
Exploration in Metric State Spaces

Sham Kakade Michael Kearns John Langford
Gatsby Unit Department of Computer and Information Science

University College London University of Pennsylvania
London, England Philadelphia, Pennsylvania

sham@gatsby.ucl.ac.uk,mkearns@cis.upenn.edu,jcl+@cs.cmu.edu

Abstract

We present a provably near-optimal algorithm for reinforcement learn-
ing in Markov decision processes in which there is a naturalmetric on
the state space that allows the construction of accurate local models. Our
algorithm is a generalization of theE3 algorithm of Kearns and Singh,
and assumes a black box for approximate planning. Unlike the original
E3, our algorithm finds a near optimal policy in an amount of time that
does not directly depend on the size of the state space, but instead de-
pends on thecoveringnumbers of the state space, which are informally
the number of neighborhoods in the state space required for accurate lo-
cal modeling at a chosen resolution.

1 Introduction, Motivation, and Background

Recent years have seen the introduction and study of a number of representational ap-
proaches to Markov Decision Processes (MDPs) with very large or infinite state spaces.
These include the broad family known as function approximation, in which a parametric
functional form is used to approximate value functions, and direct models of the under-
lying dynamics and rewards, such as factored or Dynamic Bayes Net (DBN) MDPs. For
each of these approaches, there are now at least plausible heuristics, and sometimes formal
analyses, for problems of planning and learning.

Less studied and more elusive has been the problem ofglobal exploration, or managing the
exploration-exploitation trade-off. Here the goal is to learn a (globally) near-optimalT -step
policy in an amount of time that has no direct dependence on the state space size, but only
on the complexity of the chosen representation. Indeed, it is only recently that provably
correct and efficient algorithms for exploration in small state spaces became known (such
as theE3 algorithm[3] and its generalizations[4]). This approach has been generalized to
factored MDPs under certain assumptions [2], but there remain many unresolved questions
regarding efficient exploration in large MDPs, including whether model-based approaches
are required1.

In this work, we examine the problem of exploration in environments in which there is
a metricon state-action pairs with the property that “nearby” state-actions have “similar”

1We note that the recent work on gradient methods for approximate planning ([9, 1]) does not
address exploration in the strong sense we are interested in here, but instead examines convergence to
policies which small amounts ofrandomexploration cannot improve (local optimality). In general,
effective exploration may require the carefulplanningof a long sequence of steps that will never be
encountered by a random walk. See [6] for a further discussion.

dynamics. Such conditions are common for navigation-like problems, but may be more
broadly applicable as well. Furthermore, in such metric environments, it may often be
plausible to assume that (a) sufficiently dense experience in a neighborhood of state space
allows the construction of approximate models for the local dynamics, and (b) models of
local dynamics can be “pieced together” and used for planning on a subset of the global
state space.

We formalize these natural and general assumptions, and prove that they are sufficient for
global exploration in an amount of time depending on the metric resolution, butnot on
the size of the state space. More precisely, we give a generalization of theE3 algorithm
for metric MDPs which learns a (globally) approximately optimalT -step policy in time
depending only on thecovering numbers, a natural and standard notion of the resolution
required for local modeling under the metric. This algorithm succeeds in a model in which
learning must take place from a single, unbroken chain of experience — no “resets” to
previously visited states are provided.

Metric MDPs are a natural complement to more direct parametric assumptions on value
functions and dynamics, and are closely related to a variety of state aggregation methods[8].
Our results provide evidence that, as for factored environments[2], effective exploration
mechanisms may be available for metric MDPs.

2 Definitions and Assumptions
We work in the standard MDP setting. LetP (s0ja; s) be the probability of a states0 given
an actiona and states. Let R(s) be the reward received in states. For simplicity, we
assume that all rewards are deterministic and fall in the interval[0; 1]. DefineVM (�; s) �

E(s1;s2;:::sT)��;s;M
1
T

PT

t=1R(st) to be the average reward received overT steps starting
from states while acting under� in MDPM .

