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Abstract

We describe improvements made over the
past year to Joshua, an open-source trans-
lation system for parsing-based machine
translation. The main contributions this
past year are significant improvements in
both speed and usability of the grammar
extraction and decoding steps. We have
also rewritten the decoder to use a sparse
feature representation, enabling training of
large numbers of features with discrimina-
tive training methods.

1 Introduction

Joshua is an open-source toolkit1 for hierarchical
and syntax-based statistical machine translation
of human languages with synchronous context-
free grammars (SCFGs). The original version of
Joshua (Li et al., 2009) was a port (from Python to
Java) of the Hiero machine translation system in-
troduced by Chiang (2007). It was later extended
to support grammars with rich syntactic labels (Li
et al., 2010). Subsequent efforts produced Thrax,
the extensible Hadoop-based extraction tool for
synchronous context-free grammars (Weese et al.,
2011), later extended to support pivoting-based
paraphrase extraction (Ganitkevitch et al., 2012).
Joshua 5.0 continues our yearly update cycle.

The major components of Joshua 5.0 are:

§3.1 Sparse features. Joshua now supports an
easily-extensible sparse feature implementa-
tion, along with tuning methods (PRO and
kbMIRA) for efficiently setting the weights
on large feature vectors.

1joshua-decoder.org

§3.2 Significant speed increases. Joshua 5.0 is up
to six times faster than Joshua 4.0, and also
does well against hierarchical Moses, where
end-to-end decoding (including model load-
ing) of WMT test sets is as much as three
times faster.

§3.3 Thrax 2.0. Our reengineered Hadoop-based
grammar extractor, Thrax, is up to 300%
faster while using significantly less interme-
diate disk space.

§3.4 Many other features. Joshua now includes a
server mode with fair round-robin scheduling
among and within requests, a bundler for dis-
tributing trained models, improvements to the
Joshua pipeline (for managing end-to-end ex-
periments), and better documentation.

2 Overview

Joshua is an end-to-end statistical machine trans-
lation toolkit. In addition to the decoder com-
ponent (which performs the actual translation), it
includes the infrastructure needed to prepare and
align training data, build translation and language
models, and tune and evaluate them.

This section provides a brief overview of the
contents and abilities of this toolkit. More infor-
mation can be found in the online documentation
(joshua-decoder.org/5.0/).

2.1 The Pipeline: Gluing it all together
The Joshua pipeline ties together all the infrastruc-
ture needed to train and evaluate machine transla-
tion systems for research or industrial purposes.
Once data has been segmented into parallel train-
ing, development, and test sets, a single invocation
of the pipeline script is enough to invoke this entire
infrastructure from beginning to end. Each step is
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broken down into smaller steps (e.g., tokenizing a
file) whose dependencies are cached with SHA1
sums. This allows a reinvoked pipeline to reliably
skip earlier steps that do not need to be recom-
puted, solving a common headache in the research
and development cycle.

The Joshua pipeline is similar to other “ex-
periment management systems” such as Moses’
Experiment Management System (EMS), a much
more general, highly-customizable tool that al-
lows the specification and parallel execution of
steps in arbitrary acyclic dependency graphs
(much like the UNIX make tool, but written with
machine translation in mind). Joshua’s pipeline
is more limited in that the basic pipeline skeleton
is hard-coded, but reduced versatility covers many
standard use cases and is arguably easier to use.

The pipeline is parameterized in many ways,
and all the options below are selectable with
command-line switches. Pipeline documentation
is available online.

2.2 Data preparation, alignment, and model
building

Data preparation involves data normalization (e.g.,
collapsing certain punctuation symbols) and tok-
enization (with the Penn treebank or user-specified
tokenizer). Alignment with GIZA++ (Och and
Ney, 2000) and the Berkeley aligner (Liang et al.,
2006b) are supported.

