
A Theory of Information-Flow Labels

Benoı̂t Montagu1 Benjamin C. Pierce1 Randy Pollack2 Adrien Surée3

1University of Pennsylvania, 2Harvard University 3École Normale Supérieure

Abstract
Each one of the numerous calculi, languages, and systems for
information-flow control includes a tiny domain-specific language
of “micro security policies” called labels. The question of how to
compare the relative expressive power of these different notions of
labels arises naturally, and the design of a common framework for
label models is a first step in that direction. One familiar abstract
label framework is a simple lattice structure, but this lacks a notion
of authority, which is used in practice to relax the rules on flow of
information under carefully controlled situations.

To study the design space of information-flow labels and their
relative expressiveness, we introduce label algebras, an abstract
interface for information-flow labels equipped with a notion of
authority. We define a generic notion of semantics for label algebras
in terms of observations by a family of observers, and we consider
embeddings, semantics-preserving maps between label algebras. We
give two instances of this generic notion, based respectively on the
observation of values and of programs, and these give rise to two
natural notions of embeddings. Using this framework, we define and
compare a number of concrete label algebras, including realizations
of the familiar taint, endorsement, readers, and distrust models and
label algebras based on several existing programming languages and
operating systems.

General Terms Security, Languages, Design, Theory

Keywords Information flow control (IFC), DIFC, label models,
decentralized label model (DLM), JIF, LIO, disjunction category
model, Flume, HiStar, Asbestos

1. Introduction
Information-flow control systems (IFC)[3] run the gamut from static
type systems to run-time monitors and from core calculi to full-
blown languages and operating systems. One critical component
of each of these is a label model—a notation for writing down
information-flow labels, together with rules for when one label
flows to another in the sense that data labeled with the first is
allowed to flow to contexts labeled with the second. These labels
can be thought of as low-level “micro-policies.” They do not directly
describe system-level security policies that end users might care
about (“my banking information will never be sent to evil.com”),
but they capture information-flow invariants on specific sensitive
values (“this integer and values derived from it should only be visible
to the principal named Bank”), and these invariants can be used by
programmers to reason about higher-level security properties.

Label models come in a bewildering variety of shapes and forms.
A theoretical discussion might use a very simple model with just two
or three labels (⊥ v> or public vsecret v topsecret), or it might
assume an arbitrary lattice of labels. Or, more concretely, we might
define a label to be a set of principals, interpreting this set either as
the set of entities that are allowed to read a given value or as the set
of entities that trust or endorse it, or perhaps as the set of entities that

may have tainted it. More complex systems use sets of sets, logical
formulae, or other structures as labels. Some systems—e.g., those
based on the Decentralized Label Model (DLM) [9]—include a
notion of policy owners, distinct from readers, tainters, or endorsers,
that controls not who can use particular values but who has the
power to change the policy by declassification. Some systems focus
on protecting secrecy, others integrity, and still others incorporate
both. The list of possible variations seems endless.

Which label models are best for which purposes? What common
structure might we expect every label model to have, beyond a
simple flows-to ordering? Can all the label models used in real
systems be viewed as instances of this common structure, or are
there deep differences between them? What generic operations can
be performed on arbitrary label models? What high-level properties
(e.g., non-interference) are guaranteed by the structure of the label
model? Can the common dictum that “integrity is formally dual to
secrecy” be given a rigorous explanation? Is this label model “more
expressive” than that one, in the sense that, given a program written
in terms of this one, can we obtain a program in terms of that one
(that behaves the same!) by rewriting labels in some systematic way?
Such questions seem essential to a thorough understanding of IFC,
but they are rarely discussed.

Our goal in this paper is to initiate the comparative study of
label models by providing a concrete mathematical framework and
investigating how it applies to label models found in the wild.

1. We define label algebras, a precise abstract characterization of
the structure common to many label models, with an abstract
notion of authority (§2). On top of this, we define a simple pro-
gramming language—an untyped lambda-calculus with dynamic
information-flow tracking and declassification—parametrized
by an arbitrary label algebra (§3). We give a generic proof
of (an authority-enriched generalization of) the standard non-
interference property.

2. We propose a generic notion of embedding between label al-
gebras, formalizing the intuition that one label model is “more
expressive” than another (§4). As usual, judgments about expres-
siveness depend on the power of the observer; accordingly, we
study two different concrete forms of embeddings: value embed-
dings, which preserve observations on labeled data structures,
and evaluation embeddings, which also take into account the
behavior of computations over labeled data. We prove charac-
terization theorems, giving necessary and sufficient conditions
for checking whether a given map between label algebras is an
embedding of either form.

3. We define a number of concrete label algebras, including simple
examples that illustrate dimensions of the design space of label
models, realizations of the familiar taint, endorsement, readers,
and distrust models (§5), and more complex examples based on
real-world languages and operating systems (§6). In particular,
we define label algebras corresponding to the DC model [13], the
DLM [9] (with and without principal hierarchies), Asbestos [4],

1 2012/7/11

HiStar [15, 16], Flume [5], and Laminar [10]. We settle the
existence or non-existence of embeddings among all of the
simple examples and some of the real-world ones—in particular,
we show that (the secrecy parts of) the DLM with no principal
hierarchy and the DC model cannot be embedded in each
other (while, when authorities are not considered, embeddings
between the underlying label lattices exist in both directions).

We survey related work in §7 and sketch directions for future work
in §8.

There are two important caveats. First, our definition of label
algebra covers just a small set of core features—labels, label or-
dering, authority, and defaults—omitting some of the interesting
complexities associated with real-world label models. In particular,
we do not address dynamic generation of principals and authorities.
Second, since evaluation embeddings are defined in terms of com-
putation, their properties necessarily depend on the details of the
programming language under consideration; adding other features
such as first-class labels will change some of our results. We leave a
detailed investigation to future work.

2. Label Algebras
2.1 Basic definitions
Recall that a pre-lattice is a preorder with meet and join operations.
There may be cycles in a preorder (x ≤ y and y ≤ x with x 6= y),
but the cycles form classes of an equivalence relation, and the lifted
order on these equivalence classes is a partial order. In a pre-lattice,
this partial order is a lattice with the lifted meet and join operations.

2.1.1 Definition: A label algebraM comprises:

• a pre-lattice of labels (L,v,u,t)
• a lower-bounded join semilattice of authorities (A,≤,∨, 0),
• for each authority A, a flows-to relation on L, vA, such that

1. v0 = v
2. if A ≤ A′ and L1 vA L2, then L1 vA′ L2

3. each (L,vA,u,t) is a pre-lattice
• a designated default label Ldef.

We write L1 ≡A L2 when L1 vA L2 and L2 vA L1; we write ≡
to denote ≡0.

Label algebras include a bounded join-semilattice of authorities.
One can understand authorities as permissions to bend the rules,
allowing more flows between labels.1 The least (or empty) authority,
written 0, carries no privilege: the relationv0 is exactly the flows-to
relation of the underlying pre-lattice (axiom 1 about authorities).

The indexed flows-to relations are compatible with the ordering
on authorities (axiom 2): increasing authority makes it easier to flow
from one label to another [9, 13]. Declassification (or downgrading)
is precisely the exercise of authority to permit a flow that would not
otherwise be allowed. The 0-authority flows-to relation describes
flows that are always allowed.

Axiom 3 requires that the join and meet operators of the underly-
ing lattice remain least upper bound and greatest lower bound for
the family of authority-sanctioned flows. This uniformity allows the
following reasoning: if it is possible, using authorityA, to declassify
from L1 to L and from L2 to L, then it is possible to declassify
from L1 t L2 to L using the same authority A.

Although many label models do have bottom and top labels, we
do not impose this as a requirement.

The last bullet in the definition specifies that there should be a
designated default label; the intention is that all data values should

1 It would be natural to consider a pre-semilattice of authorities. We believe
this works, at the cost of somewhat more complex statements and proofs.

be annotated with this label—or perhaps an even higher (more
restrictive) one—unless they have been downgraded. This is useful
when labels are used for endorsement: by default, a data value starts
out life endorsed by no one (i.e., with a high label), and its label gets
lowered only by the explicit exercise of authority. In the evaluation
semantics defined in §4.4, this is achieved by using the default label
as the starting value of the pc label when a term is evaluated.

2.2 Examples
We will see many examples of label algebras in §5 and §6, but let’s
look at a few simple ones now.

Most label algebras are defined over some enumerable set of
principals, written P. We write p for specific principals, P for sets of
principals, and P(P) for the set of sets of principals. We sometimes
abuse notation and consider P(P) as a lattice, with intersection and
union corresponding to meet and join. Similarly, Pfin(P) is the set
or lattice whose elements are finite sets of principals. 1 is the unit
lattice; its one element is written either ⊥ or 0.

One very simple label algebra is the public / secret model, which
we call 2 for short (it is also sometimes called the binary model [6]).
Its set of labels is the two-point lattice, and it has only one authority.

2: Public / Secret Model

L = {>, ⊥} ⊥v> Ldef = ⊥ A = 1

A more interesting label algebra is the reader model (written
CR, rather than just R, for uniformity with a group of related label
algebras that we will encounter in §5.3; some related real-world
models are discussed in §6).

