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Abstract

Ad-hoc polymorphism allows the execution of programs to depend on type information. In modern
systems, it is useful for implementing generic operations over data structures, such as equality, mar-
shalling, or traversal. In the past, there have been two different forms of ad-hoc polymorphism. The
nominal form dispatches on the name of the type argument, whereas the structural form operates by
decomposing the structure of types. In languages with user-defined types, these two approaches are very
different. Operations defined by the nominal approach are “open”—they must be extended with special-
ized branches for user-defined types. In contrast, structurally defined operations are closed to extension.
They automatically apply to user-defined types by treating them as their underlying definitions. Both
approaches have their benefits, so it important to provide both capabilities in a language. Therefore we
present an expressive language that supports both forms of ad-hoc polymorphism in a single framework.
Among the language’s features are the ability to define both “open” and “closed” operations with a
single mechanism, the ability to naturally restrict the domain of type-analyzing operations, and new
mechanisms for defining higher-order polytypism and manipulating generative type definitions.

1 Introduction

Ad-hoc polymorphism allows functions to alter their execution based on type information. Unlike parametric
polymorphism, where the behavior of a polymorphic function is identical for all instances, with ad-hoc
polymorphism the instance for the integer type may differ in execution radically from the instance for
booleans. We call operations that depend on type information polytypic.

This form of polymorphism is a compelling addition to a typed programming language. It is well suited
for dynamic environments—it can be used to implement dynamic typing, dynamic loading and marshalling.
It is also essential to the definition of generic versions of many basic operations such as equality and structural
traversals.

In some of its most compelling applications, ad-hoc polymorphism simplifies programming with compli-
cated data structures, eliminating the need for repetitive “boilerplate code”. For example, the implementa-
tion of a compiler may include many data structures for representing various intermediate languages, and
transformations implemented as traversals over these data structures. Without ad-hoc polymorphism, the
same code for traversing abstract syntax must be implemented for each intermediate language. The generic
traversals defined by ad-hoc polymorphism allows the programmer to concentrate on writing the important
parts of a transformation.

Currently, there are two forms of ad-hoc polymorphism in typed, functional languages. The first is based
on the nominal analysis of type information, such as the functionality provided by Haskell type classes [24].
The execution of an ad-hoc operation is determined solely by the name of the type argument (or the name
of the head constructor, such as list.) It is difficult to call a polytypic operation defined in this manner a
single “function” as it is composed of many disparate pieces of code. This nominal polytypism naturally
limits the domain of an ad-hoc operation to those types where a definition has been provided. For example,
a polymorphic addition function might be defined for integers and floating-point numbers, but not booleans.
Polytypic operations defined in a nominal framework are naturally “open”; at any time they may be extended
with instances for new types.
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The second form of ad-hoc polymorphism is based on the structural analysis of types, such as the func-
tionality provided by intensional type analysis [9]. Polytypic operations defined in this framework are defined
by a case analysis of the various forms of type structure. Because they are defined by case analysis, these
operations are naturally “closed” to extension. In fact, their operation must extend to all types at the point
of definition.

In a language without user-defined types, these two approaches are roughly the same. However, many
languages provide a mechanism, such Haskell’s newtypes [20], for extending the language to include new
forms of types. Although these new forms are isomorphic to existing types, they express application specific
distinctions that can be made by the type checker. For example, a programmer may wish to ensure that he
does not confuse phone numbers with ages in an application, even though both may be represented using
integers.

In the presence of user-defined types, neither purely nominal nor purely structural ad-hoc polymorphism is
entirely satisfactory. Defining an operation in an open framework make it easy to extend to new user-defined
types. However, it is difficult for the programmer to state with assurance that the operation is exhaustive.
Furthermore, adding a new polytypic operation requires implementing cases for all existing types. Besides
being fairly tedious, this way of defining polytypic operations leads to commingling of concerns, as the
implementation becomes dispersed throughout a program.

Because closed operations cannot be extended to new application-specific types, structural systems treat
a user-defined type as being equal to its definition. This approach destroys the distinctions that the user-
defined types are designed to express. A polytypic operation cannot treat an “Age” in a different manner
than a “PhoneNumber”—both are treated as integers. While some systems do allow ad-hoc definitions
for user-defined types, there is a loss of abstraction—a polytypic operation can always determine a type’s
underlying representation.

1.1 Combining both forms in one language

This paper unifies the two different forms of ad-hoc polymorphism in a foundational language, called λL. This
language provides capabilities for both structural and nominal analysis in a coherent framework, allowing
developers to choose which characteristics they wish to use from each system. The essence of λL is the
following:

At the core, λL is a simple system for structural type analysis augmented with user-defined types.
The structural analysis operator typecase may include branches for these new names if they are in scope.
Naturally, some ad-hoc operations may be unable to handle some newly defined types. Types containing
names for which there is no branch in an operation cannot be allowed as an argument, or evaluation will
become stuck. Therefore, the type system of λL statically tracks the names used in types and compares
them to the domain of a type analysis operation.

New names are generated dynamically during execution, so it is desirable to extend polytypic operations
with branches for these newly defined names. For this purpose, we introduce first-class type maps. Intuitively,
these maps are branches for typecase that may be passed to polytypic operations, extending them to handle
the new names. Also, λL includes support to easily coerce expressions mentioning new types to use the new
type’s underlying representations.

We stress that we do not consider λL an appropriate source language for humans, in much the same way
that Fω is not an appropriate source language for humans. As defined, λL requires that programs be heavily
annotated and written in a highly-stylized fashion. The next step in this research program is to develop some
sort of automated assistance for the common idioms, such as the inference of type arguments and first-class
maps.

1.2 Contributions of this work

The λL language is an important and vital intermediate step towards improving the practicality of polytypic
programming. In particular, this paper has the following contributions:

• We define a language that allows the definition of both “open” and “closed” polytypic operations.
Previous work has chosen one or another framework, augmented with ad-hoc mechanisms to counter
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int , lint

τ1 × τ2 , l× τ1 τ2

τ1 → τ2 , l→ τ1 τ2

∀α:κ�L.τ , l∀ [κ] (λα:κ.τ) L
∀+χ.τ , l∀+ (Λχ.τ)
∀s.τ , l∀# (λs:Ls.τ)

L⇒ τ �L′ , lmap L τ L′
∀∗ι:L(κ).τ , l∀∗ [κ] (λι:L(κ).τ)

τ ′〈τ : κ�L〉 , lpoly τ ′ [κ] τ L

Figure 1: Syntactic sugar for types

their difficulties.

• We define a language that allows programmers to statically restrict the domain of polytypic operations
defined in a structural type system in a natural manner. Previous work [9, 4] requires that programmers
use type-level intensional analysis or programming to makes such restrictions.

• We show how to reconcile typecase with the analysis of higher-order type constructors. Previous
work [25] has based such analysis on the interpretation of type constructors. In λL, we show how to
implement the same operations with simpler constructs.

• We present a sophisticated system of coercions for converting between new types and their underlying
representations.

2 Programming in λL

We begin by briefly describing the features of λL through examples. In Section 3 we will cover the semantics
of these features in more detail.

Generative types At the core, λL is a functional programming language augmented with generative (also
called branded) types and type constructors. New types are created with the expression new ι:κ = τ in e.
This expression dynamically generates a new label (also called a name) equivalent to τ of kind κ and binds
it to the label variable ι.

Labels are used as constants in the type language. For uniformity, all type constants (such as int and →)
of λL are represented by distinguished labels. For example, the type int is syntactic sugar for lint. Figure 1
lists other forms of syntactic sugar for the types of λL. We notate arbitrary label constants with li’s.

The new expression statically introduces an isomorphism between ι and τ in the scope of e. Inside
that scope, the operators {{·}}+

ι and {{·}}−ι coerce expressions to and from that new type. For example, the
following expression evaluates to 5.

new ι:? = int in (λx : ι.{{x}}−ι + 3){{2}}+
ι

Unlike Haskell newtypes, new type names in this language are created dynamically. Generating new
names requires an operational effect at run time, but the term coercions are merely used for type checking
and are not essential to execution. We chose this mechanism to model generative types in λL for its simplicity.
A more sophisticated language could base its mechanism for type generativity on a module system.

