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dow, Ondřej Bojar, Josh Schroeder, and Martin Kay. You guys provided me with my

first real opportunity to collaborate with other machine translation researchers. I am

extremely grateful to Josh Schroeder and Martin Kay for our extensive conversations

regarding multi-source machine translation.

• Thanks to Nitin Madnani for the iBLEU visualization tool. The translation visualizations

in Chapter 5 were produced using that tool, and would not otherwise have been possible.

• Thanks to Mark Przybocki for providing the uncased NIST OpenMT results.

• Thanks to Jon Clark, for continuing to provide me with tools that are tantalizingly close

to being incredibly useful. ¨̂

ii



Thanks to all of my colleagues and instructors who have supported me throughout this long

journey:

• Thanks to Tim Anderson, Ray Slyh, Eric Hansen and my other colleagues at Air Force

Research Lab, who shepherded me through the federal hiring process, made me feel

welcome, shielded me from red tape, and allowed me the time and freedom to finish the

research and writing for this dissertation.

• Thanks to my labmates at the University of Minnesota. I really miss our time together, not

to mention tacos at Sally’s. Thanks also to my excellent instructors, especially George

Karypis, Gopalan Nadathur, and John Riedl. And special thanks to Georganne Tolaas,

without whom nothing is possible.

• Thanks to my classmates and instructors in the M.Phil program in Computer Speech,

Text & Internet Technology at the University of Cambridge. That experience provided

me with a firm foundation in natural language processing that I use in my research every

day.

• Thanks to my managers and colleagues at IBM Rochester. My time at IBM provided

me with outstanding positive examples of how to build and develop good professional

relationships, as well as the benefits of regular 1-on-1 meetings with your manager. I am

incredibly grateful for the opportunity to go on educational leave of absence to pursue my

dream of a PhD. One of my only regrets from graduate school is that it didn’t work out

for me to return to IBM when I finished.

• Thanks to my friends and instructors at Luther College and the University of Nottingham,

especially Steve Hubbard, Dave Ranum, Kent Lee, Paul Gardner, and Dave Elliman.

• Thanks to all of the instructors in Gambell, Elim, Wrangell, and Greenfield who encour-

aged and guided me through the years. I want to thank my Yupik language instructors

— though I didn’t know it at the time, the seeds that were sown then grew into my love

of language and my research in machine translation. I especially want to thank Mary

Guthridge, Jerri Moore, Butch Schmidt, and Bob Daut. Thanks also to Delma Apassin-

gok, who provided the text and audio recording of the pledge of allegiance in Central

Siberian Yupik for my final dissertation defense.

iii



Thank you to Matt, Chris, Sarah, Tara, Mike, Andy, and all my other friends and fellow

board gamers who helped keep me sane throughout the years.

And last, but most certainly not least, thanks to my family. Without your love, encourage-

ment, and support, this work would not have been possible. I want to thank my parents, my

siblings, and my wonderful extended family. And most of all, thanks to my incredible wife and

to our children. Thank you for your love, your patience, and your understanding. Thank you

for waiting for me while I spent time apart, first in Rochester, then to conferences, and finally

through two different summers in Baltimore. Thank you for believing in me and following me

on this incredible journey.

iv



Dedication

I dedicate this work to the voices that shaped me and the voices to shape tomorrow:

To the winds and snow of Sivuqaq

To the roiling surf of Norton Sound

To the hidden gems of the inside passage

To my wife, who followed me around the world

And to my children, that the world you inherit might better understand

v



Abstract

Modern machine translation techniques typically incorporate both a translation model, which

guides how individual words and phrases can be translated, and a language model (LM), which

promotes fluency as translated words and phrases are combined into a translated sentence. Most

attempts to inform the translation process with linguistic knowledge have focused on infusing

syntax into translation models. We present a novel technique for incorporating syntactic knowl-

edge as a language model in the context of statistical phrase-based machine translation (Koehn

et al., 2003), one of the most widely used modern translation paradigms.

The major contributions of this work are as follows:

• We present a formal definition of an incremental syntactic language model as a Hierar-

chical Hidden Markov Model (HHMM), and detail how this model is estimated from a

treebank corpus of labelled data.

• The HHMM syntactic language model has been used in prior work involving parsing,

speech recognition, and semantic role labelling. We present the first complete algorithmic

definition of the HHMM as a language model.

• We develop a novel and general method for incorporating any generative incremental

language model into phrase-based machine translation. We integrate our HHMM incre-

mental syntactic language model into Moses, the prevailing phrase-based decoder.

• We present empirical results that demonstrate substantial improvements in perplexity for

our syntactic language model over traditional n-gram language models; we also present

empirical results on a constrained Urdu-English translation task that demonstrate the use

of our syntactic LM.

A standard measure of language model quality is average per-word perplexity. We present

empirical results evaluating perplexity of various n-gram language models and our syntactic

language model on both in-domain and out-of-domain test sets. On an in-domain test set, a

traditional 5-gram language model trained on the same data as our syntactic language model

outperforms the syntactic language model in terms of perplexity. We find that interpolating
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the 5-gram LM with the syntactic LM results in improved perplexity results, a 10% absolute

reduction in perplexity compared to the 5-gram LM alone.

On an out-of-domain test set, we find that our syntactic LM substantially outperforms all

other LMs trained on the same training data. The syntactic LM demonstrates a 58% absolute

reduction in perplexity over a 5-gram language model trained on the same training data. On this

same out-of-domain test set, we further show that interpolating our syntactic language model

with a large Gigaword-scale 5-gram language model results in the best overall perplexity results

— a 61% absolute reduction in perplexity compared to the Gigaword-scale 5-gram language

model alone, a 76% absolute reduction in perplexity compared to the syntactic LM alone, and a

90% absolute reduction in perplexity compared to the original smaller 5-gram language model.

A language model with low perplexity is a theoretically good model of the language; it is

expected that using an LM with low perplexity as a component of a machine translation system

should result in more fluent translations. We present empirical results on a constrained Urdu-

English translation task and perform an informal manual evaluation of translation results which

suggests that the use of our incremental syntactic language model is indeed serving to guide the

translation algorithm towards more fluent target language translations.
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Chapter 1

Introduction

Modern machine translation techniques typically incorporate both a translation model, which

guides how individual words and phrases can be translated, and a language model (LM), which

promotes fluency as translated words and phrases are combined into a translated sentence. Most

attempts to inform the translation process with linguistic knowledge have focused on infusing

syntax into translation models. We present a novel technique for incorporating syntactic knowl-

edge as a language model in the context of statistical phrase-based machine translation (Koehn

et al., 2003), one of the most widely used modern translation paradigms.

The primary novel contribution of this dissertation is a method for using an incremental

syntactic language model to guide a machine translation decoder as it translates sentences into

a target language. A syntactic language model is a formal probabilistic model of the syntax, or

structure, of a human language, and is defined in terms of a grammar and a parsing algorithm.

Formal theories of dependency grammar (Tesnière, 1959; Mel’čuk, 1988) represent sen-

tence structure as a dependency graph. Words in a sentence are modelled as nodes in a graph,

connected by (possibly labelled) directed arcs. In such models, each arc represents a depen-

dency between a head word and a dependent argument of that word. Arcs might exist, for

example, between the noun head of a noun phrase and an adjective modifying that noun, or

from a verb to an object of the verb. Other formal theories, such as the prominent X-Bar theory

(Chomsky, 1970; Jackendoff, 1977; Kornai and Pullum, 1990) of language structure, model the

hierarchical structure of phrases within sentences. Using such phrase structure grammars, sen-

tence structure can be annotated in the form of phrase structure trees. Phrase structure grammars

are well-suited to adaptation as computational language models.
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Figure 1.1: Graphical representation of a phrase structure tree. This tree illustrates the hier-

archical structure of the underlying sentence (S), which is comprised of a noun phrase (NP)

followed by a verb phrase (VP). Each of these child sub-trees is also hierarchically structured.

Parsing is the task of selecting the representation τ̂ (in our case a phrase structure tree

defined by a phrase structure grammar) that best models the structure of sentence e, out of all

such possible representations τ . This set of representations may be all phrase structure trees

allowed by the grammar. Typically, tree τ̂ is taken to be:

τ̂ = argmax
τ

P(τ | e) (1.1)

In other words, the parser’s task is to select the tree that is most probable according to the

grammar, given the sentence e. Figure 1.1 depicts a phrase structure tree that results from

parsing the English sentence The president meets the board on Friday.

Our ultimate goal is not to obtain the most likely tree representation of a sentence using a

grammar and a parser. Rather, it is to use the syntactic language model defined by a grammar

and parser to guide a machine translation decoding algorithm towards translations which are

syntactically well-formed in the target language. To that end, we propose that our syntactic

language model should calculate the total probability mass over all possible phrase structure

trees for sentence e. This is shown in Equation 1.2:

P(e) =
∑
τ∈τ

P(τ, e) (1.2)

It is typically not tractable in practice to sum over all possible trees licensed by the grammar.

Typically, pruning is performed during parsing, which results in some portion of the possible
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Figure 1.2: Partially constructed translation lattice resulting from statistical phrase-based trans-

lation algorithm for the German sentence Der Präsident trifft am Freitag den Vorstand.

trees being discarded. We define the syntactic language model probability after pruning in

Equation 1.3, where τ̃ represents those trees which remain after pruning:

P(e) =
∑
τ∈τ̃

P(τ, e) (1.3)

Traditional bottom-up parsers (Kasami, 1965; Younger, 1967; Cocke and Schwartz, 1970;

Chappelier and Rajman, 1998) and top-down parsers (Earley, 1968, 1970) typically require a

completed string as input. This requirement makes it difficult to incorporate them into phrase-

based translation, which generates partial hypothesized translations incrementally, from left-

to-right. Incremental translation construction in statistical phrase-based translation is shown

in Figure 1.2, where each vertical decoding stack (shaded grey) represents nodes in the trans-

lation lattice in which the same number of source words have been translated. The lattice is

expanded by incrementally adding new nodes representing target language phrase translations

of previously untranslated source language phrases.

Beginning with the first statistical approaches to machine translation (Brown et al., 1990),

statistical machine translation research has typically followed widespread practice in speech

recognition by using n-gram language models (Shannon, 1948, 1951) to model the probability

of a contiguous sequence of words. These n-gram models are relatively simple finite-state

models, and do not incorporate knowledge about the syntax of the language.

P(en | e1 . . . en−1) =
C(e1 . . . en)

C(e1 . . . en−1)
(1.4)
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Equation 1.4 defines the probability of the nth word in a phrase, given the preceding n − 1

words.1

We observe that n-gram language models are incremental in nature, and as such can be

easily integrated into the incremental phrase-based translation algorithm. Each node in the

phrase-based machine translation search graph stores a coverage vector, denoting which words

from the source sentence have been translated in the partial translation at that node, and an n-

gram language model state, representing the most recent n−1 words in the partially constructed

translation. For example, the left-most node in Figure 1.2 represents an empty translation, where

no source words have yet been translated; the n-gram language model state is 〈s〉, representing

the start of a sentence. The node in the third decoding stack with n-gram language model state

president Friday represents a partial translation where only the second and fourth source words

(Präsident Freitag) have been translated.

Modern phrase-based translation using large scale n-gram language models generally per-

forms well in terms of lexical choice, but still often produces ungrammatical output. The addi-

tional use of a syntactic language model may help produce more grammatical output by better

modelling structural relationships and long-distance dependencies. In contrast to n-gram lan-

guage models, traditional bottom-up and top-down parsers, which require a completed sentence,

cannot be integrated into the phrase-based translation algorithm in such a straightforward man-

ner. Instead, we must define an incremental syntactic language model capable of processing

one word at a time. An incremental syntactic language model is defined by a grammar and an

incremental parser.

After processing the tth token in string e, an incremental parser has some internal represen-

tation of possible hypothesized (incomplete) trees, τt. In practice, a parser may constrain the

set of trees under consideration to τ̃t, that subset of analyses or partial analyses that remains

after any pruning is performed. An incremental syntactic language model can then be presented

as a probability mass function (Equation 1.5) and a transition function δ (Equation 1.6).

P(e1 . . . et) ≈ P(τ̃t) =
∑
τ∈τ̃t

P(e1 . . . et | τ)P(τ) (1.5)

δ(et, τ̃t−1)→ τ̃t (1.6)

1 Count function C(·) provides the number of times a word sequence is observed in a training corpus of word
sequences. In practice, n-gram language model probability values are smoothed using various backoff techniques.
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Figure 1.3: Partially constructed translation lattice resulting from statistical phrase-based trans-

lation algorithm for the German sentence Der Präsident trifft am Freitag den Vorstand. Each

node tn in the translation lattice represents a partial translation of t words from the source sen-

tence. Each node is augmented with syntactic language model state τ̃tn , representing the set of

syntactic analyses of the translation at node tn that remain after pruning. State τ̃32 , for exam-

ple, represents a set of syntactic analyses of the English partial translation Obama met of the

German source words Der Präsident trifft.

We augment each node in the translation lattice with a syntactic language model state τ̃ . A syn-

tactic language model state represents all unpruned syntactic analyses of the partial translation

at that node. As each node is added to the translation lattice, transition function δ (Equa-

tion 1.6) is applied to construct a syntactic language model state for the new node. The use of

an incremental syntactic parser provides a straightforward mechanism for introducing syntax to

phrase-based machine translation.

Incremental parsing is also attractive from a psycholinguistic perspective. It is well estab-

lished that humans process language incrementally. Eye-tracking studies show that humans

listening to spoken language are able to actively attend to the entities that the spoken words

might refer to, even while the words are still being pronounced (Tanenhaus et al., 1995; Brown-

Schmidt et al., 2002). There is evidence that humans’ incremental syntactic processing abilities

may occur entirely within general-purpose short-term memory (Sachs, 1967; Jarvella, 1971;
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Figure 1.4: Graphical representation of a phrase structure tree in right-corner form.

Just and Carpenter, 1992). This is especially intriguing given strong evidence that general-

purpose short-term memory has severe capacity limits of perhaps no more than three to four

distinct elements (Miller, 1956; Cowan, 2001).

We propose to use an incremental syntactic language model designed within these psy-

cholinguistic constraints in mind. An incremental syntactic language model is defined by a

grammar and an incremental parser. For our grammar, we use a probabilistic phrase-structure

grammar in a normalized right-corner form. Figure 1.4 shows a phrase structure tree in right-

corner form; this tree was obtained by performing the normalizing right-corner transform on

the phrase structure tree from Figure 1.1.

Constituent categories in right-corner trees may correspond to traditional phrase structure

constituent categories (such as DT, NP, VP) or to categories representing incomplete constituent

structure (such as NP/NN, S/VP, VP/NN). Such incomplete constituent categories are very sim-

ilar in spirit to those from Combinatorial Categorial Grammars (Steedman, 2000) of the form

C1/C2. These incomplete categories are interpreted as C1 lacking C2 on the right. For example,

a determiner (DT) could alternatively be categorized as NP/NN, meaning a noun phrase lacking

a common noun. Two subtrees rooted at C1/C2 and C2, respectively, are expected to combine

to form a larger subtree rooted at C1. In Figure 1.4, we see subtrees rooted at NP/NN and NN

combining to form a larger subtree rooted at NP.
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Figure 1.5: Graphical representation of the Hierarchic Hidden Markov Model after parsing

input sentence The president meets the board on Friday. The shaded path through the parse

lattice illustrates the recognized right-corner tree structure of Figure 1.4.

Incremental parsing using a right-corner grammar is designed to minimize the number of

memory elements in a short-term memory store required for parsing. We use an incremental

parser implemented as a Hierarchical Hidden Markov Model — HHMM (Murphy and Paskin,

2001) — to incrementally recognize phrase structure trees in right-corner form. An HHMM

is a factored time series model, equivalent to a a bounded-memory probabilistic push-down

automaton. Each vertical layer in our HHMM acts acts one element of a bounded-memory

store. Figure 1.5 depicts an HHMM with three levels of bounded memory after successfully

parsing the English sentence The president meets the board on Friday. Our HHMM can be

defined to implement the Equations 1.5 and 1.6 required to define an incremental syntactic

language model in the context of statistical phrase-based translation.

We incorporate our HHMM incremental syntactic language model into a phrase-based ma-

chine translation decoder with the goal of guiding the translation algorithm towards translations

which are more syntactically well-formed. Below we see two translations of a sample Urdu

sentence. Translation 1 was produced by a phrase-based decoder configured using an n-gram

language model. Translation 2 was produced by a decoder configured using an HHMM syntac-

tic language model in addition to an n-gram language model.

Translation 1 (n-gram) We are on this decision for .

Translation 2 (n-gram & HHMM) We congratulations on this decision .
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Four human reference translations for this sample sentence are shown below:

Reference We congratulate on this decision .

Reference We congratulate on this judgement .

Reference We congratulate the court on this decision .

Reference We congratulate them on the ruling .

When we examine the n-gram and HHMM language model scores for the two translations, we

see that the n-gram language model gives Translation 1 a higher score, indicating that the model

prefers Translation 1 over Translation 2. However, we observe that translation 2 is much more

syntactically well-formed than translation 1, and represents a better overall translation. The

HHMM syntactic language model gives a higher score to the more syntactically well-formed

Translation 2.

Translations and references of a second sample Urdu sentence are shown below:

Translation 1 (n-gram) In the meeting , is not .

Translation 2 (n-gram & HHMM) No harm in the meeting .

Reference There is nothing wrong in meeting .

Reference There is no problem in meeting .

Reference There is no harm in meeting with him .

Reference There are no problems with this meeting .

Translations and references of a third sample Urdu sentence are shown below:

Translation 1 (n-gram) Apart from this , three extremists have been brought Lucknow ar-

rested the Calcutta .

Translation 2 (n-gram & HHMM) Apart from this , three extremists have been arrested from

Calcutta to Lucklow .

Reference Moreover , 3 terrorists have been arrested and brought to Lucklow from Calcutta .
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Reference Besides , three extremists were arrested from Kolkata and brought to Lucklow .

Reference Additionally , three extremists have been arrested in Kolkata and brought to Luck-

low .

Reference Additionally , three extremists have been arrested in Kolkata and brought to Luck-

low .

In both cases, we again observe more syntactically well-formed translations when the HHMM

syntactic language model is allowed to guide the translation algorithm.

1.1 Main Contributions

• We present a formal definition of an incremental syntactic language model as a Hierar-

chical Hidden Markov Model (HHMM), and detail how this model is estimated from a

treebank corpus of labelled data.

• The HHMM syntactic language model has been used in prior work involving parsing,

speech recognition, and semantic role labelling. We present the first complete algorithmic

definition of the HHMM as a language model.

• We develop a novel and general method for incorporating any generative incremental

language model into phrase-based machine translation. We integrate our HHMM incre-

mental syntactic language model into Moses, the prevailing phrase-based decoder.

• We present empirical results for language model perplexity that show our incremental

syntactic language model, implemented as an HHMM, is a good model of language. We

present empirical results on an Urdu-English translation task that demonstrate the use of

our syntactic LM, and we perform an informal manual evaluation of translation results

which suggests that the use of our incremental syntactic language model is indeed serving

to guide the translation algorithm towards more fluent target language translations.

1.2 Outline

The remainder of this dissertation is structured as follows:



10

• In Chapter 2, we present a brief introduction to machine translation. We begin with a his-

torical overview of machine translation. Next, we present foundational background ma-

terial on phrase-based statistical machine translation, the translation paradigm on which

we build in this dissertation. We conclude the chapter by surveying the existing literature

on incorporating syntax into statistical machine translation.

• In Chapter 3, we describe the process by which a probabilistic context-free grammar

is obtained from the Wall Street Journal treebank corpus of labelled data. We describe

several tree transformations required to convert the labelled training data into the optimal

form required to train our incremental syntactic language model. We formally define

how to train a probabilistic context-free grammar from these transformed phrase structure

trees.

• In Chapter 4, we formal define the incremental syntactic language model used in this

work. We begin by defining Hidden Markov Models, following Markov (1913). We for-

mally define our incremental syntactic language model as a Hierarchical Hidden Markov

Model (Murphy and Paskin, 2001), using the probabilistic context-free grammar from

Chapter 3. We present the first complete algorithmic description of the HHMM parser

operating as an incremental syntactic language model. We document important speed

optimizations.

• In Chapter 5, we present the core of our novel contribution, the incorporation of an in-

cremental syntactic language model into standard phrase-based translation. We begin by

defining a general method for integrating any generative incremental syntactic language

model into phrase-based translation. We describe how we integrate the incremental syn-

tactic language model from Chapter 4, in conjunction with the probabilistic context-free

grammar from Chapter 3, into Moses, the prevailing phrase-based decoder. Integration

of our syntactic language model into phrase-based translation comes with a cost to trans-

lation speed; we examine this issue and present a mechanism for alleviating the problem.

Finally, we present empirical results that demonstrate substantial improvements in per-

plexity for our syntactic language model over traditional n-gram language models; we

also present empirical results on a constrained Urdu-English translation task that demon-

strate the use of our syntactic LM.
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• Chapter 6 presents a final discussion of contributions of this work.

1.3 Related Publications

The core novel contribution of this dissertation, the incorporation of an incremental syntactic

language model into standard phrase-based translation (introduced in Chapter 1 and presented

in Chapter 5), directly extends Schwartz et al. (2011), joint work with Chris Callison-Burch,

William Schuler, and Stephen Wu. That work was presented at the Annual Meeting of the

Association for Computational Linguistics, the premier international venue for research in ma-

chine translation and natural language processing.

