
A Bisimulation for Dynamic Sealing

Eijiro Sumii
University of Pennsylvania

sumii@saul.cis.upenn.edu

Benjamin C. Pierce
University of Pennsylvania

bcpierce@cis.upenn.edu

Abstract

We define λseal, an untyped call-by-value λ-calculus with primi-
tives for protecting abstract data by sealing, and develop a bisim-
ulation proof method that is sound and complete with respect to
contextual equivalence. This provides a formal basis for reason-
ing about data abstraction in open, dynamic settings where static
techniques such as type abstraction and logical relations are not ap-
plicable.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—abstract data types; D.3.1 [Programming Languages]:
Formal Definitions and Theory; F.3 [Theory of Computation]:
Logics and Meanings of Programs; E.3 [Data]: Data Encryption;
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—protocol verification

General Terms

Theory, Languages, Security

1 Introduction

Dynamic sealing: Birth, death, and rebirth

Sealing is a linguistic mechanism for protecting abstract data. As
originally proposed by Morris [18, 19], it consists of three con-
structs: seal creation, sealing, and unsealing. A fresh seal is created
for each module that defines abstract data. Data is sealed when it is
passed out of the module, so that it cannot be inspected or modified
by outsiders who do not know the seal; the data is unsealed again
when it comes back into the module, so that it can be manipulated
concretely. Data abstraction is preserved as long as the seal is kept
local to the module.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’04, January 14–16, 2004, Venice, Italy.
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

Originally, sealing was a dynamic mechanism. Morris also pro-
posed a static variant [19], in which the creation and use of seals at
module boundaries follow a restricted pattern that can be verified by
the compiler, removing the need for run-time sealing and unsealing.
Other researchers found that a similar effect could be obtained by
enriching a static type system with mechanisms for type abstraction
(see CLU [13], for example). Type abstraction became the primary
method for achieving data abstraction in languages from CLU to the
present day. It is also well understood via the theory of existential
types [16].

Recently, however, as programming languages and the environ-
ments in which they operate become more and more open—e.g.,
addressing issues of persistence and distribution—dynamic sealing
is being rediscovered. For example, Rossberg [26] proposes to use
a form of dynamic sealing to allow type abstraction to coexist with
dynamic typing; Leifer et al. [12] use hashes of implementations
of abstract types to protect abstractions among different programs
running on different sites; Dreyer et al. [7] use a variant of sealing
(somewhere between static and dynamic) to give a type-theoretic
account of ML-like modules and functors; finally, we [21] have
proposed a translation (conjectured to be fully abstract) of System-
F-style type abstraction into dynamic sealing.

Another reason for the renewal of interest in sealing is that it hap-
pens to coincide with perfect encryption (under shared-key cryp-
tography), that is, with an ideal encryption scheme where a cipher-
text can be decrypted only if the key under which it was encrypted
is known explicitly. Perfect encryption is a common abstraction
in current research on both systems security and programming lan-
guages, for example in modeling and reasoning about cryptographic
protocols (e.g., the spi-calculus [3]).

Problem

Although interest in dynamic sealing is reviving, there remains a
significant obstacle to its extensive study: the lack of sufficiently
powerful methods for reasoning about sealing. First, to the best of
our knowledge, there has been no work at all on proof techniques
for sealing in untyped sequential languages. (There are several ver-
sions of bisimulation for the spi-calculus, but encoding other lan-
guages such as λ-calculus into spi-calculus raises the question of
what abstraction properties are preserved by the encoding itself.)
Second, even in statically typed settings, the published techniques
for obtaining abstraction properties are in general very weak. For
instance, the first two [12, 26] of the works cited above use (variants
of) the colored brackets of Zdancewic et al. [8, 32] but only prove
(or even state) abstraction properties for cases where abstract data is
published by itself with no interface functions provided (i.e., once
sealed, data is never unsealed).

161

Abstraction as equivalence

We aim to establish a method for proving abstraction of programs
using dynamic sealing in an untyped setting. To this end, let us first
consider how to state the property of abstraction in the first place.
Take, for example, the following module implementing complex
numbers in an imaginary ML-like language.

module PolarComplex =
abstype t = real * real
let from_re_and_im : real * real -> t =
fun (x, y) ->

(sqrt(x * x + y * y), atan2(y, x))
let to_re_and_im : t -> real * real =
fun (r, t) ->

(r * cos(t), r * sin(t))
let multiply : t * t -> t =
fun ((r1, t1), (r2, t2)) ->

(r1 * r2, t1 + t2)
end

Using dynamic sealing instead of type abstraction, this module can
be written as follows for some secret seal k.

module PolarComplex =
let from_re_and_im =
fun (x, y) ->

let z = (sqrt(x * x + y * y), atan2(y, x)) in
<seal z under k>

let to_re_and_im =
fun z ->

let (r, t) = <unseal z under k> in
(r * cos(t), r * sin(t))

let multiply =
fun (z1, z2) ->

let (r1, t1) = <unseal z1 under k> in
let (r2, t2) = <unseal z2 under k> in
let z = (r1 * r2, t1 + t2) in
<seal z under k>

end

Now, the question is: Is this use of sealing correct? That is, does it
really protect data abstraction? In particular, can we show that this
module has the same external behavior as another sealed module
that also implements complex numbers, e.g., the following module
with another secret seal k’?

module CartesianComplex =
let from_re_and_im =
fun (x, y) ->

<check that x and y are real numbers>;
let z = (x, y) in <seal z under k’>

let to_re_and_im =
fun z ->

let (x, y) = <unseal z under k’> in (x, y)
let multiply =
fun (z1, z2) ->

let (x1, y1) = <unseal z1 under k’> in
let (x2, y2) = <unseal z2 under k’> in
let z = (x1 * x2 - y1 * y2,

x1 * y2 + x2 * y2) in
<seal z under k’>

end

Formally, we want to show the contextual equivalence [17] of the
two modules PolarComplex and CartesianComplex. In general,

however, it is difficult to directly prove contextual equivalence be-
cause it demands that we consider an infinite number of contexts.

Equivalence by bisimulation

To overcome this difficulty, we define a notion of bisimulation
for our language (by extending applicative bisimulation [4]) and
use it as a tool for proving contextual equivalence. Essentially, a
bisimulation records a set of pairs of “corresponding values” of
two different programs. In the example of PolarComplex and
CartesianComplex, the bisimulation is (roughly):

{(PolarComplex,CartesianComplex)}∪
{(PolarComplex.from_re_and_im,
CartesianComplex.from_re_and_im),

(PolarComplex.to_re_and_im,
CartesianComplex.to_re_and_im),

(PolarComplex.multiply,
CartesianComplex.multiply)}∪

{((x,y),(x,y)) | x,y real numbers}∪
{({(r,θ)}k,{(r cos θ,r sinθ)}k′) | r ≥ 0}

The first part is the modules themselves. The second part is the
individual elements of the modules. The third is arguments of
from_re_and_im as well as results of to_re_and_im. The last is
the representations of complex numbers sealed under k or k′, where
{ } denotes sealing.

From the soundness of bisimulation, we obtain the contextual
equivalence of the two modules. Furthermore, our bisimulation is
complete: if two programs are contextually equivalent, then there
always exists a bisimulation between them. This means that (at
least in theory) we can use bisimulation to prove any valid contex-
tual equivalence.

Contribution

The main contribution of this work is a sound and complete bisimu-
lation proof method for contextual equivalence in an untyped func-
tional language with dynamic sealing. Along the way, we are led
to refine the usual contextual equivalence to account for the vari-
ations in observing power induced by the context’s knowledge (or
ignorance) of the seals used in observed terms.

Parts of our theory are analogous to bisimulation techniques de-
veloped for the spi-calculus [1, 2, 5, 6]. However, our bisimulation
is technically simpler and thus more suitable for reasoning about
dynamic sealing for data abstraction in sequential languages. Fur-
thermore, our setting requires us to extend even the definition of
contextual equivalence in a natural but significant way, as discussed
in Section 3.

Structure of the paper

The rest of this paper is structured as follows. Section 2 formal-
izes the syntax and the semantics of our language, λseal. Sec-
tion 3 defines a suitable notion of contextual equivalence. Sec-
tion 4 presents our bisimulation and gives several examples, includ-
ing the complex number packages discussed above and an encoding
of the Needham-Schroeder-Lowe key exchange protocol. Section
5 proves soundness and completeness of the bisimulation with re-
spect to contextual equivalence. Section 7 discusses related work,
and Section 8 sketches future work.