Type analysis with a restricted domain Polytypic operations are defined with typecase. This oper-
ator determines the head form of its type argument (such as int, ×, list, etc.) and selects the appropriate
branch from a finite map from labels to expressions.
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fix eq:∀α:?�L.α → α → bool.
Λα:?�L.typecase α

{ lint ⇒ eqint,
lbool ⇒ λx:bool.λy:bool.if x then y else (not y),
l× ⇒ Λα1:?�L.Λα2:?�L.λx:(α1 × α2).λy:(α1 × α2).

eq[α1](fstx)(fst y) & eq[α2](sndx)(snd y),
llist ⇒ Λα1:?�L.λx:(list α).λy:(list α).all2 (eq[α1]) x y }

Figure 2: Polymorphic equality

For example, the expression typecase int {lint ⇒ 1, lbool ⇒ 2} evaluates to 1. A challenging part
of the design of λL is ensuring that the argument to typecase is valid. It should never be a label that
does not have a branch in the finite map. For example, we wish to rule out stuck expressions of the form
typecase bool {lint ⇒ 2}.

For this reason, when checking a typecase expression, λL calculates the set of labels that may appear
within the type argument to typecase, and requires that set be a subset of the set of labels that have
branches in the finite map of the typecase. That way, progress is assured. So that the calculation of run-
time labels is sound in the presence of polymorphism, we annotate a quantified type variable with the set of
labels that may appear in types that instantiate it.

Λα:?�lint ∪ lbool.typecase α {lint ⇒ 2, lbool ⇒ 3}

In this case, we know that α must only be a type formed from the constructors int and bool, so the head form
of α will have a match in the typecase expression. Alternatively, it is possible to specify the distinguished set
of all labels (U) as the annotation. In that case, types containing α are unanalyzable, because it is impossible
to provide typecase branches for all possible labels. With U , λL supports parametric polymorphism.

So far, the examples have only matched type constants of base kind ?. In general, the type of each branch
in typecase is determined by the kind of the matched head label. After typecase determines the reified
label in the head position of its argument, it steps to the corresponding map branch, applying any arguments
that were applied to the head. For example, for arrow types: typecase (l→ τ1 τ2) {l→ ⇒ e} 7→ e[τ1][τ2].

The function eq below implements a polymorphic equality function for data objects composed of integers,
booleans, products and lists. In the following examples, let L = lint ∪ lbool ∪ l× ∪ llist.

In the case of products, l× has kind ? → ? → ?, so the branch abstracts two type variables for the
subcomponents of the type. Likewise, in the llist case, the type of list elements is also abstracted. In the
next section, we will make the relationship between the kind of the label and the type of the branch precise.

The ability to restrict the arguments of polytypic function in a natural way is valuable. For example,
the polytypic equality function cannot be applied to values of function type. Therefore, SML [18] defines
the set of “equality” types to be those that do not contain the l→ constructor to ensure that each use of
polymorphic equality is valid. Here, λL naturally makes this restriction by omitting {l→} from the set of
labels for the argument of eq.

2.1 Reconciling generative types and type analysis

The function eq is closed to extension. However, with the creation of new names there may be many more
types of expressions that programmers would like to apply eq to. In λL, we provide two solutions to this
problem:

• We can leave eq as it is and at application, coerce all the arguments to eq so that their types do not
contain new labels.

• We can rewrite eq to be extensible with new branches for the new type names.
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2.1.1 Higher-order coercions

For the first scenario, we augment the calculus with an easy and efficient mechanism for coercing values
with named types between their underlying representations and back. Higher-order coercions extend an
isomorphism between l and τ to arbitrary types τ ′l and τ ′τ . Like first-order coercions, these operations
have no run-time effect; they merely alter the types of expressions. While the semantics of these coercions
is somewhat involved, this addition to the language is relatively straightforward.

For example, suppose we define a new type equivalent to a pair of integers with new ι:? = int × int.
We then create a value of this type, paired with a boolean using the expression let x = 〈{{〈2, 2〉}}+

ι , true〉.
We cannot call eq[ι× bool] x x because there is no match for the label ι in eq. However, we can use a
higher-order coercion to change the type of x so that it does not include the type ι.

eq[(int× int)× bool]{{x : λβ: ? .β × bool}}−ι {{x : λβ: ? .β × bool}}−ι

There are two issues with relying on higher-order coercions to deal with new type names. The first is that
it requires that the call site of a polytypic operation know the definition of every label that appears in the
type. That way, the polytypic operation is not breaking any abstractions. Secondly, the programmer cannot
distinguish labels from their underlying representations in the execution of a polytypic operation.

2.1.2 First-class maps

For the second scenario, we enhance the flexibility of the typecase operator, by making finite maps of
branches for typecase first-class. Programmers may implement polytypic operations to allow new branches
to be added at run time.

The type of a first-class map is L1⇒ τ ′ �L2. The first component of this type is the domain of the map.
The second and third components describe the types of these branches, as described in the next section.
Using first-class maps, we can pass a branch for int’s into the following operation (where on joins together
two maps):

λx:{lint}⇒ (λα: ? .bool)�{lint}.typecase int ({lbool ⇒ true}on x)

For simplicity, λL makes no attempt to enforce that the domains of joined maps are disjoint. Instead, maps
are ordered, and existing branches may be shadowed as the rightmost matching branch will be selected. In
the following expression, if {int ⇒ false} is supplied for x, the expression will evaluate to false.

λx:{lint}⇒ λα: ? .bool�{lint}.typecase int ({lbool ⇒ false, lint ⇒ true}on x)

Redefining the behavior of typecase for int may not be what the programmer intended, but allowing such
scenarios does not affect the soundness of λL. If the programmer wished to prevent this redefinition, she
could join x on the left instead of the right. A more sophisticated language could include machinery to
prevent shadowing from occurring.

2.1.3 Label and label set polymorphism

However, even though we may supply new branches to typecase, polytypic functions are still not extensible.
We must specify which labels are in the domain of the map when it is passed to a polytypic function.
Therefore, λL includes label-set polymorphism. A typical idiom for an extensible polytypic operation is to
abstract a set of labels, a map for that set, and then require that the argument to the polytypic function
be composed of those labels plus any labels that already have branches in typecase. We call polytypic
functions that have been defined in this manner “open”. For example, we can create an open version of eq
as follows (again let L = lint ∪ lbool ∪ l× ∪ llist):

Λs:Ls.λy:s⇒ λα: ? .α → α → bool�s∪L.
fix eq:∀α:?�s∪L.α → α → bool.

Λα:?�L.typecase α
y on{lint ⇒ . . . , lbool ⇒ . . . , l× ⇒ . . . , llist ⇒ . . .}
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Λs:Ls.λytos :s⇒ λα: ? .α → string�s∪{l×}.λyimp :s⇒ λα: ? .α → string�s∪{l×}.
fix tostring.Λα:?�s∪{l×}.typecase α

(ytos on{(α1 × α2) ⇒ λx:(α1 × α2).
let s1 = if important[s] yimp [α1](fstx)

then tostring[s][α1](fstx)
else “...”

let s2 = if important[s] yimp [α2](sndx)
thentostring[s][α2](sndx)
else “...”

“(” ++ s1 ++ “,” s2 ++ “)”})

Figure 3: Serialization

With this version of eq, we can treat generative types differently from their underlying representations. For
example, if dollar amounts are stored as floating point numbers, we can round them to two decimal places
before comparing them. We also cannot conclude that two objects with different labeled types are equal in
the sense of eq, even though they may have the same underlying representation, because we cannot apply
eq to them.

This calculus explicitly witnesses the design complexity of open polytypic operations. Suppose we wanted
to call a polytypic operation, called important in the body of a polytypic serializer, called tostring.
Intuitively, important should be called for each element of a pair to decide if recursion should continue.
Because tostring can be applied to any type that provides a map for the new labels, important must also
be applicable to all those types.

There are two solutions for this problem. The first is to supply the branches for important to tostring,
as below. This solution is used by Dependency-Style Generic Haskell[17]. In that language, the additional
arguments are automatically inferred by the compiler. However, the dependencies still show up in the type
of an operation, hindering the modularity of the program.

A second solution is to provide to tostring a mechanism for coercing away the labels in the set s
before the call to important. In that case, important would not be able to specialize its execution to the
newly provided labels. In contrast, a closed polytypic operation may more easily call other closed polytypic
functions.

