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Abstract

A file synchronizer is a tool that reconciles disconnected modifications to a replicated directory structure.

Trustworthy synchronizers are difficult to build, since they must deal correctly with both the semantic

complexities of file systems and the unpredictable failure modes arising from distributed operation. On

the other hand, synchronizers are often packaged as stand-alone, user-level utilities, whose intended

behavior is relatively easy to isolate from the other functions of the system. This combination of subtlety

and isolability makes file synchronizers attractive candidates for precise mathematical specification.

We present here a detailed specification of a particular file synchronizer called Unison, sketch an

idealized reference implementation of our specification, and discuss the relation between our idealized

implementation and the actual code base.
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1 Introduction

The gradual shift from many users per computer to many computers per user has been accompanied by a
significant increase in replication of important data. Replicating data ensures its availability during periods
of disconnected operation, reduces latency during connected operation, and helps protect against loss due
to system failures or user errors.

With this increase in replication comes, inevitably, the problem of how to propagate updates between
replicas [4]. In tightly coupled systems, this issue can be addressed by conservative schemes that preserve
“single-replica semantics.” However, in systems whose parts must continue to operate when disconnected
from each other, designers must often rely on optimistic strategies to achieve acceptable performance and
availability. These schemes allow concurrent updates to replicated data that are later reconciled by automat-
ically propagating non-conflicting changes to all replicas and detecting (and somehow resolving) conflicting
changes.

The tools and system components that perform this sort of reconciliation, generically called synchroniza-
tion (or reconciliation) technologies, come in many forms: distributed filesystems, operating systems, and
databases, middleware layers, PDA hotsync managers, laptop synchronizers, etc. Our focus here is on the
subcategory of file synchronizers: lightweight, user-level tools whose job is to maintain consistency between
replicated directory structures. File synchronizers are similar in many ways to their big brothers, distributed
filesystems, but the fact that they are user-level programs means that they run with no special access to
operating system structures and that they are generally invoked explicitly by users, rather than working
transparently in the background.

Engineering a file synchronizer is a challenging task. One reason for this is that a synchronizer must
deal with all the semantic complexities and low-level quirks of real-world filesystems. Another is that file
synchronization is an inherently distributed task, demanding robust operation in the face of a range of
possible host and network failures. Finally, correctness is a critical issue, since misbehavior can corrupt
arbitrary user data.

We have designed and implemented a file synchronizer called Unison.1 From modest beginnings in the
mid-90s, Unison has grown into a mature tool with a sizeable (tens of thousands) user community and high
ambitions for portability, robustness, and smooth operation across different OS and filesystem architectures.
An unusual feature of Unison’s history is that the engineering of the system has proceeded in parallel with
a serious effort to specify its behavior mathematically.

The main contribution of this paper is a simple, precise specification of Unison, phrased in terms that both
implementors and users can understand. The core of this specification is based on an earlier specification
by Balasubramaniam and Pierce [1], but extends and generalizes it in several respects, discussed in detail in
Section 2. Our second contribution is a careful discussion of the “modeling gap” between our specification
and reference implementation, on the one hand, and the actual Unison code base, on the other. Such gaps
are a fact of life in specifications of full-blown systems programs, which are generally too complex and messy
to formalize in full detail. They do not render the specification or reference implementation meaningless, but
they do imply that the formal artifacts must be supplemented with significant engineering insight if they are
to increase confidence in the actual code. We address these issues in Section 8. Our final contribution is a
reference implementation, illustrating, in a few hundred lines of code, the main data and control structures
found in our full-scale implementation. The complete reference implementation is presented in Appendix A.
We have also carried out a formalized, machine-checked proof (using the Coq proof assistant) that the
reference implementation satisfies the specification; we describe the outline of this proof.

We survey related work in Section 2. Sections 3 to 6 develop the core specification and its properties.
Section 7 sketches the reference implementation and its proof of correctness, and Section 8 discusses the
“modeling gap” between it and the real implementation. Section 9 shows how the basic model can be
extended to handle file meta-data. Section 10 describes how the reference implementation is extended to
deal with the possibility of failures during synchronization. Section 11 describes ongoing and future work.
Appendix A presents the code for the reference implementation.

1http://www.cis.upenn.edu/~bcpierce/unison.
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2 Related Work

At the implementation level, a large body of research on optimistic concurrency control in distributed
databases, filesystems, and operating systems is related to our work [3, 4, 28, 14, 8, 5, 25, 15, 19, 21, 29, 13, 26,
etc.]. The overall goals of all these systems (especially the distributed filesystems) are similar to those of
Unison. The main differences are that the synchronization operations are intended to be transparent to the
user (they are built into the OS rather than being packaged as user-level tools), and that most of them
adopt a operation-based approach in which the synchronizer can see a trace of all filesystem activities, not
just the final state at the moment of synchronization. Rumor [24] and Reconcile [9], on the other hand,
are user-level synchronizers and share our static approach. Both of these systems go further than Unison in
providing multi-replica synchronization, while Unison works with just two replicas; however, neither comes
with a precise specification of its behavior. The overall design space of synchronization techniques (with
emphasis on operation-based approaches) is discussed in an excellent survey by Saito and Shapiro [27].

At the level of specifications—our main focus here—previous work on synchronization is sparser. An
early specification of a file synchronizer was reported by Balasubramaniam and Pierce [1]. This specification
was later reformulated in an elegant algebraic style by Ramsey and Csirmaz [23]. The present paper extends
and generalizes these earlier specifications in several respects. First, it presents a unified, “end to end”
specification of the synchronizer’s behavior from the user’s point of view. In [1], the two major phases of
synchronization—update detection and reconciliation—were specified separately, connected only by a notion
of “dirty predicates”; this made the possible behaviors of the synchronizer difficult to calculate from the
specification. Second, the present specification deals explicitly with the possibility of system failure during
synchronization, through the notion of maximality (Section 5). The earlier specification simply gave the
synchronizer a nondeterministic choice between a range of outcomes. Third, the present specification is
based on a simpler and more abstract data structure (the abstract filesystems of Section 4). This enables
us to present a simple specification of the synchronizer’s core behavior (Section 5) and a more refined
specification dealing with file metadata (Section 9) in a common notation framework. Finally, the reference
implementation, the machine-checked proof of its correctness, and the discussion of the “modeling gap”
between it and the actual Unison codebase are new.

Specification also plays a central role in the IceCube project at Microsoft Research [29, 13]. IceCube
itself is a more ambitious effort than Unison, aiming not just to synchronize filesystems but to construct
a “reconciliation middleware” platform that can be used by arbitrary (synchronization-aware) application
programs. Its specification is parameterized by a collection of application actions with accompanying notions
of reorderability and conflict. A major difference from our work, discussed further in the next section, is
that IceCube is operation-based. Another operation-based reconciler, implemented by Molli and his co-
workers [17, 10, 18], uses the idea of operation transformation, in which an operation that was only performed
by the user on one of the replicas is propagated to the other by calculating an appropriately modified version
taking into account the operations applied in the other replica.

The session guarantees [31] developed in the context of the Bayou replicated storage system [5, 32, 20, 6]
are superficially similar to our “synchronization laws” in Section 5, but different in detail: rather than
specifying the precise behavior of the synchronization operation, they take the whole replicated storage
system as a black box and provide a layer on top of it that presents a more manageable overall semantics
for application writers. A session in their sense is an abstraction for a sequence of read and write operations
performed during the execution of an application. The idea of the guarantees (“read your writes,” “monotonic
reads,” “writes follow reads,” and “monotonic writes”) is to present applications with a view of the database
that is consistent with their own actions, even if they read and write from several, potentially inconsistent
servers. The results of operations performed in a session should be consistent with the model of a single
centralized server being read and updated concurrently by multiple clients.

A different area of specification work is the SyncML standard [30], being proposed by an industrial
consortium of computer and PDA manufacturers (including Panasonic, Nokia, Eriksson, Starfish, Motorola,
Palm, IBM, Lotus, and Psion). SyncML is a protocol specification rather than a system specification: it is
mainly concerned with making sure that the devices engaging in a synchronization operation are speaking
the same language, rather than with constraining the overall outcome of the operation. Another major
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difference is that SyncML deals only with flat record structures (mappings from atomic record-identifiers
to records of simple data). Multiple data formats on different devices (related to our cross-platform goals)
are supported, but only via application-specific mappings that are regarded as outside the purview of the
specification.

3 Design Choices

Probably the most significant choice in Unison’s design was making it a user-level tool, rather than building it
into (or coupling it closely with) an operating system. Several factors motivated this choice. First, user-level
synchronizers are easier to build and deploy than the synchronization components of distributed filesystems,
since they stand above the rest of the filesystem and interact with it through the same APIs as other user
programs; their relative isolation from other system components also eases the specification task. Second,
user-level tools are better suited to the heterogeneous settings that we wanted to address: building an OS-
level cross-platform synchronizer involves extending the kernels of at least two operating systems. Third,
user-level synchronizers are an interesting subject for research: they are a very common category of tools in
the real world, but one that has so far received little direct attention in the literature on distributed systems
or formal specifications.