CR: Reader Model

L = Pfin(P) ∪ {P} Ldef = P
A = Pfin(P) ∪ {P} A1 ≤ A2 = A1 ⊆ A2

L1 vA L2 = L1 ∪A ⊇ L2

Its labels are either the full set of principals or one of its finite subsets,
ordered by reverse inclusion. Intuitively, the principals in a label
are the ones who may read some piece of data. Its default label is P
(which is the bottom element of the label lattice)—i.e., anybody is
allowed read data with the default label. A value labeled with some
set of principals can freely be relabeled with a smaller set (fewer
allowed readers)—in particular, in the labeled lambda-calculus in
§3, it will always be legal to take a value with the default label and
relabel it (restrict its readership) to some finite set of principals.
Authorities are sets of principals, and an authority containing a
principal p permits flows from labels not including p (i.e. data that
p cannot read) to labels where p is allowed as a reader. For example,
it will be legal to relabel a value labeled {q, r} into one labeled
{p, q, r} using the authority {p, s}.

Another common label algebra is the endorsement model (CE).
It differs from the reader model only in its default label, which is
the top element. The principals in a label indicate who has endorsed
some data value. By default, nobody endorses anything. Authorities
are used to add endorsements.

CE: Endorsement Model

L = Pfin(P) ∪ {P} Ldef = ∅
A = Pfin(P) ∪ {P} A1 ≤ A2 = A1 ⊆ A2

L1 vA L2 = L1 ∪A ⊇ L2

2.3 Operations on label algebras
The space of label algebras is closed under some simple operations,
including dualization and product; these can be useful for describing
examples compactly.

2 2012/7/11

2.3.1 Definition: SupposeM is a label algebra. Its dual,Mop , is
obtained by reversing the vA relations:

Mop: Dual ofM
Lop = L Aop = A
L1 vopL2 = L2 vL1 top = u uop = t
L1 vop

A L2 = L2 vA L1 (Ldef)op = Ldef

Note that this definition is essentially forced. Because authorities
have no top element in general, we cannot invert the authority
structure. Moreover, because we have no canonical way of choosing
a “complement” for the default element, there is no choice but to
keep the default the same.

2.3.2 Definition: SupposeM1 andM2 are two label algebras. We
define their productM1 ×M2 as follows:

M1 ×M2: Product ofM1 andM2

L = L1 × L2 A = A1 ×A2 Ldef = (Ldef
1 , L

def
2)

(L1, L2) v(A1,A2) (L
′
1, L
′
2) = L1 vA1 L

′
1 and L2 vA2 L

′
2

M1 ×M2 is also a label algebra.

Real world systems often combine secrecy and integrity into a
single model by taking a label algebra of the formM×Mop for
someM (see §6).

We can also remove the authority part of an arbitrary label
algebra. We will use this operation several times in §5 and §6.

2.3.3 Definition: Suppose M is a label algebra. We define its 0-
authority projection, writtenM0, as follows:

M0: 0-authority projection ofM

L0 = L A0 = 1 L1 v0
A L2 = L1 vL2 Ldef

0 = Ldef

2.4 Label algebra maps
To define what it means for a label algebra to be more expressive
than another one, we begin here with a very loose notion of maps
between label algebras—we do not even require that they preserve
any of the structure of a label algebra—and later (§4) give additional
conditions they should enjoy to be considered as “good encodings,”
which we call embeddings.

2.4.1 Definition: Given two label algebras M1 = (L1,A1, . . .)
andM2 = (L2,A2, . . .), a label algebra map m fromM1 toM2,
written m ∈M1 →M2, comprises
• a function (also written m) from L1 to L2, and
• an order-preserving function (also written m) from A1 to A2.

The reason why we require maps to preserve the order on authorities
is that we want that a map between two label algebras preserves the
inclusions of pre-lattices induced by axiom 2 of Definition 2.1.1.

3. Labeled Lambda-Calculus
We next define a programming language λM parametrized by a label
algebraM. For simplicity, we choose an untyped language with
dynamic information-flow tracking, similar to that of [1].

3.1 Syntax and semantics
The syntax of λM, together with the sets of values and labeled values
(atoms), is shown in Figure 1. Its syntax comprises two constants,
variables, λ-abstractions, applications and a construct t lA L to
relabel the result of the evaluation of t with the constant label L
using authority A. Note that labels and authorities are not first-class:
they can only occur in the relabeling construct.

The big-step operational semantics of λM is given in Figure 2.
The evaluation judgment has the form pc, ρ ` t ⇓ a . Evaluation

t ::= terms
| tt constant true
| ff constant false
| x variable
| λx .t bind x in t abstraction
| t1 t2 application
| t1 lA L2 relabel value
| (t)

v ::= values
| tt true
| ff false
| 〈ρ, λx . t〉 bind x in t closures

a ::= atoms
| v@L labelled values

ρ ::= environments
| • empty
| ρ, x = a binding
| (ρ)

Figure 1. Syntax of terms, values, atoms and environments.

pc, ρ ` t ⇓ a

pc, ρ ` tt ⇓ tt@pc
EVAL TRUE

pc, ρ ` ff ⇓ ff@pc
EVAL FALSE

ρ(x) = v@L

pc, ρ ` x ⇓ v@(pc t L)
EVAL VAR

pc, ρ ` (λx .t) ⇓ 〈ρ, λx . t〉@pc EVAL ABS

pc, ρ ` t1 ⇓ 〈ρ1, λx . t〉@L1

pc, ρ ` t2 ⇓ a2
L1, (ρ1, x = a2) ` t ⇓ a3

pc, ρ ` (t1 t2) ⇓ a3
EVAL APP

pc, ρ ` t1 ⇓ v1@L1

L1 vA L2

pc, ρ ` t1 lA L2 ⇓ v1@L2
EVAL RELABEL

Figure 2. Big-step semantics.

produces atoms, denoted by a, which are labeled values. The
environment ρ maps variables to closed atoms.

The label pc is the program counter label—the label of the
control state of the program. In the variable lookup rule, the label
on the variable’s value from the environment is joined with the
current pc label to form the label on the result, reflecting the fact
that the choice to look up this variable (as opposed to another one,
for example) may have been influenced by sensitive information.
This detail is crucial for the non-interference theorem (3.2.4).

The reader may wonder why there is a construct for changing
the label on a value but no analogous construct for changing the
pc label. The reason is that it is encodable. The rule for function
application replaces the pc with the label of the computed closure.
This allows us to express pc relabeling as follows

t lpc
A L = ((λx .t) lA L) tt

3 2012/7/11

where x is fresh for t . If authority A permits it, t lpc
A L will change

the current pc label to L while evaluating t.

3.1.1 Definition [Lifted label algebra maps]: Let m be a map
fromM1 toM2.

1. Define m̂ ∈ λM1 → λM2 as the term homomorphism that trans-
forms label constants and authorities using m and copies every-
thing else unchanged.

2. Define m̂ from atoms, values, and environments of λM1 to
atoms, values, and environments of λM2 as the pointwise
extension of m̂.

The following simple properties will be useful below for working
with lifted maps.

3.1.2 Lemma:
1. îdM = id , where idM is the identity map fromM to itself and

id is the identity function on programs overM.
2. If m12 ∈ M1 → M2 and m23 ∈ M2 → M3, then
m̂23 ◦ m̂12 = ̂m23 ◦m12.

3.2 Basic properties
We now establish some fundamental results about λM—in particular,
a standard non-interference property. This is mainly a sanity check
on our labeled lambda-calculus: the only part of this development
that is used in later sections is Definition 3.2.5. The rest can be
skimmed on a first reading.

3.2.1 Definition: The authority of a program t , written Auth(t), is
the join of all the authorities that occur in t :

Auth(tt) = Auth(ff) = Auth(x) = 0
Auth(λx .t) = Auth(t)
Auth(t1 t2) = Auth(t1) ∨Auth(t2)

Auth(t lA L) = Auth(t) ∨A

This definition lifts naturally to atoms, values and environments.

The following technical lemma is used in the proof of non-
interference. Intuitively, the first part says that authority only de-
creases during evaluation, while the second says that the label on the
result of evaluating a term is always above the starting pc label (mod-
ulo any authority that the program might have used to downgrade
the result). In particular, when A = 0, the final label is guaranteed
to be above the starting pc in the label lattice.

3.2.2 Lemma:

1. If pc, ρ ` t ⇓ a then Auth(a) ≤ (Auth(ρ) ∨Auth(t)).
2. If pc, ρ ` t ⇓ v@L and Auth(ρ)∨Auth(t) ≤ A then pc vA L.

The relation ≈LA expresses equivalence (or indistinguishability)
for observers at label L and authority A.

