
Interactive Privacy via the Median Mechanism

Aaron Roth
∗

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15217

alroth@cs.cmu.edu

Tim Roughgarden
†

Stanford University
353 Serra Mall

Stanford, CA 94305
tim@cs.stanford.edu

ABSTRACT
We define a new interactive differentially private mechanism
— the median mechanism — for answering arbitrary predi-
cate queries that arrive online. Given fixed accuracy and pri-
vacy constraints, this mechanism can answer exponentially
more queries than the previously best known interactive pri-
vacy mechanism (the Laplace mechanism, which indepen-
dently perturbs each query result). With respect to the
number of queries, our guarantee is close to the best possible,
even for non-interactive privacy mechanisms. Conceptually,
the median mechanism is the first privacy mechanism capa-
ble of identifying and exploiting correlations among queries
in an interactive setting.

We also give an efficient implementation of the median
mechanism, with running time polynomial in the number
of queries, the database size, and the domain size. This
efficient implementation guarantees privacy for all input
databases, and accurate query results for almost all input
distributions. The dependence of the privacy on the number
of queries in this mechanism improves over that of the best
previously known efficient mechanism by a super-polynomial
factor, even in the non-interactive setting.

Categories and Subject Descriptors
F.2 [ANALYSIS OF ALGORITHMS AND PROB-
LEM COMPLEXITY]: Miscellaneous

General Terms
Theory, Algorithms

∗Supported in part by an NSF Graduate Research Fellow-
ship. Portions of this work were done while visiting Stanford
University.
†Supported in part by NSF CAREER Award CCF-0448664,
an ONR Young Investigator Award, an ONR PECASE
Award, an AFOSR MURI grant, and an Alfred P. Sloan
Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

1. INTRODUCTION
Managing a data set with sensitive but useful information,

such as medical records, requires reconciling two objectives:
providing utility to others, perhaps in the form of aggregate
statistics; and respecting the privacy of individuals who con-
tribute to the data set. The field of private data analysis,
and in particular work on differential privacy, provides a
mathematical foundation for reasoning about this utility-
privacy trade-off and offers methods for non-trivial data
analysis that are provably privacy-preserving in a precise
sense. For a recent survey of the field, see Dwork [Dwo08].

More precisely, consider a domain X and database size n.
A mechanism is a randomized function from the set Xn of
databases to some range. For a parameter α > 0, a mech-
anism M is α-differentially private if, for every database D
and fixed subset S of the range of M , changing a single
component of D changes the probability that M outputs
something in S by at most an eα factor. The output of a
differentially private mechanism (and any analysis or pri-
vacy attack that follows) is thus essentially independent of
whether or not a given individual “opts in” or “opts out” of
the database.

Achieving differential privacy requires “sufficiently noisy”
answers [DN03]. For example, suppose we’re interested in
the result of a query f — a function from databases to some
range — that simply counts the fraction of database ele-
ments that satisfy some predicate ϕ on X. A special case of
a result in Dwork et al. [DMNS06] asserts that the follow-
ing mechanism is α-differentially private: if the underlying
database is D, output f(D)+∆, where the output perturba-
tion ∆ is drawn from the Laplace distribution Lap(1

nα
) with

density p(y) = nα
2

exp(−nα|y|). Among all α-differentially
private mechanisms, this one (or rather, a discretized analog
of it) maximizes user utility in a strong sense [GRS09].

What if we care about more than a single one-dimensional
statistic? Suppose we’re interested in k predicate queries
f1, . . . , fk, where k could be large, even super-polynomial
in n. A natural solution is to use an independent Laplace
perturbation for each query answer [DMNS06]. To maintain
α-differential privacy, the magnitude of noise has to scale lin-
early with k, with each perturbation drawn from Lap(k

nα
).

Put another way, suppose one fixes “usefulness parameters”
ε, δ, and insists that the mechanism is (ε, δ)-useful, meaning
that the outputs are within ε of the correct query answers
with probability at least 1 − δ. This constrains the magni-
tude of the Laplace noise, and the privacy parameter α now
suffers linearly with the number k of answered queries. This

dependence limits the use of this mechanism to a sublinear
k = o(n) number of queries.

Can we do better than independent output perturbations?
For special classes of queries like predicate queries, Blum,
Ligett, and Roth [BLR08] give an affirmative answer (build-
ing on techniques of Kasiviswanathan et al. [KLN+08]).
Specifically, in [BLR08] the exponential mechanism of Mc-
Sherry and Talwar [MT07] is used to show that, for fixed
usefulness parameters ε, δ, the privacy parameter α only has
to scale logarithmically with the number of queries.1 This
permits simultaneous non-trivial utility and privacy guaran-
tees even for an exponential number of queries. Moreover,
this dependence on log k is necessary in every differentially
private mechanism (see the full version of [BLR08]).

The mechanism in [BLR08] suffers from two drawbacks,
however. First, it is non-interactive: it requires all queries
f1, . . . , fk to be given up front, and computes (noisy) outputs
of all of them at once.2 By contrast, independent Laplace
output perturbations can obviously be implemented inter-
actively, with the queries arriving online and each answered
immediately. There is good intuition for why the non-
interactive setting helps: outperforming independent out-
put perturbations requires correlating perturbations across
multiple queries, and this is clearly easier when the queries
are known in advance. Indeed, prior to the present work,
no interactive mechanism better than independent Laplace
perturbations was known.

Second, the mechanism in [BLR08] is inefficient. Here
by “efficient” we mean has running time polynomial in n,
k, and |X|; Dwork et al. [DNR+09] prove that this is es-
sentially the best one could hope for (under certain cryp-
tographic assumptions). The mechanism in [BLR08] is not
efficient because it requires sampling from a non-trivial prob-
ability distribution over an unstructured space of exponen-
tial size. Dwork et al. [DNR+09] recently gave an efficient
(non-interactive) mechanism that is better than independent
Laplace perturbations, in that the privacy parameter α of

the mechanism scales as 2
√

log k with the number of queries k
(for fixed usefulness parameters ε, δ).

Very recently, Hardt and Talwar [HT10] gave upper and
lower bounds for answering noninteractive linear queries
which are tight in a related setting. These bounds are not
tight in our setting, however, unless the number of queries
is small with respect to the size of the database. When the
number of queries is large, our mechanism actually yields er-
ror significantly less than required in general by their lower
bound 3. This is not a contradiction, because when trans-
lated into the setting of [HT10], our database size n becomes
a sparsity parameter that is not considered in their bounds.

1More generally, linearly with the VC dimension of the set
of queries, which is always at most log2 k.
2Or rather, it computes a compact representation of these
outputs in the form of a synthetic database.
3We give a mechanism for answering k “counting queries”
with coordinate-wise error O(n2/3 log k(log |X|/α)1/3). This
is less error than required by their lower bound of roughly
Ω(
√
k log(|X|/k)/α) unless k ≤ Õ((nα/ log |X|)4/3). We

can take k to be as large as k = Ω̃(2(nα/ log |X|)1/3), in which
case our upper bound is a significant improvement – as are
the upper bounds of [BLR08] and [DNR+09].