The choice to consider synchronizers as user-level programs imposes a very important constraint on their
behavior. It is not generally possible (at least, in any portable fashion) for user programs to get access to
a log or trace of updates to the filesystem. Hence, when the synchronizer runs, the only information it has
available is the current contents of the replicas, plus whatever information it may have saved at the end
of its last run. (Every user-level synchronizer maintains some record of the last synchronized state of the
replicas, to avoid ambiguities between a creation in one replica and a deletion in the other.) This leads
to a view of the synchronization task as being a matter of reconciling or merging the current states of the
replicas. Operating-system-level synchronizers, by contrast, are often operation-based, leading to a view
of synchronization as a question of merging the traces of actions on the different replicas. These different
perspectives can lead to different conclusions about how synchronization should behave. For example, in the
IceCube framework [29, 13], synchronization is defined as an operation on pairs of traces which must produce
a single new trace incorporating as many actions as possible from the two input traces. That is, in IceCube,
synchronization will always put the two replicas into the same state (i.e., the one resulting from applying this
merged trace to their last common state), but some user updates may be undone in the process (when the
two traces are partly incompatible). Unison, on the other hand, focuses on trying to reconcile states rather
than traces; this leads to a different compromise, where we take our primary responsibility to be protecting
user changes from being overwritten or “rewound” by the synchronizer, at the cost of sometimes leaving the
replicas in different states after synchronization.

Having adopted a static view of the synchronization task, we can simplify the specification by taking
a static view of filesystems as well. We represent filesystems as labeled trees, with internal nodes being
directories, leaves being files, and labels being filenames. We then view a synchronizer as a simple function
taking trees (representing the current states of the replicas) as inputs and producing trees (the synchronized
replicas) as outputs. Of course, this view is an abstraction of reality, where synchronizers run with live
filesystems that may be modified concurrently by other processes. To validate the abstraction, some work is
required at the level of the implementation. This point is discussed further in Section 8.

Another issue concerns the treatment of the user interface. Like many file synchronizers, Unison provides
a user interface that allows the user to examine and override the reconciler’s recommendations before the
replicas are changed. Our specification simply ignores the user interface—i.e., it assumes that the synchro-
nizer is being run in “batch mode,” where non-conflicting changes are automatically propagated and no
action is taken for conflicting changes. In essence, we consider the user interface to be a completely separate
tool that just happens to be compiled into the same binary as the core synchronizer and, for convenience,
loosely integrated into its operation. Besides simplifying the specification, this view has a salutary effect on
the code base, since it leads to an architecture where the complexities of the user interface code are kept
rigorously separate from the complexities of the synchronization logic.
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A final limitation is that our specification and reference implementation, like Unison itself, address only
the case where exactly two replicas are being synchronized. The extension to multi-replica synchronization
is discussed in Section 11.

4 Basic Definitions

To speak rigorously about synchronization, we need precise notations for filesystems and operations on them.
We give each filesystem node a sort, writing S for the set of all sorts. The core definitions and correctness

conditions make no assumptions about S; this abstract treatment helps keep things simple and facilitates
a uniform treatment of file contents and metadata. For a basic synchronizer, we can take the sorts to be
just “directory,” written dir, and “file with contents c,” written file(c). When we come to synchronizing
filesystem metadata in Section 9, we will add sorts representing permission bits, modification times, etc.,
and refine atomic files into “pseudo-directories” with nodes of these new sorts as children.

Next, we assume given a set N of abstract filenames (or just names). Intuitively, these names can be
thought of as ordinary filenames, but in Section 9 we will enrich N with special names (perms, modtime,
etc.) for the children of the pseudo-directories representing files.

We use an abstract definition of filesystems that can be instantiated to both the simple and the more
refined variants needed below simply by changing the sets S and N . An abstract filesystem (or just filesystem)
is an unordered tree whose nodes are labeled with sorts and whose edges are labeled with names. More
formally, the set F of filesystems is the smallest set such that (1) ⊥ ∈ F , and (2) node(s, chld) ∈ F for every
s ∈ S and chld ∈ N → F . (Note that we take the children of a directory to be a total function from names to
filesystems and extend filesystems with an “absent” element ⊥. We could, equivalently, omit ⊥ and take chld
to be a partial function. The present formulation streamlines the development below by allowing creation,
contents change, and deletion to be treated uniformly.) The variables o, a and b range over filesystems.

It is often convenient to talk about the contents of a filesystem at a path. Formally, a path is just a
sequence of names. We write • for the empty path and l/p for the path formed by prepending the name l
to p. We write f@p for the sub-filesystem of f rooted at p, defined as follows:

f @ • = f
node(s, chld) @ (l/p) = chld(l) @ p
f @ p = ⊥ otherwise.

We will need to make two kinds of comparisons between filesystems. First, we say that filesystems f
and g have the same root sort, written f ∼ g, if f and g are both ⊥ or else if f = node(s, chldf ) and
g = node(s, chldg) for the same sort s. Second, we write f = g to mean that filesystems f and g are
structurally equal in the standard sense—i.e., ⊥ = ⊥ and, if chldf (l) = chldg(l) for all names l, we have
node(s, chldf ) = node(s, chldg).

5 Core Specification

As we discussed in Section 3, our specification is phrased in completely static terms: filesystems are just
trees, and the synchronizer is viewed as a function that maps pairs of trees to pairs of trees—i.e., we focus
our attention on the states of the replicas before and after synchronization, ignoring the actual sequences
of low-level filesystem operations that take them from one to the other (and, in the case of synchronization
between remote hosts, the way the commands for performing these operations are sent over the network).

To make this picture precise, we need two refinements. First, we must deal with create/delete ambiguities.
If the only inputs to the synchronizer are the current states of the two replicas, then, for example, there is
no way for it to tell, given the following replicas, whether a new file f (with contents “Ag”) has been created
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in replica a or an existing file f has been deleted from replica b.
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To know which change to propagate, the synchronizer needs to know the common original state from which
the two replicas diverged. For example, if it knows the original state was
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then it can see that b is the one that changed. For this reason, all state-based synchronizers store some kind
of archive between synchronizations, describing the last synchronized state of the replicas; this archive is
provided as an additional input to the synchronizer.2 The precise information stored in the archive varies
from one synchronizer to another, but it is essentially just another filesystem.

The archive is not only useful for resolving create/delete ambiguities. It also gives us a clean definition of
a “change” to a filesystem: we simply say that a path p has changed in a replica a (compared to an archive
o) if ¬(a@p ∼ o@p)—i.e., if the root of the subtree of a at p is not labeled with the same sort as the root of
the subtree of o at p (or if one is ⊥ and the other is not).

The second refinement follows from the fact that synchronizers may sometimes fail—and we want the
specification to apply even in the case of failure. (We obviously cannot demand that synchronization should
never fail, since we are talking about a distributed program. Just as obviously, we do not want to allow an
arbitrary outcome if something fails in mid-synchronization.) Since failures may prevent the synchronizer
from completing its work, a given set of inputs may in general lead to many possible outputs—i.e., we should
regard the synchronizer as a relation, rather than a function, between its inputs and its outputs.

Formally, our specification is phrased as a set of properties that must be satisfied by every run of a correct
synchronizer, where a run is a five-tuple (o, a, b, a′, b′) of filesystems, representing an original synchronized
state (o), the states of the two replicas just before synchronization (a, b), and the states of the replicas
after synchronization (a′, b′). For brevity, we first define each property “locally”—i.e., we state what it
means for the property to hold just between the root nodes of two given filesystems—and then demand that
the property hold locally for all sub-filesystems; this avoids cluttering up the properties themselves with
quantifications over all paths.

Propagation of Changes

The first property a correct synchronizer must satisfy is that it must never overwrite a change made by the
user. This requirement can be formalized as follows:

A run (o, a, b, a′, b′) is said to preserve user changes (locally) if

¬(o ∼ a) =⇒ a′ ∼ a
¬(o ∼ b) =⇒ b′ ∼ b.

2Strictly speaking, it is both an input and an output, but for purposes of specification we can elide the latter, since the new
archive can be calculated unambiguously from the new states of the two replicas. We discuss this point in more detail at the
end of this section.
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That is, if o and a have different sorts at the root (i.e., the user has changed the a filesystem at the root
since the last synchronization), then the synchronizer should leave the root sort unchanged in its result a′;
and similarly for the other replica b.

For example, if the sort of o is file(“Ag′′) and that of a is dir, then the sort of the post-synchronization
replica a′ must also be dir. On the other hand, if o and a both have sort file(“Ag′′), then a′ may have a
different sort such as file(“Cl′′).3

The next condition states that a correct synchronizer should change the replicas only by copying changes
made by the user—it must never “make anything up.”

A run (o, a, b, a′, b′) is said to propagate only user changes (locally) if

¬(a ∼ a′) =⇒ b ∼ a′

¬(b ∼ b′) =⇒ a ∼ b′.

That is, if the synchronizer changes the sort at the root of one of the filesystems (e.g., a′ differs from a),
then the only value it may safely change it to is the sort from the root of the other filesystem (a′ should
agree with the other replica, b).

For example, if the sort of a is file(“Ag′′) and that of a′ is dir, then the other original replica, b, must
also have sort dir.