3.2.3 Definition: b1@L1 ≈LA b2@L2 holds iff either
• L1 6vAL and L2 6vAL, or
• L1 vA L and L1 ≡ L2 and b1 = b2.

Here is the main theorem of this section:

3.2.4 Theorem [Non-interference]: If
• pc, ρ1 ` t ⇓ b1@L1 and pc, ρ2 ` t ⇓ b2@L2,
• dom ρ1 = dom ρ2 and for any x ∈ dom ρ1, ρ1(x) ≈LA ρ2(x),
• Auth(t) ≤ A,

then b1@L1 ≈LA b2@L2.

For the proof of 3.2.4, we need to generalize the definition of
labeled equivalence from booleans to atoms (3.2.5), values and
environments, then prove a stronger version of non-interference
(3.2.7). Most papers on dynamic information flow use a similar
strategy.

3.2.5 Definition: The labeled equivalence for a label L and an
authority A, written ≈LA, is the smallest binary relation such that...
• On atoms, v1@L1 ≈LA v2@L2 holds when

L1 6vAL and L2 6vAL, or
L1 vA L and L1 ≡ L2 and v1 ≈LA v2.

• On values, v1 ≈LA v2 holds when
v1 = tt and v2 = tt, or
v1 = ff and v2 = ff, or
v1 = 〈ρ1, λx1. t1〉 and v2 = 〈ρ2, λx2. t2〉, with ρ1 ≈LA ρ2
and λx1.t1 = λx2.t2.

• On environments, ρ1 ≈LA ρ2 holds when ρ1 and ρ2 have the
same domain, and ρ1(x) ≈LA ρ2(x) for all x ∈ dom ρ1.

The next lemma says that an observer who cannot distinguish two
objects will also be unable distinguish them when viewing from a
lower label or with a lower authority.

3.2.6 Lemma:
1. ≈LA is indeed an equivalence relation.
2. If A1 ≤ A2, then (a1 ≈LA2

a2 =⇒ a1 ≈LA1
a2).

3. L1 vA L2 iff (a1 ≈L2
A a2 =⇒ a1 ≈L1

A a2).

Proof: (2) and direction =⇒ of (3) are each proved by induction
on a1 ≈LA2

a2 (including the mutual cases for values and environ-
ments). For direction⇐= of (3), Suppose L1 6vAL2. Then we have
tt@L1 ≈L2

A ff@L1 but not tt@L1 ≈L1
A ff@L1—a contradiction. �

Note that, while direction =⇒ of (2) and (3) are basic to our
intentions, direction⇐= of (3) could be viewed as an accidental
consequence of the simple language we are using in this paper.

We can now state and prove a suitable generalization of the main
non-interference theorem (3.2.4); the main theorem follows as a
special case.

3.2.7 Lemma: If
• pc1, ρ1 ` t ⇓ a1 and pc2, ρ2 ` t ⇓ a2,
• pc1 ≡ pc2, and ρ1 ≈LA ρ2,
• Auth(t) ∨Auth(ρ1) ∨Auth(ρ2) ≤ A,

then a1 ≈LA a2.

Proof: By induction, using Lemma 3.2.2. �

We close with one last property of λM: the fact that increasing
a program’s authority does not change it’s terminating behaviors
(though it can cause a program that aborts with a security fault to
succeed instead).

3.2.8 Definition [Authority-wise ordering on programs]:
x1 ≤ x2 = x1 = x2
b1 ≤ b2 = b1 = b2
λx .t1 ≤ λx .t2 = t1 ≤ t2
t1 t
′
1 ≤ t2 t

′
2 = t1 ≤ t2 and t′1 ≤ t′2

t1 lA1 L1 ≤ t2 lA2 L2 = t1 ≤ t2 and L1 = L2 and A1 ≤ A2

3.2.9 Lemma: If t1 ≤ t2, then Auth(t1) ≤ Auth(t2).

3.2.10 Proposition: If pc, ρ ` t1 ⇓ v1@L1 and t1 ≤ t2, then there
exists v2@L2 such that pc, ρ ` t2 ⇓ v2@L2. Moreover, if v1 is a
boolean, then v1 = v2.

4. Semantics of Labels
Suppose someone asserts that “Label modelM2 can encode label
modelM1.” What, exactly, are they claiming? We can imagine two
reasonable interpretations of such a statement. First, it might mean
simply that the order structure ofM2 is sufficiently rich that we can
find an “image” ofM1 inside it. This interpretation corresponds to

4 2012/7/11

a view of labels as simply a way of annotating data values to tell
which observers are allowed to look at them. Second, the statement
might mean that computations involving the labels ofM1 would
behave the same if we somehow translated them to use labels from
M2 instead.

The second interpretation is more interesting, since different
languages may use labels in different ways. For example, in a
language with information flow labels and references, writing a
value with a high label into a reference cell with a low label will
result in a security fault. (Formally, depending on the calculus this
might be either a stuck state that halts the program or else a typing
error that prevents it from being run in the first place.) Another
information-flow system might include a notion of clearance that
places a similar restriction on the pc label. Yet another might
allow integrity labels to be queried programmatically to help decide
whether a value is sufficiently trusted to be used in a certain way.

Thus, for this initial study we have chosen to compare label
algebras in the setting of a single simple language. The labeled
lambda-calculus of §3 includes only one construct (reclassification)
that can cause program failure because of an information-flow fault:
aside from this, there is no notion of “access control decisions” (can
so-and-so read this value, do they trust it, etc.) within the language.
Instead, the idea here (as in many other labeled lambda-calculi in the
literature) is that access control decisions will be made externally:
run a labeled program, and when the program terminates give its
result to an observer, who then may or may not be able to do anything
with it, depending on the result’s label and the observer’s power to
distinguish (also represented as a label).

Both interpretations of statements like “M2 can encodeM1”
involve notions of “embedding.” It is technically convenient to
derive both kinds of embedding from a common framework. To
this end, in this section we define a general notion of semantics
for labels, from which arises a generic notion of embedding. Then,
we present two concrete semantics for labels—a value semantics
corresponding to the labels-only interpretation, and an evaluation
semantics corresponding to the labels-in-programs interpretation—
and characterize the two notions of embeddings that they induce.

4.1 Basic definitions
We writeR1 - R2 whenR1 is a coarser relation thanR2—that is,
when R2 ⊆ R1.

4.1.1 Definition [Label semantics]: A label semantics assigns to
each label algebra a (label, authority)-indexed binary relation. More
precisely, ifM = (L,A, . . .) is a label algebra, and σ is a label
semantics, then MσLA (with L ∈ L andA ∈ A) is a binary relation
over a set XM. (We will usually leave the label algebraM implicit).

For example, given a label algebra M = (L,A, . . .), L ∈ L
and A ∈ A, the value semantics mentioned above is given by
the binary relation ≈LA over XM, the set of atoms (labeled values)
of λM. In this example, maps m ∈M1 →M2 are lifted to maps
m̂ ∈ XM1 → XM2 with the properties of Lemma 3.1.2. These
properties are needed in general for Proposition 4.2.3, that enables
transitive reasoning.

4.1.2 Definition [Label semantics (Continued)]: For each m ∈
M1 →M2 there is a function m̂ ∈ XM1 → XM2 s.t.

• îdM = idXM .
• For m12 ∈ M1 → M2 and m23 ∈ M2 → M3, have
m̂23 ◦ m̂12 = ̂m23 ◦m12

The value semantics example satisfies some monotonicity properties
as shown in Lemma 3.2.6. In general we require authority and label
monotonicity properties of label semantics:

4.1.3 Definition [Label semantics (Continued)]: For each label
algebraM = (L,A, . . .), L ∈ L and A ∈ A,
• If A1 ≤ A2, then σLA1

- σLA2
.

• If L1 vA L2 then σL1
A - σL2

A .

Intuitively, these requirements mean that giving more power to the
observer—i.e. increasing his authority or his clearance—permits
him to perform finer observations.

By lemmas 3.1.2 and 3.2.6, the value semantics, written JLKv
A,

really is a label semantics.

4.2 Label algebra embeddings
We now define some properties that characterize label algebra maps
that behave well with respect to some semantics.

4.2.1 Definition [Sound, Complete, Embedding]: Suppose M1

andM2 are label algebras, and m ∈M1 →M2.
• m is sound with respect to a semantics σ when, for any label

algebraM, authority A, label L, x and y,

if xMσLA y then m̂(x) m(M)σ
m(L)

m(A) m̂(y).

• m is complete with respect to a semantics σ when for any label
algebraM, authority A, label L, x and y,

if m̂(x) m(M)σ
m(L)

m(A) m̂(y) then x MσLA y.

• m is an embedding with respect to a semantics σ (written
m ∈M1

σ
↪→M2) when it is both sound and complete.

• M1 embeds inM2 for a semantics σ, (writtenM1
σ
↪→M2) if

there exists a function m such that m ∈M1
σ
↪→M2.

Intuitively, a sound map decreases the power of an observer to distin-
guish, whereas a complete map increases her power to distinguish.
Embeddings do not change the power of the observer. Embedding
is the notion of good encoding that we use in the rest of the paper.
We’ll see that different label semantics lead to different kinds of
embeddings.

As a first example we have the identity embedding from the
0-authority projection of a model back into it.

4.2.2 Proposition: For any label algebraM and any label seman-
tics σ,M0 σ-embeds intoM.

Embeddings allow some modular reasoning, as they form a
category.