1.1 Our Results
We define a new interactive differentially private mecha-

nism for answering k arbitrary predicate queries, called the
median mechanism.4 The basic implementation of the me-
dian mechanism interactively answers queries f1, . . . , fk that
arrive online, is (ε, δ)-useful, and has privacy α that scales
with log k log |X|; see Theorem 4.1 for the exact statement.
These privacy and utility guarantees hold even if an adver-
sary can adaptively choose each fi after seeing the mecha-
nism’s first i− 1 answers. This is the first interactive mech-
anism better than the Laplace mechanism, and its perfor-
mance is close to the best possible even in the non-interactive
setting.

The basic implementation of the median mechanism is
not efficient, and we give an efficient implementation with a
somewhat weaker utility guarantee. (The privacy guarantee
is as strong as in the basic implementation.) This alternative
implementation runs in time polynomial in n, k, and |X|,
and satisfies the following (Theorem 5.1): for every sequence
f1, . . . , fk of predicate queries, for all but a negligible frac-
tion of input distributions, the efficient median mechanism
is (ε, δ)-useful.

This is the first efficient mechanism with a non-trivial util-
ity guarantee and polylogarithmic privacy cost, even in the
non-interactive setting.

1.2 The Main Ideas
The key challenge to designing an interactive mechanism

that outperforms the Laplace mechanism lies in determining
the appropriate correlations between different output per-
turbations on the fly, without knowledge of future queries.
It is not obvious that anything significantly better than inde-
pendent perturbations is possible in the interactive setting.

Our median mechanism and our analysis of it can be sum-
marized, at a high level, by three facts. First, among any set
of k queries, we prove that there are O(log k log |X|) “hard”
queries, the answers to which completely determine the an-
swers to all of the other queries (up to ±ε). Roughly, this
holds because: (i) by a VC dimension argument, we can fo-
cus on databases over X of size only O(log k); and (ii) every
time we answer a “hard” query, the number of databases
consistent with the mechanism’s answers shrinks by a con-
stant factor, and this number cannot drop below 1 (because
of the true input database). Second, we design a method to
privately release an indicator vector which distinguishes be-
tween hard and easy queries online. We note that a similar
private ‘indicator vector’ technique was used by Dwork et
al. [DNR+09]. Essentially, the median mechanism deems a
query “easy” if a majority of the databases that are consis-
tent (up to ±ε) with the previous answers of the mechanism
would answer the current query accurately. The median
mechanism answers the small number of hard queries us-
ing independent Laplace perturbations. It answers an easy
query (accurately) using the median query result given by
databases that are consistent with previous answers. A key
intuition is that if a user knows that query i is easy, then it
can generate the mechanism’s answer on its own. Thus an-
swering an easy query communicates only a single new bit of
information: that the query is easy. Finally, we show how to
release the classification of queries as “easy” and “hard” with

4The privacy guarantee is (α, τ)-differential privacy for a
negligible function τ ; see Section 2 for definitions.

low privacy cost; intuitively, this is possible because (inde-
pendent of the database) there can be only O(log k log |X|)
hard queries.

Our basic implementation of the median mechanism is
not efficient for the same reasons as for the mechanism
in [BLR08]: it requires non-trivial sampling from a set of
super-polynomial size. For our efficient implementation, we
pass to fractional databases, represented as fractional his-
tograms with components indexed by X. Here, we use
the random walk technology of Dyer, Frieze, and Kan-
nan [DFK91] for convex bodies to perform efficient random
sampling. To explain why our utility guarantee no longer
holds for every input database, recall the first fact used in the
basic implementation: every answer to a hard query shrinks
the number of consistent databases by a constant factor, and
this number starts at |X|O(log k) and cannot drop below 1.
With fractional databases (where polytope volumes play the
role of set sizes), the lower bound of 1 on the set of consis-
tent (fractional) databases no longer holds. Nonetheless, we
prove a lower bound on the volume of this set for almost
all fractional histograms (equivalently probability distribu-
tions), which salvages the O(log k log |X|) bound on hard
queries for databases drawn from such distributions.

2. PRELIMINARIES
We briefly formalize the setting of the previous section and

record some important definitions. We consider some finite
domain X, and define a database D to be an unordered set
of elements from X (with multiplicities allowed). We write
n = |D| to denote the size of the database. We consider the
set of Boolean functions (predicates) f : X → {0, 1}. We
abuse notation and define a predicate query f(D) : X∗ →
[0, 1] as |{x ∈ D : f(X) = 1}|/|D|, the function that com-
putes the fraction of elements of D that satisfy predicate f .
We say that an answer ai to a query fi is ε-accurate with
respect to database D if |fi(D) − ai| ≤ ε. A mechanism
M(D, (f1, . . . , fk)) is a function from databases and queries
to distributions over outputs. In this paper, we consider
mechanisms that answer predicate queries numerically, and
so the range of our mechanisms is Rk.5

Definition 1. A mechanism M is (ε, δ)-useful if for every
sequence of queries (f1, . . . , fk) and every database D, with
probability at least 1− δ it provides answers a1, . . . , ak that
are ε-accurate for f1, . . . , fk and D.

Recall that differential privacy means that changing the
identity of a single element of the input database does not
affect the probability of any outcome by more than a small
factor. Formally, given a database D, we say that a database
D′ of the same size is a neighbor of D if it differs in only a
single element: |D ∩D′| = |D| − 1.

Definition 2. A mechanism M satisfies (α, τ)-differential
privacy if for every subset S ⊆ Rk, every set of queries
(f1, . . . , fk), and every pair of neighboring databases D,D′:

Pr[M(D) ∈ S] ≤ eα · Pr[M(D′) ∈ S] + τ.

We are generally interested in the case where τ is a negligible
function of some of the problem parameters, meaning one
that goes to zero faster than x−c for every constant c.
5From ε-accurate answers, one can efficiently reconstruct a
synthetic database that is consistent (up to ±ε) with those
answers, if desired [DNR+09].

Finally, the sensitivity of a real-valued query is the largest
difference between its values on neighboring databases. For
example, the sensitivity of every non-trivial predicate query
is precisely 1/n.

3. THE MEDIAN MECHANISM: BASIC
IMPLEMENTATION

We now describe the median mechanism and our basic
implementation of it. As described in the Introduction, the
mechanism is conceptually simple. It classifies queries as
“easy” or “hard”, essentially according to whether or not a
majority of the databases consistent with previous answers
to hard queries would give an accurate answer to it (in which
case the user already “knows the answer”). Easy queries
are answered using the corresponding median value; hard
queries are answered as in the Laplace mechanism.