162

d,e ::= term
x variable
λx.e function
e1 e2 application
c constant
op(e1, . . . ,en) primitive
if e1 then e2 else e3 conditional branch
(e1, . . . ,en) tupling
#i(e) projection
k seal
νx.e fresh seal generation
{e1}e2 sealing
let {x}e1 = e2 in e3 else e4 unsealing

u,v,w ::= value
λx.e function
c constant
(v1, . . . ,vn) tuple
k seal
{v}k sealed value

Figure 1. Syntax of λseal

Notation

Throughout the paper, we use overbars as shorthands for
sequences—e.g., we write x and (v,v′) instead of x1, . . . ,xn and
(v1,v′1), . . . ,(vn,v′n) where n ≥ 0. Similarly, {k} is a shorthand for
the set {k1, . . . ,kn} where ki �= k j for any i and j. When s and t are
sets, s� t is defined to be s∪ t if s∩ t = /0, and undefined otherwise.

2 Syntax and Semantics

λseal is the standard untyped, call-by-value λ-calculus extended
with sealing. Its syntax is given in Figure 1. Seal k is an element
of the countably infinite set K of all seals. We use meta-variables s
and t for finite subsets of K . Fresh seal generation νx.e generates a
fresh seal k, binds it to x and evaluates e. The meaning of freshness
will soon be clarified below. Sealing {e1}e2 evaluates e1 to value
v and e2 to seal k, and seals v under k. Unsealing let {x}e1 =
e2 in e3 else e4 evaluates e1 to seal k1 and e2 to sealed value
{v}k2 . If k1 = k2, the unsealing succeeds and e3 is evaluated with x
bound to v. Otherwise, the unsealing fails and e4 is evaluated.

The calculus is also parametrized by first-order constants and prim-
itives such as real numbers and their arithmetics. We use infix no-
tations for binary primitives like e1 +e2. We assume that constants
include booleans true and false. We also assume that op includes
the equality = for constants.

We adopt the standard notion of variable binding and write FV(e)
for the set of free variables in e. We also write Seals(e) for the set
of seals that appear in term e.

We write let x = e1 in e2 for (λx.e2)e1. We also write ⊥ for
(λx.xx)(λx.xx) and λ{x}k.e for λy.let {x}k = y in e else ⊥
where y �∈ FV(e). Furthermore, we write λ(x,y).e for λz.let x =
#1(z) in let y = #2(z) in e where z �∈ FV(e). We use similar no-
tations of pattern matching throughout the paper.

The semantics of λseal is given in Figure 2 by big-step evaluation
〈s〉e ⇓ 〈t〉v annotated with the set s of seals before the evaluation
and the set t of seals after the evaluation. It is parametrized by
the meaning [[op(c1, . . . ,cn)]] of primitives. For example, [[1.23 +

4.56]] = 5.79. For simplicity, we adopt the left-to-right evaluation
order. As usual, substitutions [e/x] avoid capturing free variables
by implicit α-conversion. The meaning of freshness is formalized
by requiring k �∈ s in (E-New). We write 〈s〉e ⇓ if 〈s〉e ⇓ 〈t〉v for
some t and v.

Because of fresh seal generation, our evaluation is not quite de-
terministic. For instance, we have both 〈 /0〉νx.x ⇓ 〈{k1}〉k1 and
〈 /0〉νx.x ⇓ 〈{k2}〉k2 for k1 �= k2. Nevertheless, we have the follow-
ing property:

Property 2.1. Evaluation is deterministic modulo the names of
freshly generated seals. That is, for any 〈s〉e ⇓ 〈t〉v and 〈s〉e ⇓
〈t ′〉v′, we have v = [k/x]e0 and v′ = [k′/x]e0 for some e0 with
Seals(e0)⊆ s, some k with {k}⊆ t \s, and some k

′
with {k

′} ⊆ t ′ \s.

PROOF. Straightforward induction on the derivation of 〈s〉e ⇓
〈t〉v.

In what follows, we implicitly use the following properties of eval-
uation without explicitly referring to them.

Property 2.2. Every value evaluates only to itself. That is, for any
s and v with s ⊇ Seals(v), we have 〈s〉v ⇓ 〈s〉v. Furthermore, if
〈s〉v ⇓ 〈t〉w, then t = s and w = v.

PROOF. Straightforward induction on the syntax of values.

Property 2.3. Evaluation never decreases the seal set. That is, for
any 〈s〉e ⇓ 〈t〉v, we have s ⊆ t.

PROOF. Straightforward induction on the derivation of 〈s〉e ⇓
〈t〉v.

3 Contextual Equivalence

In standard untyped λ-calculus, contextual equivalence for closed
values1 can be defined by saying that v and v′ are contextually
equivalent if [v/x]e ⇓ ⇐⇒ [v′/x]e ⇓ for any term e. In λseal,
however, contextual equivalence cannot be defined for two values
in isolation. For instance, consider λ{x}k.x + 1 and λ{x}k′ .x + 2.
Whether these values are equivalent or not depends on what val-
ues sealed under k or k′ are known to the context. If the origi-
nal terms which created k and k′ were νz.({2}z,λ{x}z.x + 1) and
νz.({1}z,λ{x}z.x+2), for example, then the only values sealed un-
der k or k′ are 2 and 1, respectively. Thus, the equivalence above
does hold. On the other hand, it does not hold if the terms were,
say, νz.({3}z,λ{x}z.x + 1) and νz.({4}z,λ{x}z.x + 2). This ob-
servation that we have to consider multiple pairs of values at once
leads to the following definition of contextual equivalence.

Definition 3.1. A value relation R is a set of pairs of values.

Definition 3.2. The contextual equivalence ≡ is the largest rela-
tion among seal sets s and s′ and value relations R , such that for
any (s,s′,R) ∈ ≡ and for any (v,v′) ∈ R , we have the following
properties.

1. Seals(v) ⊆ s and Seals(v′) ⊆ s′.

1For the sake of simplicity, we focus on equivalence of closed
values (as opposed to open expressions) in this paper. For open
expressions e and e′ with free variables x1, . . . ,xn, it suffices to con-
sider the equivalence of λx1. . . .λxn.e and λx1. . . .λxn.e′ instead.

163

Seals(e) ⊆ s
〈s〉λx.e ⇓ 〈s〉λx.e

(E-Lam)
〈s〉e1 ⇓ 〈s1〉λx.e 〈s1〉e2 ⇓ 〈s2〉v 〈s2〉 [v/x]e ⇓ 〈t〉w

〈s〉e1 e2 ⇓ 〈t〉w
(E-App)

〈s〉c ⇓ 〈s〉c
(E-Const)

〈s〉e1 ⇓ 〈s1〉c1 . . . 〈sn−1〉en ⇓ 〈sn〉cn [[op(c1, . . . ,cn)]] = c
〈s〉op(e1, . . . ,en) ⇓ 〈sn〉c

(E-Prim)

〈s〉e1 ⇓ 〈s1〉true 〈s1〉e2 ⇓ 〈t〉v
〈s〉if e1 then e2 else e3 ⇓ 〈t〉v

(E-Cond-True)
〈s〉e1 ⇓ 〈s1〉false 〈s1〉e3 ⇓ 〈t〉v
〈s〉if e1 then e2 else e3 ⇓ 〈t〉v

(E-Cond-False)

〈s〉e1 ⇓ 〈s1〉v1 . . . 〈sn−1〉en ⇓ 〈sn〉vn

〈s〉(e1, . . . ,en) ⇓ 〈sn〉(v1, . . . ,vn)
(E-Tuple)

〈s〉e ⇓ 〈t〉(v1, . . . ,vn) 1 ≤ i ≤ n
〈s〉#i(e) ⇓ 〈t〉vi

(E-Proj)

k ∈ s
〈s〉k ⇓ 〈s〉k

(E-Seal)
〈s�{k}〉 [k/x]e ⇓ 〈t〉v

〈s〉νx.e ⇓ 〈t〉v
(E-New)

〈s〉e1 ⇓ 〈s1〉v 〈s1〉e2 ⇓ 〈s2〉k
〈s〉{e1}e2 ⇓ 〈s2〉{v}k

(E-Do-Seal)

〈s〉e1 ⇓ 〈s1〉k 〈s1〉e2 ⇓ 〈s2〉{v}k 〈s2〉 [v/x]e3 ⇓ 〈t〉w
〈s〉let {x}e1 = e2 in e3 else e4 ⇓ 〈t〉w

(E-Unseal-Succ)

〈s〉e1 ⇓ 〈s1〉k1 〈s1〉e2 ⇓ 〈s2〉{v}k2 k1 �= k2 〈s2〉e4 ⇓ 〈t〉w
〈s〉let {x}e1 = e2 in e3 else e4 ⇓ 〈t〉w

(E-Unseal-Fail)

Figure 2. Semantics of λseal

2. 〈s〉 [v/x]e ⇓ ⇐⇒ 〈s′〉 [v′/x]e ⇓ for any e with Seals(e) = /0.