Treatment of Conflicts

The most delicate point in Unison’s specification is the definition of conflicts. To begin with, we naturally
expect that changing a file node in two different ways should result in a conflict,
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as should deleting a file in one replica and changing its contents in the other,
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3This is a reassuring guarantee to be able to make to users; interestingly, though, there are synchronizers (e.g., the one
built into the Microsoft Windows 2000 file sharing service) that do not obey this constraint—they simply overwrite the version
with the earlier timestamp. This choice reflects an assumption that it is better to do something than nothing when faced with
a conflict; this assumption is justified by the scale on which these systems are intended to be deployed (tens of thousands of
replicas, rather than just two). If a file is changed simultaneously in Calcutta and San Francisco and the incompatible changes
meet on a machine in Johannesburg at 2AM, to whom should the conflict be reported?
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or creating the same new file with different contents.
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The synchronizer’s behavior in these cases is already completely determined by the first condition above:
since both replicas have been changed by the user, neither can be changed by the synchronizer. However,
because filesystems are tree-structured, there are some other cases to consider. For example, suppose that
in one replica we change the contents of a file d/f , while in the other we delete the file’s parent directory d.
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Different synchronizers treat such situations in a variety of ways [1]. Unison adopts a conservative approach,
defining this case as a conflict and refusing to take any action without explicit instructions from the user.

This leads us to the following definition of conflict.

We say that o, a, and b conflict, written conflict(o, a, b), if

¬(a ∼ b) ∧ ¬(o = a) ∧ ¬(o = b).

That is, two filesystems conflict if their roots are labeled with different sorts (e.g., one is dir and one is
⊥, as in the example above) and if both replicas has been changed anywhere (e.g., at the path d/f in the
example). Note the use of both kinds of “equality” in this definition: root-label equality between a and b
and tree equality between o and a and between o and b.

The third safety condition is now straightforward.

A run (o, a, b, a′, b′) is said to stop at conflicts (locally) if

conflict(o, a, b) =⇒ (a′ = a) ∧ (b′ = b).
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That is, if a conflict is recognized at a path p, then the synchronizer is not allowed to change either replica
anywhere below p. (In the example above, a conflict occurs at the path d, and the synchronizer cannot do
anything at all. Note that, if we omitted the third condition, the other two conditions would prevent the
synchronizer from doing anything at the paths d or d/f , but would permit it to delete a sibling file d/g from
replica a. Some synchronizers actually exhibit this behavior, but we find it counterintuitive and feel that
just signalling a conflict is safer.)

Safety

We extend the local versions of the above properties to whole filesystems by saying that a synchronizer run
(o, a, b, a′, b′) has a given property globally if, for every path p, the run (o@p, a@p, b@p, a′

@p, b′@p) has the
property locally. (Note that we need to consider paths that may not be valid in some of the filesystems
involved. For example, if o is ⊥ and a is not, we want to prohibit any modification of a by the synchronizer.
It is technically convenient simply to quantify over all paths.)

Now we can state the “do no harm” property that we want a synchronizer to obey.

5.1 Definition: A run (o, a, b, a′, b′) is said to be safe, written safe(o, a, b, a′, b′), if it satisfies the above
properties (i.e., it preserves user changes, propagates only user changes, and stops at conflicts) globally.

Maximality

The three safety conditions give a clear specification of what a synchronizer may not do, but they do not
actually commit it to doing anything at all: the identity function is a safe synchronizer! Of course, we want
synchronizer runs not only to do no harm, but also—when no failures occur—to do as much useful work as
possible. This intention is captured by the notion of maximality.

We say that a run (o, a, b, a′, b′) is maximal if it is safe and if it makes a′ and b′ as similar as
possible—that is,

for all a′′ and b′′ with safe(o, a, b, a′′, b′′),
for all p,

a′′
@p ∼ b′′@p =⇒ a′

@p ∼ b′@p.

If there is any safe run that leaves the sorts at path p equal, then a maximal run must leave them equal. In
other words, a maximal run is one that propagates all non-conflicting changes.

Iterated Synchronization

Since we intend to run the synchronizer many times (interleaved with changes to the replicas), the archive is
actually both an input and an output of each run: the “original state” for the next run of the synchronizer
is calculated from the final state of the present run.

The calculation of the new archive would be trivial if it were not for the possibility of conflicts. If the
synchronization is completely successful—i.e., if a′ = b′—then we simply take this filesystem as the new
archive. However, if a′ 6= b′—i.e., if the present run encountered one or more conflicts—then we need to
update the “last synchronized state” of just those files for which synchronization actually succeeded, while
retaining the previous “last synchronized state” for paths that were left unequal.

More precisely, for each path where the new replicas a′ and b′ agree, we take their common value as the
contents of this path in the archive; where they do not agree, copy the contents from the input archive o.
Formally, this is expressed by taking a run to be a six-tuple of filesystems (o, a, b, a′, b′, o′). We extend the
conditions above to the new type of runs in a trivial way (ignoring o′), and then add one final condition
specifying how o′ is calculated from a′, b′, and o.
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A run (o, a, b, a′, b′, o′) returns a correct archive (locally) if

a′ ∼ b′ =⇒ o′ ∼ a′

¬(a′ ∼ b′) =⇒ o′ ∼ o.

For brevity in the rest of the paper, we will ignore this refinement and revert to the old five-place notion of
runs.

6 Properties of the Specification

Before going any further, it is worthwhile to state a few properties of the specification, both as sanity checks
on the definition and to deepen our understanding of its implications.

6.1 Theorem [Laziness is safe]: For every o, a, and b, the run (o, a, b, a, b) is safe.

Proof: Observe that, for all p, the run (o@p, a@p, o@p, a@p, a@p) satisfies all three local properties (this is
easily verified in each case). �

6.2 Theorem [Mirroring is a special case]: For every o and a, the run (o, a, o, a, a) is maximal.

Proof: Clearly, the run (o, a, o, a, a) is maximal if it is safe. To check safety, proceed as in the previous
proof. �

6.3 Theorem [Maximal runs are unique]: For every o, a, and b, there are unique a′ and b′ such that
(o, a, b, a′, b′) is maximal.

Proof sketch: Suppose that we have two maximal runs, (o, a, b, a′, b′) and (o, a, b, a′′, b′′). Using the defini-
tion of maximal runs (in particular, the three local safety properties), we argue, for each p, that a′

@p ∼ a′′
@p;

the symmetry of the definition gives us b′@p ∼ b′′@p. �

6.4 Theorem [Success in the absence of conflicts]: If, for every path p, we have ¬conflict(o@p, a@p, b@p),
then there exists a filesystem c such that the run (o, a, b, c, c) is maximal.

Proof: By induction on the size of a and b. If both a and b are ⊥, then we can take c = ⊥, as (o,⊥,⊥,⊥,⊥)
is maximal. Otherwise, we know that ¬conflict(o, a, b), that is, either o = a, o = b, or a ∼ b. In the first two
cases, we are done, as the run (o, o, b, b, b) and (o, a, o, a, a) are maximal. Otherwise, we apply the induction
hypothesis on all o@p, a@p and b@p where p is of the form l/•. Thus, there exists a function chld ∈ N → F
such that (o@p, a@p, b@p, chld(l), chld(l)) is maximal. Then we take c = node(s, chld) where s is the common
sort of a and b. It is easy to check that (o, a, b, c, c) is maximal. �

7 Reference Implementation

The specification described above provides a concise description of the intended behavior of a file synchro-
nizer. But how do we know that a particular synchronizer implementation, e.g., Unison, actually satisfies
the specification? For most of Unison’s lifetime, our best answer to this query was, “We don’t know; but the
implementors all understood the specification and tried hard to write code that would satisfy it.”4 However,
while writing this paper, we decided to try something a little more ambitious.

We extracted from the current Unison code base a reference implementation, keeping the essential control
and data structures while abstracting away from the low-level complexities of real filesystems and networks;
as in the specification, filesystems are represented as simple tree structures, while the network is ignored

4This is already a major improvement over “We didn’t have any precise specification in mind, but we thought hard while
coding and made decisions that seemed reasonable at the time”!
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completely—we assume that both filesystems and the archive are given as inputs to a top-level synchroniza-
tion function. We then proved that this implementation satisfies the specification.

The reference implementation is a straightforward—but, at about 450 lines of OCaml [16] code for the
complete version, nontrivial—functional program. Like Unison itself, it works in three phases: update
detection, reconciliation, and propagation of updates. For the sake of brevity, we present here a simplified
core of the actual reference implementation, omitting file and directory metadata, symbolic links, and the
modeling of failures and concurrent filesystem updates during synchronization. The extensions needed to
handle metadata and failures are outlined in Sections 9 and 10.

Update detection: The function buildUpdates compares an archive o with a filesystem a. It returns a
data structure uia describing the differences between the archive and the filesystem. This phase is performed
separately for the two replicas. This separation is important because, in practice, the two replicas are often
separated by a slow network, and we need to avoid transmitting the whole contents of either replica over the
network. We achieve this by storing a copy of the archive on each host, doing update detection locally, and
sending just the description of the changes.

Reconciliation: The function reconcile uses the update information computed in the previous step
to build a set of transport instructions, each describing a path in one replica that is to be replaced by the
corresponding subtree from the other replica.

Propagation: The function propagate actually performs the actions, taking the original filesystems a
and b and the transport instructions act and returning the updated filesystems a′ and b′. The reason for
performing reconciliation and propagation in two separate steps is that the full version of Unison actually
inserts a user-interaction phase between the two, displaying the transport instructions and giving the user the
opportunity to verify—and, if desired, override—Unison’s recommendations before the changes are actually
propagated.