To explain the mechanism precisely, we need to discuss
a number of parameters. We take the privacy parameter
α, the accuracy parameter ε, and the number k of queries
as input; these are hard constraints on the performance of
our mechanism.6 Our mechanism obeys these constraints
with a value of δ that is inverse polynomial in k and n,
and a value of τ that is negligible in k and n, provided
n is sufficiently large (at least polylogarithmic in k and
|X|, see Theorem 4.1). Of course, such a result can be
rephrased as a nearly exponential lower bound on the num-
ber of queries k that can be successfully answered as a func-
tion of the database size n.7

The median mechanism is shown in Figure 1, and it makes
use of several additional parameters. For our analysis, we
set their values to:

m =
160000 ln k ln 1

ε

ε2
; (1)

α′ =
α

720m ln |X| = Θ

(
αε2

log |X| log k log 1
ε

)
; (2)

γ =
4

α′εn
ln

2k

α
= Θ

(
log |X| log2 k log 1

ε

αε3n

)
. (3)

The denominator in (2) can be thought of as our “privacy
cost” as a function of the number of queries k. Needless to
say, we made no effort to optimize the constants.

The value ri in Step 2(a) of the median mechanism is
defined as

ri =

∑
S∈Ci−1

exp(−ε−1|fi(D)− fi(S)|)
|Ci−1|

. (4)

For the Laplace perturbations in Steps 2(a) and 2(d), recall
that the distribution Lap(σ) has the cumulative distribution
function

F (x) = 1− F (−x) = 1− 1

2
e−x/σ. (5)

6We typically think of α, ε as small constants, though our
results remain meaningful for some sub-constant values of α
and ε as well. We always assume that α is at least inverse
polynomial in k. Note that when α or ε is sufficiently small
(at most c/n for a small constant c, say), simultaneously
meaningful privacy and utility is clearly impossible.
7In contrast, the number of queries that the Laplace mech-
anism can privately and usefully answer is at most linear.

1. Initialize C0 = { databases of size m over X }.

2. For each query f1, f2, . . . , fk in turn:

(a) Define ri as in (4) and let r̂i = ri + Lap(2
εnα′).

(b) Let ti = 3
4

+ j · γ, where j ∈ {0, 1, . . . , 1
γ

3
20
} is

chosen with probability proportional to 2−j .

(c) If r̂i ≥ ti, set ai to be the median value of fi on
Ci−1.

(d) If r̂i < ti, set ai to be fi(D) + Lap(1
nα′).

(e) If r̂i < ti, set Ci to the databases S of Ci−1 with
|fi(S)− ai| ≤ ε/50; otherwise Ci = Ci−1.

(f) If r̂j < tj for more than 20m log |X| values of j ≤
i, then halt and report failure.

Figure 1: The Median Mechanism.

The motivation behind the mechanism’s steps is as fol-
lows. The set Ci is the set of size-m databases consistent
(up to ±ε/50) with previous answers of the mechanism to
hard queries. The focus on databases with the small size
m is justified by a VC dimension argument, see Proposi-
tion 4.6. Steps 2(a) and 2(b) choose a random value r̂i and
a random threshold ti. The value ri in Step 2(a) is a measure
of how easy the query is, with higher numbers being easier.
A more obvious measure would be the fraction of databases
S in Ci−1 for which |fi(S)− fi(D)| ≤ ε, but this is a highly
sensitive statistic (unlike ri, see Lemma 4.9). The mecha-
nism uses the perturbed value r̂i rather than ri to privately
communicate which queries are easy and which are hard.
In Step 2(b), we choose the threshold ti at random between
3/4 and 9/10. This randomly shifted threshold ensures that,
for every database D, there is likely to be a significant gap
between ri and ti; such gaps are useful when optimizing the
privacy guarantee. Steps 2(c) and 2(d) answer easy and hard
queries, respectively. Step 2(e) updates the set of databases
consistent with previous answers to hard queries. We prove
in Lemma 4.7 that Step 2(f) occurs with at most inverse
polynomial probability.

Finally, we note that the median mechanism is defined as
if the total number of queries k is (approximately) known
in advance. This assumption can be removed by using suc-
cessively doubling “guesses” of k; this increases the privacy
cost by an O(log k) factor.

4. ANALYSIS OF MEDIAN MECHANISM
This section proves the following privacy and utility guar-

antees for the basic implementation of the median mecha-
nism.

Theorem 4.1. For every sequence of adaptively chosen
predicate queries f1, . . . , fk arriving online, the median
mechanism is (ε, δ)-useful and (α, τ)-differentially private,
where τ is a negligible function of k and |X|, and δ is an in-
verse polynomial function of k and n, provided the database
size n satisfies

n ≥
30 ln 2k

α
log2 k

α′ε
= Θ

(
log |X| log3 k log 1

ε

αε3

)
. (6)

We prove the utility and privacy guarantees in Sections 4.1
and 4.2, respectively.8

4.1 Utility of the Median Mechanism
Here we prove a utility guarantee for the median mecha-

nism.

Theorem 4.2. The median mechanism is (ε, δ)-useful,
where δ = k exp(−Ω(εnα′)).

Note that under assumption (6), δ is inverse polynomial in
k and n.

We give the proof of Theorem 4.2 in three pieces: with
high probability, every hard query is answered accurately
(Lemma 4.4); every easy query is answered accurately
(Lemmas 4.3 and 4.5); and the algorithm does not fail
(Lemma 4.7). The next two lemmas follow from the defi-
nition of the Laplace distribution (5), our choice of δ, and
trivial union bounds.

Lemma 4.3. With probability at least 1 − δ
2

, |ri − r̂i| ≤
1/100 for every query i.

Lemma 4.4. With probability at least 1− δ
2

, every answer
to a hard query is (ε/100)-accurate for D.

The next lemma shows that median answers are accurate
for easy queries.

Lemma 4.5. If |ri − r̂i| ≤ 1/100 for every query i, then
every answer to an easy query is ε-accurate for D.

Proof. For a query i, let Gi−1 = {S ∈ Ci−1 : |fi(D) −
fi(S)| ≤ ε} denote the databases of Ci−1 on which the result
of query fi is ε-accurate for D. Observe that if |Gi−1| ≥
.51 · |Ci−1|, then the median value of fi on Ci−1 is an ε-
accurate answer for D. Thus proving the lemma reduces to
showing that r̂i ≥ 3/4 only if |Gi−1| ≥ .51 · |Ci−1|.

Consider a query i with |Gi−1| < .51 · |Ci−1|. Using (4),
we have

ri =

∑
S∈Ci−1

exp(−ε−1|fi(D)− fi(S)|)
|Ci−1|

≤ |Gi−1|+ e−1|Ci−1 \Gi−1|
|Ci−1|

≤
(51

100
+ 49

100e
)|Ci−1|

|Ci−1|

<
74

100
.

Since |ri − r̂i| ≤ 1/100 for every query i by assumption, the
proof is complete.

Our final lemma shows that the median mechanism does
not fail and hence answers every query, with high probabil-
ity; this will conclude our proof of Theorem 4.2. We need
the following preliminary proposition, which instantiates the
standard uniform convergence bound with the fact that the
VC dimension of every set of k predicate queries is at most
log2 k [Vap96]. Recall the definition of the parameter m
from (1).

8If desired, in Theorem 4.1 we can treat n as a pa-
rameter and solve for the error ε. The maximum er-
ror on any query (normalized by the database size) is

O(log k log1/3 |X|/n1/3α1/3); the unnormalized error is a
factor of n larger.