2.2 Expressive polytypism

2.2.1 Analyzing label sets

An important property for a type-analyzing language is that it be fully reflexive. In other words, it should
permit the analysis of all types that exist in the language. Because we have added two new type forms,
restricted type quantification and maps, we must add machinery to λL to analyze these types. Both types
contain label sets, so for full flexibility we add label-set analysis. Label-set analysis works similarly to
typecase—it matches the outermost form of the label set (be it empty, a singleton label, the union of two
sets, or the constant denoting the entire universe of labels.)

In the case that the label set is a singleton label, the programmer may want to find out which label it
is. For this reason we also add kind and label quantification and label analysis. Labels have no interesting
structure, so label analysis, performed with the keyword lindex, merely maps labels to integers.

For example, the following function computes a string representation of any label set.
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fix settostring:∀α:Ls. string.Λα:Ls. setcase α
{ ∅ ⇒ “”,

∪ ⇒ Λs1:Ls.Λs2:Ls.
(settostring[s1]) ++ “ ” ++(settostring[s2]),

{} ⇒ Λ+χ.Λ∗ι:L(χ).int2string(lindex(ι)),
U ⇒ “U”

}

2.2.2 Higher-order type analysis

In the polytypism of Hinze’s system [10] (extended to run-time analysis by Weirich [25]), a polytypic operation
is an interpretation of a type. Type functions are mapped to term functions, type applications to term
applications, and type variables to term variables. In that way equivalences in the term language reflect
equivalences in the type language. Even though the types (λα:? .int)bool and bool are syntactically different,
they are semantically the same type, and so analysis should produce the same results.

In λL, analysis is over the weak-head normal form of types. Because equal types have the same normal
form, such equivalences are preserved at execution. However, even though typecase in this calculus only
analyzes constructors of kind ?, we can still use λL to encode the instantiation of polytypic operators for
constructors of kind κ1 → κ2. Such higher-order type analysis is necessary to implement some polytypic
operations.

For example, suppose f is an open polytypic operation of type ∀s:Ls.∀β:?�s.s⇒ τ ′ �s ∪ L → τ ′β and we
want to use the instance of it for the type τ of kind ? → ?, where L contains all the labels in τ . To do so, we
modify the call site of f , to be a polymorphic function, because that is the interpretation of type functions.
This function abstracts the type argument of the constructor β and a branch x as the interpretation of β. It
then creates a new label for β and passes a branch to f that maps the new label to the interpretation of β.

Λβ:?�L.λx:τ ′β.new ι:? = β in {{f [ι] [τ ι]{ι ⇒ {{x : τ ′}}+
ι } : τ ′}}−ι

The above example is for types of kind ? → ?. To apply f to types of other kinds, the kind of the analyzed
type determines the expansion.

3 The λL language

Next we describe the semantics of λL in detail. The grammar for λL is in Figure 4. In this Section, so we
only cover the most interesting aspects of the language. The complete semantics appears in the appendix.

The λL language includes label constants lκ
i , drawn from some countably infinite set. We assume there

is some (unspecified) mechanism for determining the kind of label constants. When important, we annotate
a constant with its kind. Label sets (L) include the empty set (∅), singletons, unions of sets, the complete
set (U), and label set variables. The judgments ∆ � l : L(κ) and ∆ � L : Ls determine when labels and
label sets are well-formed within a given type context.

Types (also called constructors) include labels, variables, and several forms of abstraction. As well as
type and kind abstractions, this language includes label and label set abstractions, which are given the kinds
L(κ1) → κ2 and Ls → κ respectively.

To verify that the typecase analysis of a type has a matching branch, we conservatively determine the
set of labels that could appear in the head position of the type. The well-formedness judgment for types,
∆ ` τ : κ | L, states that in the typing context ∆, the type constructor τ has kind κ and mentions labels in
the set L. In rules where the label set is unimportant, we elide it. The important rules for this judgment
are those for label reification and variables.

∆ � l : L(κ)
∆ ` l : κ | {l}

` ∆ α:κ�L ∈ ∆
∆ ` α : κ | L

` ∆ α:κ ∈ ∆
∆ ` α : κ | ∅
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Kinds κ ::= χ | ? | κ1 → κ2 | L(κ1) → κ2 | Ls → κ | ∀χ.κ
Labels l ::= lκ

i | lint | l→ | l∀ | l∀∗ | l∀# | l∀+ | lmap | lpoly | ι
Label sets L ::= ∅ | {l} | L1 ∪L2 | U | s
Types σ, τ ::= α | l | λα:κ.τ | τ1τ2 | λι:L(κ).τ | τ ◦ l | λs:Ls.τ | τL | Λχ.τ | τ [κ]
Terms e ::= x | i | λx:σ.e | e1e2 | fix x:σ.e | new ι:κ = τ in e | {{e}}±l=τ |

{{e : τ}}±l=τ2
| typecase τ e | setcase L e∅ e{} e∪ eU |

lindex l | | Λα:κ�L.e | e[τ ] | Λ∗ι:L(κ).e | e[l]∗ |
Λs:Ls.e | e[L] | Λ+χ.e | e[κ]+ | ∅ | {l ⇒ e} | e1 on e2

Type Contexts ∆ ::= · | ∆, α:κ | ∆, ι:L(κ) | ∆, s:Ls | ∆, α:κ�L | ∆, χ
Signatures Σ ::= · | Σ, l:κ = τ
Term Contexts Γ ::= · | Γ, x:σ
Type paths ρ ::= • | ρ τ | ρ ◦ l | ρ L | ρ [κ]
Term paths p ::= • | p [τ ] | p [l]∗ | p[L] | p [κ]+

Figure 4: The λL language

In the first rule above, labels are added to the set when they are used as types. The second two rules
correspond to the two forms of type variable binding. Type variables bound from the term language are
annotated with the set of labels that may appear in types that are used to instantiate them. However,
variables that are bound by type-level abstractions do not have any such annotation, and consequently do
not contribute to the label set. This last rule is sound because the appropriate labels will be recorded when
the abstraction is applied.

3.1 The term language

The semantics of the term language includes judgments for determining the well-formedness of a term
∆; Γ ` e : σ |Σ and the execution of a term in conjunction with a label set L; e 7→ L′; e′. The first judgment
states that a term e is well-formed with type σ, in type context ∆, term context Γ, and possibly using type
isomorphisms described by Σ. The second judgment says that a term e with a set of labels L steps to a
new term e′ with a possibly larger set of labels L′. During the evaluation of the new operator, the label-set
component allows the selection of a fresh label that has not previously been used. In this way, it resembles
an allocation semantics [19, 6]. The initial state of execution includes all label constants (such as lint, l→)
in L. The semantics for the λ-calculus fragment of λL, including fix and integers, is standard, so we will
not discuss it further. Below, we describe the dynamic and static semantics of label creation, coercions,
first-class maps, and type, set and label abstraction and analysis.

3.1.1 Label creation

The dynamic and static semantics for new are:

lκ
i 6∈ L

L; new ι:κ = τ in e 7→ L∪{lκ
i }; e[lκ

i /ι]

∆, ι:L(κ); Γ ` e : σ |Σ, ι:κ = τ ∆ ` τ : κ | · ι 6∈ σ

∆; Γ ` new ι:κ = τ in e : σ |Σ

Dynamically, the new operation chooses a label constant that has not been previously referred to and sub-
stitutes it for the label variable ι within the scope of e. Statically, ι must not appear in the type σ of e, so
that it does not escape its scope. When type checking e, the isomorphism between ι and τ is available.
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τ ′ ⇑ λα:κ.ρ[α]
L; {{v : τ ′}}±l=τ 7→ L; {{{{v : λα:κ.ρ[τ ]}}±l=τ}}

±
l=τ

τ ′ ⇑ λα:κ.int

L; {{i : τ ′}}±l=τ 7→ L; i

τ ′ ⇑ λα:κ.τ1 → τ2

L; {{λx:τ1.e : τ ′}}+
l=τ 7→ L;λx:(τ1[l/α]).{{e[{{x : λα:κ.τ1}}−l=τ/x] : λα:κ.τ2}}+

l=τ

τ ′ ⇑ λα:κ.L1⇒ τ ′ �L2

L; {{∅ : τ ′}}±l=τ 7→ L; ∅

τ ′ ⇑ λα:κ.L1 ∪L2⇒ τ ′ �L3

L; {{v1 on v2 : τ ′}}±l=τ 7→ L; {{v1 : λα:κ.L1⇒ τ ′ �L3}}±l=τ on{{v2 : λα:κ.L2⇒ τ ′ �L3}}±l=τ

τ ′ ⇑ λα:κ.ρ[l1]
L; {{{{v}}+

l1=τ1
: τ ′}}±l2=τ2

7→ L; {{{{v : λα:κ.ρ[τ1]}}±l2=τ2
}}+

l1=τ1

Figure 5: Operational semantics for higher-order coercions (excerpt)

3.1.2 Coercions

To support isomorphisms between labels and types of any kind, the primitive coercions change the head
constructor in the type of their arguments.