These pieces are combined as follows to give the top-level synchronization function.

let sync o a b =

let uia = buildUpdates o a in

let uib = buildUpdates o b in

let act = reconcile uia uib in

let (a’,b’) = propagate o a b act in

(a’,b’)

To give a more detailed picture of the job performed by each phase, it is useful to look at the data
structures that flow between phases. (Indeed, these structures are very similar to those used in the actual
Unison codebase.)

The inputs to the update detection phase of synchronization are the current replicas and the archive.
All of these are filesystems, defined as follows. First, we define the abbreviations name and contents (both
represented as strings) for the types of path names and file contents.

type name = string

type contents = string

Now, a filesystem is either a directory (represented by the tag Dir plus a list of pairs of names and sub-
filesystems), a file (represented by File plus a string), or nothing (represented by Bot). The Bot case is
used to represent the complete absence of information—e.g., a missing archive or a completely unpopulated
replica.

type fs =

Dir of dContents

| File of contents

| Bot

and dContents = (name * fs) list

10



The buildUpdates function takes two filesystems—an archive and one of the replicas—and returns an
updateItem representing the difference between the two. To define this type, we first define an enumerated
type prevState describing what the filesystem previously contained at a given location.

type prevState =

DIR

| FILE

| ABSENT

An updateItem has a tree structure corresponding to the modified part of the replica. Each subtree is either
Same when the corresponding part of the filesystem are identical, Updated with an updateContent describing
the difference between the two filesystems and a prevState describing the contents of the first filesystem,
or Error, signalling that a non-fatal error happened during update detection (in the real implementation,
this can be for instance an unreadable file). An updateContent may have different forms, depending on the
new contents of the replica at this point. In case of a directory (UDir), it contains a list of pairs of name and
updateItem corresponding to its children. In case of a file (UFile), it gives the new contents.

type updateItem =

Same

| Updated of updateContent * prevState

| Error

and updateContent =

UDir of updateChildren

| UFile of contents

| UAbsent

and updateChildren = (name * updateItem) list

The reconcile function takes two updateItems (one for each replica) and returns a transportInstrTree
representing the actions that need to be performed to bring the two replicas into agreement (or as close
as possible to full agreement). To define this type, we first define an enumerated type describing in what
direction the propagation should take place. The directions Conflict and Equal correspond to a null action,
but provide some information about the reason why no action should take place, which can be provided to
the user.

type direction =

Conflict

| LeftToRight

| RightToLeft

| Equal

A transportInstrTree has a tree structure, indicating what location in the filesystem need to be modified.
A transport instruction (of type transportInstr) is associated to each node of the tree. This can be an
actual instruction Instr, a dummy instruction NoInstr in case nothing needs to be done at this location, or
a dummy instruction Problem indicating that the synchronizer does not know what should be done at this
location (because an error occured during update detection). Two update items (one for each replica) and
a direction are associated to each instruction. The propagation agent uses one to check that the destination
has not been modified since update detection and the other to actually propagate the changes.

type transportInstr =

Instr of updateItem * updateItem * direction

| NoInstr

| Problem

type transportInstrTree =

Node of transportInstr * transportInstrList
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and transportInstrList =

(name * transportInstrTree) list

We now informally sketch the correctness proof. To state the correctness of the implementation, we must
first pick a particular instantiation of the definition of abstract filesystems—i.e., we must give the sets S of
sorts and N of labels—and provide an abstraction function mapping our concrete filesystems to abstract
ones.

For the bare-bones filesystems used by the present implementation, the only sorts we need are “directory,”
written dir, and “file with contents c,” written file(c).

S = {dir} ∪ {file(c) | c ∈ contents}

We take the set of labels (N ) to be exactly the set of concrete names (names).
Define the auxiliary function lookup(ch, n) to yield the concrete filesystem associated with n in the asso-

ciation list ch, if there is one, and Bot otherwise. The abstraction function ⇑ ∈ fs → F is now defined as
follows:

⇑(Bot) = ⊥
⇑(Dir(ch)) = node(dir, λn∈names. ⇑(lookup(ch, n))
⇑(File(c)) = node(file(c), λn∈names. ⊥).

We say that an updateItem accurately transforms a filesystem fs into a filesystem fs′ if its prevState

information is accurate and there is enough information to patch ⇑(fs) into ⇑(fs′).
Write t B t′ to mean “evaluation of t yields result t′.”

7.1 Lemma: If buildUpdates fs fs′ B ui, then ui accurately transforms fs into fs′.

Proof sketch: By induction on fs, with a case analysis on the corresponding nodes of fs and fs′. �

If f is an abstract filesystem and act is an action tree, then apply(Left, act, f) denotes the filesystem
obtained by applying the right-to-left updates described by act to f , while apply(Right, act, f) denotes the
filesystem obtained by applying the left-to-right updates described by act to f .

We say that a transportInstrTree is valid for filesystems o, a and b if each updateItem accurately
transforms o into the corresponding filesystem a or b.

7.2 Lemma: If reconcile uia uib B act, and if uia and uib accurately transform the filesystem o into
respectively a and b, then the run

(⇑(o), ⇑(a), ⇑(b),
apply(Left, act,⇑(o)), apply(Right, act,⇑(o)))

is maximal and act is valid for o, a, and b.

Proof sketch: By induction on uib. �

7.3 Lemma: If

propagate o a b act B (a′,b′),

where act is valid for o, a, and b and the run

(⇑(o), ⇑(a), ⇑(b),
apply(Left, act,⇑(o)), apply(Right, act,⇑(o)))

is maximal, then

(⇑(o), ⇑(a), ⇑(b), ⇑(a′), ⇑(b′))) is maximal.
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Proof sketch: By induction on act. �

7.4 Theorem: If sync o a b B (a′, b′), then (o, a, b, a′, b′) is maximal.

Proof: By composing the above lemmas. �

(The above sketch assumes that no errors occur during synchronization. We have actually proved a
stronger theorem for the full reference implementation, which also asserts that the run is safe even if some
errors occur during either update detection or transport.)

The connection between the reference implementation and the actual Unison codebase is informal: the
abstractions it embodies must be validated by means of engineering insight. However, the insight required is
mostly quite local (as we discuss in the next section), so that the verification step, though manual, is much
less demanding than checking that the full-blown Unison implementation meets its specification.

Moreover, once we believe the connection between the reference implementation and the real one, we can
proceed from there on in a completely formal—indeed, machine-checked—manner. To demonstrate this, we
have formalized the reference implementation as a set of inductive definitions in the language of the Coq
proof assistant [2] and showed that it satisfies all the conditions in Sections 5 and 9; we also formalized the
proofs of the properties of the specification in Section 6. This was a nontrivial but not oppressively difficult
exercise in formalization and proof-script development, requiring a few weeks of effort by an experienced Coq
“programmer.” Besides increasing our confidence in the Unison implementation, this formalization exercise
revealed a subtle bug in Unison’s treatment of failures that had not previously been noticed (in some cases,
a failure could be reported several times—not just for the file where it occurred, but also for some of the
directories containing this file). In general, we felt that the effort we put into this formalization exercise was
well repaid by its results.

8 The “Modeling Gap”

Fully specifying and verifying a real-world system program of Unison’s size and complexity—i.e., proving
that the actual codebase meets its specification—would be a superhuman task. (It would require, among
other things, precise specifications of the Posix filesystem and socket APIs and the GTK user interface
toolkit!) On the other hand, a program of Unison’s complexity would be difficult to get right without a
precise specification to guide the design. In building and rebuilding Unison over the years, we have tried to
steer a middle way—working seriously on some days of the week on mathematical specifications and abstract
reference implementations, writing code on other days, and living with the fact that there will always be a
gap between one activity and the other.

Perhaps the most obvious difference between the real and reference implementations is that the reference
implementation is a functional program—it takes the replicas and archive as arguments and returns new
versions as a result—while the real one is imperative, modifying the real filesystems in-place.

In one sense, this difference is purely stylistic. The reference implementation never actually exploits the
fact that, even after it “updates” a path in a filesystem, the old version of the filesystem is still available—i.e.,
filesystems are treated in a linear fashion—these “functional updates” might just as well be implemented as
real, in-place updates. Indeed, a compiler with a sophisticated type analyzer might literally do this.

However, the difference between the functional and imperative formulations is correlated with a more
problematic distinction: the reference implementation is written as if it “owns” the filesystems during syn-
chronization, while the real implementation runs with live filesystems, where actions by users and other
programs may modify the replicas while Unison is working.5

Unison addresses this discrepancy by noticing when concurrent modifications have taken place and sig-
naling failures on those paths. It looks at each path in a given replica just once during update detection,

5This actually happens quite a bit in practice, since people often use Unison to manage multi-gigabyte replicas, for which
update detection can take many minutes. Also, users often start Unison, leave it performing update detection, and then forget
about it and do something else for a while before telling it to go ahead and propagate its changes.
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extracts all the information it needs, and then never looks at the filesystem again until the moment when the
contents of that path are being propagated between replicas in the final phase of synchronization. At this
point, it double-checks, just before making any change to that path in a replica, that the contents of the path
(in both replicas) are still the same as when it detected updates. Note, though, that this double-check is not
completely reliable, since it is always possible that someone modifies the file just after the safety check but
before the change is propagated; this is the cost of building Unison as portable, user-level program. (Also,
note that this is not quite the same as taking a snapshot of the whole filesystem, since the update detection
process will look at different files at different times; this difference does not seem to be confusing to users,
though.)

