
Verification Challenges
of

Pervasive Information Flow

Benjamin C. Pierce
University of Pennsylvania

Programming Languages Meets Program Verification
PLPV, January 2012

NEWS FLASH

Computer systems
are insecure!

Non-

Legacy design decisions,
now deeply embedded in HW/SW

ecosystem

Major contributing factor:

1. Huge increases in hardware resources
➜ Reconsider traditional sources of complexity
➜ Spend hardware to increase security

2. Huge advances in formal methods
➜ Machine-checked correctness proofs for
significant programs becoming practical

What’s changed?

SAFE

Shown: Sumit Ray, Howard Reubenstein, Andrew Sutherland, Tom Knight, Olin Shivers,
Benjamin Pierce, Ben Karel, Benoit Montagu, Jonathan Smith, Catalin Hritcu, Randy
Pollack, André DeHon, Gregory Malecha, Basil Krikeles, Greg Sullivan, Greg Frazier, Tim
Anderson, Bryan Loyall

Not shown: Greg Morrisett, Peter Trei, David Wittenberg, Amanda Strnad, Justin
Slepak, David Darais, Robin Morisset, Chris White, Anna Gommerstadt, Marty Fahey, Tom
Hawkins, Karl Fischer, Hillary Holloway, Andrew Kaluzniacki, Michael Greenberg, Andrew
Tolmach

Outline
1. Overview of CRASH/SAFE

2. Verification challenges

Many challenges!

Questions welcome!
(any time)

Vision

• Clean-slate redesign of the
HW / OS / PL stack

• Support at all levels for
• Memory safety
• Strong dynamic typing
• Information flow and access control

• Co-design for verifiability

Low-level view

Fat pointers

Every pointer includes base and bounds:

(Logarithmic encoding scheme
➜ compact representation)

[Brown et al, 2000]

Strong typing

Every data value is annotated with its
atomic group

int64
double
pointer

instruction
...

Rich tagging

Tag interpretation
• “This pointer can only by followed by the scheduler”

• “This instruction can only be executed by the
memory allocator”

• “This integer can only be read by user-defined
principal P”

• “The document at the other end of this pointer has
been endorsed by principal P”

• “This string came directly off the network and has
not been sanitized yet”

• etc.

+1

PC

ALU

Memory

Register File

I−StorePr
oc

es
so

r

PC

ALU

Memory

I−Store

Combine
 Tags

se
cu

ri
ty

vi
o
la

tio
n

result tag

new PC tag

tag data

Register
 File

TMU

Authority

+1

SA
FE

 Pr
oc

es
so

r

Tag Management Unit

(Eliding PC tag...)

High-level view

Breeze
Summary:

• ML-like (CBV, mostly functional)

• Channel-based communication
• á la CML / Pict

• Dynamically typed
• maybe statically, later
• for now: rich contract system

• Information flow and access control

A high-level, security-
oriented programming
language

Principals
• Breeze execution state include a set of

principals

• New principals can be created dynamically

Authority
• Creating a principal also creates an authority,

representing the capability to act as that
principal

• Abstract machine maintains a current authority
• and offers primitives for raising authority

(adding known capability to current authority)
and dropping authority

• Attempting an operation not permitted by the
current authority aborts the running thread

Labels
• Every value comes with a label describing its

security policy

• Labels form a lattice

v@L
value label

Information Flow

Labels are propagated during evaluation

40@P + 2@Q ⇓ 42@(P&Q)

PC label tracks implicit flows

if secret-belonging-to-P
then 5@⊥ else 6@⊥ ⇓ 5@P

Major
verification

target

Verifying the
HW / SW Stack

System structure
BREEZE source-level operational semantics

... (more layers for compiler passes)

CW TM plus inter-process communication
TM MM plus tag management

MM SCHED plus memory management

SCHED ISA plus scheduler

ISA bare hardware (in Coq)

ISA-BS bare hardware (in BlueSpec)Test

Verify

Verify

Verify

Verify

Verify

Verify

Verify metatheorems

A stack of abstract machines...

Relating
Abstract Machines

An abstract machine

machine configurations M

external event traces T

step relation M M’
T

Nondeterminism

Specification doesn’t want to nail down
some aspects of machine’s behavior
• “By how many cycles does the countdown timer

decrease when each instruction is executed...?”

Loose specification permits any outcome
• “An instruction can take any number of cycles”

However...

Nondeterminism makes reasoning hard!

Oracles
A nice trick:

M = MO × MS

Oracle captures nondeterminism
• “Each instruction takes some particular number of cycles in a

given run, but the step function doesn’t know how many; it
consults the given oracle to find out.”

Step relation now becomes a function

 (MO,MS) (MO’,MS’)
T

config = oracle + state

Relating machines

Given a concrete machine C and an
abstract machine A, suppose we
want to argue that “C is a correct
implementation of A.”

A is implemented by C if
there is some correspondence relation

(written ~) between abstract and concrete
machine configurations such that

A A’

C C’*

~

T

~
T

Wait... any
relation ~?

First try...

Need to
require that ~

be “total”...