∆; Γ ` e : ρ[τ ] |Σ l:κ = τ ∈ Σ
∆; Γ ` {{e}}+

l=τ : ρ[l] |Σ
∆; Γ ` e : ρ[l] |Σ l:κ = τ ∈ Σ

∆; Γ ` {{e}}−l=τ : ρ[τ ] |Σ

The syntax ρ[τ ] denotes a type where τ is the head of the type path ρ. Operationally, the primitive coercion
“out” cancels the primitive coercion “in”.

L; {{{{v}}+
l=τ}}

−
l=τ 7→ L; v

Higher-order coercions extend the expressiveness of the primitive coercions to allow the non-head positions
of a type to change.

∆; Γ ` e : τ ′ τ |Σ l:κ = τ ∈ Σ
∆; Γ ` {{e : τ ′}}+

l=τ : τ ′ l |Σ
∆; Γ ` e : τ ′ l |Σ l:κ = τ ∈ Σ

∆; Γ ` {{e : τ ′}}−l=τ : τ ′ τ |Σ

Intuitively, a higher-order coercion “maps” the primitive coercions over an expression, guided by the type
constructor τ ′. If τ ′ is a path, then the higher-order coercion reduces to a primitive coercion. Otherwise, for
each value form in λL there is an operational rule to map the coercion over that type (see Figure 5).

3.1.3 Type abstraction and analysis

With all the constraints that are enforced by the type system, polymorphism is essential to maintain flexi-
bility. As such, λL provides not only type abstraction, but abstraction over kinds, label sets and labels. The
static and dynamics semantics are standard, except for type application. At an application site, we check
that the set of labels found in the argument type is contained within the set of labels accepted by the type
abstraction:

∆; Γ ` e : ∀α:κ�L.σ |Σ ∆ ` τ : κ | L′ ∆ ` L′ ⊆ L
∆; Γ ` e[τ ] : σ[τ/α] |Σ

The general rule for the execution of typecase is below:

τ ⇓∗ ρ[lκ
i ] {lκ

i ⇒ e′} ∈ v ρ p

L; typecase τ v 7→ L; p[e′]
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τ ′〈τ : ?�L〉 = τ ′τ
τ ′〈τ : κ1 → κ2)�L〉 = ∀α:κ�L.τ ′〈τα : κ2 �L〉
τ ′〈τ : L(κ1) → κ2 �L〉 = ∀∗ι:L(κ1).τ ′〈τι : κ2 �L〉
τ ′〈τ : Ls → κ�L〉 = ∀s:Ls.τ ′〈τs : κ�L〉
τ ′〈τ : ∀χ.κ�L〉 = ∀+χ.τ ′〈τ [χ] : κ�L〉

Figure 6: Polykinded type equivalences

In this rule, typecase determines the weak-head normal form of its type argument, τ , obtaining some reified
label li and a type path ρ. It chooses the rightmost matching branch from its map argument, v, and steps
to the specified term, applying some series of type, label, label set, and kind arguments as specified by the
term path p. This term path is derived from ρ in an obvious fashion. The static semantics of typecase is
straightforward. Given some map e with domain L and a type argument τ that mentions labels in L′, we
check that the map can handle all possible labels in τ with L′ v L.

∆; Γ ` e : L1⇒ τ ′ �L2|Σ ∆ ` τ : ? | L′ ∆ ` L1 ⊆ L2 ∆ ` L′ ⊆ L
∆; Γ ` typecase τ e : τ ′τ |Σ

Consider the rule for type checking a singleton map, below. The first component of the map type (in this
case l) describes the domain of the map and the second two components (τ ′ and L′) describe the types of
the branches of the map.

∆ � L : Ls ∆ ` τ ′ : ? → ? | · ∆ � l : L(κ) ∆; Γ ` e : τ ′〈l : κ�L〉 |Σ
∆; Γ ` {l ⇒ e} : {l}⇒ τ ′ �L |Σ

For labels of higher kind, typecase will apply the matching branch to all of arguments in the path to the
matched label. Therefore, the branch for that label must be able to accept all of those arguments. The
correct type for this branch is determined by the kind of the label, with the notation τ ′〈τ : κ � L〉. The
equality rules for this type appear in Figure 6. The label-set component of this kind-indexed type is used as
the restriction for quantified type variables. The rule for typecase requires that both label sets in the type
of the map be the same to ensure that it is safe to apply each branch to any subcomponents of the type
argument.

3.1.4 Label set and label analysis

Because the language of label sets is fixed, the semantics of setcase explicitly has branches for all possible
forms of label set.

∆ ` τ ′ : Ls → ? | · ∆; Γ ` e∅ : τ ′∅ |Σ ∆; Γ ` e{} : ∀+χ.∀∗ι:L(χ).τ ′{ι} |Σ
∆; Γ ` e∪ : ∀s1:Ls.∀s1:Ls.τ ′(s1 ∪ s2) |Σ ∆; Γ ` eU : τ ′U |Σ ∆ � L : Ls

∆; Γ ` setcase L e∅ e{} e∪ eU : τ ′L |Σ

Operationally, setcase behaves much like typecase, converting its argument to a normal form (so that
equivalent label sets have the same behavior) and then stepping to the appropriate branch. In contrast,
the run-time analysis of labels is quite simple. Label analysis merely returns an integer, providing the
programmer a way to distinguish between new labels.

L; lindex lκ
i 7→ L; i
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3.2 Properties

The λL language is type sound, following from the usual progress and preservation theorems [26]. The proofs
of these theorems are straightforward inductions over derivations. We define the initial label set L0 to be
lint ∪ l→ ∪ l∀ ∪ l∀# ∪ l∀+ ∪ l∀∗ ∪ lmap.

Theorem 3.1 (Progress) If ·; · ` e : σ |Σ, e is not a value, · ` L0 ⊆ L, and · ` dom(Σ) ⊆ L there exists
some L; e 7→ L′; e′ where · ` L ⊆ L′.

Theorem 3.2 (Preservation) If ·; · ` e : σ |Σ1, L; e 7→ L′; e′, where · ` L0 ⊆ L, · ` dom(Σ1) ⊆ L then
·; · ` e′ : σ |Σ2 where · ` dom(Σ2) ⊆ L′ and · ` Σ1 ≤ Σ2.

We also conjecture that the coercions are not necessary to the operational semantics—that an untyped
calculus where the coercions have been erased (preserving types, labels and label sets as terms for analysis)
would have the same operational behavior.

4 Extensions

Default branches One way to increase expressiveness is to allow default branches that apply when no
other branches match a label. To do so we add another form of map { ⇒ e} that is indexed by all labels.
Because this branch can analyze any label, the domain of the map is U . (With this extension, type variables
restricted by U are no longer parametric.)

∆ ` τ ′ : ? → ? | · ∆; Γ ` e : ∀+χ.∀α:χ�U .τ ′〈α : χ�U〉 |Σ
∆; Γ ` { ⇒ e} : U⇒ τ ′ �U|Σ

This branch matches labels of any kind, so its type depends on the kind of the matched label. Therefore the
type of this branch is a kind-polymorphic poly-kinded type.

Record and variant types Because λL deals with labels, with a small extension it can analyze types
that deal with labels—records and variant types. There is almost enough machinery to represent these types
in the type language. The missing component is support for finite maps from labels to types of kind ?. We
can define the semantics of these finite type maps by analogy to label sets. Analysis of a label map is also
analogous to label-set analysis. In the singleton case, both the label and its definition are provided to the
branch.

Multi-place typecase Finally, we can extend λL to support multiplace typecase, allowing the definition
of some of the most important polytypic operations such as map and zip. (See Hinze [10] for a more thorough
explanation of the rôle of multiplace definitions.) To extend typecase to this form of polytypism, we must
make several changes to λL. The branches for typecasen should have polykinded types indexed by n. Each
version is a polykinded type based on n types of kind κ.

