has failed create equal opportunities

la igualdad = equal create equal to create equal
Phrase extraction with Unaligned words

- For 3.7m paraphrases of 400k phrases
 - 34% were sub- or super-strings
 - 73% of the paraphrases that were ranked highest by the paraphrase probability
Potential solutions

• Use multiple parallel corpora to eliminate systematic misalignments in one language
• Re-rank results with a language model when paraphrases are substituted into a sentence
• Impose requirement that paraphrases cannot be substrings and superstrings
Syntactic Constraints

- Require phrases and their paraphrase to be the same syntactic type
- Redefine the paraphrase probability to condition on syntactic labels
- Change the phrase extraction algorithm so that it enumerates phrase pairs and syntactic labels
Redefined paraphrase prob

\[
\hat{e}_2 = \arg\max_{e_2: e_2 \neq e_1 \land s(e_2) = s(e_1)} p(e_2 | e_1, s(e_1)) \\
\approx \arg\max_{e_2: e_2 \neq e_1 \land s(e_2) = s(e_1)} \sum_f p(f | e_1, s(e_1)) p(e_2 | f, s(e_1))
\]

\[
p(f | e_1, s(e_1)) = \frac{\text{count}(f, e_1, s(e_1))}{\sum_f \text{count}(f, e_1, s(e_1))}
\]

\[
p(e_2 | f, s(e_1)) = \frac{\text{count}(f, e_2, s(e_1))}{\sum_{e_2} \text{count}(f, e_2, s(e_1))}
\]
Phrase Extraction + Syntactic Labels

How do we create equal rights?

Cómo podemos crear una igualdad de derechos?
Cómo podemos crear una igualdad de derechos?
How do we create equal rights?

Cómo podemos crear una igualdad de derechos?
Phrase Extraction + Syntactic Labels

How do we create equal rights?

Cómo podemos crear una igualdad de derechos?
Phrase Extraction + Syntactic Labels

- Coverage is significantly reduced
- < 25% of phrases that were previously paraphrasable are paraphrasable now

How do we create equal rights?

Cómo podemos crear una igualdad de derechos?
How do we create equal rights?

Cómo podemos crear una igualdad de derechos?
How do we create equal rights?

Cómo podemos crear una igualdad de derechos?
Using Complex Syntactic Labels

¿Cómo podemos crear una igualdad de derechos?
Using Complex Syntactic Labels

How do we create equal rights?

Cómo podemos crear una igualdad de derechos?
How do we create equal rights?
Using Complex Syntactic Labels

- Coverage improves 3x over simple labels
- Covers 2/3 of phrases that the baseline does

Example:

How do we create equal rights?

Cómo podemos crear una igualdad de derechos?
Example improvements

- create equal → equal, to create a, create, to create equality, same, created, conditions

- create equal (VP/NNS) → creating equal

- create equal (VP/NNS PP) → promote equal, establish fair

- create equal (VP/NNS PP PP) → creating equal, provide equal, create genuinely fair
Example improvements

- **equal** → same, equality, equals, equally, the, fair, equal rights

- **equal (JJ)** → same, fair, similar, equivalent

- **equal (ADJP)** → necessary, similar, identical, the same, equal in law, equivalent
Manual Evaluation

- Paraphrases were substituted into a number of sentences containing the original phrase
- Judges were asked if the resulting sentence
 - Preserved the meaning
 - Remained grammatical
- A total of 8,500 judgements were collected over several models
Experimental conditions

• Tested the baseline model and two syntactically constrained models

• Constraints can apply in two places
 - During the phrase extraction stage
 - When replacing a phrase with its paraphrase in a sentence

• Also re-ranked the results of all of these with a trigram LM
Training data

- Paraphrase models were all trained in the Europarl corpora
 - 10 bilingual parallel corpora with 30 million words each
 - Total of 315 million English words

- English side parsed with Bikel parser trained on WSJ. 1.3 million sentences parsed in total.

- Same sentences used to train SRILM
Training data

- Paraphrase models were all trained in the Europarl corpora
 - 10 bilingual parallel corpora with 30 million words each
 - Total of 315 million English words
- All data and software is available from my web page: http://cs.jhu.edu/~ccb/
- English side parsed with Bikel parser trained on WSJ. 1.3 million sentences parsed in total.
- Same sentences used to train SRILM
Initial Results (w/o LM)

Correct Meaning: Baseline 56, Extraction Constraints 62, +Substitution Constraints 62
Correct Grammar: Baseline 35, Extraction Constraints 57, +Substitution Constraints 61
Both Correct: Baseline 30, Extraction Constraints 46, +Substitution Constraints 51
Adding a language model

- Correct Meaning
- Correct Grammar
- Both Correct

Baseline
Extraction Constraints
+Substitution Constraints
Conclusions

• Syntactic constraints reduce errors due to misalignments

• Complex syntactic labels allow us to retain the high coverage of the baseline

• Result in higher paraphrase quality both in terms of grammaticality and in overall quality
 - 24% absolute improvement in correct grammar
 - 19% absolute improvement in overall correctness
Future Work

• Apply syntactic constraints to paraphrasing techniques that use monolingual corpora
• Extract structural paraphrasing rules
Thanks!

- Questions?