We first formalize the assumption that there is a notion of distance that permits local mod-
eling of dynamics. Thus, letd((s0; a0); (s; a)) measure the “distance” between two state-
action pairs. Our results will require that this metric obeyd((s; a); (s; a)) = 0 for all (s; a),
and symmetry (i.e.,d((s; a); (s0; a0)) = d((s0; a0); (s; a)) for all (s; a); (s0; a0)), but they do
not require the triangle inequality. This is fortunate since demanding the triangle inequality
limits the applicability of the notion in several natural scenarios. We usetmetric to denote
the time required to evaluate the metric.

We now provide a standard definition of coverings under a metric. An�-cover is a setC
of state-action pairs with the property that for any(s; a), there exists(s0; a0) 2 C such that
d((s; a); (s0; a0)) � �. We defineN(�) to be the size of thelargest minimal�-cover —
that is, the largest�-coverC such that the removal of any(s; a) would renderC no longer
a cover.

Our first assumption is that the metric permits local modeling of dynamics:

Local Modeling Assumption. There exists an algorithmModel such that, for any
(s; a), if we give Model any m samples of the form(s0; a0; s00; R(s00)) in which all
d((s; a); (s0; a0)) � �, ands00 is distributed according toP (s00js0; a0), thenModel out-
puts a statês and a rewardR̂, where ŝ is drawn according to âP (ŝjs; a) satisfyingP

ŝ jP̂ (ŝjs; a) � P (ŝjs; a)j � �, and jR(ŝ) � R̂j � �. We assume thatModel runs
in time tmodel.

Thus, with a sufficient numberm of local state-action experiences,Model can form an
accurate approximation of the local environment. Note that there isno requirement that a
destinationstateŝ be in the neighborhood of(s; a) — we ask only that nearby state-actions
permit generalization in next-state distributions, not that these distributions be on nearby
states. We provide natural examples in the next subsection where our Local Modeling
Assumption can be met, but we expect there are many rather different ones as well.

In addition to an assumption about our ability to build local (generative) models, we must
make an assumption about our ability to use such models in planning.

Approximate Planning Assumption. There exists an algorithm,Plan, which given a
generative model for an unknown MDPM and a states, returns a policy� whose average
rewardVM (�; s) satisfiesVM (�; s) > VM (��; s) � �, where�� is the optimalT -step
policy from s. We assume thatPlan runs in timetplan with at mostcgen calls to the
generative model.

Note that the Local Modeling Assumption does not reduce the state space size, so for
an arbitrary and large MDP, great computational resources may be required to meet the
Approximate Planning Assumption. Our purpose is not to falsely diminish the difficulty of
this task, but to abstract it away from the problem of exploration-exploitation.

There are at least three broad scenarios where this assumption might be met. The first is
settings where specialized planning heuristics can do approximate planning due to strong
parametric constraints on the state dynamics. For example, the recent work on planning
heuristics for factored MDPs is of this form. The second is thesparse sampling[5] ap-
proach, in which it has been shown that the Approximate Planning Assumption can in fact
be met for arbitrary finite-action MDPs by a policy that uses a generative model as a sub-
routine. Here the sample complexitycgenis exponential inT per state visited (see [5]), but
hasnodependence on the state space size. The third setting requires a regression algorithm
that is capable of accurately estimating the value of a given policy. This algorithm can be
used iteratively to find a near-optimal policy [6].

At a high level, then, we have introduced the notion of a metric over state-actions, an as-
sumption that this metric permits the construction or inference of local models, and an
assumption that such models permit planning. We believe these assumptions are broadly
consistent with many of the current proposals on large state spaces. We now provide an ex-
ample that demonstrates the role of covering numbers, and then we show that our assump-
tions are sufficient for solving the exploration-exploitation problem in time depending not
on the size of the state space, but on the (hopefully much smaller) covering numbers under
the metric.