The incremental syntactic language model we introduce in Chapter 1, train in Chapter 3,

and present in Chapter 4 builds on our earlier published work in HHMM language models

for spoken language interfaces (Miller et al., 2007; Wu et al., 2008a,b; Schwartz et al., 2009;

Schuler et al., 2009) and parsing (Schuler et al., 2008, 2010). These publications are joint work

with the other members of the University of Minnesota Natural Language Processing group

— William Schuler, Tim Miller Stephen Wu, Andey Exley, Samir AbdelRahman, and Luan

Nguyen. In this work, we fully document for the first time the complete algorithmic definition

of the HHMM as a language model

Other of our publications represent more indirect contributions to this dissertation. Schwartz

(2008b) explores the use of phrase-based machine translation when the source document to be

translated is available in multiple languages. Schwartz (2008a) presents the first open source

implementation of a hierarchical machine translation system, capable of translating using a

formally syntactic hierarchical translation model. This work was continued in our collabora-

tion in the Joshua machine translation system (Li et al., 2009a,b; Schwartz and Callison-Burch,

2010; Schwartz, 2010; Li et al., 2010), a similar translation system which added support for lin-

guistically syntactic translation models. Our joint work at the Johns Hopkins University 2009

Summer Camp for Advanced Language Exploration — SCALE (Baker et al., 2009) — exam-

ined various techniques for syntactic and semantic translation model augmentation. Research

on Joshua was joint work with the Joshua research group, including Zhifei Li, Chris Callison-

Burch, Chris Dyer, Juri Ganitkevitch, Anne Irvine, Sanjeev Khudanpur, Wren Thornton, Ziyuan

Wang, Jonathan Weese, and Omar Zaidan, as well as the members of SCALE 2009.



Chapter 2

Literature Review: Syntax in Machine
Translation

The primary novel contribution of this dissertation is the development of an incremental syn-

tactic language model for use in statistical phrase-based machine translation. In Chapters 3–5,

we present a formal language model of English syntax and incorporate that model into a con-

temporary machine translation system. This chapter presents the historical and contemporary

background for our contribution.

2.1 History

Machine translation is one of the oldest disciplines within computer science. Computers excel

at retrieving and presenting large amounts of stored data. The process of translating a document

requires retrieving data (translated words, phrases, possibly even whole sentences) using pre-

sented key values in the source language. It is not surprising that some of the first electronic and

digital computers were programmed to perform such tasks. In 1933, patents were issued to Petr

Trojanskij in Russia and Georges Artsrouni in France for mechanical dictionaries (Hutchins,

2004). Some of the early work in machine translation also drew inspiration from Allied suc-

cesses in cryptology during World War II (Weaver, 1949). Researchers at IBM and Georgetown

University later collaborated to produce the first public demonstration of translation using com-

puters (IBM, 1954); the presentation of this small Russian-English system became known as

the Georgetown Experiment.

12
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Figure 2.1: Machine translation triangle, adapted from (Vauquois, 1968). The triangle depicts

various levels of depth that machine translation systems may adopt during source language text

analysis, representational source to target transfer, and target language text generation. This

triangle is traditionally drawn with surface analysis at the base and interlingua at the top. We

prefer this inverted structure, as increasingly deep analysis techniques descend the levels of

the triangle. Direct translation approaches translate directly from source language surface to-

kens into the target language. Transfer approaches typically perform deeper source language

analysis, involving syntax and possibly semantics; the resulting structural representations are

transfered into target language structural representations, and a separate generation phase pro-

duces the final target language surface text. The deepest approaches attempted to analyze the

source text into a truly language-independent interlingua format, from which a generation phase

would produce the final target language surface text.
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Research continued over the next decade, with many researchers expressing optimism that

fully automatic, high-quality machine translation results would soon be realized. Machine trans-

lation research coalesced around three main competing approaches: direct, transfer, and inter-

lingua. Direct translation, typified by Reifler (1961), attacked translation at a shallow surface

level. At its simplest, direct translation used bilingual dictionaries to perform word-for-word

substitution from source language to target language, with no attempt made at word reordering.

At the other extreme, interlingua research, seen in Ceccato (1956), proposed to deeply analyze

the source text into a truly language-independent meaning representation, with the hope that

target text could then be directly generated from this interlingual representation. Straddling the

divide between direct and interlingua translation lay transfer methods, such as Lehmann (1957,

1998), which decompose translation into three phases: analysis, transfer, and generation. The

analysis phase transformed source language tokens into an intermediate structural representa-

tion; the depth of analysis varied between systems, but could be morphological, syntactic, or

even semantic. The transfer phase utilized encoded linguistic rules to construct a target lan-

guage structural representation derived from the source language structural representation. The

final generation phase produced target language text from the target language structural repre-

sentation. Figure 2.1 illustrates the varying depths at which analysis, transfer, and generation

occur in various methodologies.

The optimism of the first decade of machine translation research was not universal. Bar-

Hillel (1960) argued that semantic ambiguities inherent in human language present an insur-

mountable barrier to high quality fully automatic translation, regardless of the approach. The

Automatic Language Processing Advisory Committee later reported to the U.S. government that

“there is no immediate or predictable prospect of useful machine translation” (ALPAC, 1966),

leading to a rapid halt in nearly all U.S. government funding of machine translation research.

Machine translation research slowed, but did not stall completely. Over the next thirty-five

years, machine translation research became dominated by transfer-based methods (Hutchins,

2003). The dominant commercial systems that emerged (SYSTRAN, Logos, and METAL) all

incorporated syntactic analysis, transfer, and generation. Transfer translation methods encode

language-specific and language pair-specific linguistic knowledge into analysis rules, transfer

rules, and generation rules. Such rule-based systems tend to be expensive to develop (in terms

of both time and money), as linguists must be closely consulted to properly develop and update

the system rule database.
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Text in language e

Noisy

channel

P(f | e)

Text in language f

Figure 2.2: Noisy channel process, adapted from Shannon (1948). A message travels from the

origin (left) to the destination (right). At its destination, the message appears to be written in

foreign language f . The noisy channel model postulates that at the origin, the message was

originally written in language e, but was corrupted by noise according to translation model

P(f | e).

2.2 Statistical Translation Models

By the early 1980s, speech recognition researchers had successfully applied statistical pattern

recognition techniques (Baker, 1979; Ferguson, 1980; Bahl et al., 1983). These techniques

trained statistical models of real-world phenomena from collected speech and transcription data.

These models could be used in conjunction with decoding software to transcribe new, previously

unseen, speech data.

2.2.1 Noisy Channel Framework

Drawing on the success of statistical approaches to speech recognition, and inspired by Weaver

(1949), researchers at IBM proposed a statistical direct translation model (Brown et al., 1988).

Given a parallel corpus of existing translated documents and sufficient computing resources,

such word-based statistical models could be trained automatically (Brown et al., 1990, 1993),

without consulting a linguist or domain expert. For a given language pair, a statistical word

translation model, P(f | e), defines a probability distribution for translating individual words

from language f into language e. Figure 2.2 illustrates this word-based translation as a noisy

channel process (Shannon, 1948). Viewing translation as a noisy channel process, a given text in

foreign source language f can be transformed into its translation in target language e according

to Equation 2.1.

P(e | f) =
P(f | e)P(e)

P(f)
(2.1)



16

Equation 2.1 defines translation model probability P(e | f) in terms of word translation

model P(f | e), as well as P(e) and P(f), which model the prior probability of the target lan-

guage e and source language f , respectively. Statistical translation software which searches for

the most probable target language sentence ê given source language sentence f is commonly

refered to as a decoder. Equation 2.2 formalizes the search task for a decoder:

ê = arg max
e

P(e | f) = arg max
e

P(f | e)P(e)

P(f)
(2.2)

Prior probability models P(f) and P(e) are called the source language model and target lan-

guage model, respectively. Because the denominator in Equation 2.2 is constant with respect to

e, source language model P(f) is not required for decoding, and Equation 2.2 can be simplified

to Equation 2.3:

ê = arg max
e

P(f | e)P(e) (2.3)

2.2.2 N -gram language models

To define target language model P(e), machine translation research typically follows widespread

practice in speech recognition by using n-gram language models (Shannon, 1948, 1951) to

model the prior probability of a contiguous sequence of words. These n-gram models are rela-

tively simple finite-state models, and do not incorporate knowledge about the syntax of the lan-

guage. While alternate language model formulations that do incorporate syntactic knowledge

have been developed (Chelba et al., 1997; Charniak et al., 2003) and used in speech recogni-

tion (Chelba and Jelinek, 2000) and machine translation (Galley and Manning, 2009), the vast

majority of statistical speech recognition and machine translation systems still rely on n-gram

language models.

Given a sequence of words (such as a sentence or a speech utterance), an n-gram language

model provides the conditional probability of the next word in the sequence given the previous

n − 1 words. This conditional probability model can be estimated using relative frequency

estimation from a corpus of word sequences. Let count function C(·) provide the number of

times a word sequence is observed in the training corpus of word sequences. Then, Equation 2.4
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defines an n-gram language model P(e):

P(en | e1 . . . en−1) =
C(e1 . . . en)

C(e1 . . . en−1)
(2.4)

Various discounting, backoff, and smoothing techniques have been developed to allow n-

gram language models to more elegantly handle data sparsity issues and word sequences not

observed during training (Lidstone, 1920; Good, 1953; Jelineck and Mercer, 1980; Katz, 1987;

Witten and Bell, 1991; Church and Gale, 1991; Ney et al., 1994; Kneser and Ney, 1995). The

n-gram language models we use in Chapter 5 are trained using modified Kneser-Ney smoothing

(Chen and Goodman, 1998).

2.2.3 Maximum Entropy Framework

The noisy channel model used in word-based translation is somewhat counter-intuitive, in that

its translation model works in a reverse direction. That is, given a document to be translated

from language f to language e requires the use of word-based translation model P(f | e), which

models the translation probability of words in language f given words in language e. Because

of this formulation, the early statistical translation literature confusingly refers to f as the target

language and e as the source language, despite the fact that the document to be translated is in

language f . While researching extensions to word-based translation, Och et al. (1999) changed

the direction of the trained word-based translation model from P(f | e) in Equation 2.3 to the

more intuitive P(e | f):

ê = arg max
e

P(e | f)P(e) (2.5)

Using this mathematically unsound reformulation (Equation 2.5) as the decoding search

criterion, Och et al. obtained translation results equivalent in quality to those resulting when

using Equation 2.3. Following this finding, Och and Ney (2002) proposed a generalization of

the noisy channel model for statistical machine translation; all models informing the translation

process, including translation model P(f | e) and language model P(e), are considered to be

feature functions hm in a maximum entropy (Berger et al., 1996) framework, with weights λm:

P(e | f) =
exp

[∑M
m=1 λmhm(e, f)

]
∑

e′ exp
[∑M

m=1 λmhm(e′, f)
] (2.6)
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Equation 2.6 can exactly emulate the behavior of the noisy channel Equation 2.1 when

Equation 2.7 and Equation 2.8 are defined as the translation model and language model feature

functions, respectively:

h1(e, f) = logP(f | e) (2.7)

h2(e, f) = logP(e) (2.8)

The denominator in Equation 2.6 normalizes over all possible translations e′ for source

sentence f . This normalization constant is invariant with respect to the decoding search, and so

can be eliminated in Equation 2.9:

ê = arg max
e

{
exp

[
M∑
m=1

λmhm(e, f)

]}
(2.9)

Values for feature function weights λm are typically obtained by optimizing translation

quality on a development set for which known translations are available. The optimization

method most commonly used is MERT — Minimum Error Rate Training (Och, 2003). Dur-

ing optimization, translation quality is measured by an automatic evaluation criteria such as

word error rate, position independent word error rate, BLEU (Papineni et al., 2001), METEOR

(Banerjee and Lavie, 2005), or TER (Snover et al., 2006). BLEU, which is essentially an n-

gram precision measure, is the most widely used automatic evaluation metric.

This formulation (Equation 2.9) is the most widely used decoding search criterion in cur-

rent statistical machine translation research. Arbitrary feature functions, including target lan-

guage model and translation models in both directions, can be defined and incorporated into

this framework. This formulation allows an unlimited number of component feature functions

to be defined and used, including the definiton of multiple target language models which are all

used at translation time.

2.2.4 Phrase-Based Translation

Where the rule-based transfer approaches to translation in Section 2.1 made heavy use of syntax

and other linguistic components through hand-crafted rules, the statistical word-based approach
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to translation in Section 2.2 deals only with word-form tokens, eschewing any attempt at syn-

tactic analysis.

Wang and Waibel (1998) and Och and Weber (1998) propose enhancing word-based trans-

lation with very basic structural information; these approaches use automatic word class clus-

tering techniques to posit phrases — contiguous word sequences which may or may not corre-

spond to any linguistic constituent. The alignment template approach (Och et al., 1999; Och,

2002; Och and Ney, 2004) that followed represents the first statistical translation system where

the basic unit of translation is the phrase rather than the word. Other early research examining

the use of phrases include Marcu (2001), Venugopal et al. (2003), Watanabe et al. (2003), Zens

et al. (2002), and Zens and Ney (2004).

The standard phrase-based model of statistical machine translation (Koehn et al., 2003) in-

corporates phrase translation models (in both directions), a target n-gram language model, a

distortion model (for phrase reordering) and several other models in a maximum entropy log-

linear framework (Equation 2.9). The open source Moses (Koehn et al., 2007) statistical ma-

chine translation system is the de-facto standard implementation for phrase-based translation.

We have contributed implementations of our novel work from Chapter 5 into Moses. Cunei

(Phillips and Brown, 2009) is another open source phrase-based translation system; the models

in Cunei incorporate additional information about phrase context, drawing substantially from

the example-based machine translation literature.

Phrase-based translation incorporates minimal structural knowledge lacking in word-based

translation — contiguous strings of adjacent words are grouped into phrases. However, no in-

formation is incorporated regarding the hierarchical structure of language. Hierarchical phrase-

based translation (Chiang, 2005, 2007) uses the formal framework of a weighted synchronous

context-free grammar, SCFG (Aho and Ullman, 1969), to allow phrases with wildcard gaps. A

related formalism is translation using Inversion Transduction Grammars, ITGs (Wu, 1997); an

ITG can be considered to be a special case of a hierarchical SCFG. Hierarchical SCFG models

are formally syntactic, but do not use linguistic phrase structure categories; the only nonterminal

categories are wildcard category X , and S, which allows sequences of (possibly hierarchical)

phrases to be combined. Hierarchical phrase-based decoding typically operates via bottom-up

parsing; Watanabe et al. (2006) develop an alternate incremental decoding algorithm. Schwartz

(2008b), Joshua (Li et al., 2009a), Moses (Hoang et al., 2009), cdec (Dyer et al., 2010), and Jane

(Vilar et al., 2010) are open-source implementations for hierarchical phrase-based translation.
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Neither phrase-based nor hierarchical phrase-based translation take explicit advantage of

the syntactic structure of either source or target language. The phrases (with gaps allowed in

the case of hierarchical phrases) defined in these translation models may or may not correspond

to any linguistic constituent. Koehn et al. (2003) considered whether restricting phrase-based

translation models to use only syntactically well-formed constituents might improve translation

quality but found such restrictions failed to do so.

2.3 Incorporating Syntax into Statistical Machine Translation

Statistical machine translation techniques typically incorporate many statistical models via a

maximum entropy framework (Equation 2.9). Attempts to incorporate linguistic syntax into

statistical translation may focus on the translation model, the target language model, or other

models such as the reordering model. This section surveys various approaches which incorpo-

rate syntax into statistical translation.

2.3.1 Syntax through Reranking

The most straightforward techniques for incorporating syntax reorder the n-best list produced

by a decoder according to one or more syntactic features. Chelba et al. (1997) define a syntactic

language model based on dependency parsing, and use this model to rerank n-best transcrip-

tion results from an automatic speech recognition system. Collins et al. (2005) similarly use a

discriminative syntactic language model to rerank speech recognition results.

Syntactic language models have also been explored in conjunction with tree-based transla-

tion models such as Yamada and Knight (2001). Charniak et al. (2003) use a phrase-structure

parser (Charniak, 2000) as a syntactic language model to rescore the output of a tree-to-string

translation system (Yamada and Knight, 2002).

Och et al. (2004) use a reranking approach to explore a number of syntactic features for

phrase-based translation. Hasan et al. (2006) and Wang et al. (2007) rerank n-best lists accord-

ing to several different models of syntactic well-formedness, including supertagging (Bangalore

and Joshi, 1999) with lightweight dependency analysis (Bangalore, 2000).

It is relatively straightforward to use a syntactic model to rerank an n-best list. However,

reranking is not the ideal mechanism to incorporate knowledge of syntax. Even when n is

very large, the hypothesized translations present in an n-best list represent only a tiny fraction
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of the hypothesis space considered during translation. A syntactic model used to rerank can

only choose among the n translations present in the n-best list. A syntactic model incorporated

as a feature function (Equation 2.9) in a maximum entropy framework is much more powerful

influence; such a model can influence the seach process directly, allowing many more (hopefully

more syntactically well-formed) hypotheses to be explored. The following sections examine

syntactic models that have been directly incorporated in this way.

2.3.2 Syntax in the Translation Model

Rule-based transfer approaches to machine translation (Section 2.1) analyze or parse source

sentences, resulting in a structural representation of the sentences. This structural representa-

tion is transfered, using rules, into an equivalent target language structural representation, from

which the target language string is generated.

Tree-based approaches to statistical machine translation follow this same general outline,

but utilize automatically generated weighted rules for parsing, transfer, and generation. Sig-

nificant research has examined the extent to which syntax can be usefully incorporated into

statistical tree-based translation models. Various research has examined the use of source lan-

guage syntax (tree-to-string models), source and target language syntax (tree-to-tree models),

and target language syntax (string-to-tree models).

As a notational issue, when we use the terms source language and target language, they are

used in the obvious sense (a text to be translated begins in the source language; after translation

it is in the target language), not in the inverted (noisy channel) sense. Much of the statistical tree-

based translation literature uses source and target in the inverted sense (see Section 2.2.1). Our

usage of tree-to-string and string-to-tree is in the straightforward sense (string-to-tree transla-

tion takes as input a source language string and produces a target language tree), and is therefore

opposite the usage of such authors as Yamada and Knight (2001) and Graehl and Knight (2004)

who use the noisy channel terminology.

We define tree-to-string, tree-to-tree, and string-to-tree translation models according to three

factors: the input format of the source language sentence, and the respective structural formats

of the source language and target language components in the model’s synchronous transfer

process. Tree-to-string translation requires the source language text to already be parsed into

syntactic trees. In tree-to-string translation models, the source language components of transfer

rules are tree fragments, and the target language components are flat target language string



22

fragments. Tree-to-tree models are similar to tree-to-string models except in the target language

components of the translation models, which use target language tree fragments. String-to-

tree models accept unparsed source language text. String-to-tree translation parses the source

text using a synchronous grammar which represents the target language components as tree

fragments.

Tree-to-Tree Translation Models

Tree-to-tree translation makes use of a set of related synchronous grammar formalisms for mod-

elling pairs of source and target language trees. These related grammar formalisms have been

used to construct decoders, such as Abeillé et al. (1990), that accept a parsed source language

tree and produce a parsed target language tree.

Synchronous tree adjoining grammars, STAGs (Shieber and Schabes, 1990; Shieber, 2004;

Zhang et al., 2007), extend the well-establish tree adjoining grammar (TAG) formalism (Joshi,

1985) to allow for simultaneous derivation of a source tree and a target tree. The formal gen-

erative power of tree adjoining grammars is mildly context-sensitive. Using an STAG model,

the decoder of Cowan et al. (2006) operates in a discriminative framework instead of the more

commonly used noisy channel or maximum entropy frameworks. Translation models over de-

pendency treelets have also been used for tree-to-tree translation (Ding and Palmer, 2005; Quirk

et al., 2005).

Eisner (2003) presents synchronous tree substitution grammars, STSGs, a closely related

formalism which lacks the tree adjunction operation of STAGs. Some authors, particularly

those with experience in example-based translation, use the term Data-Oriented Translation

(DOT) for certain types of translation using STSGs (Poutsma, 1998, 2000, 2003; Hearne and

Way, 2003; Hearne, 2005; Bod, 2007).

Synchronous tree-insertion grammars, STIGs (Nesson et al., 2006; DeNeefe and Knight,

2009), similarly lack adjunction and also place restrictions on the form of elementary trees.

Ding and Palmer (2004b) define synchronous dependency insertion grammars, SDIGs,

as a formal generative model which allows alignment between structurally divergent depen-

dency trees; such dependency insertion grammars are weakly context-free equivalent, provid-

ing context-free formal generative power. The SDIG formalism builds on alignment techniques

for non-isomorphic parallel dependency trees (Ding et al., 2003; Ding and Palmer, 2004a).

An improved algorithm for inducing SDIGs from parallel corpora is developed in Ding and
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Palmer (2005), along with a polynomial time tree transduction algorithm for translation decod-

ing. Further refinements to grammar induction and decoding algorithms are presented in Ding

and Palmer (2006). Ding (2006) reports translation quality using SDIG for Chinese-English on

par with standard phrase-based models as implemented in Pharaoh (Koehn, 2004).

Alshawi (1996a) defines monolingual head automata for analyzing and generating depen-

dency trees in the context of a probabilistic tree-to-tree transfer decoder. Closely related trans-

lation models (Alshawi, 1996b; Alshawi et al., 1997, 1998, 2000) utilize head automata as

tree transducers to directly perform translation decoding. These probabilistic head automata are

closely related to traditional finite-state automata, but are capable of handling some context-free

phenomena.

DeNeefe et al. (2007) observe that phrase-based translation models often contain phrases

not found in tree-based translation models, and explore how tree-based models can be enhanced

to address this deficiency; Chiang (2010) generalizes tree-to-tree rule extraction (Lavie et al.,

2008; Hanneman and Lavie, 2009) into fuzzy tree-to-tree rule extraction, increasing the number

of extractable rules. Chiang allows the decoder to apply any learned STSG rule at any point,

learning when and to what extent to trust the available syntatic rules through feature optimiza-

tion.