Another related issue is that the real implementation operates on real file systems (using Posix system
calls, file descriptors, inodes, etc.), whereas the reference implementation regards filesystems as simple, math-
ematical tree structures, which it inspects and manipulates directly. Most of the time, this difference does
not cause serious confusion: in each place where the real implementation inspects or modifies a real filesys-
tem, we can check (locally) that what it is doing corresponds to the action of the idealized implementation
on its more abstract structure at the same point.

However, there are times when an operation that is easy to express in the reference implementation is very
hard or even impossible to implement in terms of the operations provided by mainstream operating systems.
For example, when Unison propagates a change to a file, it actually writes the new data into a temporary file
as it comes off the network and, when the whole file has arrived, uses the rename system call to move it into
place atomically. Unfortunately, this atomic rename only works under certain circumstances. On Windows
systems, the new name must not refer to anything at the moment when rename is called (otherwise rename

fails); on Unix, the new name may refer to an existing file (which is deleted as a side-effect of the rename), but
not an existing directory. So, in general, before the new version of the file can be moved into place, the old
file must be deleted or renamed to a backup version. If the host happens to crash between these two system
calls, the replica will be left with nothing at this path, violating the specification. (Obviously, we could do
better if we assumed a persistent storage substrate of the kind used to ensure durability of transactions in
databases. Unfortunately, because Unison is designed to run as an ordinary application program, it can be
“crashed” simply by killing its process, and there is no straightforward way to ensure that it will be executed
again soon enough to process its transaction log and take appropriate action before the user has had a chance
to observe the filesystem in its inconsistent state.)

A final difference between the reference implementation and the real one is that the reference implemen-
tation treats the archive as a full-blown filesystem, while the real implementation stores just a fingerprint of
each file’s contents. A consequence of the safety properties is that the contents of every file in a final filesys-
tem a′ or b′ comes from either of the initial filesystems a and b. So the synchronizer only needs the archive o
when checking for updates. This means that we do not actually need to keep the whole contents of o, as long
as we retain enough information to tell which files have changed, and we can do this by keeping cryptographic
fingerprints of the contents of each file, allowing us to detect modifications with high confidence.

9 Dealing with Metadata

As Unison matured and its user base grew, requests began to arrive for a variety of new features.6 A large
proportion of these had to do with handling various sorts of metadata—properties of files beyond just their
contents, such as permissions, user-ids, group-ids, and modification times, as well as more esoteric properties
such as the “spelling” of filenames on systems (such as Windows) where the capitalization of names is
insignificant when reading and writing files but significant when listing contents of directories.

6One positive effect of working on the specification in parallel with the implementation was that it slowed down the process
of engineering these features, making us reluctant to add a piece of functionality before we understood its effect on the
specification—i.e., how it would behave in all cases and its full interactions will existing features. This process exposes a
natural tension between users (who generally do not care at all how a given feature will behave in all cases, as long as it gives
them the behavior they want in some case that is stopping them from getting work done at the moment) and developers (who
have to deal with the long-term consequences of quick hacks).
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There are two obvious ways to think about the metadata associated with a file or directory: we can either
take metadata to be simply “part of the contents” of files, or we can consider metadata as separate and
independent from contents. These lead to different views of how a synchronizer should propagate changes—in
particular, it leads to different definitions of conflicts. If we take a file’s metadata to be part of its contents,
then, for example, changing a file’s first byte on one replica and making it world-writable on the other replica
should lead to a conflict—just as it would be a conflict if we changed a file’s first byte on one replica and
its second byte on the other. If we consider metadata as completely independent from contents, then in the
above scenario we would expect the synchronizer to propagate the contents change in one direction and the
permissions change in the other.

Unison actually chooses a middle way that, we feel, combines the virtues of these two extreme views,
keeping the program’s behavior easy to understand while avoiding some spurious conflicts. We regard a
file’s contents and its metadata as an atomic unit for purposes of propagating changes, but not for purposes
of defining conflicts. That is, we require that each file’s contents and all its metadata be equal, after
synchronization, to the starting state of one of the replicas; however, if a part of the metadata is modified in
an identical way in both replicas and the contents are modified just in one replica, no conflict is registered
and the synchronizer is allowed to propagate the contents update.

The specification from Section 5 is easily refined to allow this behavior. We define an atomicity predicate
atomic on sorts S. Atomicity is extended to filesystems by saying that f is atomic, written atomic(f), if
f = node(s, chld) and s is atomic. We now add one new constraint to the definition of safety.

A run (o, a, b, a′, b′) is said to respect atomicity (locally) if

atomic(a′) =⇒ (a′ = a) ∨ (a′ = b)
atomic(b′) =⇒ (b′ = b) ∨ (b′ = a).

Note that this property is always satisfied if the atomicity predicate is constantly false. So the original
specification is indeed a special case of the refined one.

We instantiate the refined specification by introducing a set properties of file/directory metadata. The
set S of sorts is defined as follows:

S = {dir, file}
∪ {filecontents(c) | c ∈ contents}
∪ {fprops(pr) | pr ∈ properties}
∪ {dprops(pr) | pr ∈ properties}

We define the predicate atomic by atomic(file) = true and atomic(s) = false for all other sorts s. (This
ensures that changes to the contents of a file and its associated meta-data will be treated atomically, while
changes to directory metadata will be treated independently of changes to the directory’s children.) Finally,
we define the set of names N as the set of filenames plus two special labels, contents and props:

N = names∪ {contents, props}.

This treatment of meta-data introduces one new issue into the modeling gap discussed in Section 8:
the specification and reference implementation assume that file metadata such as modification times and
permission bits are “semantically disjoint” from each other and from the file’s contents, but in real filesystems
this is sometimes not the case. Indeed, there are some cases where we cannot meet the specification at all
because of the special properties of metadata. For example, if Unison finds it needs to create a file in a read-
only directory (i.e., the directory on the other side was made writable, a file was created, and the directory
was made read-only again), then the only way we can create the file is to make the directory briefly writable
on this repository; if the program crashes just at this moment, the filesystem will be left in an incorrect state
(with the directory properties not corresponding to the starting properties from either replica). The current
version of Unison simply fails in this case (without making the directory writable on either side). Note that
this is a failure to satisfy the specification—the result is not maximal—but a benign one—the result is still
safe.
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10 Modeling Failure

We close by sketching a last refinement of the reference implementation: the modeling of various sorts of
failures during synchronization.

With all the possible sources of failure to which a synchronizer is subject (network problems, transient
filesystem problems, user interruptions, concurrent updates during synchronization, bugs, etc.), failures are
actually quite common in practice, and it is critical that a synchronizer behave safely and predictably when
they occur. The Unison implementation goes to considerable effort to avoid misbehaving in case of failures,
and we would like to be able to claim something about how well it succeeds. To this end, the full reference
implementation and its formalized proof incorporate a model of run-time failures.

In the real Unison implementation, we distinguish two categories of failures. A transient failure (unread-
able file, etc.) is local to one path and can be handled simply by skipping this path. Synchronization of other
paths can be continued safely. Fatal errors, on the other hand, are either unexpected failures (synchronizer
bugs, for instance) or disastrous conditions (user interruptions, permanent network problems, etc.). The
only option in such cases is to display a diagnostic message and exit (leaving the filesystem and archive in a
clean state!).

Our extension of the reference implementation models only transient errors, not fatal ones. It could be
extended to handle fatal errors too, at some cost in readability. We have not done so because, in practice,
fatal errors are simpler to think about. To protect against them, what we need to do is to make sure that,
at every moment during execution, the state of the replicas (and the on-disk archive) satisfies the safety
conditions in the specification (or that we have explicitly recorded the fact that we are briefly breaking
them, as described in Section 8). This property of the implementation actually follows from our modeling
of transient failures: at every moment, the state of the replicas must satisfy the safety conditions in the
specification, because it is possible that all subsequent update operations may encounter transient failures.
Transient errors, on the other hand, get incorporated into Unison’s data structures and must be dealt with
explicitly by “downstream” code.

The reference implementation is augmented to deal with failures by inserting explicit failure checks at
every point where some operation is performed that might (in the real implementation) actually fail. We
do not enforce the constraint that all such points are annotated with checks—this must be established by
(straightforward) inspection of the code of the reference implementation.7 Further details on the modeling
of failures can be found at the beginning of Appendix A.