4.2.3 Proposition: Label algebras and embeddings form a category:
• idM ∈ M ↪→ M, where idM is the identity function on the

label algebraM;
• if m12 ∈ M1 ↪→ M2 and m23 ∈ M2 ↪→ M3, then
m23 ◦m12 ∈M1 ↪→M3.

The category property of embeddings gives rise to the preorder of
embeddability, that enables transitive reasoning on embeddability.

4.2.4 Proposition: For any label semantics σ, the relation
σ
↪→ on

label algebras is a preorder.

4.3 Value semantics of labels
In the rest of the document, we write

v
↪→ to denote embeddability

w.r.t. the value semantics. We can characterize value embeddings,
which is useful to prove or disprove the existence of embeddings
between label algebras.

4.3.1 Theorem [Characterization of value embeddings]: A label
algebra map m ∈ M1 → M2 is a value embedding iff for any
L1, L2 ∈ L1 and A ∈ A1:

1. L1 ≡ L2 iff m(L1) ≡ m(L2), and

5 2012/7/11

2. L1 vA L2 iff m(L1) vm(A) m(L2).

Note that (1) is not implied by (2), since m might not map authority
0 inM1 to 0 ofM2.

The default label does not occur in the characterization of value
embeddings because it is not used in the definition of the value
semantics. Thus, value embeddings enjoy the following property.

4.3.2 Proposition: LetM1 andM2 be two label algebras differing
only in their default labels. Then,M1

v
↪→M2.

Proof: The identity map satisfies Theorem 4.3.1. �

4.4 Evaluation semantics of labels
The second label semantics that we study relates to the evaluation of
programs; thus, it is language dependent. We call it the evaluation
semantics of labels. With this semantics, we interpret labels as
observation policies on programs, i.e. as the accuracy of an observer
that observes the behavior of programs: two programs obey the same
evaluation policy if they both evaluate to results, which themselves
obey the corresponding value policy.

4.4.1 Definition [Evaluation semantics of labels]: JLKe
A is the re-

lation on programs:

t1 JLKe
A t2 =

∃a1a2. Ldef, • ` t1 ⇓ a1 and Ldef, • ` t2 ⇓ a2 and a1 ≈LA a2.

This relation is a label semantics. In the rest of the document, we
write

e
↪→ to denote embeddability w.r.t. the evaluation semantics.

The definition of evaluation semantics is the first time the default
label Ldef plays a role: it is the pc label we start evaluation with.
As we will see, its use has consequences on the characterization of
evaluation embeddings. Naturally, we start evaluation of programs
in the empty environment.

The evaluation semantics is a partial equivalence relation on
programs. Considering a definition that is closed under evaluation
contexts is left as future work. It will be particularly interesting to
see how its embeddings differ from the embeddings of the current
evaluation semantics.

We now give a characterization for evaluation embeddings.

4.4.2 Theorem [Characterization of evaluation embeddings]:
A map m ∈M1 →M2 is an evaluation embedding iff:

• m(Ldef
1) ≡ Ldef

2

• if Ldef
1 vA L1 and Ldef

1 vA L2, then m(L1 t L2) ≡ m(L1) t
m(L2)

• if Ldef
1 vA L1, then L1 vA L2 iff m(L1) vm(A) m(L2)

• if Ldef
2 vm(A) m(L1) vm(A) m(L2), then L1 vA L2

• if Ldef
1 vA L1 ≡ L2, then m(L1) ≡ m(L2)

• if Ldef
2 vm(A) m(L1) ≡ m(L2), then L1 ≡ L2

Value- and evaluation-embeddings are incomparable notions. In
evaluation embeddings, unlike value embeddings, defaults must be
mapped to defaults (up to equivalence). Conversely other properties,
which recall the characterization of value embeddings, are only
required to hold for labels above the defaults.

Many real world examples of label algebras have a bottom label,
used as Ldef. For that case, the characterization simplifies as follows.

4.4.3 Corollary: AssumeM1 andM2 such that Ldef
1 (resp. Ldef

2)
is a bottom element for LM1 (resp. for LM2). Then, m ∈M1 →
M2 is an evaluation embedding iff:

• m(Ldef
1) ≡ Ldef

2

• m(L1 t L2) ≡ m(L1) tm(L2)
• L1 ≡ L2 iff m(L1) ≡ m(L2)

• L1 vA L2 iff m(L1) vm(A) m(L2)

In this special case, evaluation embeddings are also value embed-
dings.

4.4.4 Proposition: AssumeM1
e
↪→M2 and that Ldef

1 (resp. Ldef
2)

is a bottom element for LM1 (resp. for LM2). ThenM1
v
↪→M2.

Proof: By Theorems 4.4.2 and 4.3.1. �

One can wonder under which conditions an evaluation embed-
ding can change the default label. It turns out that if the default
label changes from ⊥ to > (or from > to ⊥), then the input of the
embedding must be a trivial label algebra. This result is used to
show the non-existence of evaluation embeddings.

4.4.5 Corollary: AssumeM1
e
↪→M2.

• IfM1 has a bottom element as default andM2 has a top element
as default, then for any label L ∈ L1, L ≡ ⊥.

• Dually, ifM1 has a top element as default, andM2 has a bottom
element as default, then for any label L ∈ L1, L ≡ >.

Proof: Let m be an evaluation embedding. We have m(⊥) = >
and for any L1, L2 andA, L1 vA L2 iffm(L1) vm(A) m(L2). In
particular, for any L, m(L) vm(0) m(⊥); therefore L v0 ⊥ and
L ≡ ⊥. Dually, If m(>) = ⊥, considerMop

1 andMop
2 . �

If the default label of a non-degenerate model is ⊥ or > then,
since dualization changes bottoms to tops (or conversely), there is
no evaluation embedding between the model and its dual. However,
it is not true that if there is an evaluation embedding from a model
to its dual then this model is degenerate. It is indeed easy to verify
that, for all label modelM, there is an evaluation embedding from
M×Mop to (M×Mop)op .

5. Simple Examples
In this section, we define a number of label algebras, ranging
from very simple finite lattices with no authorities (§5.1) to infinite
label algebras with richer authority structures (§5.2 and §5.3), and
investigate embeddings among them. Our goals are twofold: (1) to
catalog common examples from the literature, and (2) to explore
some interesting symmetries among these examples that become
easy to see when they are all presented in a common framework.
In particular, we can define four familiar label models—the Taint,
Endorsement, Readers, Distrust models—by varying the lattice
order and default label of the same basic structure, where labels
are sets of principals. We use the characterization theorems to
exhaustively settle the existence or non-existence of embeddings
among all of these simple models (Figures 4 and 6).

We present the definitions by giving the underlying set of labels
and authorities and the flows-to ordering for all authorities including
the empty one. Authorities are either the singleton set 1 or else sets
of principals ordered by inclusion. Where unspecified, the default
label is the bottom element of L.

5.1 Basic Models
We start with some very simple finite label algebras with trivial
authority structures (A = 1); these models are defined in Figure 3.
The characterization theorems make it easy to show existence or
non-existence of embeddings, summarized in Figure 4.

As a sanity check, note that the trivial model 1 can be embedded
in any label model, using the function that maps the only label in 1
to the default label in the target model. As a second sanity check,
note that the public / secret model 2 defined in §2 cannot be value-
embedded in 1, since Theorem 4.3.1 demands that value embeddings
be injective on labels. Moreover, 2 cannot be evaluation-embedded
in 1, by Proposition 4.4.4 (noting that the default element of 1 is

6 2012/7/11

1: Trivial Model

L = 1

3: Three-Point Linear Model

L = {>, 0, ⊥} ⊥v0 v>

And similarly 4, 5, etc.

4D: Diamond Model

L = {>, p, q, ⊥} ⊥vp v> and ⊥vq v>

T0: Basic Taint Model

L = Pfin(P) L1 vL2 = L1 ⊆ L2

CR0: Basic Readers Model

L = Pfin(P) ∪ {P} L1 vL2 = L1 ⊇ L2

Figure 3. Basic models.

1 2 3
4 T0

4D CR0

Figure 4. Embeddings among basic models. Solid arrows denote
existence of both value and evaluation embeddings. No arrow means
absence of both kinds of embeddings.

also a bottom element). Similarly, 2 evaluation- and value-embeds
in 3, but 3 does not embed in 2. There is no value (or evaluation)
embedding from 4 to 4D or vice versa, because there is no injective
map between the underlying label sets that preserves the vrelation
(4 is totally ordered, while 4D is not).

The labels of the basic taint model T0 are sets of principals,
representing the principals who may have tainted (influenced)
some piece of labeled data. Everything is untainted by default.
Alternatively, T0 can be viewed as a basic secrecy model, where
a label represents a set of principals whose secret information has
been used while computing some value. It might also be called a
conjunctive model, since the authority of all the principals in a label
is required to declassify a labeled value to be completely public.
The basic readers model CR0 is similar to the readers model (CR)
from §2.2, except that authorities are trivial. Labels represent sets
of principals who are permitted to read some data. This could also
be called a disjunctive model, since the authority of just one of the
principals in a label is sufficient to declassify a labeled value to ⊥.
(The terminology in this area is not very consistent: both the taint
and the reader model have been referred to as “reader” models in
the literature, the former more commonly in the OS community and
the latter in the language community.)