Tree-to-String Translation Models

Tree-to-string translation proceeds from a parsed source language sentence via statistical tree

transform operations, resulting in a target language string. Liu et al. (2006) define a tree-to-

string alignment template model, merging ideas from Och and Ney’s phrase-based alignment

templates into tree-based translation; speed enhancements through efficient incremental decod-

ing are developed in Huang and Mi (2010). Huang et al. (2006) present one system which

operates by internally parsing the source text, then translating through a tree transducer.

In tree-to-tree and tree-to-string translation, the quality of the source language parse can

be a factor that affects the quality of the translations (Quirk and Corston-Oliver, 2006). Such

approaches typically begin translation with a single parse for each input sentence; by contrast

Liu et al. (2007) define a tree-to-string model which accepts a set of parse trees for each input

sentence. Zhang et al. (2008) take a similar approach providing sets of source parse trees in

tree-to-tree translation. Using sets of parse trees instead of a single best parse mitigates the

problem of parse quality by allowing some parse ambiguity to propigate, enabling a broader
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range of possible translations. A packed forest (Billot and Lang, 1989) is a compact repre-

sentation of many or all of the possible parse tree derivations for a parsed input sentence. Mi

and Huang (2008) and Mi et al. (2008) extend the work of Liu et al. (2007) to accept packed

forest representations of input sentence parses. Liu et al. (2009) enable packed forest input in

tree-to-tree translation.

String-to-Tree Translation Models

Synchronous context-free grammars, SCFGs (Aho and Ullman, 1969), were developed in the

context of translating computer programming languages into compiled machine instructions.

Like context-free rules, rules in SCFGs contain a left-hand side (consisting of a single nonter-

minal symbol) and a right-hand side (consisting of one or more nonterminal and/or terminal

symbols); SCFG rules also contain a second parallel right-hand side. The terminals in the first

right-hand side come from the source language; the terminals in the second right-hand side

come from the target language. SCFGs can be directly used as translation models; by pars-

ing a source language sentence with dotted chart parsing (Earley, 1968, 1970; Chappelier and

Rajman, 1998), a corresponding target language tree is constructed.

Bracketing inversion transduction grammars in binary-normal form, ITGs (Wu, 1997), rep-

resent a special case of SCFGs. Such grammars are interesting in that they contain only two

nonterminal types, a start symbol (typically called S) and a dummy symbol (typically called

X). Hierarchical phrase-based translation (Chiang, 2005, 2007) similarly uses a formally syn-

tactic SCFG translation model using nonterminals S and X without using linguistic constituent

categories. Syntax augmented machine translation (SAMT) grammars (Zollmann and Venu-

gopal, 2006) expand on hierarchical models by incorporating enhanced nonterminal category

types, in addition to more traditional phrase-structure nonterminal categories; these enhanced

nonterminal types include incomplete category constituents (such as C1/C2 and C2\C1 types

found in CCG, Combinatorial Category Grammar (Ades and Steedman, 1982)) and concate-

nated category constituents (such as C1 + C2). Recent work has shown that parsing-based

machine translation using syntax-augmented hierarchical translation grammars with rich non-

terminal sets can demonstrate substantial gains over hierarchical grammars for certain language

pairs (Baker et al., 2009). Hoang and Koehn (2010) present a similar approach, extracting hi-

erarchical SCFG rules and rules containing syntactic constituent categories. Hoang and Koehn

differ from Zollmann and Venugopal by allowing syntactic constituent categories only on the
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source side (the target side categories are restrained to X); rather than posit incomplete or con-

tatenated constituent category labels, this approach simply assign X as the source side label in

cases where an extracted rule does not fit neatly within the training source parse tree.

Marton and Resnik (2008) and Chiang et al. (2008) present an alternate mechanism for aug-

menting hierarchical translation models by incorporating features that represent soft constraints

based on linguistic syntax; even more structural features are added to string-to-tree and hier-

archical translation models by Chiang et al. (2009). Yet another approach (Zhou et al., 2008)

incorporates syntax into hierarchical models though the use of prior derivation models applied

using tree kernels.

Yamada and Knight (2001) present a string-to-tree translation model; as each source lan-

guage input sentence is decoded (Yamada and Knight, 2002) a corresponding target language

syntax tree is constructed. Gildea (2003) presents an extension to Yamada and Knight’s tree-to-

string model which he further adapts into a tree-to-tree translation model. Galley et al. (2004,

2006) and Imamura et al. (2004) develop a string-to-tree translation models which map source

language strings to aligned target language parse trees. Graehl and Knight (2004) examine how

tree transducers can be trained for such string-to-tree (and tree-to-tree) translation models.

Like hierarchical translation models, these models are commonly formalized as SCFGs;

however, unlike hierarchical models, these string-to-tree grammars utilize linguistically mo-

tivated nonterminal categories. Translation decoding proceeds by parsing according to these

synchronous grammars. Wang et al. (2007) shows how such models can be generalized through

binarization, and Melamed (2004) generalizes translation by parsing to take advantage of mul-

titexts. Where the above string-to-tree techniques operate over synchronous phrase-structure

grammars, Marcu et al. (2006) and Shen et al. (2008) translate using a string-to-dependency

tree translation model.

String-to-String Translation Models

Phrase-based decoders are formally equivalent to finite-state string transducers (Kumar and

Byrne, 2003), and as such make use of string-to-string translation models. When Koehn et al.

(2003) forced their phrase-based system to use only those phrases which corresponded to syn-

tactic constituents, translation quality decreased. Since then, various approaches have attempted

to improve the quality of phrase-based translation by integrating syntactic knowledge.

Phrase-based translation models are typically trained from word-aligned parallel corpus.
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Tinsley et al. (2007a) augment this model through the use of additional phrase alignments ob-

tained from a tree-to-tree alignment (Tinsley et al., 2007b) of the parsed parallel training corpus;

the additional phrase pairs extracted using the tree-to-tree alignments are added to the phrase

table. Similarly, ITG alignments of parallel training corpora (Zhao and Vogel, 2003; Zhao

and Gildea, 2005; Chao and Li, 2007) have also been used when extracting phrase pairs for

phrase-based translation (Sánchez and Benedı́, 2006; Cherry and Lin, 2007; Saers and Wu,

2009; Haghighi et al., 2009). Mylonakis and Sima’an (2008) and Sima’an and Mylonakis

(2008) develop an alternate mechanism for estimating phrase translation model probabilities,

making use of an ITG prior model.

The Moses phrase-based decoder allows multiple layers of information to be incorporated

as translation model factors (Koehn and Hoang, 2007; Koehn et al., 2007; Hoang and Koehn,

2009; Hoang, 2011). Lexicalized tree adjoining grammar (LTAG) supertags (Bangalore and

Joshi, 1999) and CCG supertags (Clark and Curran, 2004) have been successfully employed

(Hassan et al., 2007) as factors within Moses (Birch et al., 2007).

The vast majority of research seeking to incorporate syntactic models as translation features

have focused on the translation model rather than the language model. As discussed above, this

research includes tree-to-string translation models which require parsed input, string-to-tree

translation models which posit syntactic structure on hypothesized translations, and tree-to-tree

translation models which both require parsed input and posit syntactic structure on hypothesized

translations. Syntactic models have been used to guide the construction of phrase-based transla-

tion models, and as a mechanism to augment those translation models with syntactic super-tags.

In contrast, the novel work we develop in this dissertation maintains a standard (non-syntactic)

phrase-based translation model. Instead, we incorporate syntax into the language model.

2.3.3 Syntax in the Language Model

Traditional approaches to language models in speech recognition and statistical machine trans-

lation focus on the use of n-grams, which provide a simple finite-state model approximation of

the target language. Speech recognition and phrase-based translation decoding algorithms pro-

cess input incrementally, from the beginning of a sentence to the end. The finite-state nature of

n-gram language models allows for straightforward integration of such models into incremental

speech recognition and phrase-based translation algorithms.

Phrase-based translation using factored translation models can take advantage of n-gram
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language models over factors other than surface word forms (Koehn and Hoang, 2007; Hoang

and Koehn, 2009). As an example, the Czech-English translation system presented in Bojar and

Hajič (2008) makes use of high-order 7-gram language models over morphological tags; this

is in addition to the use of traditional n-gram language models over surface word forms. In a

similar spirit, Hassan et al. (2007) and Birch et al. (2007) apply n-gram language models over

supertag sequences to phrase-based translation. Riezler and Maxwell (2006) use n-gram lan-

guage models defined over functional structures from the Lexical Functional Grammar (LFG)

formalism (Kaplan and Bresnan, 1982) in the context of a tree-to-tree transfer-based translation

system. Graham and van Genabith (2010) examine LFG n-gram models in more detail, and

describe how they could be used in phrase-based and hierarchical translation.

The use of n-gram language models in conjunction with tree-based translation models

is much more difficult than the use of n-gram language models in phrase-based translation.

Phrase-based translation generates partial translation hypotheses incrementally, from the begin-

ning of a translation to the end; this allows for easy incorporation of n-gram language models.

Translation systems with tree-based translation models, however, typically formulate partial

translation hypotheses in a bottom-up parsing fashion. While n-gram language models can

be incorporated into tree-based translation techniques (Chiang, 2007), doing so requires addi-

tional bookkeeping and heuristics not required for n-gram LM incorporation with phrase-based

translation.

Chelba et al. (1997) proposed that syntactic structure could be used as an alternative to n-

grams in language modelling, defining a syntactic dependency language model. Chelba and

Jelinek (1998) define a related model to operate in an incremental manner; this model is in-

corporated into incremental speech recognition (Chelba and Jelinek, 2000). Shen et al. (2008)

incorporate a language model based on target language dependency structure with a string-to-

dependency tree translation model.

Post and Gildea (2008) investigate the integration of parsers as syntactic language models

during binary bracketing transduction translation (Wu, 1997); under these conditions, both syn-

tactic phrase-structure and dependency parsing language models were found to improve oracle-

best translations, but did not improve actual translation results. Post and Gildea (2009) report

the use of tree substitution grammar parsing for language modelling, but do not use this lan-

guage model in a translation system. Galley and Manning (2009) adapt a standard probabilistic

dependency parser to provide a language model score based on the 1-best partial dependency
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parse at each node in a phrase-based translation system.

2.3.4 Syntax in Other Models

Zens et al. (2004) and Yamamoto et al. (2008) use source language syntax in conjunction with

an inversion transduction grammar to impose constraints on phrase-based reordering. The syn-

tactic cohesion features of Cherry (2008) encourages the use of syntactically well-formed trans-

lation phrases, also in the context of standard phrase-based translation. The syntax-driven re-

ordering model of Ge (2010) uses syntax-driven features to influence word order within standard

phrase-based translation. These approaches are fully orthogonal to our proposed incremental

syntactic language model, and could be applied in concert with our work.

2.4 Conclusion

Substantial research efforts have explored how syntactic information can be used to improve the

results of machine translation. In Section 2.3, we surveyed the major techniques for incorporat-

ing syntax into modern statistical machine translation. We now briefly review these techniques,

and show where our work fits into this context.

Syntax through Reranking It is relatively straightforward to rerank an n-best list produced

by a translation system according to one or more syntactic features. Reranking is far

from ideal; even when n is very large, the hypothesized translations present in an n-best

list represent only a tiny fraction of the hypothesis space considered during translation.

A syntactic model incorporated directly (into the translation model, language model, or

reordering model) is much more powerful, influencing the seach process directly and al-

lowing many more (hopefully more syntactically well-formed) hypotheses to be explored.

Syntax in the Translation Model The vast majority of statistical machine translation tech-

niques which directly incorporate syntax make use of tree-based syntactic translation

models or factored phrase-based translation models. This research includes tree-to-string

translation models which require parsed input, string-to-tree translation models which

posit syntactic structure on hypothesized translations, and tree-to-tree translation models
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which both require parsed input and posit syntactic structure on hypothesized transla-

tions. Syntactic models have been used to guide the construction of phrase-based trans-

lation models, and as a mechanism to augment those translation models with syntactic

super-tags. These techniques typically do not make use of syntax in the language model,

instead using traditional n-gram language models.

Syntax in the Language Model Far less research has examined how syntax can be incorpo-

rated into language models. Syntactic language models were developed initially to model

syntactic structure in the context of speech recognition. A small amount of more re-

cent research has attempted to integrate syntactic language models (based primarily on

dependency grammar parsers and tree substitution grammar parsers) into tree-based and

phrase-based translation, with mixed levels of success.

Our research in this dissertation develops a novel technique for integrating an incremen-

tal phrase-structure parser as a syntactic language model in phrase-based translation. The

novel work we develop is similar in spirit to the work of Galley and Manning (2009), but

ours provides a much more natural fit by using a parser designed from the start to parse in-

crementally. Our incremental syntactic language model calculates language model scores

over all available phrase structure parses at each translation hypothesis rather than simply

the 1-best parse.

Syntax in Other Models A few researchers have used syntactic constraints to inform the re-

ordering models in statistical phrase-based translation. These approaches are fully or-

thogonal to our proposed incremental syntactic language model, and could be applied in

concert with our work.

The remaining content of this dissertation is structured as follows. In Chapter 3, we de-

scribe the training process by which the model parameters for our syntactic language model are

estimated from a corpus of manually annotated phrase structure trees; this model is an incre-

mental syntactic language model which fits into the family of linear-time dynamic programming

parsers described by Huang and Sagae (2010). In Chapter 4 we present the core algorithms re-

quired to parse and score target language text using our trained incremental syntactic language

model. Finally, in Chapter 5 we show how our incremental syntactic language model can be

directly and easily integrated into a phrase-based translation decoder.



Chapter 3

Learning an Incremental Parsing
Model from Phrase Structure Trees

The primary novel contribution of this dissertation is the development of an incremental syntac-

tic language model for use in statistical phrase-based machine translation. A syntactic language

model is a formal probabilistic model of the syntax, or structure, of a human language. This

chapter describes the training process by which the model parameters for our incremental syn-

tactic language model are estimated from a corpus of manually annotated phrase structure trees.

The training process for our model requires a training corpus where all phrase structure trees

are in a normalized maximally left-recursive form. This normalized maximally left-recursive

form is called right-corner form, and is a variant of the left-corner form of Johnson (1998). We

therefore present our syntactic language model training process in two parts: a sequence of tree

transformations (Section 3.2) designed to transform the trees in the Wall Street Journal tree-

bank corpus into right corner form, followed by model parameter estimation for a probabilistic

context-free grammar from the transformed treebank corpus (Section 3.3). This two part train-

ing process is similar to the work of Hockenmaier (2003), which presents tree transformations

and model estimation for parsing under Combinatory Categorial Grammar (CCG). In brief, the

tree transformation component of our training process transforms the Wall Street Journal Penn

Treebank corpus from a set of unnormalized, relatively flat trees into a set of binary-branching

depth-bounded trees in a maximally left-recursive normal right-corner form.

Figure 3.1 shows a sample tree from the WSJ treebank corpus before any processing has

30
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been performed. Figure 3.2 illustrates this same tree in normal right-corner form, after all pro-

cessing has been performed. This chapter describes the tree transformation (Section 3.2) and

syntactic language model parameter estimation (Section 3.3) procedures necessary for learn-

ing an incremental parsing model from a corpus of sentences, manually annotated with phrase

structure trees.1 The Wall Street Journal (WSJ) Penn Treebank corpus (Marcus et al., 1993) is

a collection of sentences in the news domain taken from the Wall Street Journal; each sentence

in the corpus is annotated with a phrase structure tree that was assigned by a human annotator.

This is the corpus we will use to train our incremental syntactic language model.

We now briefly enumerate the tree transformations necessary to train our incremental syn-

tactic language model:

1. Remove annotation errors The WSJ treebank contains certain annotation errors which

we correct.

2. Binarization The WSJ trees are not distributed in a binary-branching form. We attempt

to identify the constituent head of high-arity branches, and use that information to rewrite

those branches in binary form.

3. Argument structure We attempt to identify phrasal argument structure. Each child ele-

ment identified as a syntactic head is subcategorized to mark its argument structure.

4. Traces The WSJ treebank contains empty constituents, annotated following government

and binding theory (Haegeman, 1994). We remove empty constituents, along with any

unary projections that arise from this removal.

5. Punctuation The WSJ treebank annotation scheme utilizes certain (arguably arbitrary)

conventions in annotating punctuation. We re-annotate punctuation in such a way as to

minimize its effect on our parsing model.

6. Normalization All trees are transformed into Chomsky Normal Form (Chomsky, 1963).
1 The model training processes described here (and numerous variants) were developed and used extensively

by members of the University of Minnesota Natural Language Processing group (Miller et al., 2007; Miller and
Schuler, 2008a,b,c; Miller, 2009a,b; Miller et al., 2009; Miller and Schuler, 2010; Schuler and Miller, 2005; Schuler
et al., 2006, 2008, 2009, 2010; Schuler, 2010; Schwartz et al., 2009, 2011; Wu et al., 2008a,b, 2010), but until now
have not been fully described.
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7. Depth annotation & bounding Our parsing model utilizes a bounded memory store. We

identify the depth in this bounded memory store at which each node in a tree will be

placed, and annotate the tree nodes with this information. Trees that exceed a specified

maximum depth are removed from the training set.

8. Right-corner transform We transform trees into a maximally left-recursive right-corner

form. This two-part process first flattens right-recursive structure into flat structure, and

then transforms these flattened structures into equivalent left-recursive structures.

3.1 Notation

Throughout this chapter, we describe various transforms as applied to phrase structure trees.

We will make use of the following notation:

• Roman uppercase letters (Ai) are variables matching constituent labels,

• Roman lowercase letters (ai) are variables matching terminal symbols,

• Greek lowercase letters (αi) are variables matching entire subtree structure,

• Roman letters followed by colons, followed by Greek letters (Ai:αi) are variables match-

ing the label and structure, respectively, of the same subtree, and

• ellipses (. . . ) are taken to match zero or more subtree structures, preserving the order of

ellipses in cases where there are more than one

3.2 Tree Transformations

While models for common top-down (Earley, 1968) and bottom-up (Cocke and Schwartz, 1970;

Kasami, 1965; Younger, 1967) parsing techniques can be trained directly on such treebanks,

ours cannot. The limited pre-processing requirement for their parsing techniques is that trees be

transformed into a canonical binary-branching normal form, typically Chomsky Normal Form,

CNF (Chomsky, 1963).2 In order to parse with the Hierarchical Hidden Markov Model
2 A grammar is in CNF if and only if all grammar production rules are of the form A→ BC or A→ α, where

A, B, and C represent grammar nonterminal constituent labels, and α represents any non-empty terminal language
symbol.
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Figure 3.3: Graphical representation of a sample phrase structure tree in the WSJ treebank,
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(HHMM) (Murphy and Paskin, 2001) parsing algorithms we present in Chapter 4, more ex-

tensive transformations are required. The end result of these transformations will be a depth-

limited, right-corner transformed grammar in Chomsky Normal Form.

The WSJ treebank corpus is distributed as a collection of 25 non-overlapping sections (sec-

tions 0–24). The syntactic language model which we define is trained on this treebank. Fol-

lowing standard practice in the parsing literature, we train on sections 2–21. The WSJ treebank

contains some annotation errors; we begin processing the treebank by correcting certain of these

annotation errors (see Appendix B.2). Figure 3.3 illustrates a sample phrase structure tree from

the WSJ treebank, before any processing has been performed. We will use this tree as a run-

ning example throughout this chapter, to illustrate the effects of our transformations. Figure 3.4

shows this same tree after pre-processing to fix annotation errors. In Figure 3.4 and in the

Figures that follow, nodes in the tree which have changed are highlighted in bold.

3.2.1 Binarization

The WSJ treebank trees are not distributed in a binary-branching normal form. The subtree

shown in Figure 3.4 dominating no signs , however , of China ’s yielding on key issues and

headed by NP-PRD has three immediate children (NP, PRN, PP). It is convenient for all train-

ing trees to be transformed into a canonical binary-branching normal form. To this end, after

all input training trees have been pre-processed to correct annotation errors, these trees are bi-

narized. At the same time, all terminal tokens are lowercased. Punctuation marks are retained.

The binarization script (Appendix B.3) contains over 180 tree transform rules. These rules

define how to binarize tree fragments when dealing with conjunctions, noun phrases, temporal

noun phrases, verb phrases, sentential projections, adjectival and adverbial phrases, preposi-

tional phrases, empty phrase structure categories, punctuation, and terminal symbols. The se-

lection of head constituents in these rewrite rules is similar to the Magerman-Black head rules

(Magerman, 1995). The most important tree transform rules are presented in more detail in Ap-

pendix A.2. Figure 3.5 depicts the sample tree from Figure 3.4 after the binarization transform.
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3.2.2 Argument Structure

In any binary subtree fragment, one child is typically the head while the other typically serves

as either an argument or an adjunct.3 The trees resulting from the linguistically motivated

binarization processing in Section 3.2.1 are next examined to identify heads and arguments.

Each child identified as a syntactic head is subcategorized to mark its argument category. The

subcategory X-uY is used to mark that head category X will take an (as yet unsatisfied) argument

of category Y. For example, in Figure 3.6 the subtree (NP → DT NNS) is transformed into

(NP→ DT-uNNS NNS).

Figure 3.6 shows the binarized phrase structure tree from Figure 3.5 after argument pro-

cessing has been performed. Implementation details for argument structure processing are doc-

umented in Appendix A.3.

3.2.3 Traces

The WSJ treebank contains empty constituents, annotated following government and binding

theory (Haegeman, 1994). After processing trees for argument structure (Section 3.2.2) we re-

move these empty constituents, along with any unary projections that arise from this removal

(following Schuler et al. (2010)). In the case of empty constituents representing traces, the ex-

tracted category label is annotated onto the lowest nonterminal dominating the trace using the

suffix -gXextr where Xextr is the category of the extracted constituent. To preserve grammat-

icality, this annotation is then passed up the tree and eliminated when a wh−, topicalized, or

other moved constituent is encountered, in a manner similar to that used in Head-driven Phrase

Structure Grammar (Pollard and Sag, 1994), but without affecting branching structure.