11 Future Work

We have not discussed Unison’s cross-platform capabilities in this paper. In fact, a surprisingly large fraction
of the engineering work on the implementation has gone into the tricky problems of synchronizing filesystems
hosted on different operating systems—in particular, Posix and Win32 filesystems. We are experimenting
with extending the specifications presented here to this setting. Some discussion of the engineering issues
involved and how Unison addresses them can be found in [11]

Another important direction for further work is extending the specification ideas presented here to the
case of multi-replica synchronization. In principle, Unison can actually be used for this purpose: n replicas
can be brought into agreement by performing 2n − 3 pairwise syncs. But, in practice, this method tends
to become cumbersome for more than a small number of replicas. Moreover, the fact that Unison stores an
archive per pair of replicas can lead to spurious conflicts if replicas are modified before all of the pairwise
synchronizations have finished. Generalizing to multiple replicas thus demands a deeper re-examination of
the basics of the specification; in particular, the archive should be replaced by a notion of “last common state”

7It is tempting to try to enforce failure checking at all points where it is required. To do this, we might try replacing
the direct manipulation of the concrete tree datatype of filesystems by calls through an abstract “filesystem API” whose
implementation would incorporate the required failure checks. However, this would make the correctness proofs much more
complex. This is because it is only possible to write terminating functions in Coq. The termination of a function traversing a
filesystem recursively is obvious if the filesystem is a concrete inductive data structure, but becomes much harder to see if the
filesystem is treated abstractly.
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derived from the causal history of the whole system. This step appears straightforward in outline, but involves
some significant novelties compared to past work on causal histories and their realization in structures such
as vector clocks. In particular, standard treatments of causal history do not consider “agreement events”
where the synchronizer recognizes two equal replica states as synchronized, independent of their relation
to the previous synchronized state—i.e., causally independent states are always considered to conflict. The
consequences of adding such events to a standard account are not yet clear (mechanisms such as version
histories [26, 9] and hash histories [12] are related, but these seem have been studied so far mainly from the
perspective of algorithms for efficient implementation rather than of behavioral specifications).

A final direction concerns synchronization of structures other than filesystems. Our current project,
dubbed Harmony http://www.cis.upenn.edu/~bcpierce/harmony , aims to extend the intuitions devel-
oped in Unison to synchronization of arbitrary tree-structured data—presented, for example, as XML doc-
uments [7, 22].
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A Complete Reference Implementation

This appendix presents our reference synchronizer implementation in full, in the form of a complete, exe-
cutable Objective Caml program.

The actual, machine-checked reference implementation is a collection of inductive definitions in Coq. We
present it here in OCaml syntax, rather than Coq, as this is more likely to be familiar to readers. The
OCaml code shown here was obtained by an automatic translation from the Coq definitions, followed by a
little manual tidying for readability.

A.1 Modeling Failure: The Action Monad

As we described in Section 10, the reference implementation models transient failures such as file-read errors
by decorating each operation that might fail in the real implementation with a call to a “failure check”
function.

The whole synchronizer is parameterized on a function errors from time (represented as an integer
counter) to booleans.

errors : int -> bool

Checking whether an error occurs on a particular operation consists of applying the errors function to the
current time and increasing the time by one. We can then say that “an error occurred during synchronization”
if and only if the error function returns true for some time during synchronization.

Since the reference implementation is a functional program, the current time needs to be threaded through
all function calls and returns. The notational burden of this threading is mitigated by encapsulating time
within an abstract action type and reorganizing the code in a monadic style [33] so that time is passed along
implicitly and automatically incremented every time errors is called. Specifically, we encapsulate time in
an abstract action type and assume the existence of several functions that manipulate actions. First, we
assume an evaluation function eval that performs an action: it takes the action and the starting time of the
action and returns a pair containing the ending time of the action and the result of the evaluation of the
action:

eval : ’a action -> int -> (int * ’a)

The action of testing for an error increments the time and returns a boolean indicating whether there was
an error at the time when the action was performed. So we assume a function

test : bool action

which satisfies the equation

eval test t = (t + 1, errors t). (1)

There are two other ways of creating an action. We can define the action of evaluating an expression using
the operator below.

return : ’a -> ’a action

such that

(eval (return e) t) = (t, e). (2)

Two actions can be performed in sequence using the bind operator

bind : ’a action -> (’a -> ’b action) -> ’b action
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which satisfies the property that,

if (eval e t) = (t′, v)

(eval (f v) t′) = (t′′, v′)

then (eval (bind e f) t) = (t′′, v′).
(3)

The bind operator can be understood intuitively as a let-binding: the expression bind e (fun x -> e′)

corresponds to let x = e in e′ but keeps track of the time.
In the proof of correctness of the reference implementation, the concrete definitions of the functions bind,

test, return, and eval are left unspecified; the proof relies only on the axioms (1)–(3) above. This ensures
that the proof guarantees safety under arbitrary failure scenarios.

Of course if we want to actually experiment with the reference implementation, we must supply definitions
of these functions. Here, for example, is a trivial implementation that never generates any errors:

type ’a action = ’a

let bind (x: ’a action) (f: ’a -> ’b action) = f x

let test : ’a action = (t, false)

let return (x: ’a) : ’a action = x

let eval (x: ’a action) (t: int) = t * x

Here is a more interesting implementation that generates a transient error on every fifth operation:

type ’a action = int -> (int * ’a)

let bind (x: ’a action) (f: ’a -> ’b action) =

fun (t: int) ->

let (t’,r) = x t in

f r t’

let test : bool action = fun (t: int) -> (t, t mod 5 = 0)

let return (x: ’a) : ’a action = fun (t: int) -> (t,x)

let eval (x: ’a action) (t: int) = x t

A.2 Filesystems

The inputs to the update detection phase of synchronization are the current replicas and the archive. All of
these are filesystems, defined as follows.

First, we define the abbreviations name, contents and properties (all represented as strings) for the
types of path names, file contents and file properties.

type name = string

type contents = string

type properties = string

Now, a filesystem is either a directory (represented by the tag Dir plus a pair of properties and a list of
pairs of names and sub-filesystems), a file (represented by File plus a pair of properties and contents), a
symbolic link (represented by Symlink plus a contents) or nothing (represented by Bot).8

type fs =

Dir of properties * dContents

| File of properties * contents

| Symlink of contents

| Bot

and dContents = (name * fs) list

8At this point, the implementation does not precisely follow the general formulation proposed in Section 9. Instead, file
and directory properties are built directly into File and Directory nodes in the filesystem. We have not done so, but this
formulation could be related to the general one by means of an abstraction function.
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Formally, we do not bother ensuring that dContents is a set; instead, we assume that it may contain
duplicate bindings for a single name, but that all bindings except the first one are ignored.

Some utility functions on filesystems will be useful later. The expression assoc n c returns the filesystem
associated to the name n in the directory contents c.

let rec assoc n c =

match c with

[] -> Bot

| (n’, fs) :: rem -> if n = n’ then fs else assoc n rem

The function lookupPath returns the filesystem contained at path p in the filesystem f.

let rec lookupPath p f =

match p with

[] -> f

| n :: p’ ->

assoc n

(match lookupPath p’ f with

Dir (pr, c) -> c

| _ -> [])

The function reverse reverses a path (actually it is just the standard polymorphic list reverse):

let rec reverse p1 p2 =

match p1 with

[] -> p2

| n :: p1’ -> reverse p1’ (n :: p2)

The function mem checks whether a child named n is among the list of (name, filesystem) pairs l:

let rec mem n l =

match l with

[] -> false

| (n’, fs) :: rem -> n = n’ || mem n rem

A.3 Update Detection

The buildUpdates function takes two filesystems—an archive and one of the replicas—and returns an
updateItem representing the difference between the two. To define this type, we first define an enumerated
type prevState describing what the filesystem previously contained at a given location.

type prevState =

DIR

| FILE

| SYMLINK

| ABSENT

The function fsKind associate to a filesystem the state of its root.

let fsKind = function

Dir _ -> DIR

| File _ -> FILE

| Symlink _ -> SYMLINK

| Bot -> ABSENT

A leafUpdate records a modification at a leaf of the replica: a property or content modification. It can be
either LeafSame in case the corresponding part of filesystem are identical, or LeafUpdated with a pair of a
new value and an old value (if there was any) in case of a modification.
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type ’a leafUpdate =

LeafSame

| LeafUpdated of ’a * ’a option

An updateItem has a tree structure corresponding to the modified part of the replica. Each subtree is either
Same when the corresponding part of the filesystem are identical, Updated with an updateContent describing
the difference between the two filesystems and a prevState describing the contents of the first filesystem, or
Error, signalling that a non-fatal error happened during update detection (in the real implementation, this
can be for instance an unreadable file). An updateContent may have different forms, depending on the new
contents of the replica at this point. In case of a directory (UDir), it contains a leafUpdate for its properties
and a list of pairs of name and updateItem corresponding to its children. In case of a file (UFile), it contain
the properties and contents leafUpdates. In case of a symlink, it contain a contents leafUpdate.

type updateItem =

Same

| Updated of updateContent * prevState

| Error

and updateContent =

UCDir of properties leafUpdate * updateChildren

| UCFile of properties leafUpdate * contents leafUpdate

| UCSymlink of contents leafUpdate

| UCAbsent

and updateChildren = (name * updateItem) list

To define the required operations on updateItems, we first need a couple of utility functions. The first is
a generic function remove, which takes as argument a key n and a list l of (key,value) bindings, and returns
a list l where all bindings with key n have been removed.

let rec remove n l =

match l with

[] -> []

| (n’, ui) :: rem -> if n = n’ then remove n rem else (n’, ui) :: remove n rem

Another utility function, deletions, generates a list of updateChildren representing the fact that all the
files in the list c have been deleted.

let rec deletions c =

match c with

[] -> []

| (n, Bot) :: rem -> remove n (deletions rem)

| (n, fs) :: rem -> (n, Updated (UCAbsent, fsKind fs)) :: deletions rem

The main update detection function, buildUpdates, takes an archive and a filesystem fs and returns
an appropriate updateItem. Its first action is to check for an error and return the special updateItem Error
if so. Otherwise, it considers that the root of the filesystem fs can be accessed and builds an updateItem

by pattern matching on the state of the filesystem and of the archive archive. In the case where the
current filesystem contains a directory, it uses buildUpdateChildren to recursively process the contents of
the directory.