Proposition 4.6 (Uniform Convergence Bound).
For every collection of k predicate queries f1, . . . , fk and
every database D, a database S obtained by sampling points
from D uniformly at random will satisfy |fi(D)− fi(S)| ≤ ε
for all i except with probability δ, provided

|S| ≥ 1

2ε2

(
log k + log

2

δ

)
.

In particular, there exists a database S of size m such that
for all i ∈ {1, . . . , k}, |fi(D)− fi(S)| ≤ ε/400.

In other words, the results of k predicate queries on an ar-
bitrarily large database can be well approximated by those
on a database with size only O(log k).

Lemma 4.7. If |ri − r̂i| ≤ 1/100 for every query i and
every answer to a hard query is (ε/100)-accurate for D, then
the median mechanism answers fewer than 20m log |X| hard
queries (and hence answers all queries before terminating).

Proof. The plan is to track the contraction of Ci as hard
queries are answered by the median mechanism. Initially
we have |C0| ≤ |X|m. If the median mechanism answers a
hard query i, then the definition of the mechanism and our
hypotheses yield

ri ≤ r̂i +
1

100
< ti +

1

100
≤ 91

100
.

We then claim that the size of the set Ci = {S ∈ Ci−1 :
|fi(S)− ai| ≤ ε/50} is at most 94

100
|Ci−1|. For if not,

ri =

∑
S∈Ci−1

exp(−ε−1|fi(S)− fi(D)|)
|Ci−1|

≥ 94

100
· exp

(
− 1

50

)
>

92

100
,

which is a contradiction.
Iterating now shows that the number of consistent

databases decreases exponentially with the number of hard
queries:

|Ck| ≤
(

94

100

)h
|X|m (7)

if h of the k queries are hard.
On the other hand, Proposition 4.6 guarantees the exis-

tence of a database S∗ ∈ C0 for which |fi(S∗) − fi(D)| ≤
ε/100 for every query fi. Since all answers ai produced
by the median mechanism for hard queries i are (ε/100)-
accurate for D by assumption, |fi(S∗) − ai| ≤ |fi(S∗) −
fi(D)|+ |fi(D)− ai| ≤ ε/50. This shows that S∗ ∈ Ck and
hence |Ck| ≥ 1. Combining this with (7) gives

h ≤ m ln |X|
ln(50/47)

< 20m ln |X|,

as desired.

4.2 Privacy of the Median Mechanism
This section establishes the following privacy guarantee

for the median mechanism.

Theorem 4.8. The median mechanism is (α, τ)- differ-
entially private, where τ is a negligible function of |X| and
k when n is sufficiently large (as in (6)).

We can treat the median mechanism as if it has two out-
puts: a vector of answers a ∈ Rk, and a vector d ∈ {0, 1}k
such that di = 0 if i is an easy query and di = 1 if i is
a hard query. A key observation in the privacy analysis
is that answers to easy queries are a function only of the
previous output of the mechanism, and incur no additional
privacy cost beyond the release of the bit di. Moreover, the
median mechanism is guaranteed to produce no more than
O(m log |X|) answers to hard queries. Intuitively, what we
need to show is that the vector d can be released after an
unusually small perturbation.

Our first lemma states that the small sensitivity of pred-
icate queries carries over, with a 2/ε factor loss, to the r-
function defined in (4).

Lemma 4.9. The function ri(D) =
(
∑
S∈C exp(−ε−1|f(D) − f(S)|)/|C| has sensitivity 2

εn
for every fixed set C of databases and predicate query f .

Proof. Let D and D′ be neighboring databases. Then

ri(D) =

∑
S∈C exp(−ε−1|f(D)− f(S)|)

|Ci|

≤
∑
S∈Ci exp(−ε−1(|f(D′)− f(S)| − n−1))

|Ci|

= exp

(
1

εn

)
· ri(D′)

≤
(

1 +
2

εn

)
· ri(D′)

≤ ri(D
′) +

2

εn

where the first inequality follows from the fact that the
(predicate) query f has sensitivity 1/n, the second from the
fact that ex ≤ 1 + 2x when x ∈ [0, 1], and the third from the
fact that ri(D

′) ≤ 1.

The next lemma identifies nice properties of “typical ex-
ecutions” of the median mechanism. Consider an output
(d, a) of the median mechanism with a database D. From D
and (d, a), we can uniquely recover the values r1, . . . , rk com-
puted (via (4)) in Step 2(a) of the median mechanism, with
ri depending only on the first i− 1 components of d and a.
We sometimes write such a value as ri(D, (d, a)), or as ri(D)
if an output (d, a) has been fixed. Call a possible threshold
ti good for D and (d, a) if di = 0 and ri(D, (d, a)) ≥ ti + γ,
where γ is defined as in (3). Call a vector t of possible
thresholds good for D and (d, a) if all but 180m ln |X| of the
thresholds are good for D and (d, a).

Lemma 4.10. For every database D, with all but negligi-
ble (exp(−Ω(log k log |X|/ε2))) probability, the thresholds t
generated by the median mechanism are good for its output
(d, a).

Proof. The idea is to “charge” the probability of bad
thresholds to that of answering hard queries, which are
strictly limited by the median mechanism. Since the me-
dian mechanism only allows 20m ln |X| of the di’s to be 1,
we only need to bound the number of queries i with output
di = 0 and threshold ti satisfying ri < ti + γ, where ri is
the value computed by the median mechanism in Step 2(a)
when it answers the query i.

Let Yi be the indicator random variable corresponding to
the (larger) event that ri < ti + γ. Define Zi to be 1 if and

only if, when answering the ith query, the median mecha-
nism chooses a threshold ti and a Laplace perturbation ∆i

such that ri+∆i < ti (i.e., the query is classified as hard). If
the median mechanism fails before reaching query i, then we
define Yi = Zi = 0. Set Y =

∑k
i=1 Yi and Z =

∑k
i=1 Zi. We

can finish the proof by showing that Y is at most 160m ln |X|
except with negligible probability.

Consider a query i and condition on the event that
ri ≥ 9

10
; this event depends only on the results of previ-

ous queries. In this case, Yi = 1 only if ti = 9/10. But this

occurs with probability 2−3/20γ , which using (3) and (6) is
at most 1/k.9 Therefore, the expected contribution to Y
coming from queries i with ri ≥ 9

10
is at most 1. Since ti

is selected independently at random for each i, the Cher-
noff bound implies that the probability that such queries
contribute more than m ln |X| to Y is

exp(−Ω((m log |X|)2)) = exp(−Ω((log k)2(log |X|)2/ε4)).