A is implemented by C if
there is some correspondence relation
~ such that

1.∀ A ∃ C with A ~ C
2. this diagram commutes:

A A’

C C’*

~

T

~
T

Wait... is this
the right order
of quantifiers

for the oracles?

Second try...

No: The abstract
oracle’s choices

should depend on
the concrete one’s!

A is implemented by C if
there is some correspondence relation ~
such that

1. ∀ AS ∃ CS such that
∀ CO ∃ AO with
(AO,AS) ~ (CO,CS)

2. this diagram commutes:

But we can
streamline it a

little...

(AO,AS) (AO’,AS’)

*

~

T

~
T

(CO,CS) (CO’,CS’)

Final version!

A is implemented by C if
there is some relation ~ between
abstract and concrete states
and a total function O : (CO,CS) → AO such that

1. ∀ AS ∃ CS such that AS ~ CS
2. this diagram commutes:

Final version!

(AO,AS) (AO’,AS’)

*

~

T

~
T

(CO,CS) (CO’,CS’)

(What’s this
called?)

Example

BREEZE source-level operational semantics

... (more layers for compiler passes)

CW TM plus inter-process communication

TM MM plus tag management

MM SCHED plus memory management

SCHED ISA plus scheduler

ISA bare hardware (in Coq)

ISA-BS bare hardware (in BlueSpec)

(Suppose we were specifying the TM
running directly on the bare ISA...)

ISA Spec
machine state:
• memory, registers

• countdown timer (cycle counter)

• hardware TMU rule cache

oracle:
• how much does timer change on each instruction

step function:
if timer = 0, then save PC and fault to interrupt handler entry point,
else if hardware TMU cache has a rule allowing next instruction
 then ask oracle how much to decrement timer
 and execute instruction
else fault to TMU handler entry point

Tag Manager Spec
machine state:
• memory, registers, countdown timer as before

• no hardware TMU rule cache

• security state: set of principals, with associated lattice of labels, ...

oracle:
• same as ISA

step function:
if timer = 0 then fault to interrupt handler,
else if next instruction is “call allocate-principal function”, then

• allocate a principle (in one step)
• and put its name in result register

else ... (similarly for other TM entry points) ...
else if security state says next instruction is legal
 then execute it, using security state to determine tags on results
else halt machine

Metatheorems

Challenge!

Beyond non-interference?
Vanilla non-interference is not
enough...

• concurrent threads weaken it

• declassification breaks it

(...though better than nothing!)

Possible approaches
Methodological:
• Minimize number of audit points requiring ad

hoc inspection:
• e.g., declassification, process creation

• Make user-level code as deterministic as possible

Structural:
• Could user code be completely determinized??

• cf. Determinator [Ford et al.]

Challenge!

Poison Pills
How to prevent one component
from “poisoning” another by
sending it an inappropriately
secret value...

One approach: Public labels

Fundamental issue:
• In standard formulations of dynamic information flow,

the security label on a piece of data can itself carry
secret information

Idea:
• Rearrange primitives so that security labels can always

be public

• Now, “victim” of a poison pill can look at the label and
decide whether it is willing to raise its security level
enough to look at the contents

Challenge!

Application-level policies
How do we (formally) connect
our language-level security
primitives to user-level security
policies?

One approach: Policy weaving

Idea [Harris, Farley, Jha, Reps 2011]
• Specify policy separate from application code
• Automatically “weave” them together

Side benefit:
• Might work at ConcreteWare level, reducing

the urgency of verifying the compiler!

Challenge!

What is the
attack model?

Attacker does not have physical access
to the machine (either directly or via
the supply chain)

Attacker does get to run their code on
the machine, and it can interact with
ours
• e.g., plug-ins

Clear part...

Clear implication

We need to be careful about where
secrets can flow on the machine, not just
at its external interface (the network)
• If we allow attacker code to see secrets, it can

easily exfiltrate them using covert channels
• No practical way to prevent this!

• ➜ Need access control, not just information-
flow tracking

Not so clear part...

Real attacks often involve sending bad
inputs that confuse some trusted
component and cause it to behave badly
• e.g., buffer overflow attacks

We hope we’ve prevented many of the
common cases, but there is no way to
be certain.

➜ least-privilege design

Challenge!

What is “least privilege,”
formally?

Possible definitions:

1. Given a fixed set of software
components, how do we assign them
privileges in a minimal fashion?

2. Given two alternative designs
satisfying the same specification,
which one is “more least privilege”?

Feasible

What we want

Finishing up...

• Breeze v0 design, interpreter, toy apps

• Machine-checked proofs of a few metatheorems for
core calculi

• Non-pipelined implementation of most instructions
running on FPGA

• Toy versions of key services (allocator, scheduler, tag
manager)

• Formal ISA spec under construction now

Status

Related work
Verified operating systems

• Gypsy [1989]
• VeriSoft [2008]
• seL4 [2009]
• Verve [2010]

Verified compilers and runtime systems
• Flint [2008]
• CompCert [2006,2009] and friends

Language-based operating systems
• Cedar/Mesa, Smalltalk, lisp machine, ...
• SPIN
• House/HASP
• Singularity
• Java OSs
• ...

Some of the vast amount of

ˇ

Thank you!
Join us!

We have a lot of exciting projects
for PhD students and postdocs...