We write 〈s〉v1, . . . ,vn ≡ 〈s′〉v′1, . . . ,v
′
n for (s,s′,{(v1,v′1), . . . ,

(vn,v′n)}) ∈ ≡. In order to lighten the notation, we do not en-
close these v1, . . . ,vn and v′1, . . . ,v

′
n in parentheses. We also write

〈s〉v ≡R 〈s′〉v′ when (v,v′) ∈ R and (s,s′,R) ∈ ≡. Intuitively, it
can be read as “value v with seal set s and value v′ with seal set s′
are contextually equivalent under contexts’ knowledge R .”

Note that no generality is lost by requiring Seals(e) = /0 in the def-
inition above: if e needs its own seals, it can freshly generate an
arbitrary number of them by using ν; if e knows some of the seals k
in s and k

′
in s′, it suffices to require (k,k′) ∈ R . Thus, our contex-

tual equivalence subsumes standard contextual equivalence where
a context knows none, all, or part of the seals (or, more generally,
values involving the seals).

Example 3.3. Let s = {k} and s′ = {k′}. We have 〈s〉{2}k ≡
〈s′〉{1}k′ since the context has no means to unseal the values sealed
under k or k′. (A formal proof of this claim based on bisimulation
will be given later.) We also have 〈s〉λ{x}k .x+1≡〈s′〉λ{x}k′ .x+2
since the context cannot make up any values sealed under k or k′.

Furthermore, we have

〈s〉{2}k,λ{x}k.x +1 ≡ 〈s′〉{1}k′ ,λ{x}k′ .x +2

because applications of the functions to the sealed values yield the
same integer 3. Similarly,

〈s〉{4}k,λ{x}k.x +1 ≡ 〈s′〉{5}k′ ,λ{x}k′ .x

holds. However,

〈s〉{2}k ,λ{x}k.x +1,{4}k,λ{x}k.x +1
≡ 〈s′〉{1}k′ ,λ{x}k′ .x +2,{5}k′ ,λ{x}k′ .x

does not hold, because applications of the last functions to the first
sealed values yield different integers 3 and 1.

As the last example shows, even if (s,s′,R1)∈≡ and (s,s′,R2)∈≡,
we do not always have (s,s′,R1 ∪R2) ∈ ≡. Intuitively, this means

that we should not confuse two worlds where the uses of seals are
different. This is the reason why we defined ≡ as a set of triples
(s,s′,R) rather than just a function that takes a pair (s,s′) of seal
sets and returns the “largest” set R of pairs of equivalent values.

Conversely, again as the examples above suggest, there are cases
where (s,s′,R1) ∈ ≡ and (s,s′,R2) ∈ ≡ for R1 ⊆ R2. This im-
plies that there is a partial order among the value relations R in
contextual equivalence. We could alternatively define contextual
equivalence only with such value relations that are maximal in this
ordering, but this would just complicate the technicalities that fol-
low.

We will use the following lemmas about contextual equivalence in
what follows.

Lemma 3.4. Application, projection, fresh seal generation, and
unsealing preserve contextual equivalence. That is:

1. For any (u,u′) ∈ R and (v,v′) ∈ R with (s,s′,R) ∈ ≡, if
〈s〉uv ⇓ 〈t〉w and 〈s〉u′v′ ⇓ 〈t〉w′, then (t,t ′,R ∪{(w,w′)}) ∈
≡.

2. For any ((v1, . . . ,vn),(v′1, . . . ,v
′
n))∈ R with (s,s′,R)∈≡, we

have (s,s′,R ∪{(vi,v′i)}) ∈≡ for any 1 ≤ i ≤ n.

3. For any (s,s′,R) ∈ ≡, we have (s � {k},s′ � {k′},R �
{(k,k′)}) ∈ ≡ for any k �∈ s and k′ �∈ s′.

4. For any ({v}k,{v′}k′)∈ R and (k,k′)∈ R with (s,s′,R)∈≡,
we have (s,s′,R ∪{(v,v′)}) ∈≡.

PROOF. Take e as let z = xy in e0, let y = #i(x) in e0, νx.e0,
and let {z}x = y in e0, respectively, in the definition of (s,s′,R)∈
≡.

Lemma 3.5. Contextually equivalent values put in the same value
context yield contextually equivalent values. That is, for any
(s,s′,R) ∈ ≡ and (v,v′) ∈ R , and for any w = [v/x]e0 and w′ =
[v′/x]e0 with Seals(e0) = /0, we have (s,s′,R ∪{(w,w′)}) ∈≡.

164

PROOF. Immediate from the definition of contextual equivalence,
using the property of substitution that [[v/x]e0/x]e = [v/x]([e0/x]e)
when {x}∩FV(e) = /0.

Lemma 3.6. Any subset of contextually equivalent values are con-
textually equivalent. That is, for any (s,s′,R) ∈ ≡, we have
(s,s′,S) ∈≡ for any S ⊆ R .

PROOF. Immediate from the definition of contextual equiva-
lence.

4 Bisimulation

Giving a direct proof of contextual equivalence is generally diffi-
cult, because the definition involves universal quantification over
an infinite number of contexts. Thus, we want a more convenient
tool for proving contextual equivalence. For this purpose, we define
the notion of bisimulation as follows.

Definition 4.1. A bisimulation X is a relation among seal sets s and
s′ and value relations R such that every (s,s′,R) ∈ X satisfies the
following conditions.

1. For each (v,v′) ∈ R , we have Seals(v) ⊆ s and Seals(v′) ⊆ s′.

2. For each (v,v′) ∈ R , v and v′ are of the same kind. That is,
both are functions, both are constants, both are tuples, both
are seals, or both are sealed values.

3. For each (c,c′) ∈ R , we have c = c′.

4. For each ((v1, . . . ,vn),(v′1, . . . ,v
′
n′)) ∈ R , we have n = n′ and

(s,s′,R ∪{(vi,v′i)}) ∈ X for every 1 ≤ i ≤ n.

5. For each (k1,k′1)∈ R and (k2,k′2)∈ R , we have k1 = k2 ⇐⇒
k′1 = k′2.

6. For each ({v}k,{v′}k′) ∈ R , we have either (k,k′) ∈ R and
(s,s′,R ∪{(v,v′)}) ∈ X , or else (k,k′′) �∈ R and (k′′,k′) �∈ R
for every k′′.

7. Take any (λx.e,λx.e′) ∈ R . Take also any k and k
′

with s∩
{k}= s′ ∩{k

′} = /0. Moreover, let v = [u/x]d and v′ = [u′/x]d
for any (u,u′) ∈ R � {(k,k′)} and Seals(d) = /0. Then, we
have 〈s�{k}〉(λx.e)v ⇓ ⇐⇒ 〈s′ �{k

′}〉(λx.e′)v′ ⇓. Further-
more, if 〈s� {k}〉(λx.e)v ⇓ 〈t〉w and 〈s′ � {k

′}〉(λx.e′)v′ ⇓
〈t ′〉w′, then (t,t ′,R �{(k,k′)}∪{(w,w′)}) ∈ X .

For any bisimulation X , we write 〈s〉v XR 〈s′〉v′ when (v,v′) ∈ R
and (s,s′,R) ∈ X . This can be read “values v and v′ with seal sets s
and s′ are bisimilar under contexts’ knowledge R .”

The intuitions behind the definition of bisimulation are as follows.
Each of the conditions excludes pairs of values that are distin-
guishable by a context (except for Condition 1, which just re-
stricts the scoping of seals). Condition 2 excludes pairs of val-
ues of different kinds, e.g., 123 and λx.x. Condition 3 excludes
pairs of different constants. Condition 4 excludes pairs of tuples
with distinguishable elements. Condition 5 excludes cases such
as (k,k′) ∈ R and (k,k′′) ∈ R with k′ �= k′′, for which contexts
like let {x}y = {()}z in x else ⊥ can distinguish the left-hand
side (setting y = z = k) and the right-hand side (setting y = k′ and
z = k′′). Condition 6 excludes cases where (i) the context can un-

seal both of two sealed values whose contents are distinguishable,
or (ii) the context can unseal only one of the two sealed values.