Now condition on the event that ri <
9
10

. Let Ti denote
the threshold choices that would cause Yi to be 1, and let si
be the smallest such; since ri <

9
10

, |Ti| ≥ 2. For every ti ∈
Ti, ti > ri − γ; hence, for every ti ∈ Ti \ {si}, ti > ri. Also,
our distribution on the j’s in Step 2(b) ensures that Pr[ti ∈
Ti \ {si}] ≥ 1

2
Pr[ti ∈ Ti]. Since the Laplace distribution

is symmetric around zero and the random choices ∆i, ti are
independent, we have

E[Zi] = Pr[ti > ri + ∆i]

≥ Pr[ti > ri] · Pr[∆i ≤ 0]

≥ 1
4

Pr[ti > ri − γ]

= 1
4
E[Yi]. (8)

The definition of the median mechanism ensures that Z ≤
20m ln |X| with probability 1. Linearity of expectation, in-
equality (8), and the Chernoff bound imply that queries
with ri <

9
10

contribute at most 159m ln |X| to Y with prob-

ability at least 1 − exp(−Ω(log k log |X|/ε2)). The proof is
complete.

We can now prove Theorem 4.8.

Proof of Theorem 4.8: Recall Definition 2 and fix a
database D, queries f1, . . . , fk, and a subset S of possi-
ble mechanism outputs. For simplicity, we assume that
all perturbations are drawn from a discretized Laplace dis-
tribution, so that the median mechanism has a countable
range; the continuous case can be treated using similar ar-
guments. Then, we can think of S as a countable set of
output vector pairs (d, a) with d ∈ {0, 1}k and a ∈ Rk.
We write MM(D, f) = (d, a) for the event that the me-
dian mechanism classifies the queries f = (f1, . . . , fk) ac-
cording to d and outputs the numerical answers a. If the
mechanism computes thresholds t while doing so, we write
MM(D, f) = (t, d, a). Let G((d, a), D) denote the vec-
tors that would be good thresholds for (d, a) and D. (Re-
call that D and (d, a) uniquely define the corresponding
ri(D, (d, a))’s.)

We have

Pr[MM(D, f) ∈ S] =
∑

(d,a)∈S

Pr[MM(D, f) = (d, a)]

9For simplicity, we ignore the normalizing constant in the
distribution over j’s in Step 2(b), which is Θ(1).

≤ τ +
∑

(d,a)∈S

Pr[MM(D, f) = (t, d, a)]

= τ +
∑

(d,a)∈S

∑
t∈G((d,a),D)

Pr[MM(D, f) = (t, d, a)]

with some t good for (d, a), D, and where τ is the negligible
function of Lemma 4.10. We complete the proof by show-
ing that, for every neighboring database D′, possible output
(d, a), and thresholds t good for (d, a) and D,

Pr[MM(D, f) = (t, d, a)] ≤ eα · Pr[MM(D′, f) = (t, d, a)].
(9)

Fix a neighboring database D′, a target output (d, a), and
thresholds t good for (d, a) and D. The probability that
the median mechanism chooses the target thresholds t is
independent of the underlying database, and so is the same
on both sides of (9). For the rest of the proof, we condition
on the event that the median mechanism uses the thresholds
t (both with database D and database D′).

Let Ei denote the event that MM(D, f) classifies the first
i queries in agreement with the target output (i.e., query
j ≤ i is deemed easy if and only if dj = 0) and that its first
i answers are a1, . . . , ai. Let E ′i denote the analogous event
for MM(D′, f). Observe that Ek, E ′k are the relevant events
on the left- and right-hand sides of (9), respectively (after
conditioning on t). If (d, a) is such that the median mecha-
nism would fail after the `th query, then the following proof
should be applied to E`, E ′` instead of Ek, E ′k. We next give a
crude upper bound on the ratio Pr[Ei|Ei−1]/Pr[E ′i |E ′i−1] that
holds for every query (see (10), below), followed by a much
better upper bound for queries with good thresholds.

Imagine running the median mechanism in parallel on
D,D′ and condition on the events Ei−1, E ′i−1. The set
Ci−1 is then the same in both runs of the mechanism, and
ri(D), ri(D

′) are now fixed. Let bi (b′i) be 0 if MM(D, f)
(MM(D′, f)) classifies query i as easy and 1 otherwise.
Since ri(D

′) ∈ [ri(D) ± 2
εn

] (Lemma 4.9) and a perturba-

tion with distribution Lap(2
α′εn) is added to these values

before comparing to the threshold ti (Step 2(a)),

Pr[bi = 0 | Ei−1] ≤ eα
′
Pr[b′i = 0 | E ′i−1]

and similarly for the events where bi, b
′
i = 1. Suppose that

the target classification is di = 1 (a hard query), and let
si and s′i denote the random variables fi(D) + Lap(1

α′n)

and fi(D
′) + Lap(1

α′n), respectively. Independence of the
Laplace perturbations in Steps 2(a) and 2(d) implies that

Pr[Ei|Ei−1] = Pr[bi = 1 | Ei−1] · Pr[si = ai | Ei−1]

and

Pr[E ′i |E ′i−1] = Pr[b′i = 1 | E ′i−1] · Pr[s′i = ai | E ′i−1].

Since the predicate query fi has sensitivity 1/n, we have

Pr[Ei | Ei−1] ≤ e2α′ · Pr[E ′i | E ′i−1] (10)

when di = 1.
Now suppose that di = 0, and let mi denote the median

value of fi on Ci−1. Then Pr[Ei|Ei−1] is either 0 (if mi 6=
ai) or Pr[bi = 0 | Ei−1] (if mi = ai); similarly, Pr[E ′i |E ′i−1]
is either 0 or Pr[b′i = 0 | E ′i−1]. Thus the bound in (10)

continues to hold (even with e2α′ replaced by eα
′
) when

di = 0.

Since α′ is not much smaller than the privacy target α
(recall (2)), we cannot afford to suffer the upper bound
in (10) for many queries. Fortunately, for queries i with
good thresholds we can do much better. Consider a query i
such that ti is good for (d, a) and D and condition again
on Ei−1, E ′i−1, which fixes Ci−1 and hence ri(D). Good-
ness implies that di = 0, so the arguments from the pre-
vious paragraph also apply here. We can therefore assume
that the median value mi of fi on Ci−1 equals ai and focus
on bounding Pr[bi = 0 | Ei−1] in terms of Pr[b′i = 0 | E ′i−1].
Goodness also implies that ri(D) ≥ ti + γ and hence
ri(D

′) ≥ ti + γ − 2
εn
≥ ti + γ

2
(by Lemma 4.9). Recall-

ing from (3) the definition of γ, we have

Pr[b′i = 0 | E ′i−1] ≥ Pr[ri − r̂i < γ
2

]

= 1− 1
2
e−γα

′εn/4

= 1− α

4k
(11)

and of course, Pr[bi = 0 | Ei−1] ≤ 1.
Applying (10) to the bad queries — at most 180m ln |X|

of them, since t is good for (d, a) and D — and (11) to the
rest, we can derive

Pr[Ek] =

k∏
i=1

Pr[Ei : Ei−1]

≤ e360α′m ln |X|︸ ︷︷ ︸
≤eα/2 by (2)

· (1− α

4k
)−k︸ ︷︷ ︸

≤(1+
α
2k

)k≤eα/2

·
k∏
i=1

Pr[E ′i : E ′i−1]

≤ eα · Pr[E ′k],

which completes the proof of both the inequality (9) and the
theorem. �

5. THE MEDIAN MECHANISM:
EFFICIENT IMPLEMENTATION

The basic implementation of the median mechanism runs

in time |X|Θ(log k log(1/ε)/ε2). This section provides an effi-
cient implementation, running in time polynomial in n, k,
and |X|, although with a weaker usefulness guarantee.