Figure 3.7 shows the phrase structure tree from Figure 3.6 after this processing has been

performed. The processing rules are listed in Appendix A.4, with code implementation listed

in Appendix B.5.

3.2.4 Punctuation

The Wall Street Journal treebank annotation scheme utilizes certain (arguably arbitrary) con-

ventions in annotating punctuation. These conventions can lead to undesirable artifacts in the
3 Adjuncts are sometimes also called modifiers.
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resulting annotated trees which are both psycholinguistically implausable and potentially detri-

mental during parsing. As an example, in Figure 3.8 the annotation of commas in the tree

causes the word however to be artificially center-embedded by lone punctuation marks. In

general, branching structure for punctuation can be difficult to motivate on linguistic grounds,

because punctuation marks do not have lexical projections or argument structure in most lin-

guistic theories.

The HHMM which we use as a model of language is a pycholinguistic model with an

explicit bounded memory store. It is highly questionable to account for punctuation marks in

such a psycholinguistic model as composable elements in the memory store. We therefore re-

annotate punctuation in the treebank in such a way as to minimize the effect of punctuation with

regard to the memory store by allowing punctuation to rise in the tree. This re-annotation, in

conjunction with the right-corner transform, serves to minimize the effect of punctuation on the

memory store during parsing.4

Figure 3.8 shows the phrase structure tree from Figure 3.7 after punctuation processing

has been performed. The punctuation processing rules are listed in Appendix A.5, with code

implementation listed in Appendix B.6.

3.2.5 Normalization

The procedures described in the subsections above (and the corresponding rules as implemented

in the relevant appendices) remove about 65% of super-binary branches from the treebank train-

ing trees. All remaining super-binary branches are processed as described in Schuler et al.

(2010). Tree fragments with super-binary branching arity are decomposed into right-branching

structures by introducing intermediate nodes, each with a label concatenated from the labels of

its children, delimited by underscores.

A0

A2:α2A1:α1. . .

⇒

A0

A1 A2

A2:α2A1:α1

. . .

4 Note that this process does not remove punctuation. Rather, tree structure is modified to minimize the effect
of punctuation on the parser’s memory constraints. Punctuation has been shown to have significant effects during
translation, and it is important that our syntactic language model robustly handle punctuation.
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This label concatenation process removes all remaining super-binary structure from the

training trees, leaving all trees in Chomsky Normal Form. The steps to perform this normal-

ization are shown in Appendix A.6. While technically, no super-binary structure remains, the

concatenated labels at the root of the newly binarized branches represent the exact same super-

binary structure as existed before; this process is equivalent to leaving super-binary branches

intact and using dot rules in parsing (Earley, 1970).

Figure 3.9 shows the phrase structure tree from Figure 3.8 after normalization to Chomsky

Normal Form has been performed. Details for performing normalization are in Appendix A.6

with implementation details listed in Appendix B.7.

3.2.6 Depth Annotation and Depth Bounding

After normalization (Section 3.2.5) all training trees from the WSJ treebank are binary-branching

trees in Chomksy Normal Form. These trees will be used to estimate probability values in the

HHMM for use in parsing. The nodes in a training tree can be mapped onto hidden variables in

the HHMM. In order to correctly estimate probability values for the HHMM hidden variables,

it is necessary to annotate each node in the training trees with the depth in the HHMM of the

hidden variable to which the node can be mapped. During model training, this data will allow

depth-specific models to be correctly estimated.

Given the root element of a training tree in Chomsky Normal Form, Algorithm 3.1 annotates

each node in the tree with the depth at which it will reside when the tree is mapped onto an

HHMM. The algorithm also determines the side of the node; that is, whether it is a left or right

child of its parent. Unary children are considered to have a side value of left. The nonterminal

category of each node annotated with this depth and side information.

The HHMM is a bounded memory model of language. In any use of the HHMM, a concrete

value must be selected as the maximum depth (or bound) of the memory model.Schuler et al.

(2010) found that 99.54% of trees in the WSJ treebank training section can be accounted for

with a maximum depth of 4 memory elements. This coverage increases to 99.96% if punctuation

is discarded. For model training and in all experiments, we set the HHMM maximum memory

depth to 4 memory elements. Training trees that require more than 4 elements in the HHMM

memory store are discarded.

Figure 3.10 shows the first phrase structure tree in the WSJ treebank after this processing

has been performed. Details are shown in Appendix A.7, with code listed in Appendix B.8.
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Algorithm 3.1 Given the root element of a tree in Chomsky Normal Form, annotate each node

in the tree with the depth at which it will reside when the tree is mapped onto an HHMM.

Additionally, annotate each child node as a right (R) or left (L) child of its parent. The root

element is considered to be a left child.
Require: Input tree is in Chomksy Normal Form

function ANNOTATE-BRANCH-DEPTH(node)

if node==root then
node.depth← 1

node.side← L

end if
if node.children.size > 0 then

if node.side == R then
node.children[0].depth← node.depth+1

else
node.children[0].depth← node.depth

end if
node.children[0].side← L

ANNOTATE-BRANCH-DEPTH(node.children[0])

if node.children.size > 1 then
node.children[1].depth← node.depth

node.children[1].side← R

ANNOTATE-BRANCH-DEPTH(node.children[1])

end if
end if

end function
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3.2.7 Right Corner Transform

Following our work in (Schuler et al., 2010), we define the right-corner transform as a process in

which right-recursive structure is first flattened and is then replaced with left-recursive structure.

Flatten Right-Recursive Structure

1. Transform right-recursive sequences of completed constituents into flat sequences of in-

complete constituents

A1

A2

A3

α3

α2

α1

⇒

A1

A3

α3

A2/A3

α2

A1/A2

α1

2. Transform right-recursive sequences of completed and incomplete constituents into flat

sequences of incomplete constituents

A1

A2

. . .A2/A3

α2

α1

⇒

A1

. . .A2/A3

α2

A1/A2

α1

Figure 3.11 shows the sample tree from Figure 3.10 after transformations to flatten right-

recursive structure.

Transform Flattened Right-Recursive Structure into Left-Recursive Structure

3. Transform flattened sequences into left-recursive sequences

A1

. . .A2/A3

α2

A1/A2:α1 ⇒

A1

. . .α3A1/A3

α2A1/A1:α1
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Figure 3.12 shows the sample tree from Figure 3.11 after flattened structures have been

transformed into left-recursive (right-corner) form.

3.3 Estimating Model Parameters from Transformed Trees

The preceding Section 3.2 defined various transformation processes over the phrase structure

trees of the Wall Street Journal Treebank. Given a set of transformed phrase structure trees

(WSJ sections 2-21) as a training set of positive examples of valid English sentences, our goal

is to define a formal model of the English language and estimate parameter values for this model

from the training data.

3.3.1 Formal Definition: Probabilistic Context-Free Grammar

A probability model of a language can be defined in terms of a probabilistic context-free gram-

mar, or PCFG, (Booth, 1969). A context-free grammar G is defined by the tuple 〈N,Σ, R, S〉.
A probabilistic context free grammar is a CFG augmented by the probability model θD defined

by function D.

N A finite set of nonterminal symbols representing all valid phrase-structure categories

Σ A finite set of terminal symbols representing all valid words

R A finite set of production rules of the form ζ → γ, where ζ is an element of N and γ

is a sequence of elements of N
⋃

Σ. We will be dealing exclusively with context-free

grammars in Chomsky Normal Form. In such grammars, elements of R are restricted to

those of the form α → β0β1 or α → x, where α, β0 and β1 are elements of N , and x is

an element of Σ.

S Those elements of N that which may serve as the start symbols for the grammar

D A function that assigns a real value between 0 and 1 to each production rule in R, such that

for each left-hand side (ζ), the sum over all right-hand sides (γ) sum to 1

A phrase structure tree representing a valid sentence in a grammar G represents a sequence

of rule applications from R. Given this view of phrase structure trees, a treebank of phrase

structure trees in language L can be used to obtain N , Σ, R, S, and θD for a grammar G of L.
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Each binary branch in a tree represents the application of a binary rule α → β0β1. Each unary

branch in a tree represents the application of a unary rule α→ x.

α

β1β0

⇒ α→ β0β1 (3.1)

α

x

⇒ α→ x (3.2)

A traversal of all depth-bounded training phrase structure trees (from Section 3.2.6) using

Equations 3.1 and 3.2 results in a multi-set R′ of rules. Set R is obtained by removing all

duplicate elements from R′. Set N is the set of all nonterminals α that appear on the left-hand

side of any rule in R unioned with the set of all nonterminals β that appear on the right-hand

side of any binary rule. Set Σ is the set of all terminals x that appear on the right-hand side of

any unary rule. The set S is the set of nonterminals which appear at the root of any training tree.

Count functionC provides the number of times a rule occurs inR′. GivenR′ andC, probability

model θD can be obtained via relative frequency estimation:

PθD(α→ γ |α) =
C(α→ γ)∑
γ′ C(α→ γ′)

(3.3)

If the goal is to train a PCFG over trees in right-corner form, one might wonder why we

train on the depth-bounded phrase structure trees resulting from Section 3.2.6 rather than the

right-corner form trees resulting from Section 3.2.7. Much of our prior work indeed did train

the incremental syntactic language model in exactly this way, from a corpus of right-corner

form trees.

However, we choose to make use of an equivalent, but more general option. Schuler (2009)

defines a model transform which converts a standard probabilistic context-free grammar into

an equivalent right-corner grammar. In our case, the end result is the same. Had we chosen

to train a PCFG directly over the right-corner form trees resulting from Section 3.2.7, that

grammar would be equivalent to the grammar obtained by first training on the depth-bounded

phrase structure trees resulting from Section 3.2.6 and then performing the right-corner model

transform of Schuler (2009).
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In other cases, we may have a sophisticated PCFG available whose training procedure can-

not easily incorporate the right-corner transform. By defining our training process in terms of

the right-corner model transform rather than the right-corner tree transform, we allow for the

direct use of any arbitrary PCFG.

3.3.2 Reformulation as Component Probability Models

Chapter 4 defines a grammar transform over the PCFG from Section 3.3.1. When defining that

grammar transform, it is most convenient for the original PCFG to be reformulated as a set of

component prior and conditional probability models. These component models can be directly

estimated from the training trees using relative frequency estimation. Together, they contain all

information required for the PCFG original formulation from Section 3.3.1. The component

probability models are listed below:

θC Prior probability model over all nonterminal symbols

θP Prior probability model over preterminal symbols. Preterminals are that subset of nonter-

minal symbols which appear on the left-hand side of unary rules

θCr Prior probability that a nonterminal symbol may be a start symbol. Only start symbols may

serve as the root of a tree

θCC Conditional probability model of the nonterminal children (right-hand side) of a rule given

the parent (left-hand side). Because unary rules have only terminal children, for the

purpose of this model, unary branching rules (α → x) are treated as binary branching

rules with empty nonterminal values (−) for both children (α→ −−)

θPw Conditional probability model of the parent preterminal (left-hand side) of a unary branch-

ing rule given the child word (right-hand side)

θPc Conditional probability model of a preterminal given itself (as a nonterminal). In our

models this values is deterministic with value 1. In other formulations this model could

potentially have more interesting values.
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During parsing we may be interested in the conditional probability of a terminal given a

preterminal. This value can be easily calculated using Bayes’s rule given the above models.5

Appendix A.8 illustrates the use of the scripts which train these models using relative frequency

estimation from the depth-limited training trees.

3.3.3 Part of Speech Model

Any robust model of language needs a mechanism to handle words not seen during training.

Words not present in the training corpus are termed out-of-vocabulary, or OOV. Given an OOV

word, it is necessary to define a probability distribution over the possible preterminal categories.

We use a preterminal, or part-of-speech (POS), model defined using a decision tree. This im-

plementation is an existing component of ModelBlocks. Any other POS model implementation

could be substituted, provided it can output probability values in the appropriate ModelBlocks

file format. Implementation details for estimating the POS model are listed in Appendix A.9.

3.4 An Incremental Parsing Model

In statistical machine translation, the target language model plays a critical role guiding the

order and choice of target language words. Statistical machine translation research typically

follows widespread practice in speech recognition by using n-gram language models to model

the prior probability of a contiguous sequence of words.

Syntactic parsing may help produce more grammatical output by better modelling struc-

tural relationships and long-distance dependencies. Bottom-up and top-down parsers typically

require a completed string as input; this requirement makes it difficult to incorporate these

parsers into phrase-based translation, which generates hypothesized translations incrementally,

from left-to-right.6

On the other hand, incremental parsers (Roark, 2001; Henderson, 2004; Schuler et al., 2010;

Huang and Sagae, 2010) process input in a straightforward left-to-right manner. We observe

that incremental parsers, used as syntactic language models, provide an appropriate algorithmic
5 Technically, the prior probability of a terminal is also needed in this calculation. However, at parse time all

terminals are observed values. As such, this term may be safely dropped, resulting in the prior probability of a
terminal being proportional to the conditional probability of the preterminal given the terminal, divided by the prior
probability of the preterminal.

6 While not all languages are written left-to-right, we will refer to incremental processing which proceeds from
the beginning of a sentence as left-to-right.
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match to incremental phrase-based decoding. The model we have defined in this chapter, by

the nature of the right-corner form over which it is defined, fits naturally into an incremental

parsing framework.

We now present a general definition of incremental parsing. An incremental parser pro-

cesses each token of input sequentially from the beginning of a sentence to the end. Tokens will

commonly be words, but may be morphemes (used in psycholinguistics sentence processing

research) or characters (used in Chinese parsing). After processing the tth token in string e,

an incremental parser has some internal representation of possible hypothesized (incomplete)

trees, τt. The syntactic language model probability of a partial sentence e1 . . . et is defined:

P(e1 . . . et) =
∑
τ∈τt

P(e1 . . . et | τ)P(τ) (3.4)

In practice, a parser may constrain the set of trees under consideration to τ̃t, that subset

of analyses or partial analyses that remains after any pruning is performed. An incremental

syntactic language model can then be defined by a probability mass function (Equation 3.5)

and a transition function δ (Equation 3.6). Any combination of grammar and parser which

implement these two functions can serve as an incremental syntactic language model.

P(e1 . . . et) ≈ P(τ̃t) =
∑
τ∈τ̃t

P(e1 . . . et | τ)P(τ) (3.5)

δ(et, τ̃t−1)→ τ̃t (3.6)

The equations above provide a general definition of an incremental syntactic language

model. In Chapter 4 that follows, we provide a much more detailed and specific definition

of one particular incremental syntactic language model. We will define our specific incremen-

tal syntactic language model in terms of an incremental Hierarchical Hidden Markov Model

parsing algorithm. Our parsing algorithm is defined in terms of a right-corner form grammar

obtained from the PCFG defined in Section 3.3 above. Chapter 4 provides a very detailed formal

description of the right-corner model transform and the HHMM parsing algorithm. In Chap-

ter 5, we show how our incremental syntactic language model can be directly integrated into

phrase-based machine translation.



Chapter 4

Algorithms for Parsing with an
Incremental Syntactic Language
Model

The core idea we present in this dissertation is a method for using an incremental syntactic

language model to guide a machine translation decoder as it translates sentences into a target

language. The probabilitistic phrase structure grammar defined in Chapter 3 is a necessary

component, but is not sufficient to completely define an incremental syntactic language model.

Given a sentence, we need some mechanism to posit and rank possible phrase structure trees.

Because the phrase-based machine translation algorithm generates target language words incre-

mentally, we would like the mechanism we define to be capable of processing not just complete

sentences, but partially complete sentences, where the final words of the sentence are not yet

available. In this chapter, we use a Hierarchical Hidden Markov Model — HHMM (Murphy and

Paskin, 2001) — to define the computational mechanism in our incremental syntactic language

model which satisfies these desiderata.

The phrase structure grammar presented in detail in Chapter 3 represents the syntactic struc-

ture of sentences in terms of phrase structure trees. Given a sentence in the language, such a

probabilistic model assigns a probability value between zero and one to every possible phrase

structure tree. In other words, the model describes the probability that the syntactic structure of

a given sentence can be correctly described by a particular phrase structure tree.

56
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This chapter presents the formal computational mechanism of our incremental syntactic

language model in terms of detailed parsing algorithms for an HHMM. Readers of this work

who are interested primarily in our novel contribution of how an incremental syntactic language

model can be integrated into statistical phrase-based translation may find much of the material

presented in this chapter to be at a considerably greater level of detail than they may find neces-

sary to understand the primary contributions of this dissertation. For such readers who choose

to skim the remainder of this chapter, the most important highlights of the previous chapter and

of this chapter are summarized below.

Sections 3.2–3.3 A probabilistic context-free grammar over trees in right-corner form can be

estimated from a transformed corpus of phrase structure trees.

Section 3.4 An incremental parser processes each token of input sequentially, from the first

word in a sentence to the last. After processing the tth token in string e, an incremental

parser has some internal representation of possible hypothesized (incomplete) trees, τt.

Generically, any incremental parser and grammar which together implement an appro-

priate probability mass function P(τ̃t) (Equation 3.5 on page 55) and transition function

δ(et, τ̃t−1) (Equation 3.6 on page 55) together define an incremental syntactic language

model.

Section 4.1 Hidden Markov Models can be used to model unobserved (or hidden) states that

underlie sequences of observed data. We choose a Hierarchical Hidden Markov Model

(shown in Figure 4.3 on page 61) to model the unobserved (right-corner form) syntactic

structure that underlies an observed sequence of words.

Section 4.2 We formally redefine the right-corner model transform of Schuler (2009) in terms

of the probabilistic context-free grammar we trained in Section 3.3. The resulting right-

corner PCFG fully defines the model parameters of our HHMM.

Section 4.3 We formally define the algorithms necessary to incrementally parse using our

HHMM with our right-corner PCFG. Algorithm 4.12 on page 91 defines the required

transition function δ(et, τ̃t−1) declared in Equation 3.6. Algorithm 4.14 on page 93 de-

fines the required probability mass function P(τ̃t) declared in Equation 3.5. Together,

these components constitute our specific incremental syntactic language model.
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Y0 Y1

X1

t=1

Y2

X2

t=2

Y3

X3

t=3

. . .

. . .

Yt

Xt

t

Figure 4.1: A Hidden Markov Model (HMM) models a sequence of X1...t observations where

each observation has a corresponding unobserved hidden state Y1...t. Each observation Xt is

dependent only on its corresponding hidden state Yt. Each hidden state Yt is dependent only on

the immediately previous hidden state Yt−1.

Section 4.4 In practice, exhaustive parsing with no pruning as defined in Section 4.3 is pro-

hibitively slow. We define important parser optimization techniques which allow the

parser to operate with practical runtimes. These techniques include beam pruning, paral-

lel processing, A* uniform cost search, and lazy priority queue expansion.

Chapter 5 We integrate the incremental syntactic language model defined in Sections 4.2–4.4

into the decoding algorithm for statistical phrase-based machine translation.

4.1 Hidden Markov Model

In many problems, it is useful to define models of events that produce sequential output. Such

models can be refered to as graphical sequence models. The first prominent use of a graphical

sequence model to model and analyze human language was presented by Markov (1913). The

resulting family of graphical sequence models that follow his work are called Markov models.

Markov models can be used to address problems in which an unknown (or hidden) state

must be postulated for each observation in a sequence of data. The joint probability distribution

PθH (X1...t, Y1...t) over the sequence of t observations X1...t and the corresponding sequence of

hidden states Y1...t represents a Hidden Markov Model, or HMM. Figure 4.1 depicts a Hidden

Markov Model drawn as an unrolled dynamic Bayesian network over the t observations. Each

observation is considered to take place at a discrete point in time, and as such each observation

with its corresponding hidden state is refered to as a time slice.
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Formally, an HMM is defined by tuple 〈Y ,X, θΠ, θA, θB〉, where X represents the set (or

vocabulary) of all possible observations and Y represents the set of all possible hidden state

values. The probability distribution over hidden state values at HMM node Yt is defined by

transition model θA. Transition model θA is defined such that each hidden state Yt is dependent

only on the immediately previous hidden state Yt−1. The initial hidden state Y0 has no pre-

ceding hidden state; as such it is modelled by the prior probability model θΠ. The probability

distribution over the observation state values at HMM node Xt is defined by observation model

θB . Observation model θB is defined such that each observed state Xt is dependent only on the

corresponding hidden node Yt at that time slice. The joint probability of the sequence of obser-

vations X1...t and hidden states Y1...t can be defined in terms of the hidden state prior model θΠ,

transition model θA, and observation model θB:

P(X1...t, Y1...t) = PθΠ(Y0)

t∑
1

PθA(Yt |Yt−1) · PθB (Xt |Yt) (4.1)

Hidden Markov Models have been widely used in natural language processing and speech

recognition. In many applications of HMMs, the desired goal is to hypothesize the most likely

sequence of hidden state values Y1...t given a sequence of observations X1...t. This sequence

of hidden states can be efficiently calculated using via dynamic programming (Viterbi, 1967).

However, we are interested in determining the total probability mass that our model assigns to

the observation sequence X1...t.

In our task, the observation set X is the vocabulary of words in a human language, specifi-

cally the target language into which we wish to translate. The set of hidden state values Y will

represent hypothesized structure over a sequence of words in the language. We will precisely

define what kind of “hypothesized structure” the hidden states will store over the remainder of

this chapter. Regardless of what form we develop for the hypothesized structure, we calculate

the probability of an observed sequence of words X1...t given our model of the language, as

specified by an HMM. To do so, we must sum over all possible sequences Y ′1...t of hidden state

values:

P(X1...t) =
∑
Y ′1...t

P(X1...t, Y
′

1...t) (4.2)

If the values of the hidden states represent the syntax of the modelled target language,

Equation 4.2 defines a syntactic language model of the target language.
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4.1.1 Hierarchical Hidden Markov Model

This chapter seeks to define a syntactic language model for a target language. To do so we define

an HMM where the domain of hidden states encompasses a specific type of phrase structure

trees. To efficiently represent structured data in the hidden domain of an HMM, each hidden

state can be explicitly factored (Fine et al., 1998) into a Hierarchical Hidden Markov Model, or

HHMM. As with HHMs, inference in an HHMM can be accomplished in linear time (Murphy

and Paskin, 2001). We follow Murphy and Paskin (2001) in our representation of HHMMs as

unrolled Bayesian networks.