2.1 An Example

We can imagine at least two natural scenarios in which the Local Modeling Assumption
might be met. One of these is where there is sufficient sensor information and advance
knowledge of the expected effects of actions that the local modeling assumption can be
satisfied even withm = 1 above. As a simple example, people can typically predict the
approximate effects of most physical actions available to them immediately upon entering
a room and seeing its layout and content (e.g., if I go left I will exit through that door;
if I go straight I will hit that wall). They could not make such predictions for unfamiliar
distant rooms. Consider the MDP where the state space is the Euclidean maze world shown
in Figure 1.(a), and where the agent is equipped with a vision sensor. In this world, it is
plausible that the local dynamics can be predicted at any “seen” location. To apply our
analysis, we must first specify a metric. The obvious choice isdsight((s; a); (s

0; a0)) =
0 if there exists line-of-sight betweens and s0 and1 otherwise. Note that this metric
satisfies symmetry, but not the triangle inequality (which would be somewhat unnatural in
this setting). For any� � 0, the covering numberN(�) is the maximum number of points
which can be positioned in the space so that no pair have line-of-sight. One maximal set is
given by the dots in Figure 1.(b). Note that even though this a continuous state space, the
covering number is much smaller, and naturally determined by the geometric properties of
the domain.

If it is unrealistic to assume that we can model the local dynamics at distant locations as well

(a) (b) (c) (d)

C

C

C1

2

3

Figure 1: (a) a maze world (b) a largest minimal cover for the line-of-sight metric (c) a
largest minimal cover for the line of sight + Euclidean distance metric. (d) an example
showing how simple state space aggregation does not work.

as we can at near locations, we can allow our modeling error to grow with distance (e.g., due
to lighting conditions). In this case, a reasonable alternative is to defined((s; a); (s0; a0)) =
dsight((s; a); (s

0; a0)) + cdeuclidean((s; a); (s
0; a0)) wherec is a constant controlling the rate

of modeling error with Euclidean distance. Using this metric, the covers shown in Figure
1.(c) might naturally arise. Note that our metric is (in general) sensitive to actions as well
as states, allowing more flexibility than we have used here.

The above examples are applicable to them = 1 case of the Local Modeling Assumption.
The second natural case is the more general “learning” setting, in which the next-state
dynamics permit some parameterization that is smooth with respect to the distance metric,
thus allowing a finite sample of an environment to provide enough data to fit a parametric
next-state distribution for the neighborhood. For instance, if reward appeared stochastically
in some region, it might be necessary to visit nearby states a number of times before this
distribution is learned. Alternatively, the dynamics could be different in different parts of
the state space. For instance, a skier moving down a hill has dynamics dependent on the
terrain conditions, such as slope, snow type, and other factors.

Incidentally, Figure 1.(d) illustrates the reason why standard state space aggregation tech-
niques [8] do not work here. In particular, for partitioning induced by a cover on a Eu-
clidean spaces there exist “corners” where 3 (or more) sets meet. When taking actions
“toward” this corner from within one of the sets, the distribution over the next aggregate
state set is inherently unstable.

3 Metric-E3

Our algorithm, Metric-E3, is a direct generalization of theE3 algorithm[3]. We first outline
this original algorithm. A crucial notion inE3 is that of a “known” state — a state visited
often enough such that the dynamics and rewards are accurately modeled at this state.
When the agent is not in the current set of known states, the agent wanders randomly to
obtain new information. While at a known state, it must decide whether to explore or
exploit — a decision which can be made efficiently. Intuitively, the decision to explore is
made by determining how much potential reward the agent can obtain by “escaping” the
known states to get maximal reward elsewhere. If this number is sufficiently large, the
agent explores. This number can be computed byplanningto “escape” in a fictitious MDP
Mexplore which provides maximal reward for entering an unknown state. The crucial step
in the proof ofE3 is showing that either the agent exploits for near optimal reward, or it
can explorequickly, which results in increasing the size of the set of known states. Since
the size of the known set is bounded, the algorithm eventually exploits and obtains near
optimal reward.

MetricE3 has a few key differences. Here, a “known” state-action is a pair(s; a) meeting
the antecedent of the Local Modeling Assumption — namely, any pair(s; a) for which the
algorithm has obtained at leastm �-close experiences(s0; a0; s00; R(s00)). Unlike in E3,
our algorithm does not explicitly enumerate this set of known states, but rather is only able
to decide if a particular state-action is known. Thus, in the most general version of our

algorithm, our model of the MDP is represented simply by a list of all prior experience.