let rec buildUpdates archive fs =

bind test (fun err ->

if err then return Error else

match (archive, fs) with

(Dir (pr0, c0), Dir (pr, c)) ->

bind (buildUpdateChildren c0 c) (fun uch ->

let up = if pr0 = pr then LeafSame else LeafUpdated (pr, Some pr0) in

if uch = [] && up = LeafSame then return Same
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else return (Updated (UCDir (up, uch), DIR)))

| (_, Dir (pr, c)) ->

bind (buildUpdateChildren [] c) (fun uch ->

return (Updated (UCDir (LeafUpdated (pr, None), uch), fsKind archive)))

| (File (pr0, c0), File (pr, c)) ->

let up = if pr0 = pr then LeafSame else LeafUpdated (pr, Some pr0) in

let uc = if c0 = c then LeafSame else LeafUpdated (c, Some c0) in

if up = LeafSame && uc = LeafSame then return Same

else return (Updated (UCFile (up, uc), FILE))

| (_, File (pr, c)) ->

return (Updated (UCFile (LeafUpdated (pr, None),

LeafUpdated (c, None)),

fsKind archive))

| (Symlink c0, Symlink c) ->

if c0 = c then return Same

else return (Updated (UCSymlink (LeafUpdated (c, Some c0)),

fsKind archive))

| (_, Symlink c) ->

return (Updated (UCSymlink (LeafUpdated (c, None)), fsKind archive))

| (Bot, Bot) ->

return Same

| (_, Bot) ->

return (Updated (UCAbsent, fsKind archive)))

and buildUpdateChildren c’ c =

match c with

[] ->

return (deletions c’)

| (n, fs) :: rem ->

bind (buildUpdates (assoc n c’) fs) (fun ch ->

bind (buildUpdateChildren c’ rem) (fun uc ->

let rem’ = remove n uc in

if ch = Same then return rem’ else return ((n, ch) :: rem’)))

Note that buildUpdates yields a minimal updateItem tree, mentioning the paths where updates have
occurred. For instance, a given directory will be mentioned in the tree only if either its properties have
changed or one of its children has been updated. It is important to keep the updateItem tree small because,
in the actual implementation, the updateItem for one of the replicas must be transmitted over the network
in order to be compared with the other during the reconciliation step.

A.4 Reconciliation

The reconcile function takes two updateItems, one for each replica, and returns a transportInstrTree

representing the actions that need to be performed to bring the two replicas into agreement (or, if there are
conflicts or errors, as close as possible to full agreement). To define this type, we first define an enumerated
type describing in what direction the propagation should take place.

type direction =

Conflict

| LeftToRight

| RightToLeft

| Equal

The directions Conflict and Equal both direct the next phase (transport) not to take any action for a
particular path, but the distinction provides some information about the reason why no action should take
place, which (in the actual implementation) can be displayed to the user.
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A transportInstrTree has a tree structure, indicating what location in the filesystem need to be mod-
ified. A transport instruction (of type transportInstr) is associated to each node of the tree. This can be
an actual instruction Instr, a dummy instruction NoInstr in case nothing needs to be done at this location,
or a dummy instruction Problem indicating that an error occured during update detection. Two update
items (one for each replica) and a direction are associated to each instruction. The propagation agent uses
one to check that the destination has not been modified since update detection and the other to actually
propagate the changes.

type transportInstr =

Instr of updateItem * updateItem * direction

| NoInstr

| Problem

type transportInstrTree = Node of transportInstr * transportInstrList

and transportInstrList = (name * transportInstrTree) list

The propagateErrors function takes a transport instruction act as argument and checks whether any of
the update items associated with the instruction contain an Error. If there is no Error, the transport
instruction is returned as-is; otherwise, Problem is returned. The hasErrors function checks whether an
update item ui contains an error.

let rec hasErrors ui =

match ui with

Updated (UCDir (_, uch), _) -> hasErrorsChildren uch

| Error -> true

| _ -> false

and hasErrorsChildren uch =

match uch with

[] -> false

| (n, ui) :: rem -> hasErrors ui || hasErrorsChildren rem

let propagateErrors act =

match act with

Instr (ui, ui’, d) ->

if hasErrors ui || hasErrors ui’ then Problem else act

| _ ->

act

The reconcileNoConflict function handles the case when one of the replicas has not been changed—
i.e., where what needs to be done is just to copy its current state onto the other replica. The argument s of
type side indicates which is the source replica.

type side =

Left

| Right

let noConflictInstr s ui =

match s with

Left -> Instr (ui, Same, LeftToRight)

| Right -> Instr (Same, ui, RightToLeft)

let rec reconcileNoConflict s ui =

match ui with

Same -> Node (NoInstr, [])

| Updated (UCDir (up, uch), DIR) ->

let act =
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match up with

LeafSame -> NoInstr

| LeafUpdated _ -> noConflictInstr s ui

in

Node (act, reconcileNoConflictChildren s uch)

| Updated _ ->

Node (propagateErrors (noConflictInstr s ui), [])

| Error ->

Node (Problem, [])

and reconcileNoConflictChildren s uc =

match uc with

[] -> []

| (n, ui) :: rem ->

(n, reconcileNoConflict s ui) :: reconcileNoConflictChildren s rem

Note that the propagateErrors function is not called for instructions corresponding to a locally updated
directory. In this case, only the property part of the updateItem will be used.

The leafDirection and combineDirections functions are used to generate instructions for leaf updates.
The leafDirection function decides in which direction the update should take place. The combineDirections
function computes the direction corresponding to two distinct updates (a file content update and a file prop-
erty update).

let leafDirection u u’ =

match (u, u’) with

(LeafUpdated (v, _), LeafUpdated (v’, _)) ->

if v = v’ then Equal else Conflict

| (LeafSame, LeafSame) ->

Equal

| (LeafUpdated _, LeafSame) ->

LeftToRight

| (LeafSame, LeafUpdated _) ->

RightToLeft

let combineDirections d d’ =

match d, d’ with

(Conflict, _) | (_, Conflict)

| (LeftToRight, RightToLeft) | (RightToLeft, LeftToRight) ->

Conflict

| (LeftToRight, _) | (_, LeftToRight) ->

LeftToRight

| (_, RightToLeft) | (RightToLeft, _) ->

RightToLeft

| (Equal, Equal) ->

Equal

The utility function uassoc looks up updateItems in association lists: uassoc n c returns the updateItem
associated to the name n in the list of children c, or Same if none exists.

let rec uassoc n uch =

match uch with

[] -> Same

| (n’, ui) :: rem -> if n = n’ then ui else uassoc n rem

The top-level function in the reconciliation phase is reconcile; it takes two update items representing
the updates that have occurred on the two replicas with respect to the last synchronized state, and returns a
transportInstrTree structure that can be applied to both replicas (as explained in the following subsection)
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to yield new replicas that are as close to synchronized as possible. It proceeds by cases on the top nodes of
the two updateItems: if one is Same, then it uses reconcileNoConflict to construct a transportInstrTree

that simply copies state of the other replica on top of the one that has not changed; if both are updated
directories, then it calls reconcileChildren to (recursively) deal with the contents; if both are files, it uses
combineDirections to appropriately (i.e., atomically) combine the changes to the contents and properties;
otherwise it signals a conflict. The function reconcileChildren first handles the directory contents that are
modified on the second replica, then calls the helper function reconcileLeft to handle the contents which
are modified only on the first (“left”) replica.

let rec reconcile uia uib =

match (uia, uib) with

(_, Error) | (Error, _) ->

Node (Problem, [])

| (_, Same) ->

reconcileNoConflict Left uia

| (Same, _) ->

reconcileNoConflict Right uib

| (Updated (UCDir (upa, ucha), _), Updated (UCDir (upb, uchb), _)) ->

let act =

if upa = LeafSame && upb = LeafSame then NoInstr

else Instr (uia, uib, leafDirection upa upb) in

Node (act, reconcileChildren uchb ucha uchb)

| (Updated (UCFile (upa, uca), _), Updated (UCFile (upb, ucb), _)) ->

Node (Instr (uia, uib,

(combineDirections (leafDirection uca ucb)

(leafDirection upa upb))),

[])

| (Updated (UCSymlink uca, _), Updated (UCSymlink ucb, _)) ->

Node (Instr (uia, uib, leafDirection uca ucb), [])

| _ ->

Node (propagateErrors (Instr (uia, uib, Conflict)), [])

and reconcileChildren uchb0 ucha uchb =

match uchb with

[] ->

reconcileLeft uchb0 ucha

| (n, ui) :: rem ->

(n, reconcile (uassoc n ucha) ui) :: reconcileChildren uchb0 ucha rem

and reconcileLeft uchb ucha =

match ucha with

[] -> []

| (n, ui) :: rem ->

match uassoc n uchb with

Same -> (n, reconcileNoConflict Left ui) :: reconcileLeft uchb rem

| _ -> reconcileLeft uchb rem

A.5 Propagation

The final phase, propagation, takes the transportInstrTree calculated by the reconciler and applies it to
the current replicas.