Figure 4.2 depicts the standard architecture of a Hierarchical Hidden Markov Model. The

HHMM models a sequence of X1...t observed word tokens. Each observation has a correspond-

ing unobserved hidden state Yt, modelling a probability distribution over possible syntactic

representation values. Each hidden state Yt is factored into component parts, denoted as nodes

S1...d
t and R1...d

t .The factored nodes in each hidden state Yt are dependent only on other nodes

in Yt and on nodes in the immediately previous hidden state Yt−1.

We augment this standard HHMM architecture by explicitly factoring the preterminal of

each observed word token into a hidden node Pt. Each node Pt models the completed phrase

structure category that serves as the parent (in a hypothesized phrase structure tree) of the word

observed at node Xt. This augmented HHMM is shown in Figure 4.3.

4.2 Right-Corner Model Transform

Using the model transform of Schuler (2009), a PCFG can be transformed into the specific type

of right-cornerized, depth-limited PCFG used to parse with our HHMM. Section 3.3 defines a

PCFG in Chomsky Normal Form. The rules for a PCFG trained on transformed WSJ trees are

generated as shown in Appendix A.8, with a selection shown in Figure 4.4. The ModelBlocks

file format we utilize can store probability values directly, or as count values which can be used

to calculate probabilities. The model transform process requires a PCFG model file in the latter

form. This model file provides values for the count functionC(·), from which probability values

can be calculated by simple normalization. The various lines provide the count values over the

following:

C CθC (αside,depth) for all binary rules αside,depth → βL,depth0
0 βR,depth1
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and unary rules αside,depth → x

P CθP (α) for all unary rules αside,depth → x

Cr CθCr
(αside,depth) for all nonterminals α at the root of a training tree

CC CθCC
(αside,depth → βL,depth0

0 βR,depth1 ) for all rules. Binary branching rules αside,depth →
βL,depth0

0 βR,depth1 are counted directly. As mentioned previously, unary branching rules

have only terminal children, so for the purpose of this model such rules (αside,depth → x)

are treated as binary branching rules with empty nonterminal values (αside,depth → −−)

for children βL,depth0
0 and βR,depth1

Pw CθPw
(α→ x) for all unary rules αside,depth → x

Pc CθPc
(αside,depth) for all unary rules αside,depth → x

Using the binary branching rule counts CCC(·), the depth-specific conditional probability

of the left and right childrens’ categories can be calculated, given the side and category of the

parent. Recall that CCC(·) includes counts for unary rules, where each unary rule αside,depth →
x is treated as a binary branching rule with empty child categories (αside,depth → −−). In the

following equations, summation over any variable marked ′ (such as X ′) indicates summing

over all values of that variable.

PθCC
(β0, β1 |α, side, depth) =

CθCC
(αside,depth → β0

L,depth0βR,depth1 )∑
β′0,β

′
1
CθCC

(αside,depth → β′0
L,depth0β′1

R,depth)
(4.3)

By further marginalizing over all category values for the left child, the depth-specific con-

ditional probability of the right child’s category can be calculated, given the side and category

of the parent:

PθCC
(β1 |α, side, depth) =

∑
β′0,depth0

CθCC
(αside,depth → β′0

L,depth0βR,depth1 )∑
β′0,β

′
1,depth0

CθCC
(αside,depth → β′0

L,depth0β′1
R,depth)

(4.4)

Likewise, by marginalizing over all category values for the right child, the depth-specific

conditional probability of the left child’s category can be calculated, given the side and category
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C : ADJPL,1 = 148

C : ADJPL,2 = 2543

C : ADJPL,3 = 2559

C : ADJPL,4 = 447

C : ADJPL,5 = 1

C : ADJPR,1 = 4484

C : ADJPR,2 = 3126

C : ADJPR,3 = 380

C : ADJPR,4 = 13

. . .

C : NN-tmpL,1 = 1

C : NN-tmpL,2 = 33

C : NN-tmpL,3 = 22

. . .

CC ADJPL,2 : JJRL,2 JJR,2 = 7

CC ADJPL,2 : JJRL,2 NNR,2 = 2

. . .

CC NPR,1 : DT-uJJL,2 JJR,1 = 81

CC NPR,1 : DT-uNNPSL,2 NNPSR,1 = 77

CC NPR,1 : DT-uNNPL,2 NNPR,1 = 1199

CC NPR,1 : DT-uNNSL,2 NNSR,1 = 2011

CC NPR,1 : DT-uNNL,2 NNR,1 = 10845

. . .

Cr : S-mEL,1 = 29403

. . .

Cr : SINV-mE
L,1 = 1658

. . .

. . .

P : INof-uSprovbg = 547

P : INthat = 280

P : INthat-uS = 4082

P : INthat-uSC = 13

P : IT = 554

P : JJ = 56276

P : JJ-uNP = 45

. . .

Pc ADJPL,1 : ADJP = 18

Pc ADJPL,2 : ADJP = 286

Pc ADJPL,3 : ADJP = 122

Pc ADJPL,4 : ADJP = 14

Pc ADJPL,5 : ADJP = 1

Pc ADJPR,1 : ADJP = 1292

Pc ADJPR,2 : ADJP = 1487

Pc ADJPR,3 : ADJP = 201

Pc ADJPR,4 : ADJP = 4

. . .

Pw altered : VBNvbn-uNP = 3

Pw altered : VBNvbn-v = 2

Pw altering : VBGvbg-uNP = 1

Pw alternate : JJ = 3

Pw alternates : VBZvbz = 1

Pw alternating : VBGvbg-uNP = 2

Pw alternative : ADJP = 1

. . .

Figure 4.4: Selected lines from a ModelBlocks PCFG file trained on transformed WSJ train-

ing trees (Appendix A.8). Because we use the generated ModelBlocks PCFG file in a model

transform (Section 4.2), we call scripts/relfreq.pl with the -f flag, generating un-

normalized raw counts instead of probabilities. Without this flag, actual probability values are

generated. Note that the file in the format shown (with counts) provides all the information

required to calculate the probability values.
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of the parent:

PθCC
(β0 |α, side, depth0) =

∑
β′1
CθCC

(αside,depth → βL,depth0
0 β′1

R,depth)∑
β′0,β

′
1
CθCC

(αside,depth → β′0
L,depth0β′1

R,depth)
(4.5)

In Equation 4.5, the summations should formally also marginalize over depth; however,

since the value of depth is deterministic given side and depth0 (and vice versa - see Algo-

rithm 3.1), in practice this marginalization can be omitted. Likewise, the marginalization over

depth0 can be omitted in Equation 4.3 and Equation 4.4 for the same reason.

4.2.1 Left progeny

Following the model notation of Schuler (2010), we alias the depth-specific probability distri-

bution of Equation 4.3 into two cases, depending on the side of parent α — θG-L,d for side = L

and θG-R,d for side = R.

PθG-L,d(α→ β0β1) = PθCC
(β1, β

′
2 |α, side = L, depth = d) (4.6)

PθG-R,d
(α→ β0β1) = PθCC

(β1, β
′
2 |α, side = R, depth = d) (4.7)

An expected count model θG-LR∗,d can be estimated from θG-L,d and θG-R,d. This model is

an estimate of the number of times each possible category label is encountered, when examining

only the left descendents (or progeny) of parent α (whose side = R). We begin by summing

over all possible right child values β′2.

EθG-RL∗,d(α
0→ β0 . . .) =

∑
β′1

PθG-R,d
(α→ β0β

′
1) (4.8)

Equation 4.8 models the number of subtree fragments in the training corpus where β0 is the

left child of α, and where side = R for α:

α
0→ β0β1

⇒

. . .

α

. . .β0

. . . (4.9)
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Equation 4.8 provides a count estimate for the case when β0 is a direct left child of α. For

a complete definition of expected count model θG-LR∗,d we must also count the subtrees where

β0 is an indirect left descendant of α.

α
k→ β0k . . . ⇒

. . .

α

. . .. . .

. . .. . .

. . .β0k

. . .

(4.10)

We define notation β0k to indicate that k intermediate left progeny ancestors separate β0

from ancestor α. In Equation 4.9, k = 0. In the sample tree drawn in Equation 4.10, k = 2. We

can now recursively define θG-LR∗,d for subtrees with separation value k:

EθG-RL∗,d(α
k→ β0k . . .) =

∑
β′0

EθG-RL∗,d(α
k−1→ β′0k−1 . . .) ·

∑
β′1

PθG-L,d(α→ β′0β
′
1) (4.11)

The expected count of finding left descendent β0 at any level in the direct left progeny of

ancestor α is defined as the summation of finding β0 at level k for all values of k.

EθG-RL∗,d(α
∗→ β0 . . .) =

∞∑
k=0

EθG-RL∗,d(α
k→ β0k . . .) (4.12)

In practice, Equation 4.12 is approximated using value iteration (Bellman, 1957) by sub-

stituting a constant upper bound K in place of infinity. We use K = 20; this value should be

sufficiently large to account for actual depth values of k encountered in the training corpus.

By normalizing we can obtain a probability model from the expected count model.

PθG-RL∗,d(β0 |α) =
EθG-RL∗,d(α

∗→ β0 . . .)∑
β′0

EθG-RL∗,d(α
∗→ β′0 . . .)

(4.13)

For a node with constituent label α whose side = R and depth = d, Equation 4.13 defines

the conditional probability that constituent label β0 can be found somewhere in the direct left

progeny of node α.
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Finally, it is sometimes useful to know how often a constituent label β0 is in the left progeny

of α, but is not the immediate left child of α. By subtracting, we can determine this expected

count of β0 as an indirect left descendent of α.

EθG-RL∗,d(α
+→ β0 . . .) = EθG-RL∗,d(α

∗→ β0 . . .)− EθG-RL∗,d(α
0→ β0 . . .) (4.14)

4.2.2 Transformed Component Models

Given a model of a PCFG in ModelBlocks file format (with counts instead of probabilities) as

specified in Section 4.2 (and shown in Figure 4.4) we transform this model into an equivalent

right-corner model using the model transform of Schuler (2009).

Murphy and Paskin (2001) note that the top layer of an HHMM can be equivalently defined

as either a special case in the definition of the relevant random variables, or alternatively as a

dummy layer component HMM with constant values. Figure 4.5 depicts an HHMM following

the latter convention; such dummy nodes are shaded. The component models that comprise the

transformed model in the ModelBlocks file format are listed below.

Model Constants

The models defined below incorporate certain edge case dependencies, which are omitted in

the HHMM shown in Figure 4.3. The omitted dependencies are not true random variables, but

rather are determined constant values that are required dependencies of nodes S1
t , Pt, and R5

t .

These constant values are shown in Figure 4.5 as shaded nodes in order to present a complete

depiction of the HHMM as a dynamic Bayesian network whose dependencies correspond com-

pletely and exactly with the equations below which define models θS , θR, and θP (for the S

nodes, R nodes, and P nodes, respectively).

At time t, constant node S0
t is a required dependency of random variable representing node

S1
t . The active component α0

At of node S0
t is fixed with phrase structure category value ROOT;

the awaited component α0
At of node S0

t is fixed with phrase structure category value REST.

These categories are defined in terms of a streaming sequence of sentences; ROOT represents

the root of the sequence while each instance of REST is the parent of one sentence in the

sequence. This is illustrated in Figure 4.6.
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ROOT

REST

REST

REST

. . .S

S

S

S

Figure 4.6: A meta-parse tree connects a sequence of complete sentences. Each complete

sentence, S, acts as the left child of the ROOT of the sequence or the REST of the sequence.

Constant nodesRd+2
t and Sd+1

t−1 are required dependencies of the random variable represent-

ing node Rd+1
t . An empty phrase structure constituent value is indicated in the ModelBlocks

files as a literal underscore “ ”. The active αd+1
At−1 and awaited αd−1

Wt components of constant

node Sd+1
t−1 are each fixed with this value. The completed constituent αd+2

t of constant node

Rd+2
t is also fixed with this empty phrase structure constituent value. The boolean component

bd+2
t of Rd+2

t is fixed to value 1.

Observation Model

Observation model θX represents the conditional probability distribution of each observed X

node. The definition of θX depends on several component models. These component models

are part of the transformed ModelBlocks model file, and are defined below.

Pc As defined previously, PθPc
(α |αside,depth) for all unary rules αside,depth → x.

In our models this values is deterministic with value 1. In other formulations this model

could potentially have more interesting values. These Pc lines are obtained by relative

frequency estimation - normalizing the counts from the Pc lines in the PCFG Model-

Blocks file.

Pw As defined previously, PθPw
(α |x) for all unary rules αside,depth → x.

These Pw lines are obtained by relative frequency estimation - normalizing the counts

from the Pw lines in the PCFG ModelBlocks file.



70

PwDT As defined previously, PθPwDT
(xOOV |α) for all unary rules α → woov for all out-

of-vocabulary words xoov.

These PwDT lines are obtained from the decision tree process in Section 3.3.3.

P As defined previously, PθP (α) for all unary rules αside,depth → x.

These P lines are obtained by relative frequency estimation - normalizing the counts from

the P lines in the PCFG ModelBlocks file.

The observation model must define a probability distribution θX of words given preterminal

phrase structure categories. That is, PθX (x |α). We can define this distribution PθX (x |α) using

Bayes’s rule, but to do so requires some prior probability distribution θW over words in the

target language. At parse time all words are observed; as such we define an arbitrary uniform

prior distribution θW which assigns a constant very low probability value to every word:

PθW (x) = exp(−1000) (4.15)

Having defined θW , we can now define θX using Bayes’s rule in conjunction with the com-

ponent models defined above. Observation model θX is first defined for the case when word x

is known, that is, it was seen in the training corpus during model training.

PθX (x |α) =
PθPc

(α |x) · PθW (x)

PθP (α)
(4.16)

Observation model θX is similarly defined for the case when word x was not seen during

training, but in this case the out-of-vocabulary decision tree model θPwDT is used in place of

θW .

PθX (x |α) =
PθPc

(α |x) · PθPwDT
(x)

PθP (α)
(4.17)

Preterminal Model

Model θP represents the conditional probability distribution at each hidden P node. The defi-

nition of θP depends on component model θCe and node selection function SELECT-S-NODE.

The component model θCe is part of the transformed ModelBlocks model file, and is defined

below.
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Ce Preterminal expansion model PθCe
(β0 |αW, d).

Let HHMM node Sdt at depth d be the deepest node at time t that contains a non-empty

constituent. Given an incomplete constituent αA/αW at node Sdt , probability model

PθCe
(β0 |αW, d) is the probability that the awaited component constituent αW will ex-

pand as preterminal β0 at HHMM node Pt. Model θCe is formally defined in Equa-

tion 4.18.1

PθCe
(β0 |αW, d) =

PθCC
(− |αW, R, d) · JαW = β0K + EθG-RL∗,d(αW

∗→ β0 . . .) · PθCC
(− |β0, L, d)

PθCC
(− |αW, R, d) +

∑
β′0

EθG-RL∗,d(αW
∗→ β′0 . . .) · PθCC

(− |β′0, L, d)

(4.18)

To obtain the θCe model probability, we begin by obtaining the expected count of β0

in the direct left progeny of αW — EθG-RL∗,d(αW
∗→ β0 . . .). That count value is mul-

tiplied by the probability that β0 will serve as a preterminal (that is, that it will expand

to a terminal) — PθCC
(− |β0, L, d). If αW can serve directly as a preterminal (indi-

cated by JαW = β0K), we add on the probability that αW will serve as a preterminal

PθCC
(− |αW, R, d) given side = R for αW.

At each time slice, there exist d variable S nodes, plus the constant nodes S0
t and Sd+1

t .

The deepest S node, constant node Sd+1
t , is guaranteed to contain only the empty incomplete

constituent / . The shallowest S node, constant node S0
t , is guaranteed to contain only the

non-empty incomplete constituent ROOT/REST. Selection function SELECT-S-NODE, shown

in Algorithm 4.1, returns the depth x of the deepest S node at time t that contains a non-empty

constituent.

Model θP is defined in terms of selection function SELECT-S-NODE and component model

θCe:

x = SELECT-S-NODE(S0...d+1
t ) (4.19)

PθP (β0 |αxWt , x) = PθCe
(β0 |αxWt , x) (4.20)

1 An indicator function J·K is used to denote deterministic probabilities: JφK = 1 if φ is true, 0 otherwise.
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Algorithm 4.1 Given nodes S0...d+1
t at time t, select node Sxt such that x is deepest depth

at time t which contains a non-empty constituent. A non-empty constituent is defined as one

whose active component is not “ ”.

Require: Nodes S0...d+1
t at time t

function SELECT-S-NODE(S0...d+1
t )

for x = d+ 1 . . . 0 do
if αxAt 6= then . αxAt is the active component of node Sxt

return x
end if

end for
end function

Shift Model

Model θS represents the conditional probability distribution at each hidden S node. The defini-

tion of θS depends on three component transition models. These component transition models

are part of the transformed ModelBlocks model file, with definitions listed below.

Ctaa Model PθCtaa
(αA |αd−1

W , β0, d) for active component of active transition.

Given the awaited component αd−1
W of an incomplete constituent at node Sd−1

t at depth

d−1 and a completed constituent β0 at nodeRdt , probability model PθCtaa
(αA |αd−1

W , β0, d)

provides the probability of transitioning to αA as the active component of incomplete con-

stituent αA/αW at node Sdt .

PθCtaa
(αA |αd−1

W , β0, d) =

EθG-RL∗,d(αd−1
W

∗→ αA . . .) · PθCC
(β0, αW |αd−1

W , L, d) · Jβ0 6= −K∑
α′A

EθG-RL∗,d(αd−1
W

∗→ α′A . . .) · PθCC
(β0, αW |αd−1

W , L, d) · Jβ0 6= −K
(4.21)

Ctaw Model Pθctaw(αW |αA, β0, d) for awaited component of active transition.

Given the active component αA of an incomplete constituent at node Sdt at depth d and a

completed constituent β0 at node Rdt , probability model Pθctaw(αW |αA, β0, d) provides

the probability of αW as the awaited component of incomplete constituent αA/αW at

node Sdt .
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Pθctaw(αW |αA, β0, d) =

EθG-RL∗,d(αd−1
W

∗→ αA . . .) · PθCC
(β0, αW |αd−1

W , L, d) · Jβ0 6= −K∑
α′W

EθG-RL∗,d(αd−1
W

∗→ αA . . .) · PθCC
(β0, α′W |α

d−1
W , L, d) · Jβ0 6= −K

(4.22)

As an example for models θCtaa and θCtaw, consider an HHMM with incomplete con-

stituent S/VP at node S1
t (αd−1

W =VP) and completed constituent VB at nodeR2
t (β0=VB).

An active transition might transition from node Rdt with context S1
t to incomplete con-

stituent VP/NP at node S2
t (α=VP and αW=NP). This example transition is shown in

Figure 5.6.

Ctww Awaited transition model PθCtww
(β1 |αW, β0, d).

Given an incomplete constituent αA/αW and a completed constituent β0 , probabil-

ity model PθCtww
(β1 |αW, β0, d) provides the probability of transitioning to β1 as the

awaited component of incomplete constituent αA/β1 .

PθCtww
(β1 |αW, β0, d) =

PθCC
(β0, β1 |αW, R, d) · Jd > 0K · Jβ0 6= −K∑

β′1
PθCC

(β0, β1 |αW, R, d) · Jd > 0K · Jβ0 6= −K
(4.23)

As an example, consider an HHMM with incomplete constituent S/PP at node S1
t−1

(αW=PP) and completed constituent IN at node R2
t (β0=IN). An awaited transition might

transition from these values at nodes S1
t−1 andR2

t to incomplete constituent S/NP at node

S1
t (β1=NP). This example transition is shown in Figure 5.6.

The θS model is defined as a set of component parts which interact to define the full model;

it is composed from the awaited (θCtww) and active (θCtaa and θCtaw) transition models, with

certain edge cases hard-coded in the parser implementation itself. The formal definitions for the

component parts of model θS are now presented.

1.

Node Sdt Rd−1
t Rdt Sdt−1 Sd−1

t

αA αW bd−1 αd−1 b α αAt−1 αWt−1 αd−1
W

θS1 = αAt−1 = αWt−1 = 0
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od
el
θ S

co
m

po
ne

nt
s θS1

= αAt−1

= αWt−1 = 0

θS2 θCtww

= 1

6=
θS3 θCtaa θCtaw

=
= 0

θS4 = = = 1

αA αW bd−1 αd−1 b α αAt−1 αWt−1 αd−1
W

Node Sdt Rd−1
t Rdt Sdt−1 Sd−1

t

Table 4.1: Constraints over which the component parts of model θS are defined. In each row, the

columns indicate the node values for which that model component is defined to be potentially

non-zero. Blank cells indicate that there is no restriction on that node value with respect to the

given model component.

θS1(αA, αW | bd−1, αd−1, b, α, αAt−1 , αWt−1 , αd−1
W ) =

Jbd−1 = 0K · JαA = αAt−1K · JαW = αWt−1K (4.24)

2.

Node Sdt Rd−1
t Rdt Sdt−1 Sd−1

t

αA αW bd−1 αd−1 b α αAt−1 αWt−1 αd−1
W

θS2 = αAt−1 θCtww = 1 6=

θS2(αA, αW | bd−1, αd−1, b, α, αAt−1 , αWt−1 , αd−1
W ) =

Jbd−1 = 1K · JαA 6= K

· PθCtww
(αW |αWt−1 , αd−1, d) (4.25)

3.