As in the originalE3, a key step in Metric-E3 is the creation of theknownMDP — a model
for just that part of the global MDP that we can approximate well. Here the known MDP
at any moment is given as a generative model that “patches together” in a particular way
the generative models provided by the planning algorithm at known states. More precisely,
theapproximate known MDP generative modeltakes any state-action(s; a) and a flag bit
exploitand operates as follows:

1. If (s; a) is not a known state-action, output “fail” and halt.

2. Else give (s; a) and the m prior experiences(s0; a0; s00; R(s00)) in the �-
neighborhood of(s; a) to algorithmModel; let the resulting outputs bês andr̂.

3. If exploit is 1, setr r̂ andq 0; otherwiser 0 andq 1.

4. If for some action̂a, the pair(ŝ; â) is itself a known state-action, outputŝ andr
and halt.

5. Else output a special statez and rewardq and halt.

Intuitively, we have described a generative model for two MDPs with identical transition
dynamics, but differing rewards according to the value of theexploit bit. In both models,
all transitions that end in a state with no known actions are “redirected” to a single, special
absorbing statez, while all other transitions of the global MDP are preserved. Thus initially
the known MDP dynamics are a small subset of the global MDP, but over time may cover
much or all of the global state space. For rewards, whenexploit is 1, rewards from the
real environment are preserved, whereas whenexploit is 0, reward is obtained only at the
absorbing state, thus rewarding (rapid) exploration (escape from known state-actions). We
shall useM̂exploit to denote the MDP corresponding to the generative model above when
theexploitinput bit is set to 1, and̂Mexplore to denote the MDP generated by settingexploit
to 0.

Note that under our assumptions, we can always simulate the approximate known MDP
generative model. We can also view it as being an approximate (hence the name) generative
model for what we shall call thetrue known MDP— the MDP whose generative model
is exactly the same as described above, but in which we assume that the local modeling
algorithmModelis perfect (that is, in the Local Modeling Assumption,d((s; a); (s0; a0)) �

� implies
P

ŝ jP̂ (ŝjs; a) � P (ŝjs; a)j = 0, andjR(ŝ) � R̂j = 0). This may still be only a
partial model of the global MDP, but it has the true probabilities for all known state-actions.
We shall useMexploit to denote the MDP corresponding to the generative model above with
a perfectModeland theexploitinput bit set to 1, andMexplore to denote the MDP generated
with a perfectModelandexploitset to 0.

Now we outline the full Metric-E3 algorithm. It is important to emphasize that this algo-
rithm neverneeds to explicitly enumerate the set of known state-actions.

Algorithm Metric- E3

Input: d(�; �), Model, Plan
Output: A policy �

1. Use random moves until encountering a states with at least one known actiona
(that is, where there are at leastm �-close previous experiences to(s; a)).

2. ExecutePlan twice, once using the generative model forM̂exploit and once using
the generative model for̂Mexplore. Let the resulting policies be�exploit and�explore,
respectively.

3. If V
M̂explore

(�explore; s) > �, execute�explore for the nextT steps, then go to Step 1.

4. Else, HALT and output�exploit.

The claim is that this algorithm finds a near optimal policy, in sample complexity and
running time that depend only on the covering number under the metric. We now turn to
the analysis.

4 Metric-E3 Analysis

We first state the main theorems of the paper.

Theorem 4.1 Let �� be an optimal policy inM . With probability1 � Æ, after at most
TmN(�)
���(T+1) ln(1=Æ)+mN(�) actions inM , Metric-E3 halts in a states, and output a policy
� such thatVM (�; s) � VM (��; s) � � � 2� � 2�(T + 1). HereT is the time horizon,
m and� are defined in the Local Modeling Assumption,� is defined in the Approximate
Planning Assumption,� is an accuracy parameter, andÆ a confidence parameter.