∆ ` τ1 : κ | L1 . . . ∆ ` τn : κ | Ln ∆ ` τ ′ : ?n → ? | L′

∆ ` τ ′〈τ1 . . . τn : κ�L〉 : ? | L1 ∪ . . .Ln ∪L′

The key difference between the single polykinded type and the n-ary version is for function kinds. In that
case, n type variables are abstracted.

τ ′〈τ1 . . . τn : κ → κ′ �L〉 = ∀α1:κ�L. . . .∀αn:κ�L.τ ′〈(τ1α1) . . . (τnαn) : κ′ �L〉

Because polykinded types are parameterized by n, map types must also come in different arities. To make
sure that the calculus remains fully-reflexive, we must limit the number of different map types to a finite
number.

To support higher-order analysis with the multiplace typerec, we allow new labels to be “isomorphic”
to multiple types. The basic coercions, {{e}}+i

l=τ1,...,τn
include an index specifying which definition should
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be used. However, higher-order coercions can use all of the definitions at once. The annotations on the
higher-order coercions abstract multiple variables, corresponding to the multiple definitions. For example, if
ι is defined to be both τ1 and τ2 then {{x : λα1: ? .λα2: ? .l→ α1 α2}}+

ι coerces x from type τ1 → τ2 to type
ι → ι.

5 Related work

There is much research on polytypic languages. Run-time type analysis allows the structural analysis of
dynamic type information. Abadi, et al. introduced a type “dynamic” to which types could be coerced, and
later via case analysis, extracted [1]. The core semantics of typecase in λL is similar to the intensional
polymorphism of Harper and Morrisett [9]. However, λL does not include a type-level analysis operator.
Trifonov, Saha, and Shao extended Harper and Morrisett’s language work to be fully-reflexive [23] by adding
kind polymorphism. Weirich [25] extended run-time analysis to higher-order type constructors following the
work of Hinze [10].

Generic programming uses the structure of datatypes to generate specialized operations at compile time.
The Charity language [3] automatically generates folds for datatypes. PolyP [12] is an extension of Haskell
that allows the definition of polytypic operations based on positive, regular datatypes. Functorial ML [14]
bases polytypic operations on the composition of functors, and has lead to the programming language
FISh [13]. Generic Haskell [2], following the work of Hinze [10] allows polytypic functions to be indexed by
any type or type constructor.

Nominal forms of ad-hoc polymorphism are usually used for overloading. Type classes in Haskell [24]
implement overloading by defining classes of types that have instances for a set of polytypic operations.
Hinze and Peyton Jones [11] explored an extension to automatically derive type class instances by looking
at the underlying structure of new types. Dependency-style Generic Haskell [17] revises the Generic Haskell
language to be based on the names of types instead of their structure. However, to automatically define
more generic functions, it converts user-defined types into their underlying structural representations if a
specific has not been provided.

Many languages use a form of generative types to represent application-specific abstractions. For example,
Standard ML [18] and Haskell [20] rely on datatype generativity in type inference. Modern module systems
also provide generative types [5]. When the definition of the new type is known, the type isomorphisms of
this paper differ from calculi with type equalities (such as provided by Harper and Lillibridge [8] or Stone
and Harper [22]) in that they require explicit terms to coerce between a type name and its definition. While
explicit coercions are more difficult for the programmer to use, they simplify the semantics of the generative
types. Explicit coercions make sense because even if the definition is known, because the distinction should
still be made during dynamic type analysis.

A few researchers have considered the combination of generative types with forms of dynamic type
analysis. Glew’s [6] source language dynamically checks predeclared subtyping relationships between type
names. Lämmel and Peyton Jones [15] used dynamic type equality checks to implement a number of
polytypic iterators. Rossberg’s λN calculus [21] dynamically checks types (possibly containing new names)
for equality. Rossberg’s language also includes higher-order coercions to allow type isomorphisms to behave
like existentials, hiding type information inside a pre-computed expression. However, his coercions have
a slightly different semantics from ours. Higher-order coercions are reminiscent of the colored brackets of
Grossman et al. [7], which are also used by Leifer et al. [16] to preserve type generativity when marshalling.

6 Discussion

In conclusion, the λL language provides a good way to understand the properties of both nominal and
structural type analysis. Because it can represent both forms, it makes apparent the advantages and disad-
vantages of each. We view λL as a solid foundation for the design of a user-level language that incorporates
both versions of polytypism.

In the design of λL, we explored many alternatives to simplify the language. For example, we tried
combining labels and label sets into the same syntactic category as types, thereby eliminating the need
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for separate abstraction forms. However, this combination dramatically increases the complexity of the
semantics. The fact that this change allows new expressions to create new names for not just types, but
label sets and even labels, complicates the process of determining the appropriate set of labels used in a type
constructor.

Aside from developing a usable source language, there are a number other extensions that would be
worthwhile to consider. First, our type definitions provide a simplistic form of generativity; it may be
worthwhile to consider extending λL with a module system possessing more sophisticated type generativity.
Furthermore, type analysis is especially useful for applications such as marshalling and dynamic loading, so
it would useful to develop a distributed calculus based upon λL. To avoid the need for a centralized server
to provide unique type names, name generation could be done randomly from some large domain, with very
low probability of collision. Finally, to increase the expressiveness of the polytypic core of the language, we
should extend it with type-level analysis of types. As shown in past work, it is impossible to assign types to
some polytypic functions without this feature. One way to do so might be to extend the primitive-recursive
operator of Trifonov et al. [23] to include first-class maps from labels to types.
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A Language

A.1 Syntax

Kinds κ ::= χ variables
| ? types
| κ1 → κ2 function kinds
| Ls → κ label set functions
| L(κ1) → κ2 labels functions
| ∀χ.κ kind polymorphism

Labels l ::= lκ
i | lint | l→ | l∀ | l∀∗ | l∀# | l∀+ | lmap | lpoly constants

| ι variables
Label sets L ::= ∅ empty

| {l} singleton
| s variable
| L1 ∪L2 union
| U universe

Types σ, τ ::= α | λα:κ.τ | τ1τ2 λ-calculus
| λι:L(κ).τ | τ ◦ l label abstraction
| λs:Ls.τ | τ L label set abstraction
| Λχ.τ | τ [κ] kind abstraction
| l label

Terms e ::= x | λx:σ.e | e1e2 λ-calculus
| fix x:σ.e recursion
| i integers
| new ι:κ = τ in e dynamic label creation
| {{e}}±l=τ primitive coercions
| {{e : τ}}±l=τ2

extended coercions
| typecase τ e type case analysis
| setcase L e∅ e{} e∪ eU label set case analysis
| lindex l label analysis
| Λα:κ�L.e | e[τ ] constructor abstraction
| Λ∗ι:L(κ).e | e[l]∗ label abstraction
| Λs:Ls.e | e[L] label set abstraction
| Λ+χ.e | e[κ]+ kind abstraction
| ∅ empty map
| {l ⇒ e} singleton map
| e1 on e2 map join
| { ⇒ e} default map
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A.2 Static semantics

Type context well-formedness ` ∆
Kind well-formedness ∆ ` κ
Label well-formedness ∆ � l : L(κ)
Label set well-formedness ∆ � L : Ls
Signature well-formedness ∆ ` Σ
Signature subsumption ∆ ` Σ1 ≤ Σ2

Label set subsumption ∆ ` L1 ⊆ L2

Type well-formedness ∆ ` τ : κ | L
Type equivalence ∆ ` τ1 = τ2 : κ
Term context well-formedness ∆ ` Γ |Σ
Term well-formedness ∆; Γ ` e : σ |Σ

Type Contexts ∆ ::= · empty context
| ∆, α:κ λ-bound type variables
| ∆, ι:L(κ) label variables
| ∆, s:Ls label set variables
| ∆, α:κ�L Λ-bound type variables
| ∆, χ Kind variables

Signatures Σ ::= · | Σ, l:κ = τ
Term Contexts Γ ::= · | Γ, x:σ

Primitive labels and their kinds.

lint ?
l→ ? → ? → ? function type creator
l∀ ∀χ.(χ → ?) → Ls → ? type polymorphism
l∀∗ ∀χ.(L(χ) → ?) → ? label polymorphism
l∀# (Ls → ?) → ? label set polymorphism
l∀+ (∀χ.?) → ? kind polymorphism
lmap Ls → (? → ?) → ? map type
lpoly (? → ?) → ∀χ.χ → Ls → ? polykinded type