5.2 Universal models
We next consider four universal models: the Universal Endorsement,
Taint, Readers, and Distrust models. These are all set-based models
in the style of T0 and CR0, with sets of principals as both labels
and authorities. They are “universal” in the sense that these sets
can be arbitrary subsets of the whole set of principals. All four can
be specified by varying two parameters: the default label and the
direction of the flows-to relation (Figure 5).

The universal endorsement model UE generalizes the endorse-
ment model CE from §2.2: it has more labels and authorities, but
behaves the same otherwise.

UE: Universal Endorsement Model

L1 vA L2 = L1 ∪A ⊇ L2 Ldef = ∅

UT: Universal Taint Model

L1 vA L2 = L1 ⊆ L2 ∪A Ldef = ∅

UR: Universal Readers Model

L1 vA L2 = L1 ∪A ⊇ L2 Ldef = P

UD: Universal Distrust Model

L1 vA L2 = L1 ⊆ L2 ∪A Ldef = P

Figure 5. Universal models. In this figure, L = A = P(P) . Note
that UE and UR have the same flows-to relation. The same is true
of UT and UD.

The universal taint model UT generalizes the basic taint model
T0. A label represents a set of principals who have tainted some
piece of data, and data is untainted by default. Authorities are used
to remove taint. That model is very similar to the universal endorse-
ment model UE: the only difference is that more endorsement de-
creases the sensitivity (restrictiveness) of a label whereas more taint
increases it. UT and UE are duals in the sense of Definition 2.3.1.

The universal readers model UR extends CR with larger labels—
arbitrary sets of principals. This model and UT are evaluation
equivalent: using set complementation as a map, they can be
evaluation-embedded one in each other.

The universal distrust model UD is the same as UT, but with a
top default label. Labels in this model can be interpreted as sets of
principals who distrust some piece of data (this terminology was
proposed by [6]). The default label is P, meaning that, by default,
everyone distrusts some given piece of data. Authority can be used
to remove a principal, that is to make a principal trust the data. This
model is the dual of UR. It is also evaluation-equivalent to UE
(using complementation as a map): principals who distrust a piece
of data are the ones who did not endorse it.

5.3 Syntactic models
The universal models are pleasantly simple, but they are not suitable
for real languages or systems because they are not syntactic—in
general, their labels have no finite representation. However, we can
define two operators that “cut down” universal models to syntactic
ones.

5.3.1 Definition: Let L be a label model whose underlying set of
labels and authorities is P(P). We write Fin(M) for the label
algebra that restricts the sets of labels and authorities of M to
Pfin(P), and we write Fin+(M) for the label algebra that restricts
the sets of labels and authorities ofM to Pfin(P) ∪ {P}.
The reason for having two operators is that Fin removes P, which
is sometimes needed as the default label.

We write CT, CE, CR and CD for the images under Fin+

of the universal models UT, UE, UR and UD. (The C stands for
“Completed”: these models contain all finite sets of principals plus
the limit element P.) We write T and E for the images under Fin of
UT and UE. We cannot apply Fin to UR and UD, since the default
label P would not make sense. CR and CE were already defined in
§2; this is just an alternate definition.

The main consequence of removing (almost all of the) non-finite
labels is that the taint model does not embed into the reader model
anymore (as we shall see below). Another consequence is that the
completed distrust model CD is degenerate, since the labels start as

7 2012/7/11

Ldef = >

Ldef = ⊥

v=⊇ v=⊆Endorsement Distrust

Readers Taint

UE

CE E

UD

CD

UR

CR

UT

CTT

e

Figure 6. Embeddings among universal and syntactic models.
Dotted arrows mean only value embeddings.

high by default and either they stay high—when the authority is not
P—or else the whole lattice collapses into the trivial one—when the
P authority is used. This is formalized by the following proposition.

2A: Public / Secret Model With Authorities
L = {⊥,>} A = {⊥,>}
⊥v⊥ > > v>⊥ ⊥v> > Ldef = >

5.3.2 Proposition: CD
e
↪→ 2A.

5.4 Embeddings among universal and syntactic models
The relative expressiveness of the universal and syntactic models
is summarized in Figure 6. Most of the embeddings are defined
using the identity map, and it is very easy to prove that they are
indeed embeddings. (The evaluation embeddings between universal
models, such as the one from UR to UT, are exceptions to this
rule, since they are not the identity but complementation.) Proving
non-existence of embeddings is significantly harder.

Note that there can be no evaluation embedding between the
upper and lower parts of the figure because of Corollary 4.4.5.

We can prove the non-existence of value embeddings by consid-
ering the number of labels that are greater than an infinite number
of labels and the number that are smaller than an infinite number
of labels. Value embedding increase those numbers and the only
arrows that would respect this property are the one in the figure. This
also gives us the results of non-existence of evaluation embeddings
for the lower part of the label because of Proposition 4.4.4.

For the proofs of non-existence of evaluation embeddings in the
upper part of the diagram, we rely on the following technical lemma.

5.4.1 Lemma: There is no value embedding from E to a finite
model with a high default.

Proof: Suppose, for a contradiction, that m is an evaluation em-
bedding from E to some finite model F with a high default. Recall
Theorem 4.4.2. Using the first bullet we have m(∅) = >. F is fi-
nite, so there must be some p and q with m({p}) = m({q}). But
{p} v{p,q} ∅ and {q} v{p,q} ∅ in E, so using the second bullet
we have m(∅) = m({p} t {q}) = m({p}) tm({q}) = m({p}).
Using the sixth bullet we then have ∅ = {p}—a contradiction. �

We can simplify the proofs of non-existence of evaluation
embeddings in the upper part of the diagram by noting that CD
evaluation-embeds into every label algebra in the upper part of
the diagram and no other label algebra in this part of the diagram
evaluation-embeds into CD, since E embeds into all of them and
does not embed into CD (Lemma 5.4.1). Also note that UD is
evaluation-equivalent to UE, which leaves us with only E, CE and
UE.

To prove that CE does not evaluation-embed into E, we consider
the (finite) image of authority P. Using this, we prove that the
image of CE is finite, which contradicts Lemma 5.4.1. To prove
that UE does not evaluation-embed into CE, we consider a putative
embedding m. It cannot be injective because of cardinality, so we
consider two labels L1 and L2 such that L1 6vL2 and m(L1) =
m(L2). Using the third bullet of Theorem 4.4.2 we have that
m(∅) vm(L1) m(L1) and m(∅) 6vm(L1) m(L2), a contradiction.

5.5 Apropos integrity
The observation that integrity can be treated as a formal dual to
confidentiality goes back at least to Biba [2]. This agrees with the
fact that UE is the formal dual of UT and and UR the formal dual of
UD. Many real-world systems (e.g., [5, 14, 15]) have relied on this
observation to provide unified mechanisms that serve both goals.

The terms secrecy (or confidentiality) model and integrity model
are used somewhat informally (and not entirely consistently) in
the literature. In our framework, we can offer a precise distinction:
models with a > default are integrity models, while models with a
⊥ default are secrecy models. That is consistent with the dualization
operator, which turns models with low defaults into models with
high defaults and vice versa. Our R- and T-models fall in the secrecy
category and our E- and D-models in the integrity category. This
seems consistent with the fact that CR is often called a reader
model (which seems more related to secrecy than to integrity) in the
language-based security community and that T is called a reader
model in the OS community. Models similar to E are generally
called integrity models. We are not aware of any system making use
of D-models, though they are discussed in [6].

6. Real-World Examples
We now turn our attention to formalizing the label models of several
existing systems. While some do not quite fit the formal structure of
label algebras, even imperfect descriptions in a common framework
will hopefully clarify their similarities and differences. Moreover,
we can use these formalizations to study the existence and non-
existence of embeddings, as we did in the previous section. We do
not settle the question for all pairs of examples, but we do establish
several results involving variants of the DLM and DC models.

6.1 Disjunction-Category (DC) labels
Disjunction Category labels [13] come from a Haskell security
library called LIO [14], part of the HAILS system. DC labels are
made of a secrecy part and an integrity part. Let us first focus on the
secrecy part (DCS); the full model will be defined later on.

Labels of DCS are finite boolean formulae in conjunctive normal
form, containing no negation—i.e. finite conjunctions of finite
disjunctions of principals. We write F to denote the set of these
formulae. The flows-to relation is the reverse logical entailment,
written⇐. Intuitively, these formulae tell who can observe some
data. The relation vallows to make conservative approximations
about who is allowed to observe the data. True is the empty
conjunction ∅ and is the⊥ element—it means that any principal can
observe the data; False is the empty disjunction {∅} and is the >
element—it means nobody is allowed to observe the data.