Condition 7, the most interesting one, is about what a context can
do to distinguish two functions. Obviously, this will involve ap-
plying them to some arguments—but what arguments? Certainly
not arbitrary terms, because in general a context has only a par-
tial knowledge of (values involving) the seals in s and s′. All that
a context can do for making up the arguments is to carry out some
computation d using values u and u′ from its knowledge. Therefore,
the arguments have forms [u/x]d and [u′/x]d.

An important and perhaps surprising point here is that it actually
suffices to consider cases where these arguments are values. This
restriction is useful and even crucial for proving bisimulation of
functions: if the arguments [u/x]d and [u′/x]d were not values, we
should evaluate them before applying the functions; in particular, if
evaluation of one argument converges, then evaluation of the other
argument must converge as well; proving this property amounts to
proving the contextual equivalence of u and u′, which was the whole
purpose of our bisimulation!

Fortunately, our restriction of the arguments to values can be jus-
tified by the “fundamental property” proved in the next section,
which says that the special forms [u/x]d and [u′/x]d are preserved
by evaluation. The only change required as a result of this restric-
tion is the addition of {(k,k′)} to knowledge R in Condition 7: it
compensates for the fact that d can no longer be a fresh seal gen-
eration, while the context can still generate its own fresh seals k
and k

′
when making up the arguments. Without such a change, our

bisimulation would indeed be unsound: a counter-example would
be (/0, /0,{(λx.{true}x,λx.{false}x)}), for which contexts like
νy.let {z}y = []y in if z then () else ⊥ can distinguish the
two functions.

The rest of Condition 7 is straightforward: the results w and w′ of
function application should also be bisimilar.

Example 4.2. Let s = {k}, s′ = {k′}, and R = {({2}k,{1}k′)}.
Then {(s,s′,R)} is a bisimulation, as can be seen by a straightfor-
ward check of the conditions above.

Example 4.3. Let s = {k1,k2}, s′ = {k′}, and

R = {(({2}k1 ,{4}k′),({1}k2 ,{5}k′)),
({2}k1 ,{1}k′),
({4}k2 ,{5}k′)}.

Then {(s,s′,R)} is a bisimulation. This example illustrates the
fact that the number of seals may differ in the left-hand side and
in the right-hand side of bisimulation. Note that the closure con-
dition (Condition 4) in the definition of bisimulation demands that
we include not only the original pairs, but also their corresponding
components.

Example 4.4. Suppose we want to show that the pair
({2}k, λ{x}k.x + 1) is bisimilar to ({1}k′ , λ{x}k′ .x + 2)), as-
suming that seals k and k′ are not known to the context. Again,
the closure conditions in the definition force us to include the
corresponding components of the pairs (Condition 4), as well as
the results of evaluating the second components applied to the first
components (Condition 7); moreover, since Condition 7 allows the
context to enrich the set of seals with arbitrary seals of its own, our
bisimulation will consist of an infinite collection of similar sets,
differing in the context’s choice of seals.

165

Formally, let G be the following function on sets of pairs of seals:

G{(k0,k
′
0)} = {(({2}k, λ{x}k.x +1),

({1}k′ , λ{x}k′ .x +2)),
({2}k, {1}k′),
(λ{x}k.x +1, λ{x}k′ .x +2),
(3, 3)}

∪ {(k0, k
′
0)}

Then

X = {({k,k0}, {k′,k′0}, G{(k0,k
′
0)}) | k �∈ {k0}∧ k′ �∈ {k

′
0}}

is a bisimulation. The only non-trivial work required to show this
is checking Condition 7 for the pair (λ{x}k.x +1, λ{x}k′ .x +2) ∈
G{(k0,k

′
0)}, for each k0 and k

′
0 with k �∈ {k0} and k′ �∈ {k

′
0}.

Consider any v = [u/x]d and v′ = [u′/x]d with (u,u′) ∈
G{(k0,k

′
0)}�{(k1,k

′
1)} and Seals(d) = {k,k0}∩{k1}= {k′,k′0}∩

{k
′
1} = /0. If the evaluations of (λ{x}k.x+1)v and (λ{x}k′ .x+2)v′

diverge, then the condition holds.

Let us focus on cases where the evaluation of (λ{x}k.x +1)v con-
verges (without loss of generality, thanks to symmetry), that is,
where v is of the form {w}k. Then, either d is of the form {d0}xi and
ui = k, or else d is a variable xi and ui = {w}k . However, the former
case is impossible: k is not in the first projection of G{(k0,k

′
0)} or

{(k1,k
′
1)} by their definitions. So we must be in the latter case.

Since the only element of the form {w}k in the first projection of
G{(k0,k

′
0)}� {(k1,k

′
1)} is {2}k where the corresponding element

in its second projection is {1}k′ , we have v = {2}k and v′ = {1}k′ .
Then, the only evaluations of (λ{x}k.x + 1)v and (λ{x}k′ .x + 2)v′
are

〈{k,k0}�{k1}〉(λ{x}k.x +1)v ⇓ 〈{k,k0,k1}〉3

and

〈{k′,k′0}�{k
′
1}〉(λ{x}k′ .x +2)v′ ⇓ 〈{k′,k′0,k

′
1}〉3.

Thus, the condition follows from

G{(k0,k
′
0)}�{(k1,k

′
1)}∪{(3,3)} = G{(k0,k

′
0),(k1,k

′
1)}

and

({k,k0,k1},{k′,k′0,k
′
1},G{(k0,k

′
0),(k1,k

′
1)}) ∈ X .

Example 4.5 (Complex Numbers). Now let us show a bisimula-
tion relating the two implementations of complex numbers in Sec-
tion 1. First, let

v = (λ(x,y).{(x +0.0,y+0.0)}k ,
λ{(x,y)}k .(x,y),
λ({(x1,y1)}k,{(x2,y2)}k).

{(x1 ×x2 −y1 ×y2,x1 ×y2 +y1 ×x2)}k
v′ = (λ(x,y).{(sqrt(x×x +y×y),atan2(y,x))}k′ ,

λ{(r,θ)}k′ .(r×cos θ,r×sin θ),
λ({(r1,θ1)}k′ ,{(r2,θ2)}k′).{(r1 × r2,θ1 +θ2)}k′).

The first component of each triple corresponds to the
from_re_and_im functions in 1. The implementation in v
just seals the x and y coordinates provided as arguments, after
checking that they are indeed real numbers by attempting to add
them to 0.0. The implementation in v′ performs an appropriate
change of representation before sealing. The second components
correspond to the to_re_and_im functions in 1, and the third
components to the multiply functions.

The construction of the bisimulation follows the same pattern as
Example 4.4, except that the operator G is more interesting:

G{(k0,k
′
0)} =

{(v,v′)}
∪ {(λ(x,y).{(x +0.0,y+0.0)}k ,

λ(x,y).{(sqrt(x×x +y×y),atan2(y,x))}k′),
(λ{(x,y)}k .(x,y),
λ{(r,θ)}k′ .(r×cos θ,r×sin θ)),

(λ({(x1,y1)}k,{(x2,y2)}k).
{(x1 ×x2 −y1 ×y2,x1 ×y2 +y1 ×x2)}k,

λ({(r1,θ1)}k′ ,{(r2,θ2)}k′).{(r1 × r2,θ1 +θ2)}k′)}
∪ {((x,y),(x,y)) | x and y are arbitrary real numbers}
∪ {({(r cos θ,r sinθ)}k,{(r,θ)}k′) | r ≥ 0}
∪ {(k0,k

′
0)}

Example 4.6 (Applicative vs. Generative Functors). In this ex-
ample, we use bisimulation to show the equivalence of two instan-
tiations of a generative functor, where generativity is modeled by
fresh seal generation and the equivalence really depends on the gen-
erativity.