A.2.1 Type context well-formedness

wfc:empty
` ·

wfc:var
∆ ` κ

` ∆, α:κ
wfc:lvar

` ∆ ∆ ` κ

` ∆, ι:L(κ)
wfc:svar

` ∆
` ∆, s:Ls

wfc:kvar
` ∆
` ∆, χ

wfc:var-res
∆ ` κ ∆ � L : Ls

` ∆, α:κ�L

A.2.2 Kind well-formedness

wfk:var
` ∆ χ ∈ ∆

∆ ` χ
wfk:type

` ∆
∆ ` ?

wfk:larrow
∆ ` κ1 ∆ ` κ2

∆ ` L(κ1) → κ2

wfk:sarrow
∆ ` κ

∆ ` Ls → κ

wfk:arrow
∆ ` κ1 ∆ ` κ2

∆ ` κ1 → κ2

wfk:all
∆, χ ` κ

∆ ` ∀χ.κ

A.2.3 Label well-formedness

wfl:const
` ∆

∆ � lκ
i : L(κ)

wfl:var
` ∆ ι:L(κ) ∈ ∆

∆ � ι : L(κ)
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A.2.4 Label set well-formedness

wfls:empty
` ∆

∆ � ∅ : Ls
wfls:sing

∆ � l : L(κ)
∆ � {l} : Ls

wfls:var
` ∆ s:Ls ∈ ∆

∆ � s : Ls

wfls:union
∆ � L1 : Ls ∆ � L2 : Ls

∆ � L1 ∪ L2 : Ls
wfls:univ

` ∆
∆ � U : Ls

A.2.5 Signature well-formedness

wfs:empty
` ∆
∆ ` ·

wfs:def
∆ ` Σ ∆ � l : L(κ) ∆ ` τ : κ | ·

∆ ` Σ, l:κ = τ

A.2.6 Signature subsumption

sigs:refl
∆ ` Σ

∆ ` Σ ≤ Σ
sigs:def

∆ ` Σ1 ≤ Σ2 ∆ � l : L(κ) ∆ ` τ : κ | ·
∆ ` Σ1, l:κ = τ ≤ Σ2, l:κ = τ

sigs:def-ext
∆ ` Σ1 ≤ Σ2 ∆ � l : L(κ) ∆ ` τ : κ | · l 6∈ Σ2

∆ ` Σ1 ≤ Σ2, l:κ = τ

A.2.7 Type well-formedness

twf:var
` ∆ α:κ ∈ ∆

∆ ` α : κ | ∅
twf:var-res

` ∆ α:κ�L ∈ ∆
∆ ` α : κ | L

twf:app
∆ ` τ1 : κ1 → κ2 | L1 ∆ ` τ2 : κ1 | L2

∆ ` τ1τ2 : κ2 | L1 ∪L2

twf:abs
∆, α:κ1 ` τ : κ2 | L ∆ ` κ1

∆ ` λα:κ1.τ : κ1 → κ2 | L

twf:ltype
∆ � l : L(κ)
∆ ` l : κ | {l}

twf:weak
∆ ` τ1 : κ | L1 ∆ ` L1 ⊆ L2

∆ ` τ1 : κ | L2

twf:kabs
∆, χ ` τ : κ | L

∆ ` Λχ.τ : ∀χ.κ | L
twf:kapp

∆ ` τ : ∀χ.κ2 | L ∆ ` κ1

∆ ` τ [κ1] : κ2[κ1/χ] | L

twf:labs
∆, ι:L(κ1) ` τ : κ2 | L ∆ ` κ1 ι 6∈ L

∆ ` λι:L(κ1).τ : L(κ1) → κ2 | L
twf:lapp

∆ ` τ : L(κ1) → κ2 | L ∆ � l : L(κ1)
∆ ` τ ◦ l : κ2 | L

twf:sabs
∆, s:Ls ` τ : κ | L s 6∈ L
∆ ` λs:Ls.τ : Ls → κ | L

twf:sapp
∆ ` τ : Ls → κ | L1 ∆ � L2 : Ls

∆ ` τL2 : κ | L1

A.2.8 Label set subsumption

ss:refl
∆ � L : Ls

∆ ` L ⊆ L
ss:trans

∆ ` L1 ⊆ L2 ∆ ` L2 ⊆ L3

∆ ` L1 ⊆ L3

ss:union-left
∆ ` L1 ⊆ L ∆ ` L2 ⊆ L

∆ ` L1 ∪L2 ⊆ L
ss:union-right1

∆ ` L ⊆ L1 ∆ � L2 : Ls

∆ ` L ⊆ L1 ∪L2

ss:union-right2
∆ ` L ⊆ L2 ∆ � L1 : Ls

∆ ` L ⊆ L1 ∪L2

ss:empty
∆ � L : Ls

∆ ` ∅ ⊆ L
ss:univ

∆ � L : Ls

∆ ` L ⊆ U
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A.2.9 Label set equivalence

seq:deriv
∆ ` L1 ⊆ L2 ∆ ` L2 ⊆ L1

∆ � L1 = L2

A.2.10 Type equivalence

teq:refl
∆ ` τ : κ | ·

∆ ` τ = τ : κ
teq:sym

∆ ` τ1 = τ2 : κ

∆ ` τ2 = τ1 : κ
teq:trans

∆ ` τ1 = τ2 : κ ∆ ` τ2 = τ3 : κ

∆ ` τ1 = τ3 : κ

teq:abs-beta
∆ ` λα:κ1.τ1 : κ1 → κ2 | · ∆ ` τ2 : κ1 | ·

∆ ` (λα:κ1.τ1)τ2 = τ1[τ2/α] : κ2

teq:abs-eta
∆ ` τ : κ1 → κ2 | ·

∆ ` λα:κ1.τα = τ : κ1 → κ2

teq:app-con
∆ ` τ1 = τ3 : κ1 → κ2 ∆ ` τ2 = τ4 : κ1

∆ ` τ1τ2 = τ3τ4 : κ2

teq:abs-con
∆, α:κ1 ` τ1 = τ2 : κ2 ∆ ` κ1

∆ ` λα:κ1.τ1 = λα:κ1.τ2 : κ1 → κ2

teq:kapp-con
∆ ` τ1 = τ2 : ∀χ.κ2 ∆ ` κ1

∆ ` τ1[κ1] = τ2[κ1] : κ2[κ1/χ]
teq:kabs-con

∆, χ ` τ1 = τ2 : κ2

∆ ` Λχ.τ1 = Λχ.τ2 : κ1 → κ2

teq:kabs-beta
∆ ` Λχ.τ1 : ∀χ.κ2 | · ∆ ` κ1

∆ ` (Λχ.τ1)[κ1] = τ2[κ1/χ] : κ2[κ1/χ]
teq:kabs-eta

∆ ` τ : ∀χ.κ | ·
∆ ` Λχ.τ [χ] = τ : ∀χ.κ

teq:lapp-con
∆ ` τ1 = τ2 : L(κ1) → κ2 ∆ � l : L(κ1)

∆ ` τ1 ◦ l = τ2 ◦ l : κ2

teq:labs-con
∆, ι:L(κ1) ` τ1 = τ2 : κ2

∆ ` λι:L(κ1).τ1 = λι:L(κ1).τ2 : L(k1) → κ2

teq:labs-beta
∆ ` λι:L(κ1).τ : L(κ1) → κ2 | · ∆ � l : L(κ1)

∆ ` (λι:L(κ1).τ)l = τ [l/ι] : κ2

teq:labs-eta
∆ ` τ : L(κ1) → κ2 | ·

∆ ` λι:L(κ1).τ ι = τ : L(κ1) → κ2

teq:sapp-con
∆ ` τ1 = τ2 : Ls → κ ∆ � L1 = L2

∆ ` τ1L1 = τ2L2 : κ
teq:sabs-con

∆, s:Ls ` τ1 = τ2 : κ

∆ ` λs:Ls.τ1 = λs:Ls.τ2 : Ls → κ

teq:sabs-beta
∆ ` λs:Ls.τ : Ls → κ | · ∆ � L : Ls

∆ ` (λs:Ls.τ)L = τ [L/s] : κ
teq:sabs-eta

∆ ` τ : Ls → κ | ·
∆ ` λs:Ls.τs = τ : Ls → κ
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teq:polyk-type
∆ ` τ : ? | · ∆ ` τ ′ : ? → ? | · ∆ � L : Ls