For example, the DCS label L = p1 ∧ (p2 ∨ p3) can be read
as “the data can be read by somebody that has p1’s credentials and
either p2’s or p3’s.” It flows to p1 ∧ p2, because somebody that has
p1’s and p2’s credentials respects the policy of L.

Authorities are also formulae: L1 vA L2 means that L1 ⇐
(L2 ∧ A). The label L can flow to p2 ∨ p3 using authority p1,
because somebody that has either p2’s or p3’s credentials and the
ability to locally use p1’s credentials respects the policy of L.

8 2012/7/11

DCS: DC Labels (secrecy part)

L = F Ldef = True A = F 0 = True
A1 ≤ A2 = A1 ⇐ A2 A1 ∨A2 = A1 ∧A2

S1 vA S2 = S1 ⇐ (S2 ∧A)
L1 t L2 = L1 ∧ L2 L1 u L2 = L1 ∨ L2

Each formula is in normal form, so the definitions of join and meet
are up to renormalization. In §6.3, we consider the secrecy part of
DC as our subject of study for embeddability.

The definition of the full DC model follows: it only adds an
integrity component to DCS.

DC: Full DC Labels (LIO)

L = F × F Ldef = (True,True)
A = F 0 = True
A1 ≤ A2 = A1 ⇐ A2 A1 ∨A2 = A1 ∧A2

(S1, I1) vA (S2, I2) =
S1 ⇐ (S2 ∧A) and I2 ⇐ (I1 ∧A)

(S1, I1) t (S2, I2) = (S1 ∧ S2, I1 ∨ I2)
(S1, I1) u (S2, I2) = (S1 ∨ S2, I1 ∧ I2)

Note that the default label is neither a top nor a bottom element:
it is the pair of the bottom for secrecy and the top for integrity,
i.e. the “most public” and the “least endorsed”. Authorities in DC
are the same formulae as in DCS. Note that DC is isomorphic to
DCS ×DCop

S .
Note that some of the basic label models can also be given

natural logical readings, as some of the following embeddings will
illustrate. There leads one to wonder about label models where
the labels and authorities are arbitrary formulae in some logic
(perhaps with implication, quantification, . . .). We leave this for
future investigation.

6.2 Simplified DLM (with no principal hierarchy)
We describe a stripped down version of the Decentralized Label
Model [9]: for the sake of simplicity, we focus on its secrecy part
only, and don’t yet model its principal hierarchy (acts-for relation).
Discussing the extension with acts-for is the purpose of §6.4. We
name the current version DLMS, and the extended one DLMS-H.

Labels in DLMS are sets of policies, where policies are drawn
from the set Pol = {p → P | p ∈ P, P ∈ Pfin(P)}. The
sets on the right hand side are called reader sets; they are akin to
labels of CR in that they decrease as we go up in the lattice of
labels. For instance, the label L1 = {p → {p1, p2}} says that
the principal p allows only principals p1 and p2 to read some data.
Label L2 = {p → {p1}} is strictly more secure than L1—i.e.
L1 vL2—since L2 allows less possible readers.

When (p → P) ∈ L, we say that principal p owns the policy
p→ P in L. Principals can own multiple policies. That label model
is called decentralized, because several principals can independently
own different policies, that is to say, ask for different security
requirements. In label L3 = {p → {p1, p2}, q → {p1}}, two
principals—p and q—express a policy. The resulting policy is,
according to [9], the intersection of p’s and q’s policies: all the
stated policies must be enforced. Note that L1 v L3 and that
{q → {p1}} vL3.

Authorities are sets of owners. They specify which policies can
be modified: for any p in the authority, one can arbitrarily change
or remove policies that are owned by p in a label but the other
policies can only be changed to more restrictive ones. For instance,
L3 v{p} {q → {p1}} and L3 v{p} {p → {p1, p2, p3}, q →
{p1}}. However, L3 6v{p}{q → {p1, p2}}, because in the latter
label, the security policy owned by q is more permissive than the
one in L3.

The complete definition of the DLMS label algebra follows.

CR0 T0CR T

DCS DLMS

DCS0 DLMS0

?

?

Figure 7. Embeddings with DLMS and DCS. Plain arrows are
value embeddings; crossed arrows denote non-existence of value
embeddings; ‘?’ means conjecture.

DLMS: Simplified DLM (secrecy, no acts-for)

L = Pfin(Pol) Ldef = ∅ A = Pfin(P) 0 = ∅

L1 t L2 = L1 ∪ L2

L1 u L2 = {p→ P1 ∪ P2 | (p→ P1) ∈ L1, (p→ P2) ∈ L2}

L1 vL2 = ∀(p→ P1) ∈ L1. ∃(p→ P2) ∈ L2. P2 ⊆ P1

L1 vA L2 = L1 vL2 t LA where LA = {p→ ∅ | p ∈ A}

Note that a given principal can own more than one policy. For
instance, L1 v{p→ {p1}, p→ {p2}}, and the converse does not
hold. Interestingly, the explanation based on reader sets does not
scale to the case of principals owning several policies. For instance,
one could expect that {p → {p1}, p → {p2}} and {p → ∅}
express the same requirement, i.e. “p says that nobody can read
the data”. However, the former label is strictly lesser than the latter.
Here is how we understand such labels: the sets of the right hand
side express disjunctions of principals, whereas the juxtaposition
of two policies means their conjunction. We conjecture that one
can represent DLMS labels as finite maps from principals to F
(conjunctions of disjunctions of principals).

Li et al. [6] claim some encodability results, namely that the
two point model, the writer model, the endorsement model and
the distrust model can all be encoded in the Decentralized Label
Model. Unfortunately, while they describe the lattice structures of
all the models they consider, they do not explain what are their
default labels, and they ignore authority. We will see in §6.3 that the
presence of authorities plays an interesting role.

6.3 Some embeddability results
We have gathered in Figure 7 some relative embeddability results
about DCS, DLMS and some of the models of §5.3. Note that it
is preliminary work, hence we have not achieved an exhaustive
exploration of the area. For instance, we are definitely interested in
considering the full models, that is to say with secrecy and integrity
and, in the case of the DLM, the extension with an acts-for relation
presented in §6.4.

The first thing to notice about that diagram is that neither CR
nor T are expressive enough to express DCS of DLMS labels. That
is not a surprise.

Then, the most noticeable result is that the presence of authorities
sometimes precludes embeddability. For instance, the models DCS0

and DLMS0, that don’t have authorities, embed in each other, but
it is not true for their authority-enriched versions (we proved one
way, conjectured the other): intuitively, there is indeed no notion of
owner of a policy in DCS, and conversely there is no disjunction of
authorities in DLMS.

Another instance of that phenomenon is the embeddability of
CR: it does not embed in DCS or DLMS, but its 0-authority version
does. By contrast, the behavior of T is not influenced by the presence
of authorities.

9 2012/7/11

For the sake of concreteness, we detail one embeddability and
one non-embeddability arrows of Figure 7

6.3.1 Proposition: T
e
↪→ DLMS.

Proof: Define m(S) =
⋃
p∈S{p→ ∅} and m(A) = A. The map

m verifies the conditions of Corollary 4.4.3. �

Thanks to Proposition 4.4.4, that evaluation embedding is also a
value embedding.

6.3.2 Proposition: CR does not value-embed in DLMS.

Proof: Assume that such a value embedding exists; let’s call it m.
Let us first prove (1): there exists A0 such that for any label L ∈

DCS, domm(L) ⊆ A0. For any label L ∈ CR, L v0 ∅, there-
fore m(L) vm(0) m(∅) by Theorem 4.3.1. Then, domm(L) ⊆
m(0) ∪ domm(∅) by definition.

Then, let us show (2): for any A ∈ ACR and L1, L2 ∈ LCR,
m(L1) vm(A)∩A0

m(L2) iff m(L1) vm(A) m(L2). The direct
way holds by properties of label algebras, since m(A) ∩ A0 ≤
m(A). Let us show the converse: assume m(L1) vm(A) m(L2).
Assume p → P1 ∈ m(L1). If p ∈ m(A) ∩ A0, then (p → ∅) ∈
m(L2) t Lm(A)∩A0

, which concludes the proof. Assume now, that
p /∈ m(A) ∩ A0. We know that p ∈ A0 by (1), thus p /∈ m(A).
Therefore, there existsP2 such that p→ P2 ∈ m(L2) andP2 ⊆ P1,
by definition ofvin DLMS. Then, p→ P2 ∈ m(L2)tLm(A)∩A0

,
which concludes the proof that m(L1) vm(A)∩A0

m(L2).
Let us consider the function λA. A∩A0. It has an infinite domain

and a finite range, therefore it cannot be injective. Thus, there exists
A1 andA2 such thatA1 6= A2 andm(A1)∩A0 = m(A2)∩A0 (3).
Therefore, for any L1 and L2,

L1 vA1 L2

iff m(L1) vm(A1) m(L2) by Theorem 4.3.1
iff m(L1) vm(A1)∩A0

m(L2) by (2)
iff m(L1) vm(A2)∩A0

m(L2) by (3)
iff m(L1) vm(A2) m(L2) by (2)
iff L1 vA2 L2 by Theorem 4.3.1.