A functor is a parameterized module—a function from modules to
modules. For example, a module implementing sets by binary trees
can be parameterized by the type of elements and their comparison
function. In the same imaginary ML-like language as in Section 1,
such a functor might be written as follows:

functor Set(module Element : sig
type t
val less_than : t -> t -> bool

end) =
type elt = Element.t
abstype set = Element.t tree
let empty : set = Leaf
let rec add : elt -> set -> set =
fun x ->

<check that x has type elt>;
fun Leaf -> Node(x, Leaf, Leaf)
| Node(y, l, r) ->

if Element.less_than x y then
Node(y, add x l, r)

else if Element.less_than y x then
Node(y, l, add x r)

else Node(y, l, r)
let rec is_elt_of : elt -> set -> bool =
fun x ->

fun Leaf -> false
| Node(y, l, r) ->

if Element.less_than x y then
is_elt_of x l

else if Element.less_than y x then
is_elt_of x r

else true
end

Now, consider the following three applications of this functor:

module IntSet1 =
Set(module Element =
type t = int
let less_than : t -> t -> bool =

fun x -> fun y -> (x <int y)
end)

module IntSet2 =

166

Set(module Element =
type t = int
let less_than : t -> t -> bool =

fun x -> fun y -> (x <int y)
end)

module IntSet3 =
Set(module Element =
type t = int
let less_than : t -> t -> bool =

fun x -> fun y -> (x >int y)
end)

If the functor Set is applicative, the abstract type IntSet3.set
becomes compatible with IntSet1.set and IntSet2.set, even
though the comparison function of IntSet3 is not compatible with
that of IntSet1 or IntSet2. As a result, (part of) their abstraction
as sets of integers is lost: for instance, IntSet2 and IntSet3 are
distinguished by a context like

C[] = let s = [].add 7 ([].add 3 [].empty) in
IntSet1.is_elt_of 7 s

while they should be equivalent if considered just as two different
implementations of integer sets.

This situation can be translated into λseal as follows. First, the
applicative functor can be implemented by the following function
f , using a standard call-by-value fixed-point operator fix (which is
definable since the language is untyped).

λlt.
({nil}k,
fix(λadd. λ(x,{y}k).
if lt(x,x) then ⊥ else
if y = nil then {(x,nil,nil)}k else
if lt(x,#1(y)) then {(#1(y),add(x,#2(y)),#3(y))}k else
if lt(#1(y),x) then {(#1(y),#2(y),add(x,#3(y)))}k else
{y}k),

fix(λis elt of. λ(x,{y}k).
if y = nil then false else
if lt(x,#1(y)) then is elt of(x,#2(y)) else
if lt(#1(y),x) then is elt of(x,#3(y)) else
true))

Next, we translate the three applications of the functor into three
applications of f to appropriate comparison functions:

〈{k}〉 f (λ(x,y).x <int y) ⇓ 〈{k}〉v1
〈{k}〉 f (λ(x,y).x <int y) ⇓ 〈{k}〉v2
〈{k}〉 f (λ(x,y).x >int y) ⇓ 〈{k}〉v3

The values v2 and v3 are not contextually equivalent when the con-
text knows v1. That is, ({k},{k},{(v1 ,v1),(v2,v3)}) �∈ ≡. To see
this, take e = #3(x) (7, #2(y) (7, #2(y) (3, #1(y)))), setting x = v1,
y = v2 in the left hand side and x = v1, y = v3 in the right hand side.

Note that v2 and v3 are contextually equivalent if the context knows
neither v1, f , nor any other values involving the seal k. That is,
({k},{k},{(v2 ,v3)}) ∈ ≡. Indeed, the context C[] above uses
IntSet1 to distinguish IntSet2 and IntSet3. Our definition of
contextual equivalence as a set of relations (annotated with seal
sets) gives a precise account for such subtle variations of contexts’
knowledge.

On the other hand, if we take the Set functor to be generative, then
IntSet2 and IntSet3 are contextually equivalent even if the con-
text also knows IntSet1, since all the abstract types are incompat-
ible with one another. This case can be modeled in λseal by the

following function g, which generates a fresh seal for each applica-
tion instead of using the same seal k for all instantiations.

λlt.νz.
({nil}z,
fix(λadd. λ(x,{y}z). . . .),
fix(λis elt of. λ(x,{y}z). . . .))

Consider the following three applications of g.

〈 /0〉g(λ(x,y).x <int y) ⇓ 〈{k1}〉w1
〈{k1}〉g(λ(x,y).x <int y) ⇓ 〈{k1,k2}〉w2
〈{k1}〉g(λ(x,y).x >int y) ⇓ 〈{k1,k3}〉w3

Now w2 and w3 are bisimilar even if the context knows w1. That is,
there exists a bisimulation X such that ({k1,k2},{k1,k3},R) ∈ X
with {(w1,w1),(w2,w3)} ⊆ R . It is straightforward to construct
this bisimulation in the same manner as Examples 4.4 and 4.5.

Example 4.7. Let us show that λx.(3,x) is bisimilar to itself. This
example is technically tricker than previous ones, because arbitrary
values provided by the context can appear verbatim within results.
These results can again be passed as arguments and thus appear
within yet larger results, etc. To achieve the required closure condi-
tions, we need to reach a limit of this process. This can be accom-
plished by defining a bisimulation X inductively.

We require (/0, /0, /0) ∈ X as the (trivial) base case. The induction
rule is as follows. Take any (s,s′,R) ∈ X . Take any w = [v/x]e and
w′ = [v′/x]e with (v,v′) ∈ R and Seals(e) = /0. Take any t ⊇ s and
t ′ ⊇ s′ of the forms {k} and {k

′}. Let

S = {(λx.(3,x),λx.(3,x)),
((3,w),(3,w′)),
(3,3),
(w,w′),
(k,k′)}.

We then require that (t,t′,T) ∈ X for any T ⊆ S . The bisimulation
we want is the least X satisfying these conditions.

Intuitively, we have defined X so that the conditions of
bisimulation—Condition 7, in particular—are immediately satis-
fied. The final technical twist T ⊆ S is needed because the clo-
sure conditions in the definition of bisimulation add individual pairs
of elements rather than adding their whole “deductive closures” at
once.

Example 4.8 (Protocol Encoding). As a final illustration of the
power of our bisimulation technique (and λseal itself), let us con-
sider a more challenging example. This example is an encoding of
the protocol below, which is based on the key exchange protocol of
Needham, Schroeder, and Lowe [14, 20].

1. B → A : B
2. A → B : {NA,A}kB

3. B → A : {NA,NB,B}kA

4. A → B : {NB}kB

5. B → A : {i}NB

In this protocol, A is a server accepting requests from good B and
evil E. It is supposed to work as follows. (1) B sends its own name
B to A. (2) A generates a fresh nonce NA, pair it with its own name
A, encrypts the pair with B’s public key, and sends it to B. (3) B
generates a fresh key NB, tuples it with NA and B, encrypts the tuple
with A’s public key, and sends it to A. (4) A encrypts NB with B’s
public key and sends it to B. (5) B encrypts some secret integer i
with NB and sends it to A.

167

S = {(U,U ′),(V,V ′),(W,W ′),

— corresponding keys and constants known to the attacker
(k,k′),(A,A),(B,B),(E,E),
(λx.{x}kA

,λx.{x}k′A),(λx.{x}kB
,λx.{x}k′B),(kE ,k′E),

(w,w′),({w}kA
,{w′}k′A),({w}kB

,{w′}k′B),

— corresponding components from principal B at Step 1
(λ{(x,y)}kB

.assert(y = A);νz.({(x,z,B)}kA
,λ{z0}kB

.assert(z0 = z);{i}z),
λ{(x,y)}k′B .assert(y = A);νz.({(x,z,B)}k′A ,λ{z0}k′B .assert(z0 = z);{ j}z)),

— corresponding components from principal A at Step 2, communicating with B
(({(kAB,A)}kB

,λ{(y0,z,x0)}kA
.assert(y0 = kAB);assert(x0 = B);{z}kB

),
({(k′AB,A)}k′B ,λ{(y0,z,x0)}k′A .assert(y0 = k

′
AB);assert(x0 = B);{z}k′B)),

({(kAB,A)}kB
,{(k′AB,A)}k′B),

(λ{(y0,z,x0)}kA
.assert(y0 = kAB);assert(x0 = B);{z}kB

,

λ{(y0,z,x0)}k′A .assert(y0 = k
′
AB);assert(x0 = B);{z}k′B),

— corresponding components from principal B at step 3, communicating with A
(({(kAB,kB,B)}kA

,λ{z0}kB
.assert(z0 = kAB);{i}kB

),
({(k′AB,k

′
B,B)}k′A ,λ{z0}k′B .assert(z0 = k

′
AB);{ j}

k
′
B
)),

({(kAB,kB,B)}kA
,{(k′AB,k

′
B,B)}k′A),

(λ{z0}kB
.assert(z0 = kAB);{i}kB

,

λ{z0}k′B .assert(z0 = k
′
AB);{ j}

k
′
B
),

— corresponding components from principal A at step 4, communicating with B
({kB}kB

,{k
′
B}k′B),

— corresponding components from principal B at step 5, communicating with A
({i}kB