This shows that the sample complexity (the number of actions required) is bounded in terms
of the covering numberN(�) (and not the size of the state space). In addition to bounding
the sample complexity, we bound the time complexity.

Theorem 4.2 Let k be the overall sample complexity. Metric-E3 runs in time at most
k(k�1)

2 tmetric+ 2k(tplan+ cgentmodel) +O(k).

A few lemmas are useful in the proofs. First we defineM̂ to be an�-approximation ofM
if for all statess,

P
s0 jP̂ (s0js; a)� P (s0js; a)j � �, andjR(s)� R̂(s)j � �. The original

Simulation Lemma forE3 had a dependence on the size of the state space that we cannot
tolerate in our setting, so we first need an improved version:

Lemma 4.3 (Simulation Lemma) IfM̂ is an�-approximation ofM , then for any initial
states, any horizonT , and any policy�,

jV
M̂
(�; s)� VM (�; s)j � �(T + 1)

Proof. Let Ht = f(s1; s2; : : : st)g be the set of lengtht paths. Forh 2 Ht, let ht be the
t-th state inh and letAt(h) andÂt(h) be the probability ofh in M andM̂ , respectively.
LetQ(s0js) andQ̂(s0js) be the transition probabilities under� in M andM̂ , respectively.
SinceM̂ is an�-approximation, for any states0,

P
s jQ(sjs0)� Q̂(sjs0)j � �. ThenX

h2Ht+1

jAt+1(h)� Ât+1(h)j

=
X

h2Ht;s

jAt(h)Q(sjht)� Ât(h)Q̂(sjht)j

�
X

h2Ht;s

jAt(h)Q(sjht)� Ât(h)Q(sjht)j+ jÂt(h)Q(sjht)� Ât(h)Q̂(sjht)j

=
X

h2Ht;s

Q(sjht)jAt(h)� Ât(h)j+ Ât(h)jQ(sjht)� Q̂(sjht)j

�
X
h2Ht

jAt(h)� Ât(h)j+ �

where we have used the triangle inequality and linearity of expectation. Induction ont
implies that: X

lengthT paths

���� Pr
si�M;�;s0

(s1; :::; sT)� Pr
si�M̂;�;s0

(s1; :::; sT)

���� � �T:

Since the rewardŝR in M̂ are also�-accurate,�����VM̂ (�; s)�ElengthT paths inM̂

"
1

T

TX
t=1

R(st)

#����� � � :

The result follows using the previous two equations.

Now we restate the “Explore-or-Exploit” lemma from [3].

Lemma 4.4 (Explore or Exploit) Let�� be the optimal policy for the global MDPM , and
let ��exploit be the optimal policy for the true known MDPMexploit described above. Then for
any states ofMexploit and for any0 < � < 1, either

VMexploit(�
�

exploit; s) > VM (��; s)� �

or the optimal policy��explore for Mexplore has probability of at least� of leaving the known
states inT steps inM .

One subtle distinction from the originalE3 algorithm exists. Here, although the algorithm
plans to reach some unknown state, by the time this state is reached, it might actually be
known due to the Local Modeling Assumption. Note that in the maze world example, the
agent might plan to escape by moving around a corner. However, when actually executing
this escape policy, the states around the corner could become known before they are reached
in T steps, if they come into line of sight beforehand.

We now establish that Metric-E3 ceases to explore in a reasonable amount of time. In the
originalE3 this was a consequence of the Pigeonhole Principle applied to the number of
states. A similar statement holds here, but now we use the size of a cover under the metric.
It is important to note that this lemma holds whether or not the covering numberN(�) is
known.

Lemma 4.5 (Exploration Bound) Metric-E3 encounters at mostmN(�) unknown state-
actions.

Proof. First, consider them = 1 case. We construct a setC as follows: the state-action
(s; a) at timet is added to the setC if

8(s0; a0) 2 C : d((s; a); (s0; a0)) > � :

Note that the state at timet is unknown if and only if

8(s0; a0) 2 fstate-actions visited before timetg : d((s; a); (s0; a0)) > �

and so if(s; a) is unknown, then it is added toC. Thus, the size ofC at timet is an upper
bound on the number of unknown state-action pairs encountered by the algorithm before
time t. Since no element ofC covers another element inC, C is minimal. In particular, if
any element is removed fromC the set of states covered byC will be reduced. It follows
that for all t the size ofC is less thanN(�), and hence the algorithm cannot encounter
more thanN(�) unknown state-actions.