Then, since ∅ vA2 A2, we have ∅ vA1 A2, i.e.A2 ⊆ A1. Similarly,
since ∅ vA1 A1, we have ∅ vA2 A1, i.e. A1 ⊆ A2. We proved
A1 = A2—a contradiction. �

Using Proposition 4.4.4, there is no evaluation embedding either.
We hope to have convinced the reader that including authorities

in the reasoning about encodability makes a lot of sense, as it can
lead to surprising results. Thus, informal claims about the expressive
power of label models really need to be taken with a grain of salt.

6.4 DLM with principal hierarchy
In this section, we extend the DLMS label algebra of §6.2 with
principal hierarchies: we end up with the secrecy component of
Jif [9]. A principal hierarchy is a partial order on principals. The
idea is to consider that the principal hierarchy is one component
of the authorities: its role is to enlarge the flows-to relation. In Jif,
the principal hierarchy is a system-wide centralized piece of state.
As noticed by [8], the meet operation is not in general the greatest
lower bound for any principal hierarchy: therefore, the description
that follows is not a label algebra. One could think that might be
a good reason to drop meets from the definition of label algebras,
but Jif programs do make use of meets in the type of methods, and
during typechecking. Moreover, dropping meets would prevent us
from defining the dual of a label algebra.

In Jif, the set of principals P has two distinguished points p⊥
and p>. Let H be the set of partial orders on principals such that
p⊥ is a bottom element and p> is a top element: we call principal
hierarchies the elements ofH. For H ∈ H, (p1, p2) ∈ H reads “p2
acts for p1”. We define authorities as pairs of a principal hierarchy

DLMS-H: not a label algebra

L = Pfin(Pol)
A = {>}+ (H×Pfin(P))

0 = ({(p⊥, p>)}, ∅)
(H,P) ≤ > = true
(H1, P1) ≤ (H2, P2) = H1 ⊆ H2 and P1 ⊆ P2

(H1, P1) ∨ (H2, P2) = ((H1 ∪H2)
+, P1 ∪ P2)

if (H1 ∪H2)
+ is a partial order

A1 ∨A2 = > otherwise
L1 v> L2 = true
L1 v(H,∅) L2 = ∀(p1 → P1) ∈ L1, ∃(p2 → P2) ∈ L2,

(p1, p2) ∈ H and
∀p′2 ∈ P2, ∃p′1 ∈ P1, (p

′
1, p
′
2) ∈ H

L1 v(H,A) L2 =
L1 v(H,∅) L2 t LA where LA = {p→ ∅ | p ∈ A}

Figure 8. DLMS-H: DLMS with principal hierarchy.

and a set of principals: that latter set represents the owners of policies
that can be declassified, as in the DLMS label algebra.

Formally, we also add a top element to authorities: hierarchies
are partial orders, therefore they are acyclic. In Jif, extending the
principal hierarchy is a partial operation, since it must preserve
acyclicity. In label algebra, however, the join on authorities is a
total function: the role of the top authority is precisely to model the
possible failure of extending authorities: if the system reaches the
top authority, it warns the user of its illegal action.

Figure 8 contains the definition of DLMS-H. On the one hand,
the fact that the definition does not fit the label algebra interface can
clearly be understood as a limitation of label algebras. On the other
hand, one could also consider that it is an imperfection of DLMS:
meet does not gives the best lower bound, and therefore the type
analysis performed by Jif can lose some accuracy.

6.5 Asbestos
Asbestos [4] is a information-flow secure operating system. Labeling
in Asbestos is coarse grained, in the sense that label are attached
to kernel objects, such as files or processes. Its labels are almost-
constant maps from principals to security levels. Level is the set
{?, 0, 1, 2, 3} equipped with the total order ? < 0 < 1 < 2 < 3.
Labels are composed of a finite map from principals to levels, and
a default level for the principals that are not mentioned in the map.
The authors use the word category while we use principal. For a
label L ∈ (P fin→ Level)× Level , we define

L(p) =

{
f(p) if p ∈ dom f

l otherwise.

where L = (f, l). The ordering on labels is the pointwise extension
of the level ordering.

Each Asbestos process owns a set of privileges, i.e. a set of
principals: if p is in that set, a process is allowed to freely change
the level that is owned by p in a label L, à la DLM. The definition
of Asbestos labels follows.

Asbestos:

L = (P fin→ Level)× Level Ldef = ({}, 1)
A = Pfin(P) 0 = ∅
L1 vA L2 = ∀p, p ∈ A or L1(p) ≤ L2(p)

A particularity of Asbestos is that processes can automatically get
tainted by the communications they perform, following complex

10 2012/7/11

schemes that involve the use of joins and meets. That implicit taint
mechanism was shown to be insecure [15]: “Asbestos changes a
processs label to track information flow when it receives IPCs,
which is detectable by third parties and can leak information.”
Later information-flow secure OSes enforce explicit changes of
the processes labels.

6.6 Early HiStar
It seems that at least two versions of HiStar exist and use different
labels. The earliest version [15] uses labels that are inspired by
Asbestos labels. We describe the second version in the next section.
There are several differences in the set of primitives that Asbestos
and HiStar provide. Among the differences, thread label changes
are required to be explicitly stated. In the rest of the section, we only
focus on the differences with respect to labels.

The main difference compared to Asbestos is the way untainting
(or reclassification) is handled. Indeed in HiStar, level ? is a
privileged level, that can only appear in thread labels: it confers
a thread the right to untaint a category. It is low in the lattice so
that threads need authority to gain untainting privileges: ? is indeed
strictly below the default level.

When a thread with label LT attempts to observe an object with
label LO , the check LO vLT is usually performed. However, that
does not correspond to ? being an untainting privilege, since its
low position in the lattice prevents flows instead of allowing more
flows. The authors explain that the meaning of ? is either bottom or
top, depending on the situation. To better explain the mechanism in
place, they introduce a special level J, called high star, that behaves
like a maximum level, but is not really part of the lattice of levels:
“level J is only used in access rules and never appears in labels of
actual objects”. Now, the read check becomes LO vLJ

T , where LJ
T

is the label LT in which every occurrence of ? is replaced with the
special top element J.

It seems that the fact that ? occurs in a thread label is a way to
express the privileges that are owned by that thread. Indeed, we can
define Auth(L) = {p | L(p) = ?}: it is the authority of a thread
that has L as a thread label. Then, under the assumption that ? does
not occur in L1, L1 vLJ

2 is equivalent to L1 vAuth(L2) L2, where
the indexed flows-to relation is the one of Asbestos. Note that our
assumption about L1 makes sense, since L1 is supposed not to be a
thread label.

6.7 Later HiStar
The more recent version of HiStar [16] seems to have switched to a
different kind of labels, that are closer to the models we described
in §5. Their labels are indeed pairs of sets of categories: secrecy and
integrity categories. As in previous works from the same authors,
the word category denotes tag, or principal. Secrecy categories
are disjoint from integrity categories. Secrecy categories are also
called read categories, whereas integrity categories are called write
categories. Their model corresponds exactly to T×E, where T is
the secrecy part (reader) and E is the integrity part (writer).

6.8 Flume
Flume [5] is another experiment in the field of information-flow
secure OSes. The labels in flume are pairs of sets of tags (i.e. what
we call principal); one component is used for secrecy, the other one
for integrity. Similarly to latest HiStar (§6.7), it is the product of the
taint model with the endorsement model.

However, Flume has a notion of authority that makes the de-
scription above inaccurate: authorities are sets of “capabilities”, that
are tags equipped with a polarity annotation—positive or negative.
A positive capability permits to add a tag to a label (in whichever
component), whereas a negative capability allows removing a tag.
That behavior of authorities is captured in Figure 9.

Flume: not a label algebra

L = Pfin(P)× Pfin(P) Ldef = (∅, ∅)
(S1, I1) v(S2, I2) = S1 ⊆ S2 and I1 ⊇ I2

A = Pfin(P)× Pfin(P) 0 = (∅, ∅)
(C+

1 , C
−
1) ≤ (C+

2 , C
−
2) = C+

1 ⊆ C
+
2 and C−1 ⊆ C

−
2

(S1, I1) v(C+,C−) (S2, I2) =
S2 \ S1 ⊆ C+ and S1 \ S2 ⊆ C−
and I2 \ I1 ⊆ C+ and I1 \ I2 ⊆ C−

Figure 9. Flume labels and authorities.

The definition does not form a label algebra, because v0 is the
equality relation on labels, which is different from the relation v
of the underlying lattice. In other words, the way information is
allowed to flow is strictly more permissive than the way processes
can change labels when using the least authority possible. That very
peculiarity makes Flume more flexible, i.e. the way thread labels
can change is completely programmable: programmers have a lot
of freedom in the way they can shape the lattice. A system like
LIO [14] uses clearance as a mechanism to control how programs
can change their thread label. The clearance mechanism is just a
flows-to check, and therefore does not require more than what a
label algebra can offer.