,{ j}
k
′
B
),

— corresponding components from principal A at Step 2, communicating with E
(({(kAE ,A)}kE

,λ{(y0,z,x0)}kA
.assert(y0 = kAE);assert(x0 = E);{z}kE

),
({(k′AE ,A)}k′E ,λ{(y0,z,x0)}k′A .assert(y0 = k

′
AE);assert(x0 = E);{z}k′E)),

({(kAE ,A)}kE
,{(k′AE ,A)}k′E),

(λ{(y0,z,x0)}kA
.assert(y0 = kAE);assert(x0 = E);{z}kE

,

λ{(y0,z,x0)}k′A .assert(y0 = k
′
AE);assert(x0 = E);{z}k′E),

((kAE ,A),(k′AE ,A)),
(kAE ,k

′
AE),

— corresponding components from principal B at Step 3, communicating with E
(({(w,kB,B)}kA

,λ{z0}kB
.assert(z0 = kB);{i}kB

),
({(w′,k′B,B)}k′A ,λ{z0}k′B .assert(z0 = k

′
B);{ j}

k
′
B
)),

({(w,kB,B)}kA
,{(w′,k′B,B)}k′A),

(λ{z0}kB
.assert(z0 = kB);{i}kB

,

λ{z0}k′B .assert(z0 = k
′
B);{ j}

k
′
B
)),

— corresponding components from principal A at Step 4, communicating with E
({w}kE

,{w′}k′E)}
Figure 3. Bisimulation for the Needham-Schroeder-Lowe protocol

168

The idea of the encoding is as follows. We use sealing, unsealing
and fresh seal generation as (perfect) encryption, decryption, and
fresh key generation. The whole system is expressed as a tuple of
(functions representing) keys known to the attacker and terms U
and V representing principals B and A.

W = (λx.{x}kA
,λx.{x}kB

,kE ,U,V)

Each principal is encoded as a pair of the last value it sent (if
any) and a continuation function waiting to receive a next mes-
sage. When the message is received, the function returns the next
state of the principal. Communication occurs by a context apply-
ing these functions in an appropriate order (when the environment
is behaving normally) or perhaps in some strange, arbitrary order
(when the environment is under the control of a malicious attacker).
Thus, contexts play the role of the network, scheduler, and attack-
ers. More details about the encoding—including a more detailed
justification of the claim that it is a reasonable encoding of the
protocol above—can be found in previous work [30]. We write
assert(e1);e2 as syntactic sugar for if e1 then e2 else ⊥.

U = (B,λ{(x,y)}kB
.assert(y = A);
νz.({(x,z,B)}kA

,
λ{z0}kB

.assert(z0 = z);
{i}z))

V = λx.let kx = (if x = B then kB else
if x = E then kE else ⊥) in

νy.({(y,A)}kx
,

λ{(y0,z,x0)}kA
.assert(y0 = y);
assert(x0 = x);
{z}kx

))

Now, take any integers i and j. We prove that the system W above
(where the secret value sent from B to A is i) and the system W ′
below (where the secret is j) are bisimilar, which means that the
protocol keeps i and j secret against attackers.

U ′ = (B,λ{(x,y)}k′B .assert(y = A);
νz.({(x,z,B)}k′A ,

λ{z0}k′B .assert(z0 = z);
{ j}z))

V ′ = λx.let kx = (if x = B then k′B else
if x = E then k′E else ⊥) in

νy.({(y,A)}kx
,

λ{(y0,z,x0)}k′A .assert(y0 = y);
assert(x0 = x);
{z}kx

))
W ′ = (λx.{x}k′A ,λx.{x}k′B ,k′E ,U ′,V ′)

The construction of the bisimulation X is by induction, following
the same basic pattern as Example 4.7. The base case is (/0, /0, /0) ∈
X . The induction rule is as follows. Take any (s,s′,R) ∈ X . Take
any w = [v/x]e and w′ = [v′/x]e with (v,v′) ∈ R and Seals(e) = /0.
Take any t ⊇ s and t′ ⊇ s′ of the forms {kA,kB,kE ,kAB,kAE ,kB,k}
and {k′A,k′B,k′E ,k

′
AB,k

′
AE ,k

′
B,k

′}. Then, (t,t ′,T) ∈ X for any subset
T of the set S given in Figure 3. It is routine to check the conditions
of bisimulation for this X .

It is well known that the secrecy property does not hold for the
original version of this protocol (i.e., without Lowe’s fix), in which
the third message is {NA,NB}kA

instead of {NA,NB,B}kA
(i.e., the

B is missing). This flaw is mirrored in our setting as well: if we
tried to construct a bisimulation for this version in the same way as
above, it would fail to be a bisimulation for the following reason.

Since we would have

({(w,kB)}kA
,{(w′,k′B)}k′A) ∈ S

instead of

({(w,kB,B)}kA
,{(w′,k′B,B)}k′A) ∈ S

along with (kAE ,k
′
AE) ∈ S , we would have ({(kAE ,kB)}kA

,

{(k′AE ,k
′
B)}k′A) ∈ S by taking w = kAE and w′ = k

′
AE in the defi-

nition of X above. Since we would have

(λ{(y0,z)}kA
.assert(y0 = kAE);{z}kE

,

λ{(y0,z)}k′A .assert(y0 = k
′
AE);{z}k′E) ∈ S

as well instead of

(λ{(y0,z,x0)}kA
.assert(y0 = kAE);assert(x0 = E);{z}kE

,

λ{(y0,z,x0)}k′A .assert(y0 = k
′
AE);assert(x0 = E);{z}k′E) ∈ S

we should also have ({kB}kE
,{k

′
B}k′E) ∈ S by applying these func-

tions to the previous ciphertexts, according the condition of bisim-
ulation for functions (Condition 7). Furthermore, since (kE ,k′E) ∈
S , we would need (kB,k

′
B) ∈ S as well, according to the condi-

tion of bisimulation for sealed values (Condition 6). Then, since
({i}kB

,{ j}
k
′
B
) ∈ S , we should require (i, j) ∈ S . This contradicts

with the condition of bisimulation for constants (Condition 3) if
i �= j. Observe how the same attack is prevented in the fixed ver-
sion of this protocol: the assertion assert(x0 = E) fails since x0 is
bound to B.

5 Soundness and Completeness

Bisimilarity, written ∼, is the largest bisimulation. It exists because
the union of two bisimulations is always a bisimulation. We will
need several simple lemmas about bisimulation in the development
that follows.

Lemma 5.1 (Monotonicity). Take any bisimulation X . For any
(s,s′,R) ∈ X and (t,t′,S) ∈ X with R ⊆ S , if 〈s〉v XR 〈s′〉v′, then
〈t〉v XS 〈t ′〉v′.

PROOF. Immediate from the definitions of 〈s〉v XR 〈s′〉v′ and
〈t〉v XS 〈t ′〉v′.

Lemma 5.2 (Addition of Constants). Take any bisimulation X
and (s,s′,R) ∈ X . Then, X ∪{(s,s′,R ∪{(c,c)})} is a bisimula-
tion for any constant c.

PROOF. Straightforward by checking the conditions of bisimula-
tion.

Lemma 5.3 (Addition of Fresh Seals). Take any bisimulation X
and (s,s′,R) ∈ X . Then, X ∪ {(s� {k},s′ � {k′},R � {(k,k′)})}
is a bisimulation for any k �∈ s and k′ �∈ s′.

PROOF. Straightforward by checking the conditions of bisimula-
tion.

We want to show that the bisimilarity ∼ coincides with the contex-
tual equivalence ≡. Since we defined ∼ by co-induction, the easy
direction is showing that contextual equivalence implies bisimilar-
ity.

Lemma 5.4 (Completeness of Bisimilarity). ≡⊆∼.

169

PROOF. Since ∼ is the greatest bisimulation, it suffices to check
that ≡ is a bisimulation, which is routine using the lemmas about
contextual equivalence.

Next, we need to prove soundness, i.e., that bisimilarity implies
contextual equivalence. For this purpose, we define the following
relation.

Definition 5.5 (Bisimilarity in Context). We define ∼= as

{(s,s′,R , [v/x]e0, [v′/x]e0) | 〈s〉v ∼R 〈s′〉v′ ∧Seals(e0) = /0}
where 〈s〉v ∼R 〈s′〉v′ is a shorthand for 〈s〉v1 ∼R 〈s′〉v′1 ∧ . . .∧
〈s〉vn ∼R 〈s′〉v′n.

We write 〈s〉e ∼=R 〈s′〉e′ for (s,s′,R ,e,e′) ∈ ∼=. The intuition of
this definition is: ∼= relates bisimilar values v and v′ put in context
e0.