Joshua’s builtin grammar extractor, Thrax, is
a Hadoop-based extraction implementation that
scales easily to large datasets (Ganitkevitch et al.,
2013). It supports extraction of both Hiero (Chi-
ang, 2005) and SAMT grammars (Zollmann and
Venugopal, 2006) with extraction heuristics eas-
ily specified via a flexible configuration file. The
pipeline also supports GHKM grammar extraction
(Galley et al., 2006) using the extractors available
from Michel Galley2 or Moses.

SAMT and GHKM grammar extraction require
a parse tree, which are produced using the Berke-
ley parser (Petrov et al., 2006), or can be done out-
side the pipeline and supplied as an argument.

2.3 Decoding

The Joshua decoder is an implementation of the
CKY+ algorithm (Chappelier et al., 1998), which
generalizes CKY by removing the requirement

2nlp.stanford.edu/˜mgalley/software/
stanford-ghkm-latest.tar.gz

that the grammar first be converted to Chom-
sky Normal Form, thereby avoiding the complex-
ities of explicit binarization schemes (Zhang et
al., 2006; DeNero et al., 2009). CKY+ main-
tains cubic-time parsing complexity (in the sen-
tence length) with Earley-style implicit binariza-
tion of rules. Joshua permits arbitrary SCFGs, im-
posing no limitation on the rank or form of gram-
mar rules.

Parsing complexity is still exponential in the
scope of the grammar,3 so grammar filtering re-
mains important. The default Thrax settings ex-
tract only grammars with rank 2, and the pipeline
implements scope-3 filtering (Hopkins and Lang-
mead, 2010) when filtering grammars to test sets
(for GHKM).

Joshua uses cube pruning (Chiang, 2007) with
a default pop limit of 100 to efficiently explore the
search space. Other decoder options are too nu-
merous to mention here, but are documented on-
line.

2.4 Tuning and testing

The pipeline allows the specification (and optional
linear interpolation) of an arbitrary number of lan-
guage models. In addition, it builds an interpo-
lated Kneser-Ney language model on the target
side of the training data using KenLM (Heafield,
2011; Heafield et al., 2013), BerkeleyLM (Pauls
and Klein, 2011) or SRILM (Stolcke, 2002).

Joshua ships with MERT (Och, 2003) and PRO
implementations. Tuning with k-best batch MIRA
(Cherry and Foster, 2012) is also supported via
callouts to Moses.

3 What’s New in Joshua 5.0

3.1 Sparse features

Until a few years ago, machine translation systems
were for the most part limited in the number of fea-
tures they could employ, since the line-based op-
timization method, MERT (Och, 2003), was not
able to efficiently search over more than tens of
feature weights. The introduction of discrimina-
tive tuning methods for machine translation (Liang
et al., 2006a; Tillmann and Zhang, 2006; Chiang
et al., 2008; Hopkins and May, 2011) has made
it possible to tune large numbers of features in
statistical machine translation systems, and open-

3Roughly, the number of consecutive nonterminals in a
rule (Hopkins and Langmead, 2010).
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source implementations such as Cherry and Foster
(2012) have made it easy.

Joshua 5.0 has moved to a sparse feature rep-
resentation internally. First, to clarify terminol-
ogy, a feature as implemented in the decoder is
actually a template that can introduce any number
of actual features (in the standard machine learn-
ing sense). We will use the term feature function
for these templates and feature for the individual,
traditional features that are induced by these tem-
plates. For example, the (typically dense) features
stored with the grammar on disk are each separate
features contributed by the PHRASEMODEL fea-
ture function template. The LANGUAGEMODEL

template contributes a single feature value for each
language model that was loaded.

For efficiency, Joshua does not store the en-
tire feature vector during decoding. Instead, hy-
pergraph nodes maintain only the best cumulative
score of each incoming hyperedge, and the edges
themselves retain only the hyperedge delta (the in-
ner product of the weight vector and features in-
curred by that edge). After decoding, the feature
vector for each edge can be recomputed and ex-
plicitly represented if that information is required
by the decoder (for example, during tuning).