Inter-process communication in Flume is facilitated in the fol-
lowing way: “if two processes could communicate by changing their
labels, sending a message using the centralized rules, and then restor-
ing their original labels, then the model can safely allow the pro-
cesses to communicate without label changes”. That extra flexibility
is captured by the notion of safe message between processes. A pro-
cess P with label LP = (SP , IP) and authority AP = (C+

P , C
−
P)

can safely send a message to a processQ with label LQ = (SQ, IQ)
and authority AQ = (C+

Q , C
−
Q) when SP \DP ⊆ SQ ∪DQ and

IP ∪DP ⊇ IQ\DQ, whereDP = C+
P ∩C

−
P andDQ = C+

Q∩C
−
Q .

That is to say, processes can implicitly use capabilities that they pos-
itively and negatively own. That is consistent with the intention that
a process would need to raise its label (using positive capabilities),
perform the communication, and then lower its label back to its
original value (using negative capabilities), or the converse—lower,
then raise. With our notation, one could say that P can safely send
a message to Q if there exists two labels L′P and L′Q such that
LP ≡AP L′P vL′Q ≡AQ LQ.

6.9 Laminar
Laminar [10] uses essentially the same labels and authorities as
Flume, therefore it also does not quite fit in the label algebra
framework.

7. Related Work
Sabelfeld and Sands [11] give semantic types to secure sequential
programs: their types are partial equivalence relations (PERs).
They develop an elegant theory that can model different kinds of
security policies, including probabilistic ones. They do not consider
zauthorities or exceptional flows. It is worth noticing that our value
semantics is a family of equivalence relations, and our evaluation
semantics is a family of PERs (§4).

In a previous paper the same authors [12] describe some aspects
of declassification and what rules it should follow. One of them is
conservativity: “Security for programs with no declassification is
equivalent to noninterference”. This rule corresponds to one of the
axioms of label algebras, namely: v=v0, i.e. the empty authority
plays no role. Notice that according to Theorem 3.2.4, programs

11 2012/7/11

with 0 authority are non-interferent in the usual sense. Another
rule—monotonicity of release—is also directly connected to our
work: “Adding further declassifications to a secure program cannot
render it insecure”. This corresponds to the monotonicity properties
that we require on label semantics.

Mantel and Sands [7] study intransitive non-interference, a
security property of programs that perform declassification. They
use PERs that rely on bisimulations of labeled transition systems:
by definition, a strongly secure program is related to itself. This
seems akin to our evaluation semantics, although they use a more
intensional point of view. Like our λ-calculus (§3), their language
identifies which parts of the code perform declassification. Their
small-step semantics is labeled with the authority that each step
uses. (Keeping such a trace and using it in the evaluation semantics
of labels is an interesting direction for future work for us.) Our
treatment of authority differs from theirs: they only consider two
authorities—no authority (⊥) and declassification authority (>)—
and they consider only v⊥, not v>. Instead, the declassification
relation (), which allows exceptional flows, is not required to be
transitive, and neither is v⊥ ∪ in general. It seems that, in our
notation, v> should be the relation (v∪)+.

8. Future Work
This exploration of label algebras and embeddings is just a begin-
ning. We hope to produce an exhaustive map of the known label
algebras along with the existence or absence of embeddings between
all pairs. Such a map could be very useful to people that approach
the field for the first time, and as a guide for the design of new label
algebras.

Although many examples fit the interface of label algebras,
§6.4 shows that principal hierarchies require looser conditions on
meets and joins: relaxing the definition of label algebras and its
implications deserves further study.

The theory of label semantics lacks the ability to generate princi-
pals and authorities, a pervasive ingredient in dynamic information
flow systems. We are particularly interested in the consequences on
embeddings and their existence.

Since it depends on the semantics of a programming language,
the evaluation semantics from §4.4 is sensitive to the set of features
of the language. We are particularly interested in extending our
language with first-class labels and authorities, and possibly imper-
ative features, and seeing the implications on the characterization
Theorem 4.4.2. We guess that extending the language in a way that
makes use of more features of label algebras leads to embeddings
that need to preserve and reflect more aspects of label algebras. It
would be of primary interest to see whether we can come up with
a language whose evaluation embeddings are exactly the injective
label-algebra morphisms (i.e., the injective maps that preserve all
the label-algebra structure); we conjecture that adding first-class
labels may be enough for this.

We would like also to experiment with different instances of
the abstract label semantics: for example, our evaluation semantics
could use a more semantic notion of program equivalence. We could
also consider an information-flow type system for our language, i.e.
parametrized over label algebras, and use the typability judgment to
define a label semantics.

Acknowledgments
We are grateful to Steve Zdancewic, David Mazières, Deian Stefan,
and the members of the SAFE team for fruitful discussions. Robin
Morisset helped initiate the design of label algebras. Greg Morrisett
participated in early discussions and gave us essential feedback on
the technical definitions. This material is based upon work supported
by the DARPA CRASH program through the US Air Force Research
Laboratory (AFRL) under Contract No. FA8650- 10-C-7090. The

views expressed are those of the authors and do not reflect the
official policy or position of the Department of Defense or the U.S.
Government.

References
[1] AUSTIN, T. H. AND FLANAGAN, C. 2009. Efficient purely-dynamic

information flow analysis. SIGPLAN Notices 44, 20–31.
[2] BIBA, K. J. 1977. Integrity considerations for secure computer systems.

Tech. Rep. ESD-TR-76-372, MTR-3154 Rev 1, Mitre. Apr.
[3] DENNING, D. E. 1976. A lattice model of secure information flow.

Communications of the ACM 19, 236–243.
[4] EFSTATHOPOULOS, P., KROHN, M., VANDEBOGART, S., FREY, C.,

ZIEGLER, D., KOHLER, E., MAZIÈRES, D., KAASHOEK, F., AND
MORRIS, R. 2005. Labels and event processes in the Asbestos operating
system. In Proceedings of the 20th Symposium on Operating Systems
Principles. SOSP. ACM, 17–30.

[5] KROHN, M. N., YIP, A., BRODSKY, M. Z., CLIFFER, N., KAASHOEK,
M. F., KOHLER, E., AND MORRIS, R. 2007. Information flow control
for standard OS abstractions. In Proceedings of the 21st Symposium on
Operating Systems Principles. SOSP. ACM, 321–334.

[6] LI, P., MAO, Y., AND ZDANCEWIC, S. 2003. Information integrity
policies. In Proceedings of the Workshop on Formal Aspects in Security
& Trust (FAST).

[7] MANTEL, H. AND SANDS, D. 2004. Controlled declassification based
on intransitive noninterference. In Proc. Asian Symp. on Programming
Languages and Systems. LNCS. Springer-Verlag, 129–145.

[8] MYERS, A. C. 1999. Mostly-static decentralized information flow
control. Ph.D. thesis, Massachusetts Institute of Technology.

[9] MYERS, A. C. AND LISKOV, B. 2000. Protecting privacy using the
decentralized label model. ACM Trans. Softw. Eng. Methodol. 9, 410–442.

[10] ROY, I., PORTER, D. E., BOND, M. D., MCKINLEY, K. S., AND
WITCHEL, E. 2009. Laminar: Practical fine-grained decentralized infor-
mation flow control. In Proceedings of the Conference on Programming
Language Design and Implementation. PLDI. ACM, 63–74.

[11] SABELFELD, A. AND SANDS, D. 2001. A PER model of secure
information flow in sequential programs. Higher-Order and Symbolic
Computation 14, 1, 59–91.

[12] SABELFELD, A. AND SANDS, D. 2005. Dimensions and principles
of declassification. In Computer Security Foundations 18th Workshop,
IEEE, Ed. 255–269.

[13] STEFAN, D., RUSSO, A., MAZIÈRES, D., AND MITCHELL, J. C.
2011. Disjunction category labels. In 16th Nordic Conference on Secure
IT Systems. NordSec. Springer, 223–239.

[14] STEFAN, D., RUSSO, A., MITCHELL, J. C., AND MAZIÈRES, D. 2011.
Flexible dynamic information flow control in Haskell. In Proceedings of
the 4th Symposium on Haskell. ACM, 95–106.

[15] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. 2006. Making information flow explicit in HiStar. In
Proceedings of the 7th symposium on Operating systems design and im-
plementation. OSDI. USENIX Association, 263–278.

[16] ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIÈRES, D. 2011. Making information flow explicit in HiStar. Com-
munications of the ACM 54, 11, 93–101.

12 2012/7/11

	Introduction
	Label Algebras
	Basic definitions
	Examples
	Operations on label algebras
	Label algebra maps

	Labeled Lambda-Calculus
	Syntax and semantics
	Basic properties

	Semantics of Labels
	Basic definitions
	Label algebra embeddings
	Value semantics of labels
	Evaluation semantics of labels

	Simple Examples
	Basic Models
	Universal models
	Syntactic models
	Embeddings among universal and syntactic models
	Apropos integrity

	Real-World Examples
	Disjunction-Category (DC) labels
	Simplified DLM (with no principal hierarchy)
	Some embeddability results
	DLM with principal hierarchy
	Asbestos
	Early HiStar
	Later HiStar
	Flume
	Laminar

	Related Work
	Future Work