Theorem 5.1. Assume that the database size n satis-
fies (6). For every sequence of adaptively chosen predicate
queries f1, . . . , fk arriving online, the efficient implementa-
tion of the median Mechanism is (α, τ)-differentially private
for a negligible function τ . Moreover, for every fixed set
f1, . . . , fk of queries, it is (ε, δ)-useful for all but a negligi-
ble fraction of fractional databases (equivalently, probability
distributions).

Specifically, our mechanism answers exponentially many
queries for all but an O(|X|−m) fraction of probability dis-
tributions over X drawn from the unit `1 ball, and from
databases drawn from such distributions. Thus our efficient
implementation always guarantees privacy, but for a given
set of queries f1, . . . , fk, there might be a negligibly small
fraction of fractional histograms for which our mechanism is
not useful for all k queries.

We note however that even for the small fraction of frac-
tional histograms for which the efficient median mechanism
may not satisfy our usefulness guarantee, it does not output
incorrect answers: it merely halts after having answered a

sufficiently large number of queries using the Laplace mech-
anism. Therefore, even for this small fraction of databases,
the efficient median mechanism is an improvement over the
Laplace mechanism: in the worst case, it simply answers ev-
ery query using the Laplace mechanism before halting, and
in the best case, it is able to answer many more queries.

We give a high-level overview of the proof of Theorem 5.1
which we then make formal. First, why isn’t the median
mechanism a computationally efficient mechanism? Be-
cause C0 has super-polynomial size |X|m, and computing ri
in Step 2(a), the median value in Step 2(c), and the set Ci
in Step 2(e) could require time proportional to |C0|. An
obvious idea is to randomly sample elements of Ci−1 to ap-
proximately compute ri and the median value of fi on Ci−1;
while it is easy to control the resulting sampling error and
preserve the utility and privacy guarantees of Section 4, it
is not clear how to sample from Ci−1 efficiently.

We show how to implement the median mechanism in
polynomial time by redefining the sets Ci to be sets of prob-
ability distributions over points in X that are consistent (up
to ± ε

50
) with the hard queries answered up to the ith query.

Each set Ci will be a convex polytope in R|X| defined by the
intersection of at most O(m log |X|) halfspaces, and hence
it will be possible to sample points from Ci approximately
uniformly at random in time poly(|X|,m) via the grid walk
of Dyer, Frieze, and Kannan [DFK91]. Lemmas 4.3, 4.4,
and 4.5 still hold (trivially modified to accommodate sam-
pling error). We have to reprove Lemma 4.7, in a somewhat
weaker form: that for all but a diminishing fraction of in-
put databases D, the median mechanism does not abort ex-
cept with probability k exp(−Ω(εnα′)). As for our privacy
analysis of the median mechanism, it is independent of the
representation of the sets Ci and the mechanisms’ failure
probability, and so it need not be repeated — the efficient
implementation is provably private for all input databases
and query sequences.

We now give a formal analysis of the efficient implemen-
tation.

5.1 Redefining the sets Ci
We redefine the sets Ci to represent databases that can

contain points fractionally, as opposed to the finite set of
small discrete databases. Equivalently, we can view the sets
Ci as containing probability distributions over the set of
points X.

We initialize C0 to be the `1 ball of radius m in R|X|,
mB

|X|
1 , intersected with the non-negative orthant:

C0 = {F ∈ R|X| : F ≥ 0, ||F ||1 ≤ m}.

Each dimension i in R|X| corresponds to an element xi ∈
X. Elements F ∈ C0 can be viewed as fractional his-
tograms. Note that integral points in C0 correspond exactly
to databases of size at most m.

We generalize our query functions fi to fractional his-
tograms in the natural way:

fi(F) =
1

m

∑
j:fi(xj)=1

Fj .

The update operation after a hard query i is answered is
the same as in the basic implementation:

Ci ←
{
F ∈ Ci−1 : |fi(F)− ai| ≤

ε

50

}
.

Note that each updating operation after a hard query merely
intersects Ci−1 with the pair of halfspaces:∑
j:fi(xj)=1

Fj ≤ mai+
εm

50
and

∑
j:fi(xj)=1

Fj ≥ mai−
εm

50
;

and so Ci is a convex polytope for each i.
Dyer, Kannan, and Frieze [DFK91] show how to δ-

approximate a random sample from a convex body K ∈ R|X|
in time polynomial in |X| and the running time of a member-
ship oracle for K, where δ can be taken to be exponentially
small (which is more than sufficient for our purposes). Their
algorithm has two requirements:

1. There must be an efficient membership oracle which
can in polynomial time determine whether a point F ∈
R|X| lies in K.

2. K must be ‘well rounded’: B
|X|
2 ⊆ K ⊆ |X|B|X|2 ,

where B
|X|
2 is the unit `2 ball in R|X|.

Since Ci is given as the intersection of a set of explicit half-
spaces, we have a simple membership oracle to determine
whether a given point F ∈ Ci: we simply check that F lies
on the appropriate side of each of the halfspaces. This takes
time poly(|X|,m), since the number of halfspaces defining Ci
is linear in the number of answers to hard queries given be-
fore time i, which is never more than 20m ln |X|. Moreover,

for each i we have Ci ⊆ C0 ⊂ mB
|X|
1 ⊂ mB

|X|
2 ⊂ |X|B|X|2 .

Finally, we can safely assume that BX2 ⊆ Ci by simply con-
sidering the convex set C′i = Ci +BX2 instead. This will not
affect our results.

Therefore, we can implement the median mechanism in
time poly(|X|, k) by using sets Ci as defined in this section,
and sampling from them using the grid walk of [DFK91]. Es-
timation error in computing ri and the median value of fi on
Ci−1 by random sampling rather than brute force is easily
controlled via the Chernoff bound and can be incorporated
into the proofs of Lemmas 4.3 and 4.5 in the obvious way.
It remains to prove a continuous version of Lemma 4.7 to
show that the efficient implementation of the median mech-
anism is (ε, δ)-useful on all but a negligibly small fraction of
fractional histograms F .

5.2 Usefulness for Almost All Distributions
We now prove an analogue of Lemma 4.7 to establish a

usefulness guarantee for the efficient version of the median
mechanism.

Definition 3. With respect to any set of k queries
f1, . . . , fk and for any F ∗ ∈ C0, define

Goodε(F
∗) = {F ∈ C0 : max

i∈{1,2,...,k}
|fi(F)− fi(F ∗)| ≤ ε}

as the set of points that agree up to an additive ε factor with
F ∗ on every query fi.

Since databases D ⊂ X can be identified with their cor-
responding histogram vectors F ∈ R|X|, we can also write
Goodε(D) when the meaning is clear from context.