The two lemmas below are the key properties of our bisimulation.
The first states that evaluation preserves ∼=, the second that ∼= im-
plies observational equivalence (i.e., if evaluation of one expression
converges, then evaluation of the other expression also converges).

Lemma 5.6 (Fundamental Property, Part I). Suppose
〈s0〉e ∼=R0

〈s′0〉e′. If 〈s0〉e ⇓ 〈t〉w and 〈s′0〉e′ ⇓ 〈t ′〉w′, then
〈t〉w ∼=R 〈t ′〉w′ for some R ⊇ R0.

PROOF. See the full version [31].

Lemma 5.7 (Fundamental Property, Part II). If 〈s0〉e ∼=R0

〈s′0〉e′, then 〈s0〉e ⇓ ⇐⇒ 〈s′0〉e′ ⇓.

PROOF. See the full version [31].

An immediate consequence of the previous property is that bisimu-
lation implies contextual equivalence.

Corollary 5.8 (Soundness of Bisimilarity). ∼⊆≡.

PROOF. By the definitions of ≡ and ∼= with Lemma 5.7.

Combining soundness and completeness, we obtain the main the-
orem about our bisimulation: that bisimilarity coincides with con-
textual equivalence.

Theorem 5.9. ∼ = ≡.

PROOF. By Lemma 5.4 and Corollary 5.8.

6 Extension with Equality for Sealed Values

A number of variants of λseal can be considered. For example,
the version of λseal in this paper does not allow a context to test
two sealed values for equality. This is reasonable if the environ-
ment is a safe runtime system (where sealing can be implemented
just by tagging) which disallows comparison of sealed values. It
is unrealistic, however, to expect such a restriction in an arbitrary
(perhaps hostile) environment, where sealing must be implemented
by encryption. Fortunately, our technique is extends directly to
such a modest change as adding equality for sealed values. For
instance, it is straightforward to extend λseal with syntactic equal-
ity =1 for first-order values (including sealed values) along with
an additional condition of bisimulation: v1 =1 v2 ⇐⇒ v′1 =1 v′2 for
every (v1,v′1)∈ R and (v2,v′2)∈ R . Then, it is also straightforward

to prove the soundness and completeness of bisimilarity under this
extension, with an additional lemma that ∼= respects =1 (which can
be proved by induction on the syntax of values being compared).

Of course, the more observations we allow, the more difficult it be-
comes to establish the equivalence of two given modules. For ex-
ample, the two implementations of complex numbers given in the
introduction are no longer equivalent (or bisimilar) under the exten-
sion above, because there are many polar representations of 0 +0i
while there is only one cartesian representation. So, for example, a
context like

C[] = let x = [].from_re_and_im(0.0, 0.0) in
let y = [].from_re_and_im(-1.0, 0.0) in
x =1 [].multiply x y

would distinguish CartesianComplex and PolarComplex. To re-
cover the equivalence, the polar representation of 0 + 0i must be
standarized and checks inserted wherever it can be created:

let from_re_and_im =
fun (x, y) ->
let z =

if x = 0.0 && y = 0.0 then (0.0, 0.0) else
(sqrt(x * x + y * y), atan2(y, x)) in

<seal z under k>
let multiply =
fun (z1, z2) ->
let (r1, t1) = <unseal z1 under k> in
let (r2, t2) = <unseal z2 under k> in
let z =

if r1 = 0.0 || r2 = 0.0 then (0.0, 0.0) else
(r1 * r2, t1 + t2) in

<seal z under k>

7 Related Work

As discussed in the introduction, sealing was first proposed by Mor-
ris [18, 19] and has been revisited in more recent work on extending
the “scope” (in both informal and technical senses) of type abstrac-
tion in various forms [7, 12, 26, 28].

Bisimulations have been studied extensively in process calculi. In
particular, bisimulations for the spi-calculus [1, 2, 5, 6] are the most
relevant to this work, because the perfect encryption in spi-calculus
is very similar to dynamic sealing in our calculus. Our bisimulation
is analogous to bisimulations for spi-calculus in that both keep track
of the environment’s knowledge. However, since processes and
terms are different entities in spi-calculus, all the technicalities—
i.e., definitions and proofs—must be developed separately for pro-
cesses and terms. By contrast, our bisimulation is monolithic and
more straightforward. Furthermore, it is possible even to encode
and verify some (though not all) security protocols in our frame-
work. The encoding naturally models the concurrency among prin-
cipals and attackers (including so-called “necessarily parallel” at-
tacks) by means of interleaving. Thanks to higher-order functions,
we can also imitate public-key encryption without extending the
calculus. See our previous work [30] for further discussion about
this encoding of security protocols.

Another line of work on bisimulations in process calculi con-
cerns techniques for lightening the burden of constructing a
bisimulation—e.g., Milner and Sangiorgi’s “bisimulation up to”
[27]. It remains to be seen whether these techniques would be use-
ful in our setting. Note that our operational semantics is built upon
big-step evaluation (as opposed to small-step reduction) in the first

170

place, which cuts down the intermediate terms and reduces the size
of a bisimulation.

Abramsky [4] studied applicative bisimulation for the λ-calculus.
For functions λx.e and λx.e′ to be bisimilar, it requires that (λx.e)d
and (λx.e′)d are observationally equivalent for any closed d, and
that they evaluate to bisimilar values if the evaluations converge.
Thus, it requires the two arguments to be the same, which actually
makes the soundness proof harder [9]. We avoided this problem
by allowing some difference between the arguments of functions in
our bisimulation.

Jeffrey and Rathke [10] defined bisimulation for λ-calculus with
name generation, of which our seal generation is an instance. Al-
though their theory does distinguish private and public names, it
lacks a proper mechanism to keep track of contexts’ knowledge
of name-involving values in general, such as functions containing
names inside the bodies. As a result, they had to introduce addi-
tional language constructs—such as global references [10] or com-
munication channels [11]—for the bisimulation to be sound. We
solved this problem by using a set of relations (rather than a sin-
gle relation) between values as a bisimulation, i.e., by considering
multiple pairs of values at once.

A well-known method of proving the abstraction obtained by type
abstraction is logical relations [15, 25]. Although they are tradi-
tionally defined on denotational models, they have recently been
studied in the syntactic setting of term models as well [22, 23]. In
previous work [30], we have defined syntactic logical relations for
perfect encryption and used them to prove secrecy properties of se-
curity protocols. Although logical relations are analogous to bisim-
ulations in that both relate corresponding values between two dif-
ferent programs, logical relations are defined by induction on types
and cannot be applied in untyped settings. Moreover, logical rela-
tions in more sophisticated settings (such as recursive functions and
recursive types) than simply typed λ-calculus tend to become rather
complicated. Indeed, “keys encrypting keys” (as in security proto-
cols) required non-trivial extension in the logical relations above,
while they imposed no difficulty to our bisimulation in this paper.

8 Conclusions

We have defined a bisimulation for λseal and proved its soundness
and completeness with respect to contextual equivalence.

There are several directions for future work. One is to apply our
bisimulation to more examples, e.g., to prove the full abstraction of
our translation of type abstraction into dynamic sealing—indeed,
this was actually the original motivation for the present work. When
the target language is untyped, the translation of source term �M : τ
can be given as let x = erase(M) in E+

/0 (x,τ), where E+ is defined
like Figure 4 along with its dual E− in a type-directed manner. In-
tuitively, E+ is a “firewall” that protects terms from contexts, where
E− is a “sandbox” that protects contexts from terms. Bisimulation
would help proving properties of this translation. We may also be
able to use such an interpretation of type abstraction by dynamic
sealing as a (both formal and informal) basis for reasoning about
type abstraction in broader settings.