∆ ` τ ′〈τ : ?�L〉 = τ ′τ : ?

teq:polyk-arrow
∆ ` τ : κ1 → κ2 | · ∆ ` τ ′ : ? → ? | · ∆ � L : Ls

∆ ` τ ′〈τ : κ1 → κ2)�L〉 = ∀α:κ�L.τ ′〈τα : κ2 �L〉 : ?

teq:polyk-larrow
∆ ` τ : L(κ1) → κ2 | · ∆ ` τ ′ : ? → ? | · ∆ � L : Ls

∆ ` τ ′〈τ : L(κ1) → κ2 �L〉 = ∀∗ι:L(κ1).τ ′〈τι : κ2 �L〉 : ?

teq:polyk-sarrow
∆ ` τ : Ls → κ | · ∆ ` τ ′ : ? → ? | · ∆ � L : Ls

∆ ` τ ′〈τ : Ls → κ�L〉 = ∀s:Ls.τ ′〈τs : κ�L〉 : ?

teq:polyk-all
∆ ` τ : ∀χ.κ | · ∆ ` τ ′ : ? → ? | · ∆ � L : Ls

∆ ` τ ′〈τ : ∀χ.κ�L〉 = ∀+χ.τ ′〈τ [χ] : κ�L〉 : ?

A.2.11 Term context well-formedness

wftc:empty
∆ ` Σ

∆ ` · |Σ
wftc:var

∆ ` Γ |Σ ∆ ` σ : ? | ·
∆ ` Γ, x:σ |Σ

A.2.12 Term well-formedness

wf:var
∆ ` Γ |Σ x:σ ∈ Γ

∆; Γ ` x : σ |Σ
wf:int

∆ ` Γ |Σ
∆; Γ ` i : int |Σ

wf:abs
∆; Γ, x:σ1 ` e : σ2 |Σ

∆; Γ ` λx:σ1.e : σ1 → σ2 |Σ

wf:app
∆; Γ ` e1 : σ1 → σ2 |Σ ∆; Γ ` e2 : σ1 |Σ

∆; Γ ` e1e2 : σ2 |Σ
wf:fix

∆; Γ, x:σ ` e : σ |Σ
∆; Γ ` fix x:σ.e : σ |Σ

wf:new
∆, ι:L(κ); Γ ` e : σ |Σ, ι:κ = τ ∆ ` τ : κ | · ι 6∈ σ

∆; Γ ` new ι:κ = τ in e : σ |Σ

wf:in
∆; Γ ` e : ρ[τ ] |Σ l:κ = τ ∈ Σ

∆; Γ ` {{e}}+
l=τ : ρ[l] |Σ

wf:out
∆; Γ ` e : ρ[l] |Σ l:κ = τ ∈ Σ

∆; Γ ` {{e}}−l=τ : ρ[τ ] |Σ

wf:hin
∆; Γ ` e : τ ′ τ |Σ l:κ = τ ∈ Σ

∆; Γ ` {{e : τ ′}}+
l=τ : τ ′ l |Σ

wf:hout
∆; Γ ` e : τ ′ l |Σ l:κ = τ ∈ Σ

∆; Γ ` {{e : τ ′}}−l=τ : τ ′ τ |Σ

wf:weak
∆; Γ ` e : σ1 |Σ1 ∆ ` σ1 = σ2 : ? ∆ ` Σ1 ≤ Σ2

∆; Γ ` e : σ2 |Σ2

wf:env-empty
∆ � L : Ls ∆ ` Γ |Σ ∆ ` τ ′ : ? → ? | ·

∆; Γ ` ∅ : ∅⇒ τ ′ �L|Σ

wf:env-branch
∆ � L : Ls ∆ ` τ ′ : ? → ? | · ∆ � l : L(κ) ∆; Γ ` e : τ ′〈l : κ�L〉 |Σ

∆; Γ ` {l ⇒ e} : {l}⇒ τ ′ �L |Σ

wf:env-else
∆ ` τ ′ : ? → ? | · ∆; Γ ` e : ∀+χ.∀α:χ�U .τ ′〈α : χ�U〉 |Σ

∆; Γ ` { ⇒ e} : U⇒ τ ′ �U|Σ

wf:env-join
∆; Γ ` e1 : L1⇒ τ ′ �L |Σ ∆; Γ ` e2 : L2⇒ τ ′ �L |Σ

∆; Γ ` e1 on e2 : L1 ∪L2⇒ τ ′ �L |Σ
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wf:typecase
∆; Γ ` e : L1⇒ τ ′ �L2|Σ ∆ ` τ : ? | L′ ∆ ` L1 ⊆ L2 ∆ ` L′ ⊆ L

∆; Γ ` typecase τ e : τ ′τ |Σ

wf:setcase

∆ ` τ ′ : Ls → ? | · ∆; Γ ` e∅ : τ ′∅ |Σ ∆; Γ ` e{} : ∀+χ.∀∗ι:L(χ).τ ′{ι} |Σ
∆; Γ ` e∪ : ∀s1:Ls.∀s1:Ls.τ ′(s1 ∪ s2) |Σ ∆; Γ ` eU : τ ′U |Σ ∆ � L : Ls

∆; Γ ` setcase L e∅ e{} e∪ eU : τ ′L |Σ

wf:lindex
∆ � l : L(κ)

∆; Γ ` lindex l : int |Σ

wf:tabs
∆ � L : Ls ∆, α:κ�L; Γ ` e : σ |Σ

∆; Γ ` Λα:κ�L.e : ∀α:κ�L.σ |Σ

wf:tapp
∆; Γ ` e : ∀α:κ�L.σ |Σ ∆ ` τ : κ | L′ ∆ ` L′ ⊆ L

∆; Γ ` e[τ ] : σ[τ/α] |Σ

wf:labs
∆, ι:L(κ); Γ ` e : σ |Σ ∆ ` κ ι 6∈ Σ

∆; Γ ` Λ∗ι:L(κ).e : ∀∗ι:L(κ).σ |Σ
wf:lapp

∆; Γ ` e : ∀ι:L(κ).σ |Σ ∆ � l : L(κ)
∆; Γ ` e[l]∗ : σ[l/ι] |Σ

wf:sabs
∆, s:Ls; Γ ` e : σ |Σ s 6∈ Σ

∆; Γ ` Λs:Ls.e : ∀s.σ |Σ
wf:sapp

∆; Γ ` e : ∀s:Ls.σ |Σ ∆ � L : Ls

∆; Γ ` e[L] : σ[L/s] |Σ

wf:kabs
∆, χ; Γ ` e : σ |Σ

∆; Γ ` Λ+χ.e : ∀+χ.σ |Σ
wf:kapp

∆; Γ ` e : ∀χ.σ |Σ ∆ ` κ

∆; Γ ` e[κ]+ : σ[κ/α] |Σ

A.3 Dynamic semantics

Small-step evaluation L; e 7→ L′; e′
Weak-head reduction τ ⇓ τ ′

Constructor eta-expansion τ ⇑ τ ′

Label set reduction L1 ↓ L2

Path conversion ρ p

Values v ::= λx:σ.e
| {{v}}+

l=τ

| ∅ | {l ⇒ e} | v1 on v2 | { ⇒ e}
| Λα:κ�L.e
| Λ∗ι:L(κ).e
| Λs:Ls.e
| Λ+χ.e

Tycon paths ρ ::= • | ρ τ | ρ ◦ l | ρ L | ρ [κ]
Term paths p ::= • | p [τ ] | p [l]∗ | p[L] | p [κ]+
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A.3.1 Weak-head reduction for types

whr:abs-beta
(λα:κ.τ1)τ2 ⇓ τ1[τ2/α]

whr:abs-con
τ ⇓ τ ′

λα:κ.τ ⇓ λα:κ.τ ′
whr:app-con

τ1 ⇓ τ ′1
τ1τ2 ⇓ τ ′1τ2

whr:labs-beta
(λι:L(κ).τ)l ⇓ τ [l/ι]

whr:lapp-con
τ ⇓ τ ′

τ ◦ l ⇓ τ ′ ◦ l
whr:sabs-beta

(λs:Ls.τ)L ⇓ τ [L/s]