Node Sdt Rd−1
t Rdt Sdt−1 Sd−1

t

αA αW bd−1 αd−1 b α αAt−1 αWt−1 αd−1
W

θS3 θCtaa θCtaw = 1 = = 0

θS3(αA, αW | bd−1, αd−1, b, α, αAt−1 , αWt−1 , αd−1
W ) =

Jbd−1 = 1K · JαA = K · Jb = 1K

PθCtaa
(αA |αd−1

W , α, d) · PθCtaw
(αW |αA, α, d) (4.26)
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4.

Node Sdt Rd−1
t Rdt Sdt−1 Sd−1

t

αA αW bd−1 αd−1 b α αAt−1 αWt−1 αd−1
W

θS4 = = = 1 = = 1

θS4(αA, αW | bd−1, αd−1, b, α, αAt−1 , αWt−1 , αd−1
W ) =

Jbd−1 = 1K · Jαd−1 = K · Jb = 1K · JαA = K · JαW = K (4.27)

The conditions under which each component model is active are mutually exclusive. These

components models are combined as follows to define θS as a complete well-formed probability

model:

PθS (αA, αW | bd−1, αd−1, b, α, αAt−1 , αWt−1 , αd−1
W ) =∑

i∈{1...4}

θSi(αA, αW | bd−1, αd−1, b, α, αAt−1 , αWt−1 , αd−1
W ) (4.28)

Reduction Model

Model θR represents the conditional probability distribution at each hidden node R. The def-

inition of θR depends on the component model specified by the F lines in the transformed

ModelBlocks file. The definition of model θR is listed below.

F Reduction model PθR(b, α | d, αA, α
d−1
A , αd−1

W , β0, α
d+1).

Given the active αd−1
A and awaited αd−1

W components of an incomplete constituent at node

Sd−1
t−1 at depth d− 1, the active component αA of an incomplete constituent at node Sdt−1

at depth d, the completed constituent β0 at node Pt−1, and the completed constituent

αd+1 at node Rd+1
t , probability model PθR(b, α | d, αA, α

d−1
A , αd−1

W , β0, α
d+1) provides

the probability of b, α at node Rdt for completed constituent α and boolean reduction

indicator value b. The ModelBlocks file format for the reduction model lines is defined

as F d αd−1
W αA β0 : b,α = p.

The reduction model θR provides a model for the dependencies of a reduction node Rdt
in an HHMM at time t and depth d. Each node Rdt interacts with the preceding S nodes

at depths d and d− 1 (nodes Sdt−1 and Sd−1
t−1 , respectively). Node Rdt also depends on the
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M
od

el
θ R

co
m

po
ne

nt
s θR1 = 0 = − 6=

θR2 = 1
= αA

=

6=
θR3 = 0

θR4

= 1
=

=

=

θR5

6=
= β0

θR6
= β0 6= β0

θR7 = 0

b α αd+1 αA αd−1
A αd−1

W β0

Node F dt F d+1
t Sdt−1 Sd−1

t−1 Pt−1

Table 4.2: Constraints over which the component parts of model θR are defined. In each row, the

columns indicate the node values for which that model component is defined to be potentially

non-zero. Blank cells indicate that there is no restriction on that node value with respect to the

given model component.

preceding preterminal node Pt−1, as well as the R node below it (Rd+1
t ). Model θR is

defined as a set of component parts which interact to define a full well-formed conditional

probability model. While this model is primarily constructed by the script commands

shown in Figure A.3, certain edge cases are hard-coded in the parser implementation

itself.

The formal definitions for the component parts of model θR are now presented. Table 4.2

provides a summary, displaying the constraint conditions under which each component

model is active.

1.

Node F dt F d+1
t Sdt−1 Sd−1

t−1 Pt−1

b α αd+1 αA αd−1
A αd−1

W β0

θR1 = 0 = − 6=

θR1(b, α | d, αA, α
d−1
A , αd−1

W , β0, α
d+1) = Jb = 0K·Jα = −K·Jαd+1 6= K (4.29)

2.

Node F dt F d+1
t Sdt−1 Sd−1

t−1 Pt−1

b α αd+1 αA αd−1
A αd−1

W β0

θR2 = 1 = αA = 6=
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θR2(b, α | d, αA, α
d−1
A , αd−1

W , β0, α
d+1) =

Jb = 1K · Jα = αAK · Jαd+1 = K · JαA 6= K

· EθG-RL∗,d(αd−1
W

0→ α . . .) (4.30)

3.

Node F dt F d+1
t Sdt−1 Sd−1

t−1 Pt−1

b α αd+1 αA αd−1
A αd−1

W β0

θR3 = 0 = αA = 6=

θR3(b, α | d, αA, α
d−1
A , αd−1

W , β0, α
d+1) =

Jb = 0K · Jα = αAK · Jαd+1 = K · JαA 6= K

· EθG-RL∗,d(αd−1
W

+→ α . . .) (4.31)

4.

Node F dt F d+1
t Sdt−1 Sd−1

t−1 Pt−1

b α αd+1 αA αd−1
A αd−1

W β0

θR4 = 1 = = = =

θR4(b, α | d, αA, α
d−1
A , αd−1

W , β0, α
d+1) =

Jb = 1K · Jα = K · Jαd+1 = K · JαA = K · Jαd−1
A = K (4.32)

5.

Node F dt F d+1
t Sdt−1 Sd−1

t−1 Pt−1

b α αd+1 αA αd−1
A αd−1

W β0

θR5 = 1 = = = 6= = β0

θR5(b, α | d, αA, α
d−1
A , αd−1

W , β0, α
d+1) =

Jb = 1K · Jα = K · Jαd+1 = K

· JαA = K · Jαd−1
A 6= K · Jαd−1

W = β0K

· PθCC
(− |αd−1

W , R, d) (4.33)

6.

Node F dt F d+1
t Sdt−1 Sd−1

t−1 Pt−1

b α αd+1 αA αd−1
A αd−1

W β0

θR6 = 1 = β0 = = 6= 6= β0
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θR6(b, α | d, αA, α
d−1
A , αd−1

W , β0, α
d+1) =

Jb = 1K · Jα = K · Jαd+1 = K

· JαA = K · Jαd−1
A 6= K · Jαd−1

W 6= β0K

· EθG-RL∗,d(αd−1
W

0→ α . . .) · PθCC
(− |αd−1

W , L, d) (4.34)

7.

Node F dt F d+1
t Sdt−1 Sd−1

t−1 Pt−1

b α αd+1 αA αd−1
A αd−1

W β0

θR7 = 0 = β0 = = 6= 6= β0

θR7(b, α | d, αA, α
d−1
A , αd−1

W , β0, α
d+1) =

Jb = 0K · Jα = K · Jαd+1 = K

· JαA = K · Jαd−1
A 6= K · Jαd−1

W 6= β0K

· EθG-RL∗,d(αd−1
W

+→ α . . .) · PθCC
(− |αd−1

W , L, d) (4.35)

The conditions under which each component model is active are mutually exclusive.

These components models are combined as follows to define θR as a complete well-

formed probability model:

PθR(b, α | d, αA, α
d−1
A , αd−1

W , β0, α
d+1) =∑

i∈{1...7} θRi(b, α | d, αA, α
d−1
A , αd−1

W , β0, α
d+1)∑

b′,α′
∑

i∈{1...7} θRi(b
′, α′ | d, αA, α

d−1
A , αd−1

W , β0, αd+1)
(4.36)

4.3 Parsing with an HHMM

We now define an HHMM parsing algorithm capable of estimating the language model proba-

bility of a sequence of words in the target language. This definition makes use of the previously

defined hierarchical hidden component transition model θA and observed component model

θB .2

2 The full HHMM definition also requires hidden state prior model θΠ. We use a trivial fixed deterministic
distribution for θΠ. Consequently for simplicity, we elide θΠ from all further equations.
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We begin with the HHMM (with depth d) shown as a dynamic Bayes network in Figure 4.5.

At each time step t, this HHMM is comprised of hidden reduction nodes R1...d+1
t , hidden shift

nodes S1...d
t , hidden preterminal node Pt, and observed node X . Each node in the HHMM

serves as a random variable.3 The respective domains of the random variables are defined in

Section 4.2.

4.3.1 Belief Propagation through Message Passing

Our hidden models define probability distributions for transitions between hidden states. How-

ever, to obtain language model probability estimates requires the full probability distribution at

each hidden node. Pearl (1982) defines belief propagation through message passing over nodes

in a directed acyclic graph as a mechanism to calculate the full probability distribution at each

node, given relevant transition and prior models (Bayes, 1763). Full probability distributions

are directly available at nodes which have no parents. The message passing algorithm begins at

these nodes; at each child node whose parents’ probability distributions are fully known, parent

distributions and transition distributions are used to calculate the child node’s probability dis-

tribution. As each child node is processed, the algorithm repeats, until all nodes in the network

have been fully specified. If the graph of nodes is singly connected (that is, has no directed or

undirected cycles), message passing is guaranteed to correctly calculate the probability distri-

bution at each node in the graph.

Unfortunately the graph topology in our HHMM is multiply connected (contains undirected

cycles). Belief propagation through message passing is not guaranteed to calculate correct prob-

ability distributions at nodes in multiply connected networks. To circumvent this shortcoming,

multiply connected graphs can be transformed into equivalent singly connected graphs by merg-

ing nodes (Pearl, 1986). Message passing can then be performed on the transformed network.

In HMM terms, this node clustering technique can be thought of as a mechanism for unfactoring

the factored hidden nodes (at a given time step) in an HHMM into a single huge non-factored

hidden node. The relative complexity of our HHMM topology, coupled with the large domain

of the hidden variables means that in practice, node clustering is impractical for calculating

hidden node probability distributions in our HHMM parser.

3 The HHMM also contains determined constant values at S0
t , Sd+1

t , and Rd+2
t . These nodes are required

dependencies which are necessary for the complete model definition, but are not random variables.
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Belief propagation through message passing is well-defined over multiply connected net-

works of nodes (Pearl, 1988). Even though correct calculation is not guaranteed, in practice

the use of message passing in multiply connected networks results in calculated distributions of

sufficiently high quality for certain problems (McEliece et al., 1998). Whether message passing

would result in useful results when applied to the multiply connected nodes in our HHMM is

an empirical question which we leave as future work.

4.3.2 HHMM Parsing as a Search Problem

The prominent traditional task in parsing is the estimation of the 1-best parse tree, given a

parsing model and a sequence of words to parse in the target language. In an HHMM parser,

we define each path through the dynamic Bayes network as a tree with leaves at the observed

nodes X1...t. At each node in a path, the random variable defined by that node takes on one

concrete value from its respective domain. With this perspective, 1-best parsing can be cast as

a search problem: find that path and associated random variable value assignments which are

most probable according to the defined models. This path will correspond to the 1-best parse

tree.

This search can be performed through exhaustive enumeration of all possible path and ran-

dom variable assignment combinations through the network of nodes defined by the HHMM.

In belief propagation through message passing, the full probability distribution is calculated

at each child node, given the fully defined probability distribution for all the child’s parents.

Because of the multiply connected topology of the HHMM, belief propagation through mes-

sage passing would not guarantee correctly calculated probability distributions; consequently

we must pursue an alternate technique.

Each random variable is assigned a single value from its respective domain; given concrete

values at every node, the probability of the path corresponding to that combination of variable

assignments is calculated given the HHMM models and the observed sequence of words. Suc-

cessively iterating through all combinations of variable assignments over all nodes exhaustively

enumerates all possible path and variable assignments. The path and variable assignments with

the highest probability corresponds to the 1-best parse tree.

We now formally define the algorithm for exhaustively enumerating all possible path and

random variable assignment combinations through the network of nodes defined by the HHMM.

For notational convenience, we define store state σt as an ordered list containing the random
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variables that comprise the nodes at S1...D
t and Pt. Recall that each node Sdt at time t and

depth d contains active component αdAt and awaited component αdWt and each node Pt contains

preterminal βt. The random variables in σt are all initialized to be unbound.

σt =
〈
α1

At , α1
Wt , . . . , αdAt , αdWt , βt

〉
(4.37)

We define an unbound random variable to be one which has not yet been assigned a value. A

useful analogy might be a hardware register in a computer in which no value has yet been stored.

Our use here of the term unbound is distinct from and should not be confused with the separate

meaning of bound and unbound variables in the context of quantifiers in predicate logic.

Similarly, we define reduction state ρt as an ordered list containing the random variables

that comprise the nodes at RD+1...1
t . Recall that each node Rdt at time t and depth d contains

boolean flag bdt and nonterminal αdt . The random variables in ρt are all initialized to be unbound.

ρt =
〈
bd+1
t , αd+1

t , . . . , b1t , α
1
t

〉
(4.38)

Algorithm 4.2 Assign next values to random variables bdt and αdt at node Rdt
1: function ASSIGNNEXTVALUES(Rdt ,σt−1,ρt,σt)

2: Array b contains all values in the boolean domain

3: ArrayN contains all values in the nonterminal domain

4: i,j = mapR[Rdt ,σt−1,ρt,σt]

5: . Map lookup returns 〈0,−1〉 if key
〈
Rdt ,σt−1,ρt,σt〉 is not present

6: if j + 1 < |N | then
7: j += 1

8: else
9: j = 0

10: i += 1

11: end if
12: mapR[Rdt ,σt−1,ρt,σt] = i, j . Store new indices in map at key

〈
Rdt ,σt−1,ρt,σt〉

13: return b[i],N [j]

14: end function

The search task is performed by successively enumerating over the possible values in the

respective domain of each random variable, first in ρt and then in σt. At the beginning of the
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search, each random variable is unbound, meaning that no value has yet been assigned to it from

its respective domain. Once each random variable in the hidden domain at a time step has been

bound to a respective value, the combination of these variable bindings constitutes one path

through the search space. We now formally define the functions that comprise this algorithm.

We present the functions in bottom-up order, so that all functions used in an algorithm are

defined before they are used in subsequent algorithms. The complete algorithm for parsing at

a time step is listed in Algorithm 4.12. The algorithm formally defining the syntactic language

model score at a store state is Algorithm 4.14.

Algorithm 4.2 formally defines the search enumeration function for the random variables bdt
and αdt at hidden reduction node Rdt . The first required parameter to this function is the store

state σt−1 from the previous time step. Store state σt and ρt are also required parameters. In

the first call to the function, the random variables in σt and ρt are all unbound. In subsequent

calls, some or all of the random variables in σt and ρt will be bound. Given values for σt−1,

σt, and ρt, Algorithm 4.2 calculates and returns a new combination of values to bind to random

variables bdt and αdt at reduction node Rdt .

Algorithm 4.3 Assign next values to random variables αdAt and αdWt at node Sdt

1: function ASSIGNNEXTVALUES(Sdt ,σt−1,ρt,σt)

2: ArrayN contains all values in the nonterminal domain

3: i,j = mapS[Sdt ,σt−1,ρt,σt]

4: . Map lookup returns 〈0,−1〉 if key
〈
Sdt ,σt−1,ρt,σt〉 is not present

5: if j + 1 < |N | then
6: j += 1

7: else
8: j = 0

9: i += 1

10: end if
11: mapS[Sdt ,σt−1,ρt,σt] = i, j . Store new indices in map at key

〈
Sdt ,σt−1,ρt,σt〉

12: returnN [i],N [j]

13: end function

Algorithm 4.2 defines and uses a globally scoped associative array, mapR, capable of stor-

ing key-value pairs. In Algorithm 4.2, the tuple
〈
Rdt ,σt−1,ρt,σt〉 serves as the key; the values
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stored in the array represent a pair of indices, i (into the boolean domain) and j (into the non-

terminal domain). Similar globally scoped associative arrays mapS and mapP are used in

Algorithm 4.3 and Algorithm 4.4, respectively.

Similarly, Algorithm 4.3 formally defines the search enumeration function for the random

variables αdAt and αdWt at hidden store node Sdt . As before, the store state values σt−1 from the

previous time step are required, along with existing values ρt and σt for the current time step.

In the first call to the function, the random variables in σt and ρt are all unbound. In subsequent

calls, some or all of the random variables in σt and ρt will be bound. Given values for σt−1,

σt, and ρt, Algorithm 4.3 calculates and returns a new combination of values to bind to random

variables αdAt and αdWt at store node Sdt .

Algorithm 4.4 Assign next values to random variable βt at node P dt
1: function ASSIGNNEXTVALUES(Pt,σt−1,ρt,σt)

2: ArrayN contains all values in the nonterminal domain

3: i = mapP [Pt,σt−1,ρt,σt]

4: . Map lookup returns −1 if key 〈Pt ,σt−1,ρt,σt〉 is not present

5: i += 1

6: mapP [Pt,σt−1,ρt,σt] = i . Store new indices in map at key 〈Pt ,σt−1,ρt,σt〉
7: returnN [i]

8: end function

Finally, Algorithm 4.4 formally defines the search enumeration function for the random

variable βt at hidden preterminal node P dt . As before, the store state values σt−1 from the

previous time step are required, along with existing values ρt and σt for the current time step.

In the first call to the function, the random variables in σt and ρt are all unbound. In subsequent

calls, some or all of the random variables in σt and ρt will be bound. Given values for σt−1,

σt, and ρt, Algorithm 4.4 calculates and returns a new value to bind to random variable βt at

preterminal node P dt .

Algorithms 4.2, 4.3, and 4.4 define elementary search enumeration functions for random

variables atR, S, and P nodes, respectively. These functions will be used in later functions that

drive the actual enumeration.

The topology of the HHMM dynamic Bayes network defines a traversal order over nodes for

both message passing and exhaustive enumeration. All nodes at time step t have dependencies
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Algorithm 4.5 Given the random variables in ρt, identify the deepest level d in the HHMM dy-

namic Bayes network at time t where the random variables bdt and αdt for node Rdt are unbound

in ρt.
1: function DEEPESTUNBOUND(ρt,D)

2: for d in D + 1 . . . 1 do
3: if bdt ,αdt from Rdt are unbound in ρt then
4: return d
5: end if
6: end for
7: return 0

8: end function

on nodes in the previous store state σt−1. The traversal order is defined such that a node is

visited only once all of its parents have been visited.

In our use case, visiting a node means using Algorithm 4.2, 4.3, or 4.4 (as appropriate given

the node type) to bind a value to the random variables at the node. For reduction nodes, this

implies that if the random variables at Rdt are bound, then so are the random variables at all

deeper nodes Rd
′
t , where d′ > d. If zero or more R nodes at time t have been bound, the

function defined by Algorithm 4.5 identifies the depth d of the deepest node Rdt that has not yet

been bound, returning 0 if the random variables at all nodes R1...D+1
t have been bound. Recall

that bD+1
t and αD+1

t at RD+1
t are constants, not random variables, and as such are by definition

always bound.

For store nodes, the traversal order implies that if the random variables at Sdt are bound,

then so are the random variables at all shallower nodes Sd
′
t , where d′ < d. If zero or more S

nodes at time t have been bound, the function defined by Algorithm 4.6 identifies the depth d

of the shallowest node Sdt that has not yet been bound, returning D + 1 if the random variables

at all nodes S0...D
t and Pt have been bound. Recall that α0

At and α0
Wt at S0

t are constants, not

random variables, and as such are by definition always bound.

Algorithms 4.5 and 4.6 define functions that identify the next unbound node in the node

traversal order. Algorithms 4.2, 4.3, and 4.4 define elementary search enumeration functions

for random variables at R, S, and P nodes, respectively. These functions are integrated in

Algorithm 4.7.
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Algorithm 4.6 Given the random variables in σt, identify the shallowest level d in the HHMM

dynamic Bayes network at time t where the random variables αdAt and αdWt for node Sdt are

unbound in σt. If the random variables for nodes S1...D
t are all bound in σt, this function returns

a depth value of D + 1, which logically corresponds to the depth of preterminal node Pt.

1: function SHALLOWESTUNBOUND(σt,D)

2: for d in 1 . . . D do
3: if αdAt ,αdWt from Sdt are unbound in σt then
4: return d
5: end if
6: end for
7: return D + 1

8: end function

Given previous store state σt−1, the FORWARDSTEP function defined in Algorithm 4.7 uses

Algorithms 4.5 and 4.6 to determine the next unbound node (from ρt and σt) in the node traver-

sal order. Once the next unbound node is identified, the appropriate enumeration function (Al-

gorithm 4.2 for R nodes, Algorithm 4.3 for S nodes, or Algorithm 4.4 for P nodes) is called to

determine the first value(s) from the node’s domain(s). The returned values are then bound to

the random variable(s) at that node. We refer to this process of selecting the next unbound node

and binding its random variables as taking a forward step through the dynamic Bayes network.

As each forward step is taken, the relevant probability models are consulted, and a cumula-

tive score is maintained for the partial path though the nodes:

• If a forward step is taken into hidden node Rdt , reduction model θR is consulted to calcu-

late the conditional joint probability of bdt and αdt given the random variables at the parent

nodes of Rdt .

• If all nodes R1...D+1
t are bound, and a forward step is taken into hidden node Sdt , shift

model θS is consulted to calculate the conditional joint probability of αdAt and αdWt given

the random variables at the parent nodes of Sdt .

• If all nodes R1...D+1
t and S0...D

t are bound, and a forward step is taken into hidden node

Pt, preterminal expansion model θCe is consulted to calculate the conditional probability

of βt given the random variables at the parent nodes of Pt.