For any F ∗, Goodε(F
∗) is a convex polytope contained in-

side C0. We will prove that the efficient version of the me-
dian mechanism is (ε, δ)-useful for a database D if

Vol(Goodε/100(D))

Vol(C0)
≥ 1

|X|2m . (12)

We first prove that (12) holds for almost every fractional
histogram. For this, we need a preliminary lemma.

Lemma 5.2. Let L denote the set of integer points inside
C0. Then with respect to an arbitrary set of k queries,

C0 ⊆
⋃
F∈L

Goodε/400(F).

Proof. Every rational valued point F ∈ C0 corresponds
to some (large) database D ⊂ X by scaling F to an
integer-valued histogram. Irrational points can be arbitrar-
ily approximated by such a finite database. By Proposi-
tion 4.6, for every set of k predicates f1, . . . , fk, there is
a database F ∗ ⊂ X with |F ∗| = m such that for each i,
|fi(F ∗) − fi(F)| ≤ ε/400. Recalling that the histograms
corresponding to databases of size at most m are exactly
the integer points in C0, the proof is complete.

Lemma 5.3. All but an |X|−m fraction of fractional his-
tograms F satisfy

Vol(Goodε/200(F))

Vol(C0)
≥ 1

|X|2m .

Proof. Let

B =

{
F ∈ L :

Vol(Goodε/400(F))

Vol(C0)
≤ 1

|X|2m

}
.

Consider a randomly selected fractional histogram F ∗ ∈ C0.
For any F ∈ B we have:

Pr[F ∗ ∈ Goodε/400(F)] =
Vol(Goodε/400(F))

Vol(C0)
<

1

|X|2m

Since |B| ≤ |L| ≤ |X|m, by a union bound we can conclude
that except with probability 1

|X|m , F ∗ 6∈ Goodε/400(F) for

any F ∈ B. However, by Lemma 5.2, F ∗ ∈ Goodε/400(F ′)
for some F ′ ∈ L. Therefore, except with probability 1/|X|m,
F ′ ∈ L \ B. Thus, since Goodε/400(F ′) ⊆ Goodε/200(F ∗),
except with negligible probability, we have:

Vol(Goodε/200(F ∗))

Vol(C0)
≥

Vol(Goodε/400(F ′))

Vol(C0)
≥ 1

|X|2m .

We are now ready to prove the analogue of Lemma 4.7 for
the efficient implementation of the median mechanism.

Lemma 5.4. For every set of k queries f1, . . . , fk, for all
but an O(|X|−m) fraction of fractional histograms F , the ef-
ficient implementation of the median mechanism guarantees
that: The mechanism answers fewer than 40m log |X| hard
queries, except with probability k exp(−Ω(εnα′)),

Proof. We assume that all answers to hard queries are
ε/100 accurate, and that |ri − r̂i| ≤ 1

100
for every i. By

Lemmas 4.3 and 4.4 — the former adapted to accommodate
approximating ri via random sampling — we are in this case
except with probability k exp(−Ω(εnα′)).

We analyze how the volume of Ci contracts with the num-
ber of hard queries answered. Suppose the mechanism an-
swers a hard query at time i. Then:

ri ≤ r̂i +
1

100
< ti +

1

100
≤ 91

100
.

Recall Ci = {F ∈ Ci−1 : |fi(F)− ai| ≤ ε/50}. Suppose that
Vol(Ci) ≥ 94

100
Vol(Ci−1). Then

ri =

∫
Ci−1

exp(−ε−1|fi(F)− fi(D)|)dF
Vol(Ci−1)

≥ 94

100
exp

(
− 1

50

)
>

92

100
,

a contradiction. Therefore, we have

|Ck| ≤
(

94

100

)h
Vol(C0), (13)

if h of the k queries are hard.
Since all answers to hard queries are ε/100 accurate, it

must be that Goodε/100(D) ∈ Ck. Therefore, for an in-
put database D that satisfies (12) — and this is all but an
O(|X|−m) fraction of them, by Lemma 5.3 — we have

Vol(Ck) ≥ Vol(Goodε/100(D)) ≥ Vol(C0)

|X|2m . (14)

Combining inequalities (13) and (14) yields

h ≤ 2m ln |X|
ln 50

47

< 40m ln |X|,

as claimed.

Lemmas 4.4, 4.5, and 5.4 give the following utility guar-
antee.

Theorem 5.5. For every set f1, . . . , fk of queries, for all
but a negligible fraction of fractional histograms F , the ef-
ficient implementation of the median mechanism is (ε, δ)-
useful with δ = k exp(−Ω(εnα′)).

5.3 Usefulness for Finite Databases
Fractional histograms correspond to probability distribu-

tions over X. Lemma 5.3 shows that most probability dis-
tributions are ‘good’ for the efficient implementation of the
Median Mechanism; in fact, more is true. We next show that
finite databases sampled from randomly selected probability
distributions also have good volume properties. Together,
these lemmas show that the efficient implementation of the
median mechanism will be able to answer nearly exponen-
tially many queries with high probability, in the setting in
which the private database D is drawn from some ‘typical’
population distribution.
DatabaseSample(|D|):

1. Select a fractional point F ∈ C0 uniformly at random.

2. Sample and return a database D of size |D| by drawing
each x ∈ D independently at random from the prob-
ability distribution over X induced by F (i.e. sample
xi ∈ X with probability proportional to Fi).

Lemma 5.6. For |D| as in (6) (as required for the Median
Mechanism), a database sampled by DatabaseSample(|D|)
satisfies (12) except with probability at most O(|X|−m).

Proof. By lemma 5.3, except with probability |X|−m,
the fractional histogram F selected in step 1 satisfies

Vol(Goodε/200(F))

Vol(C0)
≥ 1

|X|2m .

By lemma 4.6, when we sample a database D of size
|D| ≥ O((log |X| log3 k log 1/ε)/ε3) from the probability
distribution induced by F , except with probability δ =

O(k|X|− log3 k/ε), Goodε/200(F) ⊂ Goodε/100(D), which
gives us condition (12).

We would like an analogue of lemma 5.3 that holds for
all but a diminishing fraction of finite databases (which cor-
respond to lattice points within C0) rather than fractional
points in C0, but it is not clear how uniformly randomly
sampled lattice points distribute themselves with respect to
the volume of C0. If n >> |X|, then the lattice will be fine
enough to approximate the volume of C0, and lemma 5.3
will continue to hold. We now show that small uniformly
sampled databases will also be good for the efficient version
of the median mechanism. Here, small means n = o(

√
|X|),

which allows for databases which are still polynomial in the
size of X. A tighter analysis is possible, but we opt instead
to give a simple argument.

Lemma 5.7. For every n such that n satisfies (6) and n =

o(
√
|X|), all but an O(n2/|X|) fraction of databases D of

size |D| = n satisfy condition (12).

Proof. We proceed by showing that our Databas-
eSample procedure, which we know via lemma 5.6 gen-
erates databases that satisfy (12) with high probability, is
close to uniform. Note that DatabaseSample first selects
a probability distribution F uniformly at random from the
positive quadrant of the `1 ball, and then samples D from
F .