whr:sapp-con
τ ⇓ τ ′

τL ⇓ τ ′L
whr:kabs-beta

(Λχ.τ)[κ] ⇓ τ [κ/χ]
whr:kapp-con

τ ⇓ τ ′

τ [κ] ⇓ τ ′[κ]

whr:polyk-type
τ ′〈τ : ?�L〉 ⇓ τ ′τ

whr:polyk-arrow
τ ′〈τ : κ1 → κ2 �L〉 ⇓ ∀α:κ1 �L.τ ′〈τα : κ2 �L〉

whr:polyk-larrow
τ ′〈τ : L(κ1) → κ2 �L〉 ⇓ ∀∗ι:L(κ1).τ ′〈τι : κ2 �L〉

whr:polyk-sarrow
τ ′〈τ : Ls → κ�L〉 ⇓ ∀s:Ls.τ ′〈τs : κ�L〉

whr:polyk-all
τ ′〈τ : ∀χ.κ�L〉 ⇓ ∀+χ.τ ′〈τ [χ] : κ�L〉

A.3.2 Constructor eta-expansion

tcee:tycon
τ α ⇓∗ τ ′

τ ⇑ λα: ? .τ ′

A.3.3 Reduction for label sets

lsr:union-con1
L1 ↓ L′1

L1 ∪L2 ↓ L′1 ∪L2

lsr:union-con2
L2 ↓ L′2

L1 ∪L2 ↓ L1 ∪L′2
lsr:union-empty1

∅∪L ↓ L

lsr:union-empty2
L∪∅ ↓ L

lsr:union-univ1
U ∪L ↓ U

lsr:union-univ2
L∪U ↓ U

lsr:union-swap
∀lj v L i < j

L∪ li ↓ li ∪L
lsr:union-comm

(L1 ∪L2)∪L3 ↓ L1 ∪(L2 ∪L3)

A.3.4 Path conversion

pc:hole
• •

pc:app
ρ p

ρ τ  p [τ ]
pc:lapp

ρ p

ρ ◦ l p [l]∗
pc:sapp

ρ p

ρ L p [L]

pc:inst
ρ p

ρ [κ] p [κ]+
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A.3.5 Computation rules

ev:abs-beta
L; (λx:σ.e1)e2 7→ L; e1[e2/x]

ev:fix-beta
L; fix x:σ.e 7→ L; e[fix x:σ.e/x]

ev:tabs-beta
L; (Λα:κ�Σ.e)[τ ] 7→ L; e[τ/α]

ev:labs-beta
L; (Λ∗ι:L(κ).e)[l]∗ 7→ L; e[l/ι]

ev:sabs-beta
L; (Λs:Ls.e)[L] 7→ L; e[L/s]

ev:kabs-beta
L; (Λ+χ.e)[κ]+ 7→ L; e[κ/χ]

ev:in-out
L; {{{{v}}+

l=τ}}
−
l=τ 7→ L; v

ev:new
lκ

i 6∈ L
L; new ι:κ = τ in e 7→ L∪{lκ

i }; e[lκ
i /ι]

ev:hcolor-base
τ ′ ⇑ λα:κ.ρ[α]

L; {{v : τ ′}}±l=τ 7→ L; {{{{v : λα:κ.ρ[τ ]}}±l=τ}}
±
l=τ

ev:hcolor-int
τ ′ ⇑ λα:κ.int

L; {{i : τ ′}}±l=τ 7→ L; i

ev:hcolor-abs1
τ ′ ⇑ λα:κ.τ1 → τ2

L; {{λx:τ1.e : τ ′}}+
l=τ 7→ L;λx:(τ1[l/α]).{{e[{{x : λα:κ.τ1}}−l=τ/x] : λα:κ.τ2}}+

l=τ

ev:hcolor-abs2
τ ′ ⇑ λα:κ.τ1 → τ2

L; {{λx:τ1.e : τ ′}}−l=τ 7→ L;λx:(τ1[τ/α]).{{e[{{x : λα:κ.τ1}}+
l=τ/x] : λα:κ.τ2}}−l=τ

ev:hcolor-empty
τ ′ ⇑ λα:κ.L1⇒ τ ′ �L2

L; {{∅ : τ ′}}±l=τ 7→ L; ∅

ev:hcolor-sing
τ ′ ⇑ λα:κ.L1⇒ τ ′ �L2

L; {{{lκ
i ⇒ e′} : τ ′}}±l=τ 7→ L; {lk

i ⇒ {{e′ : λα: ? .τ ′〈lk
i : κ�L2〉}}±l=τ}

ev:hcolor-join
τ ′ ⇑ λα:κ.L1 ∪L2⇒ τ ′ �L3

L; {{v1 on v2 : τ ′}}±l=τ 7→ L; {{v1 : λα:κ.L1⇒ τ ′ �L3}}±l=τ on{{v2 : λα:κ.L2⇒ τ ′ �L3}}±l=τ

ev:hcolor-else
τ ′ ⇑ λα:κ.L1⇒ τ ′ �L2

L; {{{ ⇒ e′} : τ ′}}±l=τ 7→
L; { ⇒ {{e′ : λα:κ.∀+χ.∀α:χ�U .τ ′〈α : χ�U〉}}±l=τ}

ev:hcolor-tabs
τ ′ ⇑ λα:κ.∀β:κ′ �L′.τ ′

L; {{Λβ:κ′ �L′.e : τ ′}}±l=τ 7→ L; Λβ:κ′ �L′.{{e : λα:κ.τ ′}}±l=τ

ev:hcolor-kabs
τ ′ ⇑ λα:κ.∀+χ.τ ′

L; {{Λ+χ.e : τ ′}}±l=τ 7→
L; Λ+χ.{{e : λα:κ.τ ′}}±l=τ

ev:hcolor-sabs
τ ′ ⇑ λα:κ.∀s:Ls.τ ′

L; {{Λs:Ls.e : τ ′}}±l=τ 7→
L; Λs:Ls.{{e : λα:κ.τ ′}}±l=τ

ev:hcolor-labs
τ ′ ⇑ λα:κ.∀∗ι:L(κ′).τ ′

L; {{Λ∗ι:L(κ′).e : τ ′}}±l=τ 7→
L; Λ∗ι:L(κ′).{{e : λα:κ.τ ′}}±l=τ

ev:hcolor-color
τ ′ ⇑ λα:κ.ρ[l1]

L; {{{{v}}+
l1=τ1

: τ ′}}±l2=τ2
7→ L; {{{{v : λα:κ.ρ[τ1]}}±l2=τ2

}}+
l1=τ1
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ev:typecase1
τ ⇓∗ ρ[lκ

i ] {lκ
i ⇒ e′} ∈ v ρ p

L; typecase τ v 7→ L; p[e′]

ev:typecase2
τ ⇓∗ ρ[lκ

i ] lκ
i 6∈ v { ⇒ e′} ∈ v

L; typecase τ v 7→ L; e′[κ]+[lκ
i ]

ev:setcase-empty
L ↓∗ ∅

L; setcase L e∅ e{} e∪ eU 7→ L; e∅

ev:setcase-sing
L ↓∗ {l}

L; setcase L e∅ e{} e∪ eU 7→ L; e{}[κ]+[l]∗

ev:setcase-union
L ↓∗ L1 ∪L2

L; setcase L e∅ e{} e∪ eU 7→ L; e∪[L1][L2]

ev:setcase-univ
L ↓∗ U

L; setcase L e∅ e{} e∪ eU 7→ L; eU
ev:lindex

L; lindex lκ
i 7→ L; i

A.3.6 Congruence rules

ev:app-con1
L; e1 7→ L′; e′1

L; e1e2 7→ L′; e′1e2

ev:app-con2
L; e 7→ L′; e′

L; ve 7→ L′; ve′
ev:color-con

L; e 7→ L′; e′

L; {{e}}±l=τ 7→ L′; {{e′}}±l=τ

ev:hcolor-con
L; e 7→ L′; e′

L; {{e : τ1}}±l=τ2
7→ L′; {{e′ : τ1}}±l=τ2

ev:join-con1
L; e1 7→ L′; e′1

L; e1 on e2 7→ L′; e′1 on e2

ev:join-con2
L; e 7→ L′; e′

L; v on e 7→ L′; v on e′2
ev:typecase-con

L; e 7→ L′; e′

L; typecase τ e 7→ L′; typecase τ e′
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