This functionality is implemented via the fol-
lowing feature function interface, presented here
in simplified pseudocode:

interface FeatureFunction:
apply(context, accumulator)

The context comprises fixed pieces of the input
sentence and hypergraph:

• the hypergraph edge (which represents the
SCFG rule and sequence of tail nodes)

• the complete source sentence

• the input span

The accumulator object’s job is to accumulate
feature (name,value) pairs fired by a feature func-
tion during the application of a rule, via another
interface:

interface Accumulator:
add(feature_name, value)

The accumulator generalization4 permits the use
of a single feature-gathering function for two ac-
cumulator objects: the first, used during decoding,
maintains only a weighted sum, and the second,

4Due to Kenneth Heafield.

used (if needed) during k-best extraction, holds
onto the entire sparse feature vector.

For tuning large sets of features, Joshua sup-
ports both PRO (Hopkins and May, 2011), an in-
house version introduced with Joshua 4.0, and k-
best batch MIRA (Cherry and Foster, 2012), im-
plemented via calls to code provided by Moses.

3.2 Performance improvements

We introduced many performance improvements,
replacing code designed to get the job done under
research timeline constraints with more efficient
alternatives, including smarter handling of locking
among threads, more efficient (non string-based)
computation of dynamic programming state, and
replacement of fixed class-based array structures
with fixed-size literals.

We used the following experimental setup to
compare Joshua 4.0 and 5.0: We extracted a large
German-English grammar from all sentences with
no more than 50 words per side from Europarl v.7
(Koehn, 2005), News Commentary, and the Com-
mon Crawl corpora using Thrax default settings.
After filtering against our test set (newstest2012),
this grammar contained 70 million rules. We then
trained three language models on (1) the target
side of our grammar training data, (2) English
Gigaword, and (3) the monolingual English data
released for WMT13. We tuned a system using
kbMIRA and decoded using KenLM (Heafield,
2011). Decoding was performed on 64-core 2.1
GHz AMD Opteron processors with 256 GB of
available memory.

Figure 1 plots the end-to-end runtime5 as a
function of the number of threads. Each point in
the graph is the minimum of at least fifteen runs
computed at different times over a period of a few
days. The main point of comparison, between
Joshua 4.0 and 5.0, shows that the current version
is up to 500% faster than it was last year, espe-
cially in multithreaded situations.

For further comparison, we took these models,
converted them to hierarchical Moses format, and
then decoded with the latest version.6 We com-
piled Moses with the recommended optimization
settings7 and used the in-memory (SCFG) gram-

5i.e., including model loading time and grammar sorting
6The latest version available on Github as of June 7, 2013
7With tcmalloc and the following compile flags:

--max-factors=1 --kenlm-max-order=5
debug-symbols=off
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Figure 1: End-to-end runtime as a function of the
number of threads. Each data point is the mini-
mum of at least fifteen different runs.
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Figure 2: Decoding time alone.

mar format. BLEU scores were similar.8 In this
end-to-end setting, Joshua is about 200% faster
than Moses at high thread counts (Figure 1).

Figure 2 furthers the Moses and Joshua com-
parison by plotting only decoding time (subtract-
ing out model loading and sorting times). Moses’
decoding speed is 2–3 times faster than Joshua’s,
suggesting that the end-to-end gains in Figure 1
are due to more efficient grammar loading.

3.3 Thrax 2.0
The Thrax module of our toolkit has undergone
a similar overhaul. The rule extraction code was

822.88 (Moses), 22.99 (Joshua 4), and 23.23 (Joshua 5).
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Figure 3: Here, position-aware lexical and part-of-
speech n-gram features, labeled dependency links,
and features reflecting the phrase’s CCG-style la-
bel NP/NN are included in the context vector.

rewritten to be easier to understand and extend, al-
lowing, for instance, for easy inclusion of alterna-
tive nonterminal labeling strategies.