For any particular database D∗ with |D∗| = n we write
PrU [D = D∗] to denote the probability of generating D∗

when we sample a database uniformly at random, and we
write PrN [D = D∗] to denote the probability of generat-
ing D∗ when we sample a database according to Databas-
eSample. Let R denote the event that D∗ contains no
duplicate elements. We begin by noting by symmetry that:
PrU [D = D∗|R] = PrN [D = D∗|R] We first argue that
PrU [R] and PrN [R] are both large. We immediately have
that the expected number of repetitions in database D when
drawn from the uniform distribution is

(
n
2

)
/|X|, and so

PrU [¬R] ≤ n2

|X| . We now consider PrN [R]. Since F is a uni-

formly random point in the positive quadrant of the `1 ball,
each coordinate Fi has the marginal of a Beta distribution:
Fi ∼ β(1, |X| − 1). (See, for example, [Dev86] Chapter 5).
Therefore, E[F 2

i] = 2
|X|(|X|+1)

and so the expected number

of repetitions in database D when drawn from Databas-

eSample is
(
n
2

)∑|X|
i=1 E[F 2

i] =
2(n2)
|X|+1

≤ 2n2

|X| . Therefore,

PrN [¬R] ≤ 2n2

|X| .

Finally, let B be the event that database D fails to satisfy
(12). We have:

Pr
U

[B] = Pr
U

[B|R] · Pr
U

[R] + Pr
U

[B|¬R] · Pr
U

[¬R]

= Pr
N

[B|R] · Pr
U

[R] + Pr
U

[B|¬R] · Pr
U

[¬R]

≤ Pr
N

[B|R] · Pr
U

[R] + Pr
U

[¬R]

≤ Pr
N

[B] · PrU [R]

PrN [R]
+ Pr

U
[¬R]

≤ PrN [B]

1− 2n2

|X|

+
n2

|X|

= O(
n2

|X|)

where the last equality follows from lemma 5.6, which states
that PrN [B] is negligibly small.

We observe that we can substitute either of the above lem-
mas for lemma 5.3 in the proof of lemma 5.4 to obtain ver-
sions of Thoerem 5.5:

Corollary 5.8. For every set f1, . . . , fk of queries,
for all but a negligible fraction of databases sampled by
DatabaseSample, the efficient implementation of the me-
dian mechanism is (ε, δ)-useful with δ = k exp(−Ω(εnα′)).

Corollary 5.9. For every set f1, . . . , fk of queries, for
all but an n2/|X| fraction of uniformly randomly sampled
databases of size n, the efficient implementation of the me-
dian mechanism is (ε, δ)-useful with δ = k exp(−Ω(εnα′)).

6. CONCLUSION
We have shown that in the setting of predicate queries,

interactivity does not pose an information theoretic barrier
to differentially private data release. In particular, our de-
pendence on the number of queries k nearly matches the
optimal dependence of log k achieved in the offline setting
by [BLR08]. We remark that our dependence on other pa-
rameters is not necessarily optimal: in particular, [DNR+09]
achieves a better (and optimal) dependence on ε. We
have also shown how to implement our mechanism in time
poly(|X|, k), although at the cost of sacrificing worst-case
utility guarantees. The question of an interactive mecha-
nism with poly(|X|, k) runtime and worst-case utility guar-
antees remains an interesting open question. More generally,
although the lower bounds of [DNR+09] seem to preclude
mechanisms with run-time poly(log |X|) from answering a
superlinear number of generic predicate queries, the ques-
tion of achieving this runtime for specific query classes of
interest (offline or online) remains largely open. Recently a
representation-dependent impossibility result for the class of
conjunctions was obtained by Ullman and Vadhan [UV10]:
either extending this to a representation-independent im-
possibility result, or circumventing it by giving an efficient
mechanism with a novel output representation would be very
interesting.

Acknowledgments
The first author wishes to thank a number of people for use-
ful discussions, including Avrim Blum, Moritz Hardt, Kat-
rina Ligett, Frank McSherry, and Adam Smith. He would
particularly like to thank Moritz Hardt for suggesting try-
ing to prove usefulness guarantees for a continuous version
of the BLR mechanism, and Avrim Blum for suggesting the
distribution from which we select the threshold in the me-
dian mechanism.

7. REFERENCES
[BLR08] A. Blum, K. Ligett, and A. Roth. A learning

theory approach to non-interactive database
privacy. In Proceedings of the 40th annual ACM
symposium on Theory of computing, pages
609–618. ACM New York, NY, USA, 2008.

[Dev86] L. Devroye. Non-uniform random variate
generation. 1986.

[DFK91] M. Dyer, A. Frieze, and R. Kannan. A random
polynomial-time algorithm for approximating
the volume of convex bodies. Journal of the
ACM (JACM), 38(1):1–17, 1991.

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and
A. Smith. Calibrating noise to sensitivity in
private data analysis. In Proceedings of the
Third Theory of Cryptography Conference TCC,
volume 3876 of Lecture Notes in Computer
Science, page 265. Springer, 2006.

[DN03] I. Dinur and K. Nissim. Revealing information
while preserving privacy. In 22nd ACM
SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), pages
202–210, 2003.

[DNR+09] C. Dwork, M. Naor, O. Reingold, G.N.
Rothblum, and S. Vadhan. On the complexity
of differentially private data release: efficient
algorithms and hardness results. In Proceedings
of the 41st annual ACM symposium on
Symposium on theory of computing, pages
381–390. ACM New York, NY, USA, 2009.

[Dwo08] C. Dwork. Differential privacy: A survey of
results. In Proceedings of Theory and
Applications of Models of Computation, 5th
International Conference, TAMC 2008, volume
4978 of Lecture Notes in Computer Science,
page 1. Springer, 2008.

[GRS09] A. Ghosh, T. Roughgarden, and
M. Sundararajan. Universally
utility-maximizing privacy mechanisms. In
Proceedings of the 41st annual ACM symposium
on Symposium on theory of computing, pages
351–360. ACM New York, NY, USA, 2009.

[HT10] M. Hardt and K. Talwar. On the Geometry of
Differential Privacy. In The 42nd ACM
Symposium on the Theory of Computing, 2010.
STOC’10, 2010.

[KLN+08] S.P. Kasiviswanathan, H.K. Lee, K. Nissim,
S. Raskhodnikova, and A. Smith. What Can
We Learn Privately? In IEEE 49th Annual
IEEE Symposium on Foundations of Computer
Science, 2008. FOCS’08, pages 531–540, 2008.

[MT07] F. McSherry and K. Talwar. Mechanism design
via differential privacy. In Proceedings of the
48th Annual Symposium on Foundations of
Computer Science, 2007.

[UV10] J. Ullman and S. Vadhan. PCPs and the
Hardness of Generating Synthetic Data .
Manuscript, 2010.

[Vap96] V. Vapnik. Structure of statistical learning
theory. Computational Learning and
Probabilistic Reasoning, page 3, 1996.