86

Algorithm 4.7 Step forward through reduce state ρt, store state σt, and observation xt
1: function FORWARDSTEP(D,σt−1,ρt,σt,xt,score)

2: d = DEEPESTUNBOUNDLEVEL(ρt,D)

3: if d > 0 then . Step forward to Rdt
4: bdt , αdt = ASSIGNNEXTVALUES(Rdt ,σt−1,ρt,σt)

5: score′ = score − logPθR(bdt , α
d
t | d, αdAt−1 , α

d−1
At−1 , α

d−1
Wt−1 , βt−1, α

d+1
t )

6: ρ′t = substitute newly bound bdt , αdt into a copy of ρt
7: return ρ′t, σt, score′, false
8: else
9: d = SHALLOWESTUNBOUNDLEVEL(σt,D)

10: if d < D then . Step forward to Sdt
11: αdAt , αdWt = ASSIGNNEXTVALUES(Sdt ,σt−1,ρt,σt)

12: score′ = score − logPθS (αdAt , αdWt | bd−1
t , αd−1

t , bdt , α
d
t , α

d
At−1 , α

d
Wt−1 , α

d−1
Wt )

13: σ′t = substitute newly bound αdAt , αdWt into a copy of σt
14: return ρt, σ′t, score′, false
15: else if d = D then . Step forward to Pt
16: βt = ASSIGNNEXTVALUES(Pt,σt−1,ρt,σt)

17: score′ = score − logPθCe
(βt |αdWt , d)

18: σ′t = substitute newly bound βt into a copy of σt
19: return ρt, σ′t, score′, false
20: else . Step forward to Xt

21: score′ = score − logPθX (x |βt)
22: return ρt, σt, score′, true
23: end if
24: end if
25: end function
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• Finally, if all nodes R1...D+1
t , S0...D

t , and Pt are bound, and a forward step is taken into

observed node Xt, observation model θX is consulted to calculate the conditional proba-

bility of the observed value at Xt given the preterminal βt at parent node Pt.

Whatever probability value is calculated, the negative log of that value is summed with the

negative log probabilities previously calculated for the node bindings along the (partial) path.

Algorithm 4.8 Given the random variables in ρt, identify the shallowest level d in the HHMM

dynamic Bayes network at time t where the random variables bdt and αdt for node Rdt are bound

in ρt.
1: function SHALLOWESTBOUND(ρt,D)

2: for d in 1 . . . D + 1 do
3: if bdt ,αdt from Rdt are bound in ρt then
4: return d
5: . Constants bD+1

t ,αD+1
t from RD+1

t by definition always have bound values

6: end if
7: end for
8: end function

Each forward step to each random variable in the selected node binds the first value of that

domain and that random variable. Full enumeration through all values of all hidden random

variables at a time step obviously requires a mechanism for binding all other values from each

random variable’s domain to the respective random variable. A forward step takes ρt and σt and

calculates ρ′t and σ′t by binding a previously unbound random variable from ρt or σt.

We define a side step to take ρt and σt and calculates ρ′t and σ′t by rebinding a new value to

the most recently bound random variables from ρt and σt. To perform a side step, we must be

able to identify the most recently bound random variables from ρt and σt. The functions defined

by Algorithms 4.5 and 4.6 identify the next unbound node in the node traversal order. We now

define variants of these which identify the most recently bound node in the node traversal order

for a given σt−1, ρt and σt.

Recall that for reduction nodes R1...D+1
t , if the random variables at Rdt are bound, then so

are the random variables at all deeper nodes Rd
′
t , where d′ > d. Algorithm 4.8 identifies the

depth d of the shallowest node Rdt whose bdt and αdt have been bound; this is done by iterating

through the random variables in ρt.
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Algorithm 4.9 Given the random variables in σt, identify the deepest level d in the HHMM

dynamic Bayes network at time t where the random variables αdAt and αdWt for node Sdt are

bound in σt. If the random variable βt in preterminal nodes Pt is also bound, this function

returns a depth value of D + 1.

1: function DEEPESTBOUND(σt,D)

2: if βt from Pt is bound in σt then
3: return D + 1

4: else
5: for d in D . . . 0 do
6: if αdAt ,αdWt from Sdt are bound in σt then
7: return d
8: . Constants α0

At ,α0
Wt from S0

t by definition always have bound values

9: end if
10: end for
11: end if
12: end function

Similarly, Algorithm 4.9 identifies the depth d of the deepest node in σt whose random

variables have been bound. If βt from preterminal node Pt has been bound, depth D + 1 is

returned. Otherwise, d is returned, where d is the depth of the deepest node Sdt whose αdAt and

αdWt have been bound.

Together, Algorithms 4.8 and 4.9 define functions that identify the most recently bound

node in the node traversal order. These functions are integrated with the elementary search

enumeration functions defined in Algorithms 4.2, 4.3, and 4.4 to form the SIDESTEP function

in Algorithm 4.10.

As each side step is taken, the relevant probability models are consulted, and a cumulative

score is maintained for the partial path through the nodes:

• If a forward step is taken at hidden node Rdt , reduction model θR is consulted to calculate

the conditional joint probability of bdt and αdt given the random variables at the parent

nodes of Rdt .

• If all nodes R1...D+1
t are bound, and a forward step is taken at hidden node Sdt , shift
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Algorithm 4.10 Step sideways through reduce state ρt or store state σt
1: function SIDESTEP(D,σt−1,ρt,σt,score)

2: d = DEEPESTBOUNDLEVEL(σt,D)

3: if d = 0 then
4: d = SHALLOWESTBOUNDLEVEL(ρt,D) . Side step at Rdt
5: bdt , αdt = ASSIGNNEXTVALUES(Rdt ,σt−1,ρt,σt)

6: score′ = score − logPθR(bdt , α
d
t | d, αdAt−1 , α

d−1
At−1 , α

d−1
Wt−1 , βt−1, α

d+1
t )

7: ρ′t = substitute newly re-bound bdt , αdt into a copy of ρt
8: return ρ′t, σt, score′

9: else
10: if d ≤ D then . Side step at Sdt
11: αdAt , αdWt = ASSIGNNEXTVALUES(Sdt ,σt−1,ρt,σt)

12: score′ = score − logPθS (αdAt , αdWt | bd−1
t , αd−1

t , bdt , α
d
t , α

d
At−1 , α

d
Wt−1 , α

d−1
Wt )

13: σ′t = substitute newly re-bound αdAt , αdWt into a copy of σt
14: else
15: βt = ASSIGNNEXTVALUES(Pt,σt−1,ρt,σt) . Side step at Pt
16: score′ = score − logPθCe

(βt |αdWt , d)

17: σ′t = substitute newly re-bound βt into a copy of σt
18: end if
19: return ρt, σ′t, score′

20: end if
21: end function
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Algorithm 4.11 Determine whether a side step is well defined at reduce state ρt with store state

σt

1: function CANSTEPSIDEWAYS(D,ρt,σt)

2: Array b contains all values in the boolean domain

3: ArrayN contains all values in the nonterminal domain

4: d = DEEPESTBOUNDLEVEL(σt,D)

5: if d = 0 then
6: d = SHALLOWESTBOUNDLEVEL(ρt,D)

7: i,j = map[Rdt ,σt−1,ρt,σt]

8: if i < |b| or j < |N | then
9: return true . Can side step at Rdt

10: else
11: return false . Can not side step at Rdt
12: end if
13: else if d <= D then
14: i,j = map[Sdt ,σt−1,ρt,σt]

15: if i < |N | or j < |N | then
16: return true . Can side step at Sdt
17: else
18: return false . Can not side step at Sdt
19: end if
20: else
21: i = map[Pt,σt−1,ρt,σt]

22: if i < |N | then
23: return true . Can side step at Pt
24: else
25: return false . Can not side step at Pt
26: end if
27: end if
28: end function
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Algorithm 4.12 Process one observed word.
1: function PARSEWORD(D,σt−1,xt,queue)

2: Initialize reduction state ρt with all variables unbound

3: Initialize store state σt with all variables unbound

4: for all σt−1,score in σt−1 do
5: ENQUEUE(queue,〈σt−1,ρt,σt,score,false〉) . Seed queue with initial tuples

6: end for
7: Initialize empty store state collection σt for storing results

8: repeat
9: 〈σt−1, ρt, σt, score, complete〉 = DEQUEUE(queue) . Get next tuple from queue

10: if complete then
11: STORERESULT(σt,〈σt,score〉) . Record a fully bound store state

12: else
13: EXPAND(queue,σt−1,ρt,σt,score) . Perform forward and side steps

14: end if
15: until STOPPINGCONDITION(queue,σt)

16: return σt
17: end function

Algorithm 4.13 Perform forward step and side steps

1: function EXPAND(queue,σt−1,ρt,σt,score)

2: 〈ρ′t, σ′t, score′, complete′〉 = FORWARDSTEP(D,σt−1,ρt,σt,xt,score)

3: ENQUEUE(queue,〈σt−1,ρ′t, σ
′
t, score′, complete′〉) . Add new tuple to queue

4: while CANSTEPSIDEWAYS(D,ρ′t,σ
′
t) do

5: 〈ρ′t, σ′t, score′〉 = SIDESTEP(D,σt−1,ρ′t,σ
′
t,score)

6: ENQUEUE(queue,〈σt−1,ρ′t, σ
′
t, score′, false〉) . Add new tuple to queue

7: end while
8: end function
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model θS is consulted to calculate the conditional joint probability of αdAt and αdWt given

the random variables at the parent nodes of Sdt .

• If all nodes R1...D+1
t and S0...D

t are bound, and a forward step is taken into hidden node

Pt, preterminal expansion model θCe is consulted to calculate the conditional probability

of βt given the random variables at the parent nodes of Pt.

Given ρt and σt, if a side step is taken, the random variables in the most recently bound

node will be bound to new values. For such a side step to be well defined, there must be some

value in the respective domains of the random variables at that node which has not yet been

enumerated (given the combination of other variable bindings in ρt and σt).

Algorithm 4.11 formally defines the conditions under which a side step is well defined. This

function, CANSTEPSIDEWAYS, first identifies the most recently bound node. Using the maps

defined in Algorithms 4.2, 4.3, and 4.4, the function determines whether there exists some new

value which can be assigned to one of the random variables at that node. If there is, the function

returns true, indicating that a side step is well defined at ρt and σt. Otherwise, the function

returns false, indicating that a side step is not well defined at ρt and σt.

We now have defined all component functions that we will use to fully define the task of suc-

cessively enumerating all possible value combinations over the random variables in the HHMM

hidden nodes at time t. Algorithm 4.12 formally defines this process as function PARSEWORD.

This function takes as input the collection of store state values σt−1 from the previous time

step, the observation xt from the current time step, and a queue. For exhaustive enumeration,

this queue is defined as an initially empty unbounded first-in, first-out queue.

The queue elements are defined as a tuple containing σt−1, ρt, σt, the most recently calcu-

lated score for this tuple, and a boolean flag. The boolean flag indicates whether all required

calculations for this tuple are complete; the flag will be true only once all variables in σt−1,

ρt, and σt are bound, and the probability of the observation given the hidden state has been

incorporated into the score (see line 22 of Algorithm 4.7).

Algorithm 4.12 begins by seeding the queue initial tuples. For each store state value σt−1

in the collection σt−1 of previous store state values, a new tuple is added to the queue (lines

4–6). The new tuple contains σt−1, along with an empty reduction state ρt and an empty store

state σt; all variables in ρt and σt are unbound at this point. Additionally, an empty store state

collection σt is initialized to store results as they are calculated (line 7).



93

The algorithm proceeds by removing elements from the queue (line 9). If the tuple’s boolean

flag is true, indicating that all required calculations for the tuple are complete and all variables

in the tuple are bound, then the tuple constitutes a complete path through the hidden state at

time t. The completed store state from the tuple and its corresponding score are added to the

results collection. The function STORERESULTS can be defined as a summing map function,

for each store state σt in σt, the associated score is added to a running sum for that store state.

If the tuple’s boolean flag is false, then the tuple represents a partial path through the hidden

state at time t. Algorithm 4.13 is called to add new elements to the queue built by expanding the

current tuple. A forward step is performed first, with the tuple as a starting point (line 2). The

resulting tuple will either have one (previously unbound) variable bound, or will be complete.

In either case, the resulting tuple is added to the queue. The algorithm next attempts to perform

all possible side steps (lines 4–7) from the tuple created by stepping forward; each tuple created

by a side step is also added to the queue.

Algorithm 4.12 continues until a STOPPINGCONDITION is satisfied. For exhaustive enu-

meration, the STOPPINGCONDITION simply checks to see if the queue is empty. Once the

stopping condition has been satisfied, the resulting store state collection σt is returned.

4.3.3 Syntactic Language Model Score

The score associated with a complete path through ρt and σt represents the conditional joint

negative log probability of ρt and σt given the previous store state σt−1 and the current observa-

tion xt. By summing over all scores in σt(Algorithm 4.14), we obtain the total probability mass

for the collection. This value represents a syntactic language model probability of the observed

sequence of words x1 . . . xt given the grammar of the language.

Algorithm 4.14 Sum the combined log probability mass from an entire store state collection.

1: function SCORE(σt)

2: sum = 0

3: for all σt,score in σt do
4: sum += score

5: end for
6: return sum

7: end function
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4.4 Faster Parsing

In practice, exhaustive enumeration with no pruning is prohibitively slow. When calculating

the syntactic language model probability P(X1...t) for an observed sequence of words x1 . . . xt,

|Y | possible states must be examined at each of t hidden nodes Y1...t. If syntactic states are

very basic, consisting for example of simple part-of-speech tags, then |Y | is small and the

overall syntactic language model calculation is quite tractable. However, in some cases Y may

encompass all possible phrase structure trees in the target language. In these cases, |Y | is

extremely large.

We now examine the worst case computational complexity of the hidden state transition

from Yt−1 to Yt at each time step t. Hidden state Yt is factored into d S nodes, d+ 1 R nodes,

and one P node.

Each hidden S node maintains an active and an awaited component, and there are d random

variable S nodes at each of t time steps. The set of phrase structure nonterminal symbols N

defines the domain of possible values for the active component αA and awaited component αW

of each S node and for the preterminal β0 of each P node. The domain size |N | is roughly 400

nonterminal categories.

In the worst case, there may be |N |2d+1 unique element combinations stored at S1...d
t−1 and

Pt−1. Another 2d combinations of boolean values may be stored at R1...d
t ; the nonterminal

value α stored at each R node can is deterministic given the boolean value and the value of the

S nodes at the previous time step, and so can be ignored in the complexity calculations. Finally,

another |N |2d+1 unique element combinations may be stored at S1...d
t−1 and Pt−1. The resulting

worst case complexity for a hidden state transition isO(|N |4d+2 · 2d).

4.4.1 Beam Pruning

To speed parsing, beam pruning is employed in the hidden nodes at each time step. We now

define beam pruning for the hidden nodes of our HHMM.

The prior probability distribution at the S nodes at time 0 is deterministic such that each

random variable has exactly one value. As the parser encounters the tth observed word, val-

ues for the hidden nodes at time step t are calculated through exhaustive enumeration. Once

all |N |2d+1 possible values are calculated for the hidden state at the time step t, the values are
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sorted according to their current probabilities. The bmost probable nonterminal value combina-

tions are maintained in the S nodes at the time step t. All other nonterminal value combinations

are pruned. Algorithm 4.15 defines the pruning function.

When the parser encounters the next observed word, there will be no more than n combina-

tions of values at the previous hidden nodes. This drops the worst case number of transitions at

each time step fromO(|N |4d+2 ·2d) toO(|N |2d+1 ·b ·2d). While the “1-best” parse calculated

in this way is no longer guaranteed to be the most probable of all possible parses (because of

possible errors introduced by pruning), we nevertheless use beam pruning in all experiments

involving our syntactic language model.

Algorithm 4.16 defines a complete linear-time HHMM parser with beam pruning.

Algorithm 4.15 Beam pruning for store state σt
1: function PRUNE(σt,n)

2: Sort elements of σt in increasing order according to score (negative log probability)

3: Initialize empty store state collection σ′
t for storing pruned results

4: for i in 1 . . . n do
5: σt,score = σt[i]

6: STORERESULT(σ′
t,σt,score)

7: end for
8: return σ′

t

9: end function

Algorithm 4.16 Process a sequence of observed words

1: function PARSESEQUENCE(D,n,σ0,x1 . . . xt)

2: Initialize queue as an initially empty, unbounded first-in, first-out queue

3: score = 0

4: for i in 1 . . . t do
5: σi = PARSEWORD(D,σi−1,xi,queue)

6: PRUNE(σi,n)

7: end for
8: return σt
9: end function
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4.4.2 Parallel Processing

The enumeration of paths through the HHMM is an embarrassingly parallel task. This is espe-

cially true in exhaustive enumeration, but remains true even when beam pruning is used. Parsing

time may be reduced by employing multiple threads of computation. To run Algorithm 4.12 in

parallel, each instance of the main loop (lines 8–15) should be run in its own thread. As long as

a thread-safe queue implementation is used, this change is sufficient to parallelize the algorithm.

Before the implementation of uniform cost search (Section 4.4.3), earlier implementations of

the HHMM parser implemented parallel processing using this approach (in conjunction with

beam pruning).

4.4.3 A* and Uniform Cost Search

Algorithm 4.14 calculates the total syntactic language model probability mass of all unpruned

paths though the HHMM at one time step. When the HHMM is used as an explicit language

model, this behavior is desired. However, when the HHMM is used as a parser, rather than as a

language model, the desired result is the 1-best parse or the set of k-best parses. For parsing, it

is therefore desirable to identify a search strategy alternative to exhaustive search. Exhaustive

search is optimal, because it is guaranteed to find the lowest-cost path, but is not optimally

efficient, because unnecessary suboptimal paths are explored while identifying the lowest-cost

path. The ideal search strategy would be one that is both optimal and optimally efficient.

The search process can be viewed as a search through an implicit graph structure. Given a

starting point in the implicit graph (the set of store states at time t-1) and a definition of the goal

(the lowest-cost store state at time t where all variables are bound), Dijkstra’s algorithm can

be used to find the minimum cost path between the two specified points in the graph (Dijkstra,

1959).

A* search is a generalization of Dijkstra’s algorithm which allows heuristic functions to

guide the search path. In A* search (Equation 4.39), the score at a node n in the search space

is the actual calculated cost g(n) to that node plus a heuristic estimated cost h(n) from that

node to the goal. A* search is both optimal and optimally efficient for any given admissible and

consistent heuristic (Dechter and Pearl, 1985).

f(n) = g(n) + h(n) (4.39)
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Uniform cost search (Russell and Norvig, 2003) is a special case of A* search (Hart et al.,

1968, 1972) where the A* heuristic function h(·) always returns a constant (possibly zero) value

c, regardless of the node n being evaluated by the heuristic function (Equation 4.40).

h(n) = c (4.40)

We employ uniform cost search with h(n) = 0 as an alternative to exhaustive search. Uni-

form cost search can be implemented by employing a priority queue in Algorithm 4.12 instead

of a first-in first-out queue. This search process could be further enhanced by processing multi-

ple queue elements in parallel; we leave this speed enhancement as future work. When remov-

ing an item (line 9), the priority queue always removes the lowest cost item from the priority

queue. In our case, a tuple’s score serves as its cost.

Additionally, a new STOPPINGCONDITION function must be defined for uniform cost search.

This STOPPINGCONDITION function returns true if the priority queue is empty, or if k unique

store states have been stored in the results collection σt.

4.4.4 Inexact Estimation of Syntactic Language Model Scores

In practice, HHMM parsing using uniform cost search (Section 4.4.3) is substantially faster

than HHMM parsing using exhaustive search (Section 4.3.2), even when parallel processing is

employed (Section 4.4.2).

The use of uniform cost search is problematic when the HHMM is used as a syntactic

language model, rather than as a parser. In parsing, the desired result is the highest scoring

single parse or k-best parses. Parsing via uniform cost search takes advantage of this fact;

parsing stops once the k highest-scoring store states are obtained.

The syntactic language model score is calculated in Algorithm 4.14 by summing the scores

in the store state collection σt. In parsing terminology, this value is called the forward score,

and represents the total probability mass of all parses. The exact estimation of the forward score

requires all possible parse derivations to be enumerated via exhaustive search. The collection

σt returned from uniform cost search represents only the k best derivations. The score of the 1

best derivation represents, in parsing terminology, the Viterbi score.

In our experiments, we use uniform cost search, and accept the sum over the k items in σt
as an inexact estimation of the syntactic language model score. It is a common assumption in
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parsing that the Viterbi score dominates the probability mass in the forward score, but whether

this assumption is true is an empirical question which we have not evaluated.

It should be possible to obtain a more accurate estimate of the syntactic language model

score by attempting to capture more of the forward score probability mass. To do so, a new

STOPPINGCONDITION function could be defined. Rather than stopping when k unique store

states have been stored in the collection σt, the STOPPINGCONDITION function could continue

until some specified percentage of the total possible probability mass has been accounted for in

the store state collectionσt. Additionally (or alternatively), the STOPPINGCONDITION function

could return true once some maximum amount of processing time has elapsed. In any case, we

leave the implementation of such a STOPPINGCONDITION function into the HHMM as future

work.

4.4.5 From Cube Pruning to Lazy Queue Expansion

Cube pruning (Chiang, 2007) is a method for efficiently integrating an n-gram language model

into the translation search space of a hierarchical phrase-based decoder (Chiang, 2005), using

the lazy k-best algorithm of Huang and Chiang (2005). The key insight of cube pruning is a

technique for efficiently searching through a three-dimensional space in a best-first manner for

the k highest-scoring results. This search strategy has been adapted to other related problems,

including k-best monolingual parsing (Huang and Chiang, 2005) and bilingual word alignment

(Riesa and Marcu, 2010).

Gesmundo and Henderson (2010) concisely present the common core of cube pruning as

follows. Given an ordered set of random variables, cube pruning attempts to find the most

probable combination of assignments for the random variables. For each random variable,

a list is maintained containing all elements from the domain of that random variable, sorted

from most probable to least probable. The algorithm begins by taking the first (most probable)

element from each list and assigning that element to the respective random variable. Since each

list is sorted, this is guaranteed to result in the most probable combination of random variable

assignments4 The neighboring combinations of variable assignments are assigned to a priority

queue, and the algorithm proceeds by processing subsequent assignment combinations from the

priority queue.
4 Assuming that the search space is monotonic. In our case, the search space is monotonic. In Chiang (2007),

the search space is non-monotonic, and consequently this guarantee does not hold there.
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Hopkins and Langmead (2009) show that this algorithm is highly similar to A* search, and

argue that cube pruning in its original context (Chiang, 2007) is in fact simply A* search applied

to a particular machine translation problem, making use of a particular search heuristic.