We optimized the data representation used for
the underlying map-reduce framework towards
greater compactness and speed, resulting in a
300% increase in extraction speed and an equiv-
alent reduction in disk I/O (Table 1). These
gains enable us to extract a syntactically labeled
German-English SAMT-style translation grammar
from a bitext of over 4 million sentence pairs in
just over three hours. Furthermore, Thrax 2.0 is
capable of scaling to very large data sets, like
the composite bitext used in the extraction of the
paraphrase collection PPDB (Ganitkevitch et al.,
2013), which counted 100 million sentence pairs
and over 2 billion words on the English side.

Furthermore, Thrax 2.0 contains a module fo-
cused on the extraction of compact distributional
signatures over large datasets. This distribu-
tional mode collects contextual features for n-
gram phrases, such as words occurring in a win-
dow around the phrase, as well as dependency-
based and syntactic features. Figure 3 illustrates
the feature space. We then compute a bit signature
from the resulting feature vector via a randomized
locality-sensitive hashing projection. This yields a
compact representation of a phrase’s typical con-
text. To perform this projection Thrax relies on
the Jerboa toolkit (Van Durme, 2012). As part of
the PPDB effort, Thrax has been used to extract
rich distributional signatures for 175 million 1-
to-4-gram phrases from the Annotated Gigaword
corpus (Napoles et al., 2012), a parsed and pro-
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Cs-En Fr-En De-En Es-En
Rules 112M 357M 202M 380M

Space Time Space Time Space Time Space Time
Joshua 4.0 120GB 112 min 364GB 369 min 211GB 203 min 413GB 397 min
Joshua 5.0 31GB 25 min 101GB 81 min 56GB 44 min 108GB 84 min
Difference -74.1% -77.7% -72.3% -78.0% -73.5% -78.3% -73.8% -78.8%

Table 1: Comparing Hadoop’s intermediate disk space use and extraction time on a selection of Europarl
v.7 Hiero grammar extractions. Disk space was measured at its maximum, at the input of Thrax’s final
grammar aggregation stage. Runtime was measured on our Hadoop cluster with a capacity of 52 mappers
and 26 reducers. On average Thrax 2.0, bundled with Joshua 5.0, is up to 300% faster and more compact.

cessed version of the English Gigaword (Graff et
al., 2003).

Thrax is distributed with Joshua and is also
available as a separate download.9

3.4 Other features
Joshua 5.0 also includes many features designed
to increase its usability. These include:

• A TCP/IP server architecture, designed to
handle multiple sets of translation requests
while ensuring fairness in thread assignment
both across and within these connections.

• Intelligent selection of translation and lan-
guage model training data using cross-
entropy difference to rank training candidates
(Moore and Lewis, 2010; Axelrod et al.,
2011) (described in detail in Orland (2013)).

• A bundler for easy packaging of trained mod-
els with all of its dependencies.

• A year’s worth of improvements to the
Joshua pipeline, including many new features
and supported options, and increased robust-
ness to error.

• Extended documentation.

4 WMT Submissions

We submitted a constrained entry for all tracks ex-
cept English-Czech (nine in total). Our systems
were constructed in a straightforward fashion and
without any language-specific adaptations using
the Joshua pipeline. For each language pair, we
trained a Hiero system on all sentences with no
more than fifty words per side in the Europarl,
News Commentary, and Common Crawl corpora.

9github.com/joshua-decoder/thrax

We built two interpolated Kneser-Ney language
models: one from the monolingual News Crawl
corpora (2007–2012), and another from the tar-
get side of the training data. For systems translat-
ing into English, we added a third language model
built on Gigaword. Language models were com-
bined linearly into a single language model using
interpolation weights from the tuning data (new-
stest2011). We tuned our systems with kbMIRA.
For truecasing, we used a monolingual translation
system built on the training data, and finally deto-
kenized with simple heuristics.

5 Summary

The 5.0 release of Joshua is the result of a signif-
icant year-long research, engineering, and usabil-
ity effort that we hope will be of service to the
research community. User-friendly packages of
Joshua are available from joshua-decoder.
org, while developers are encouraged to partic-
ipate via github.com/joshua-decoder/
joshua. Mailing lists, linked from the main
Joshua page, are available for both.
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