Because of the possibility of concurrent updates to the replicas during synchronization, the real imple-
mentation goes to considerable trouble to be as paranoid as possible when propagating updates. Instead of
blindly overwriting the replica with the new contents, it first transfers the new information to a temporary
file (or directory structure) on the same host, then double-checks that the current contents of that replica
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are exactly the same as when update detection was performed, and only then moves the new information
into its final position. This double-checking process is modeled in the reference implementation by providing
five inputs to the top-level synchronization function (see Section A.6): the archive o, the two replicas a

and b, and two more filesystems a′ and b′, representing the states of the replicas just at the moment when
propagation begins. The propagation code in this section uses o plus the update items for each of the replicas
to construct two “predicted current replicas” and compares these against the current replicas a′ and b′.

The function updateArchive takes an archive o and an update item ui and computes the expected
contents of one of the replicas, starting from the archive and an update item corresponding to what has
been modified in the replica compared to the archive contents. The helper function leafApply performs an
update u at a leaf (a file contents or properties) value v.

let leafApply v u =

match u with

LeafSame -> v

| LeafUpdated (v’, _) -> v’

let rec updateArchive o ui =

match (ui, o) with

(Updated (UCAbsent, _), _) ->

Bot

| (Updated (UCFile (up, uc), _), File (pr, c)) ->

File (leafApply pr up, leafApply c uc)

| (Updated (UCFile (LeafUpdated (pr, _), LeafUpdated (c, _)), _), _) ->

File (pr, c)

| (Updated (UCSymlink (LeafUpdated (c, _)), _), _) ->

Symlink c

| (Updated (UCDir (up, uch), _), Dir (pr, ch)) ->

Dir (leafApply pr up, updateArchiveChildren ch uch)

| (Updated (UCDir (LeafUpdated (pr, _), uch), _), _) ->

Dir (pr, updateArchiveChildren [] uch)

| _ ->

o

and updateArchiveChildren ch uch =

match uch with

[] ->

ch

| (n, ui) :: ucs’ ->

let f = updateArchive (assoc n ch) ui in

let ch’ = remove n (updateArchiveChildren ch ucs’) in

if f = Bot then ch’ else (n, f) :: ch’

The function emptySource checks that the source filesystem f contains nothing at path p, and that the
filesystem at path p in a is immediately contained in a directory. Note that we have a conflict if the latter
condition is not satisfied.

let emptySource p f =

(match p with

[] -> true

| n :: p’ -> match lookupPath p’ f with (Dir _) -> true | _ -> false)

&&

(lookupPath p f = Bot)

The next helper function reads out a “copy” of an archive filesystem o from a current filesystem f. It
returns None if f cannot be found inside o. (The reason we take the trouble to perform this copy, rather
than just using o directly, is that, in the real implementation, the archive is stored in compressed form, using
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cryptographic fingerprints in place of full file contents. The job of copy is, using f, to reconstruct the full
filesystem corresponding to o.)

let rec copyRec o f =

match (o, f) with

(Dir (pro, cho), Dir (pr, ch)) ->

if pro = pr then

match copyChildren ch [] cho with

Some ch’ -> Some (Dir (pr, ch’))

| None -> None

else

None

| (File (pro, co), File (pr, c)) ->

if pro = pr && co = c then Some f else None

| (Symlink co, Symlink c) ->

if co = c then Some f else None

| (Bot, _) ->

Some Bot

| _ ->

None

and copyChildren ch ch0 cho =

match cho with

[] ->

Some []

| (n, o) :: cho’ ->

if mem n ch0 then copyChildren ch ch0 cho’ else

match copyRec o (assoc n ch), copyChildren ch ((n, o) :: ch0) cho’ with

Some f, Some ch’ -> Some ((n, f) :: ch’)

| _ -> None

let copy p o f =

bind test (fun err ->

if err then return None else

match o with

Bot -> return (if emptySource p f then Some Bot else None)

| _ -> return (copyRec o (lookupPath p f)))

We use the function checkNoUpdates just before we make each change to a replica, to verify (as a sanity
check) that the current contents matches the previous contents recorded in the transport instruction.

let checkNoUpdates o f p ui =

bind (buildUpdates (updateArchive (lookupPath p o) ui) (lookupPath p f))

(fun updates ->

return (updates = Same))

The replace function returns a new version of an input filesystem f in which the contents at a path p has
been replaced by another filesystem g. The filesystem f is returned unchanged if there is an error or if the
parent directory of the endpoint of the path p does not exist. The inner loop of this function, replaceRec,
performs no additional checking for transient errors: we assume that, if an error is going to happen during
replacement, it happens at the beginning. (In other words, the replacement is assumed to be atomic.)

let rec replaceRec p f g =

match p, f with

[], _ -> g

| n :: p’, Dir (pr, ch) -> Dir (pr, (n, replaceRec p’ (assoc n ch) g) :: remove n ch)

| _ -> f
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let replace p f g =

bind test (fun err ->

if err then return f else return (replaceRec (reverse p []) f g))

(The path p needs to be reversed because in replaceRec we simultaneously traverse p and f starting at the
root; p starts out in the wrong order for this traversal.)

The function performInstrLeaf is a bulletproofed wrapper for replace. The function performInstrLeaf

performs a bulletproofed replacement of the target contents by the source contents (as specified by o).

let performInstrLeaf p o src trg usrc utrg =

bind (copy p (updateArchive (lookupPath p o) usrc) src) (fun cpy ->

match cpy with

Some o’’ ->

bind (checkNoUpdates o trg p utrg) (fun noUpdates ->

if noUpdates then replace p trg o’’ else return trg)

| None ->

return trg)

The function newProps calculates the new properties (if necessary) for a given directory.

let newProps o ui =

match (ui, o) with

(Updated (UCDir (up, _), _), Dir (pr, ch)) -> Some (leafApply pr up)

| (Same, (Dir (pr, _))) -> Some pr

| _ -> None

The unchangedProps function tests whether the properties in a given directory have changed since we
recorded them during update detection.

let unchangedProps pr f =

match f with

Dir (pr’, ch) -> pr = pr’

| _ -> false

The function performInstrDir is called to update just the properties of an existing directory. It takes
the same arguments as performInstrLeaf, and returns a new version of the target in which the properties
for the directory at path p have been copied from the source. If the contents of the target are not a directory
or if the properties of either the source or the target have changed since we looked at them originally, then
we return the target unchanged.

let performInstrDir p o src trg usrc utrg =

bind test (fun err ->

if err then return trg else

match newProps (lookupPath p o) usrc, newProps (lookupPath p o) utrg with

Some prsrc, Some prtrg ->

if unchangedProps prsrc (lookupPath p src) && unchangedProps prtrg (lookupPath p trg)

then match lookupPath p trg with

Dir (_, ch) -> replace p trg (Dir (prsrc, ch))

| _ -> return trg

else return trg

| _ ->

return trg)

The function performInstr dispatches to performInstrDir or performInstrLeaf, depending on the
form of the update item it is processing.
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let performInstr p o src trg usrc utrg =

match usrc with

Updated (UCDir _, _) -> performInstrDir p o src trg usrc utrg

| _ -> performInstrLeaf p o src trg usrc utrg

The main workhorse function for update propagation is propagateLocally. Given a path p, an archive
o, current replicas a′ and b′ (possibly not identical to the a and b on which the update items were origi-
nally computed) and a transport instruction act, it destructs act to see what needs to be done and then
either returns (a′,b′) unchanged (if the instruction indicates a conflict or already-equal replicas) or calls
performInstr to actually perform the action. Note that performInstr assumes that changes are to be
propagated from left to right; to propagate from right to left, we exchange the senses of a and b when we
call it.

let propagateLocally p o a’ b’ act =

match act with

Instr (ua, ub, dir) ->

begin match dir with

Conflict ->

return (a’, b’)

| LeftToRight ->

bind (performInstr p o a’ b’ ua ub) (fun b’’ ->

return (a’, b’’))

| RightToLeft ->

bind (performInstr p o b’ a’ ub ua) (fun a’’ ->

return (a’’, b’))

| Equal ->

return (a’, b’)

end

| _ ->

return (a’, b’)

The main function propagate recursively traverses the transportInstr tree and executes the corre-
sponding instructions. The helper function propagateInChildren (which recursively calls propagate) is
used to apply actions at paths strictly longer than p; then propagateLocally is used to propagate the action
at p itself.

let rec propagate p o a b = function

Node (act, ts) ->

bind (propagateInChildren p o a b ts) (fun fs ->

let (a’, b’) = fs in

propagateLocally p o a’ b’ act)

and propagateInChildren p o a b t =

match t with

[] ->

return (a, b)

| (n, act) :: acts’ ->

bind (propagate (n :: p) o a b act) (fun fs ->

let (a’, b’) = fs in

propagateInChildren p o a’ b’ acts’)

A.6 Main Program

Finally, sync binds all of the phases described above into a complete synchronization function. Note that it
takes extra inputs a′ and b′ and passes these, rather than a and b, to propagate, modeling the possibility
of concurrent changes to the replicas during update detection and reconciliation.
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let sync o a b a’ b’ =

bind (buildUpdates o a) (fun ua ->

bind (buildUpdates o b) (fun ub ->

propagate [] o a’ b’ (reconcile ua ub)))
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