Another possibility is to define and use bisimulation for other forms
of information hiding, such as type abstraction. Our treatment of
seals are analogous to the treatment of generative names in general
[24, 29], of which abstract types are an instance as soon as they es-
cape from their scope (by communication [28], for example). Thus,

E+
ρ (x,bool) = x

E+
ρ (x,τ1 × . . .× τn) = let (y1, . . . ,yn) = x in

(E+
ρ (y1,τ1), . . . ,E+

ρ (yn,τn))
E+

ρ (x,τ → σ) = λy.let z = xE−
ρ (y,τ) in E+

ρ (z,σ)
E+

ρ (x,∀α.τ) = λy.let z = x() in E+
ρ (z,τ)

E+
ρ (x,∃α.τ) = νz.E+

ρ,α �→z(x,τ)
E+

ρ (x,α) = {x}ρ(α)
E+

ρ (x,α) = x if α �∈ Dom(ρ)

E−
ρ (x,bool) = if x then true else false

E−
ρ (x,τ1 × . . .× τn) = let (y1, . . . ,yn) = x in

(E−
ρ (y1,τ1), . . . ,E−

ρ (yn,τn))
E−

ρ (x,τ → σ) = λy.let z = xE+
ρ (y,τ) in E−

ρ (z,σ)
E−

ρ (x,∀α.τ) = λy.νz.E−
ρ,α �→z(x,τ)

E−
ρ (x,∃α.τ) = E−

ρ (x,τ)
E−

ρ (x,α) = let {y}ρ(α) = x in y else ⊥
E−

ρ (x,α) = x if α �∈ Dom(ρ)

Figure 4. Translation of type abstraction into dynamic sealing

it would be possible to define bisimulation for type abstraction in
a similar manner to the definition of our bisimulation for dynamic
sealing. This is interesting because such bisimulation may be com-
plete with respect to contextual equivalence as in this work, while it
is difficult to obtain complete logical relations for type abstraction
[22, 23].

Mechanical support for bisimulation proofs is also of natural inter-
est. Full automation is hopeless, since general cases subsume the
halting problem (i.e., whether the evaluation of a λ-expression con-
verges or diverges), but many of the conditions of bisimulation are
easy to check or satisfy by adding elements to the bisimulation. One
challenging point would be the case analysis on function arguments
[u/x]d and [u′/x]d in Condition 7, shown in detail in Example 4.4.

Acknowledgements

We would like to thank Martı́n Abadi, Andre Scedrov, Naoki
Kobayashi, and the members of Programming Language Club at the
University of Pennsylvania for suggestions and support throughout
the development of this work.

9 References

[1] Martı́n Abadi and Cédric Fournet. Mobile values, new names,
and secure communication. In Proceedings of the 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 104–115, 2001.

[2] Martı́n Abadi and Andrew D. Gordon. A bisimulation method
for cryptographic protocols. Nordic Journal of Computing,
5:267–303, 1998. Preliminary version appeared in Program-
ming Languages and Systems – ESOP’98, 7th European Sym-
posium on Programming, Lecture Notes in Computer Science,
Springer-Verlag, vol. 1381, pages 12–26, 1998.

[3] Martı́n Abadi and Andrew D. Gordon. A calculus for cryp-
tographic protocols: The spi calculus. Information and Com-
putation, 148(1):1–70, 1999. Preliminary version appeared
in Proceedings of the 4th ACM Conference on Computer and
Communications Security, pp. 36–47, 1997.

171

[4] Samson Abramsky. The lazy lambda calculus. In David A.
Turner, editor, Research Topics in Functional Programming,
pages 65–117. Addison Wesley, 1990.

[5] Michele Boreale, Rocco De Nicola, and Rosario Pugliese.
Proof techniques for cryptographic processes. SIAM Jour-
nal on Computing, 31(3):947–986, 2002. Preliminary version
appeared in 14th Annual IEEE Symposium on Logic in Com-
puter Science, pp. 157–166, 1999.

[6] Johannes Borgström and Uwe Nestmann. On bisimulations
for the spi calculus. In 9th International Conference on Alge-
braic Methodology and Software Technology, volume 2422 of
Lecture Notes in Computer Science, pages 287–303. Springer-
Verlag, 2002.

[7] Derek Dreyer, Karl Crary, and Robert Harper. A type sys-
tem for higher-order modules. In Proceedings of the 30th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 236–249, 2003.

[8] Dan Grossman, Greg Morrisett, and Steve Zdancewic. Syn-
tactic type abstraction. ACM Transactions on Programming
Languages and Systems, 22(6):1037–1080, 2000.

[9] Douglas J. Howe. Proving congruence of bisimulation in
functional programming languages. Information and Com-
putation, 124(2), 1996.

[10] Alan Jeffrey and Julian Rathke. Towards a theory of bisimu-
lation for local names. In 14th Annual IEEE Symposium on
Logic in Computer Science, pages 56–66, 1999.

[11] Alan Jeffrey and Julian Rathke. A theory of bisimulation for
a fragment of concurrent ML with local names. Theoretical
Computer Science, 2003. To appear. An extended abstract
appeared in 15th Annual IEEE Symposium on Logic in Com-
puter Science, pp. 311–321, 2000.

[12] James J. Leifer, Gilles Peskine, Peter Sewell, and Keith Wans-
brough. Global abstraction-safe marshalling with hash types.
In Proceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, pages 87–98, 2003.

[13] Barbara Liskov. A history of CLU. In The Second ACM SIG-
PLAN Conference on History of Programming Languages,
pages 133–147, 1993.

[14] Gavin Lowe. An attack on the Needham-Schroeder public-
key authentication protocol. Information Processing Letters,
56(3):131–133, 1995.

[15] John C. Mitchell. On the equivalence of data representations.
In Artificial Intelligence and Mathematical Theory of Compu-
tation: Papers in Honor of John McCarthy, pages 305–330.
Academic Press, 1991.

[16] John C. Mitchell and Gordon D. Plotkin. Abstract types
have existential types. ACM Transactions on Programming
Languages and Systems, 10(3):470–502, 1988. Preliminary
version appeared in Proceedings of the 12th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 37–51, 1985.

[17] James H. Morris Jr. Lambda-Calculus Models of Program-
ming Languages. PhD thesis, Massachusetts Institute of Tech-
nology, 1968.

[18] James H. Morris Jr. Protection in programming languages.
Communications of the ACM, 16(1):15–21, 1973.

[19] James H. Morris Jr. Types are not sets. In Proceedings of
the 1st Annual ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages, pages 120–124, 1973.

[20] Roger Needham and Michael Schroeder. Using encryption for
authentication in large networks of computers. Communica-
tions of the ACM, 21(12):993–999, 1978.

[21] Benjamin Pierce and Eijiro Sumii. Relating cryptography and
polymorphism, 2000. Manuscript. http://www.yl.is.s.
u-tokyo.ac.jp/˜sumii/pub/.

[22] Andrew M. Pitts. Existential types: Logical relations and
operational equivalence. In Proceedings of the 25th Inter-
national Colloquium on Automata, Languages and Program-
ming, volume 1443 of Lecture Notes in Computer Science,
pages 309–326. Springer-Verlag, 1998.

[23] Andrew M. Pitts. Parametric polymorphism and operational
equivalence. Mathematical Structures in Computer Science,
10:321–359, 2000. Preliminary version appeared in HOOTS
II Second Workshop on Higher-Order Operational Techniques
in Semantics, Electronic Notes in Theoretical Computer Sci-
ence, vol. 10, 1998.

[24] Andrew M. Pitts and Ian Stark. Observable properties of
higher order functions that dynamically create local names,
or: what’s new? In Mathematical Foundations of Computer
Science, volume 711 of Lecture Notes in Computer Science,
pages 122–141. Springer-Verlag, 1993.

[25] John C. Reynolds. Types, abstraction and parametric poly-
morphism. In Information Processing 83, Proceedings of the
IFIP 9th World Computer Congres, pages 513–523, 1983.

[26] Andreas Rossberg. Generativity and dynamic opacity for ab-
stract types. In Proceedings of the 5th International ACM
SIGPLAN Conference on Principles and Practice of Declara-
tive Programming, pages 241–252, 2003.

[27] Davide Sangiorgi and Robin Milner. The problem of “weak
bisimulation up to”. In CONCUR ’92, Third International
Conference on Concurrency Theory, volume 630 of Lecture
Notes in Computer Science, pages 32–46. Springer-Verlag,
1992.

[28] Peter Sewell. Modules, abstract types, and distributed ver-
sioning. In Proceedings of the 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
236–247, 2001.

[29] Ian Stark. Names and Higher-Order Functions. PhD thesis,
University of Cambridge, 1994. http://www.dcs.ed.ac.
uk/home/stark/publications/thesis.html.

[30] Eijiro Sumii and Benjamin C. Pierce. Logical relations for en-
cryption. In 14th IEEE Computer Security Foundations Work-
shop, pages 256–269, 2001. Long version to appear in the
Journal of Computer Security.

[31] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for
dynamic sealing. http://www.cis.upenn.edu/˜sumii/,
2003.

[32] Steve Zdancewic, Dan Grossman, and Greg Morrisett. Prin-
cipals in programming languages: A syntactic proof tech-
nique. In Proceedings of the Fourth ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 197–
207, 1999.

172