For the generalm case, consider constructingm different sets,C1; : : : ; Cm. The state
action at timet is added to only one of the setsCi if there is no�-close element inCi. By
an analogous argument, if a state-action is unknown, it is added to someCi, and so the sum
of sizes ofCi bounds the number of unknown state-actions encountered by the algorithm
before timet. Again, by construction, eachCi is minimal for allt. Hence, the size of each
Ci is bounded byN(�) and so the number of unknown state-actions encountered by the
algorithm is bounded bymN(�).

We now provide the proofs of the main theorems.

Proof of 4.1. The exploration bound of Lemma 4.5 implies we encounter a known state
after a number of actions that is at mostmN(�), which bounds the number of successful
exploration attempts. Each attempted exploration occurs whenV

M̂explore
(�explore; s) > �, and

soVMexplore(�explore; s) > �� �(T + 1). By definition ofMexplore, the chance of successful

exploration is greater than� � �(T + 1). Hence, at most,TmN(�)
���(T+1) ln(1=Æ) actions suc-

cessful exploration of the state spaces occurs with aÆ chance of error. The total number of
actions before halting is less than the sum of the exploration actions known states and the
actions taken in unknown states.

The decision to halt occurs whenV
M̂explore

(�explore; s) � �, which implies
VMexplore(�

�

explore; s) � � + �(T + 1) + � due to planning and simulation error. By the
Explore or Exploit lemma

VMexploit(�
�

exploit; s) > VM (��; s)� �� �(T + 1)� � :

Due to simulation and planning error in computing an optimal policy inMexploit,

VMexploit(�exploit; s) > VM (��; s)� �� 2�(T + 1)� 2� :

The result follows since a policy inM has no less reward than inMexploit.

Proof of 4.2. It is never necessary to evaluate the metric between two samples more than
once. There are at mostk(k�1)2 pairs of samples, so line 1 of Metric-E3 take time at most

tmetric
k(k�1)

2 computation. Step 2 is executed at mostk times since at least one transition
occurs before reentering step 2. One call toPlan requires time at mosttplan+ cgentmodel
so the total time spent on step 2 is at most2k(tplan+ cgentmodel). Step3 takes total time

at mostO(k). The result follows by adding these times.

References

[1] J. Baxter and P. L. Bartlett. “Direct Gradient-Based Reinforcement Learning: I. Gradient Esti-
mation Algorithms”. Technical report , Australian National University, 1999.

[2] M. Kearns and D. Koller. “Efficient Reinforcement Learning in Factored MDPs”. Proceedings of
IJCAI, 1999.

[3] M. Kearns and S. Singh. “Near-Optimal Reinforcement Learning in Polynomial Time”. Proceed-
ings of ICML, 1998.

[4] R. I. Brafman and M. Tennenholtz. “R-max – A General Polynomial Time Algorithm for Near-
Optimal Reinforcement Learning”. Proceedings of IJCAI, 2001.

[5] M. Kearns, Y. Mansour, and A. Ng. “A Sparse Sampling Algorithm for Near-Optimal Planning
in Large Markov Decision Processes”. Proceedings of IJCAI, 1999.

[6] S. Kakade and J. Langford. “Approximately Optimal Approximate Reinforcement Learning”.
Proceedings of ICML, 2002.

[7] A. W. Moore. “The Parti-game Algorithm for Variable Resolution Reinforcement Learning in
Multidimensional State-spaces”. In NIPS 6, 1993.

[8] T. Dean and R. Given. “Model Minimization in Markov Decision Processes”. In AAAI, 1997.

[9] R. Sutton, D. McAllester, S. Singh and Y. Mansour. “Policy Gradient Methods for Reinforcement
Learning with Function Approximation”. In NIPS 13, 2000.