Pust and Knight (2009) examine whether cube pruning in a machine translation context can

be sped up through what they call “pervasive laziness.” During A* search in general, and cube

pruning in particular, after a search space element is examined, all possible successor states are

immediately added to the priority queue. In the worst case, all elements added to the priority

queue will eventually be examined. However, in practice, the A* stopping condition often

triggers far before all search states have been exhaustively enumerated. When this happens,

many elements remain on the priority queue; each of these elements represents a potential

result that was neither needed nor examined. Gesmundo and Henderson (2010) attempt to

minimize the number of elements added to the priority queue to only those needed to find the

final results. When a search space element is examined, only the immediate successor states are

added. Others will be added later, but each element will be added to the priority queue on an

as-needed basis.

Algorithm 4.17 Perform forward step and side step

1: function LAZYEXPAND(queue,σt−1,ρt,σt,score,parentScore)

2: 〈ρ′t, σ′t, score′, complete′〉 = FORWARDSTEP(D,σt−1,ρt,σt,xt,score)

3: ENQUEUE(queue,〈σt−1,ρ′t, σ
′
t, score′,score, complete′〉) . Add new tuple to queue

4: if CANSTEPSIDEWAYS(D,ρ′t,σ
′
t) then

5: 〈ρ′t, σ′t, score′〉 = SIDESTEP(D,σt−1,ρ′t,σ
′
t,parentScore)

6: ENQUEUE(queue,〈σt−1,ρ′t, σ
′
t, score′,parentScore, false〉) . Add new tuple to q.

7: end if
8: end function

We use a very similar strategy to lazily expand elements onto our HHMM priority queue

during uniform cost search. When parsing (line 13 of Algorithm 4.12), we replace the call to

EXPAND (as implemented by Algorithm 4.13) with a call to LAZYEXPAND, implemented by

Algorithm 4.17. Previously, each tuple was expanded by taking a forward step followed by all

possible side steps from that forward step. In this alternative approach, each tuple is expanded

by taking a single side step and a single forward step. While we have not evaluated parsing

speed using LAZYEXPAND against uniform cost search using EXPAND, a comparable change
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resulted in an 11% speed increase when applied to cube pruning during translation (Gesmundo

and Henderson, 2010). In the worst case, LAZYEXPAND will explore the same search space

as EXPAND, and in more optimistic settings it will explore a smaller search space, resulting in

faster parsing times.

As with cube pruning, using LAZYEXPAND requires that the domains of random variables

be enumerated in sorted order. For each random variable, the values with the highest probability

(given the requisite conditioning values) must be the first value enumerated. Subsequent values

must be presented in decreasing order of conditional probability. To this end, we define new

implementations of the ASSIGNNEXTVALUES function previously defined in Algorithm 4.2,

Algorithm 4.3, and Algorithm 4.4. The new implementations of ASSIGNNEXTVALUES are

defined such that given values of the appropriate conditioning variables, the possible values of

the modelled variables are enumerated in sorted order, according the the relevant conditional

probability model (θR, θS , or θP ).

4.5 Conclusion

An incremental parser processes each input token text sequentially, from the word in a sentence

to the last. After processing the tth token in string e, an incremental parser has some internal

representation of possible hypothesized (incomplete) trees, τt. Generically, any incremental

parser and grammar which together implement an appropriate probability mass function P(τ̃t)

and transition function δ(et, τ̃t−1) together define an incremental syntactic language model.

We obtain the grammar component of our incremental syntactic language model by for-

mally redefining the right-corner model transform of Schuler (2009) in terms of the proba-

bilistic context-free grammar we trained in Section 3.3. The resulting right-corner PCFG fully

defines the model parameters of a Hierarchical Hidden Markov Model. We formally defined

the algorithms necessary to incrementally parse using our HHMM with our right-corner PCFG.

Algorithm 4.12 defines the required transition function δ(et, τ̃t−1) declared in Equation 3.6.

Algorithm 4.14 defines the required probability mass function P(τ̃t) declared in Equation 3.5.

Together, these components constitute our incremental syntactic language model.

In Chapter 5 that follows, we integrate our incremental syntactic language model into the

decoding algorithm for statistical phrase-based machine translation.



Chapter 5

Applying Incremental Syntactic
Language Models to Phrase-based
Translation

We argue that incremental parsers, used as syntactic language models, provide an appropriate

algorithmic match to incremental phrase-based machine translation. In this chapter, we integrate

an incremental syntactic language model directly into phrase-based translation.1 The incre-

mental syntactic language model we use is defined by the HHMM parsing algorithms described

in Chapter 4, using the probabilistic phrase structure grammar in right-corner form trained on

the transformed treebank from Chapter 3. The method we describe is both novel and general;

in principle this method can be used to incorporate any generative incremental language model

into phrase-based machine translation. This method re-exerts the role of the language model as

a mechanism for encouraging syntactically fluent translations.

Early work in statistical machine translation viewed translation as a noisy channel process

comprised of a translation model, which functioned to posit adequate translations of source

language words, and a target language model, which guided the fluency of generated target

language strings (Brown et al., 1990). The noisy channel approach was later generalized (Och

and Ney, 2002), allowing multiple models to be combined in a maximum entropy framework.
1 This chapter is based on Schwartz et al. (2011), originally published as “Incremental Syntactic Language Mod-

els for Phrase-based Translation” in the Proceedings of the Annual Meeting of the Association for Computational
Linguistics.
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Most current statistical machine translation research uses the maximum entropy framework. We

formally define the noisy channel and maximum entropy frameworks in Section 2.2. In both

approaches, the target language model plays a critical role guiding the order and choice of target

language words.

To define the target language model, statistical machine translation research typically fol-

lows widespread practice in speech recognition by using n-gram language models (Shannon,

1948, 1951) to model the prior probability of a contiguous sequence of words. These n-gram

models are relatively simple finite-state models, and do not incorporate knowledge about the

syntax of the language. Modern phrase-based translation using large scale n-gram language

models generally performs well in terms of lexical choice, but still often produces ungrammat-

ical output.

Syntactic parsing may help produce more grammatical output by better modelling struc-

tural relationships and long-distance dependencies. Bottom-up and top-down parsers typically

require a completed string as input; this requirement makes it difficult to incorporate these

parsers into phrase-based translation, which generates hypothesized translations incrementally,

from left-to-right.2 In some cases, it is possible to take a parser which was not designed to be

incremental and adapt it to approximate incremental parsing behavior for use as a syntactic lan-

guage model in phrase-based machine translation (Galley and Manning, 2009); however such

adaptation is far from straightforward and may require non-trivial modification of the parsing

algorithm.

As a workaround, parsers can rerank the translated output of translation systems (Och et al.,

2004). It is relatively straightforward to use a syntactic model to rerank an n-best list. However,

reranking is not the ideal mechanism to incorporate knowledge of syntax. Even when n is very

large, the hypothesized translations present in an n-best list represent only a tiny fraction of

the hypothesis space considered during translation. A syntactic model used to rerank can only

choose among the n translations present in the n-best list.

A syntactic model incorporated as a feature function (Equation 2.9 on page 18) in a max-

imum entropy framework is much more powerful influence; such a model can influence the

seach process directly, allowing many more (hopefully more syntactically well-formed) hy-

potheses to be explored. In this work, we present a mechanism to allow incremental parsers
2 While not all languages are written left-to-right, we will refer to incremental processing which proceeds from

the beginning of a sentence as left-to-right.
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(Roark, 2001; Henderson, 2004; Schuler et al., 2010; Huang and Sagae, 2010), which process

input in a straightforward left-to-right manner, to be directly incorporated as a syntactic lan-

guage model feature function into the maximum entropy framework of phrase-based machine

translation.

The remainder of this chapter is organized as follows:

• Section 5.1 formally defines the primary novel contribution of this dissertation, a general

method for integrating syntactic language models into phrase-based translation.

• Section 5.2 briefly reviews the incremental HHMM parser from Chapter 4. We will use

this parser as an incremental syntactic language model.

• Section 5.3 describes how our syntactic language model is integrated into Moses, a

phrase-based statistical machine translation system.

• Section 5.4 presents empirical results that demonstrate substantial improvements in per-

plexity for our syntactic language model over traditional n-gram language models.

• Integration of our syntactic language model into phrase-based translation comes with a

cost to translation speed. Section 5.4.2 examines this issue and presents a mechanism for

alleviating the problem.

5.1 Parser as Syntactic Language Model in Phrase-based Transla-
tion

Parsing is the task of selecting the representation τ̂ (typically a tree) that best models the struc-

ture of sentence e, out of the set of all such possible structural representations τ . This set of

representations may be all phrase structure trees or all dependency trees allowed by the parsing

model. Typically, tree τ̂ is taken to be:

τ̂ = argmax
τ

P(τ | e) (5.1)

In our case, τ represents the set of all depth-limited right-corner phrase structure trees licensed

for sentence e according to the grammar and parser defined in Chapters 3 and 4.



104

We formally define a syntactic language model P(e) based on the total probability mass over

all possible trees for string e. This is shown in Equation 5.2 and decomposed in Equation 5.3.

P(e) =
∑
τ∈τ

P(τ, e) (5.2)

P(e) =
∑
τ∈τ

P(e | τ)P(τ) (5.3)

5.1.1 Incremental Syntactic Language Model

An incremental parser processes each token of input sequentially from the beginning of a sen-

tence to the end, rather than processing input in a top-down (Earley, 1968) or bottom-up (Cocke

and Schwartz, 1970; Kasami, 1965; Younger, 1967) fashion. Tokens will commonly be words,

but may be morphemes (used in psycholinguistics sentence processing research) or characters

(used in Chinese parsing). After processing the tth token in string e, an incremental parser

has some internal representation of possible hypothesized (incomplete) trees, τt. The syntactic

language model probability of a partial sentence e1 . . . et is defined:

P(e1 . . . et) =
∑
τ∈τt

P(e1 . . . et | τ)P(τ) (5.4)

In practice, a parser may constrain the set of trees under consideration to τ̃t, that subset

of analyses or partial analyses that remains after any pruning is performed. An incremental

syntactic language model can then be defined by a probability mass function (Equation 5.5) and

a transition function δ (Equation 5.6). The role of δ is explained in Section 5.1.3. Any parser

which implements these two functions can serve as a syntactic language model.

P(e1 . . . et) ≈ P(τ̃t) =
∑
τ∈τ̃t

P(e1 . . . et | τ)P(τ) (5.5)

δ(et, τ̃t−1)→ τ̃t (5.6)

5.1.2 Decoding in Phrase-based Translation

Given a source language input sentence f , a trained source-to-target translation model, and a

target language model, the task of translation is to find the maximally probable translation ê
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ÀÁÂÃÄÅÆ

〈s〉
ÊÁÂÃÄÅÆ

〈s〉 the

ÊÁÂÃÄÅÆ

〈s〉 that

ÀËÂÃÄÅÆ

〈s〉 president

. . .

ÊËÂÃÄÅÆ

the president

ÊËÂÃÄÅÆ

that president

ÀËÂÍÄÅÆ

president Friday

. . .

ÊËÌÃÄÅÆ

president meets

ÊËÌÃÄÅÆ

Obama met

. . .

Figure 5.1: Partial decoding lattice for standard phrase-based decoding stack algorithm translat-

ing the German sentence Der Präsident trifft am Freitag den Vorstand. Each node h in decoding

stack t represents the application of a translation option, and includes the source sentence cov-

erage vector, target language n-gram state. Hypothesis combination is also shown, indicating

where lattice paths with identical n-gram histories converge. We use the English translation The

president meets the board on Friday as a running example.

using a linear combination of j feature functions h weighted according to tuned parameters λ

(Och and Ney, 2002).

ê = arg max
e

exp(
∑
j

λjhj(e,f)) (5.7)

Phrase-based translation constructs a set of translation options — hypothesized translations

for contiguous portions of the source sentence — from a trained phrase table, then incrementally

constructs a lattice of partial target translations (Koehn, 2010). To prune the search space, lattice

nodes are organized into beam stacks (Jelinek, 1969) according to the number of source words

translated. An n-gram language model history is also maintained at each node in the translation

lattice. The search space is further trimmed with hypothesis recombination, which collapses

lattice nodes that share a common coverage vector and n-gram state.

Figure 5.1 illustrates the lattice of partial target translations that is constructed as source

words are translated. Each node in the lattice stores the source coverage vector, which indicates

which source words have been translated. Additionally, each node stores the target language

n-gram state. The node in the first (left-most) stack has an empty coverage vector, indicating
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ÀÁÂÃÄÅÆ

〈s〉
τ̃0

ÊÁÂÃÄÅÆ

〈s〉 the

τ̃11

ÊÁÂÃÄÅÆ

〈s〉 that

τ̃12

ÀËÂÃÄÅÆ

〈s〉 president

τ̃13

. . .

ÊËÂÃÄÅÆ

the president

τ̃21

ÊËÂÃÄÅÆ

that president

τ̃22

ÀËÂÍÄÅÆ

president Friday

τ̃23

. . .

ÊËÌÃÄÅÆ

president meets

τ̃31

ÊËÌÃÄÅÆ

Obama met
τ̃32

. . .

Figure 5.2: Partial decoding lattice for standard phrase-based decoding stack algorithm trans-

lating the German sentence Der Präsident trifft am Freitag den Vorstand. Each node h in

decoding stack t is augmented with syntactic language model state τ̃th .

that no words have been translated; the n-gram language model state 〈s〉 signifies the beginning

of a sentence. In the next node to the right (at the bottom of the second stack), the first German

word, Der, has been translated as the. This partial translation is continued in the next node to the

right (at the bottom of the third stack), where the second German word, Präsident, is translated

as president.

Moving one node up in the lattice (the middle node of the third stack), we see an alternate

translation, where the first two source words, Der Präsident, are collectively translated as the

president. The node at the bottom of the right-most stack represent a case of hypothesis recom-

bination; the translations for each of the bottom two nodes from the third stack are extended by

translating the third German word, trifft, as meets. The bigram language model history for the

alternate translations the president meets and that president meets is the same: president meets.

Consequently the alternate paths converge at this new node.

5.1.3 Incorporating a Syntactic Language Model

Phrase-based translation produces target language words in an incremental left-to-right fashion,

generating words at the beginning of a translation first and words at the end of a translation last.
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S

VP

PP

NP

Friday

IN

on

VP

NP

NN

board

DT

the

VB

meets

NP

NN

president

DT

The

Figure 5.3: Binarized phrase structure tree for English translation The president meets the board

on Friday of the German source language sentence Der Präsident trifft am Freitag den Vorstand.

Similarly, incremental parsers process sentences in an incremental fashion, analyzing words at

the beginning of a sentence first and words at the end of a sentence last. As such, an incremental

parser with transition function δ can be incorporated into the phrase-based decoding process in

a straightforward manner. Each node in the translation lattice is augmented with a syntactic

language model state τ̃t.

The hypothesis at the root of the translation lattice is initialized with τ̃0, representing the

internal state of the incremental parser before any input words are processed. The phrase-based

translation decoding process adds nodes to the lattice; each new node contains one or more

target language words. Each node contains a backpointer to its parent node, in which τ̃t−1

is stored. Given a new target language word et and τ̃t−1, the incremental parser’s transition

function δ calculates τ̃t. Figure 5.2 illustrates a sample phrase-based decoding lattice where

each translation lattice node is augmented with syntactic language model state τ̃t.

In phrase-based translation, many translation lattice nodes represent multi-word target lan-

guage phrases. For such translation lattice nodes, δ will be called once for each newly hypoth-

esized target language word in the node. Only the final syntactic language model state in such

sequences need be stored in the translation lattice node.
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S

NP

Friday

S/NP

IN

on

S/PP

VP

NN

board

VP/NN

DT

the

VP/NP

VB

meets

S/VP

NP

NN

president

NP/NN

DT

The

Figure 5.4: Binarized phrase structure tree after application of right-corner transform for En-

glish sentence The president meets the board on Friday. Constituent nonterminals in right-

corner transformed tree take the form of incomplete constituents αA/αW consisting of an ‘ac-

tive’ constituent αA lacking an ‘awaited’ constituent αW yet to come, similar to non-constituent

categories in a Combinatory Categorial Grammar (Steedman, 2000).
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5.2 Incremental Bounded-Memory Parsing with a Time Series Model

Having defined (in Section 5.1.3) the framework by which any incremental parser may be

incorporated into phrase-based translation, we now review the incremental bounded-memory

HHMM parser from Chapter 4 as a specific incremental syntactic language model for use in our

experiments.

The parser must process target language words incrementally as the phrase-based decoder

adds hypotheses to the translation lattice. To facilitate this incremental processing, recall that

ordinary phrase-structure trees can be transformed into right-corner recursive phrase structure

trees using the tree transforms in Schuler et al. (2010). Constituent nonterminals in right-corner

transformed trees take the form of incomplete constituents αA/αW consisting of an ‘active’

constituent αA lacking an ‘awaited’ constituent αW yet to come, similar to non-constituent

categories in a Combinatory Categorial Grammar (Ades and Steedman, 1982; Steedman, 2000).

As an example, the parser might consider VP/NN as a possible category for input “meets the”.

A sample phrase structure tree is shown before and after the right-corner transform in

Figure 5.3 and Figure 5.4. Our parser operates over a right-corner transformed probabilistic

context-free grammar (PCFG). Parsing runs in linear time on the length of the input. This

model of incremental parsing is implemented as a Hierarchical Hidden Markov Model, HHMM

(Murphy and Paskin, 2001), and is equivalent to a probabilistic pushdown automaton with a

bounded pushdown store. The parser runs in O(n) time, where n is the number of words in the

input. This model is shown graphically in Figure 5.5 and formally defined in Chapter 4.

The incremental parser assigns a probability (Equation 5.5) for a partial target language hy-

pothesis, using a bounded store of incomplete constituents αA/αW. The phrase-based decoder

uses this probability value as the syntactic language model feature score.

5.3 Phrase-based Translation with an Incremental Syntactic Lan-
guage Model

The phrase-based decoder is augmented by adding additional state data to each hypothesis in

the decoder’s hypothesis stacks. Figure 5.2 illustrates an excerpt from a standard phrase-based

translation lattice. Within each decoder stack t, each hypothesis h is augmented with a syntactic

language model state τ̃th . Each syntactic language model state is a random variable store,
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Figure 5.7: A hypothesis in the phrase-based decoding lattice from Figure 5.2 is expanded using

translation option the board of source phrase den Vorstand. Syntactic language model state τ̃31

contains random variables s1..3
3 ; likewise τ̃51 contains s1..3

5 . The intervening random variables

r1..3
4 , s1..3

4 , and r1..3
5 are calculated by transition function δ (Equation 5.6), but are not stored.

Observed random variables (e3..e5) are shown for clarity, but are not explicitly stored in any

syntactic language model state.
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containing a slice of random variables from the HHMM. Specifically, τ̃th contains those random

variables s1..D
t that maintain distributions over syntactic elements.

By maintaining these syntactic random variable stores, each hypothesis has access to the

current language model probability for the partial translation ending at that hypothesis, as cal-

culated by an incremental syntactic language model defined by the HHMM. Specifically, the

random variable store at hypothesis h provides P(τ̃th) = P(eh1..t, s
1..D
1..t ), where eh1..t is the se-

quence of words in a partial hypothesis ending at h which contains t target words, and where

there are D syntactic random variables in each random variable store (Equation 5.5).

During stack decoding, the phrase-based decoder progressively constructs new hypotheses

by extending existing hypotheses. New hypotheses are placed in appropriate hypothesis stacks.

In the simplest case, a new hypothesis extends an existing hypothesis by exactly one target

word. As the new hypothesis is constructed by extending an existing stack element, the store

and reduction state random variables are processed, along with the newly hypothesized word.

This results in a new store of syntactic random variables (Equation 5.6) that are associated with

the new stack element.

When a new hypothesis extends an existing hypothesis by more than one word, this process

is first carried out for the first new word in the hypothesis. It is then repeated for the remaining

words in the hypothesis extension. Once the final word in the hypothesis has been processed,

the resulting random variable store is associated with that hypothesis. The random variable

stores created for the non-final words in the extending hypothesis are discarded, and need not

be explicitly retained.

Figure 5.7 illustrates this process, showing how a syntactic language model state τ̃51 in a

phrase-based decoding lattice is obtained from a previous syntactic language model state τ̃31

(from Figure 5.2) by parsing the target language words from a phrase-based translation option.

Our syntactic language model is integrated into the current version of Moses (Koehn et al.,

2007).

5.4 Results

We trained the syntactic language model from Section 5.2 (HHMM) and an interpolated n-gram

language model with modified Kneser-Ney smoothing (Chen and Goodman, 1998); models

were trained on sections 2-21 of the Wall Street Journal (WSJ) treebank (Marcus et al., 1993).
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Figure 5.8: Ratio of sentences which trigger parse failure, at all parser beam sizes from 1–50.
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Figure 5.9: Ratio of sentences which trigger parse failure, at various beam sizes 50–2000.
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Figure 5.10: Perplexity for in-domain and out-of-domain test sets, at parser beam sizes 1–50.

5.4.1 Perplexity Results

A standard measure of language model quality is average per-word perplexity, ppl. This mea-

sure reports how surprised a model is by test data. Equation 5.8 calculates ppl using log base b

for a test set of T tokens. Equation 5.8 calculates ppl using log base b for a test set of T tokens.

ppl = b
−logbP(e1...eT )

T (5.8)

For in-domain perplexity tests we use Section 23 of the WSJ corpus. For out-of-domain

perplexity tests, we use the English reference translations of the dev section, set aside in Baker

et al. (2009) for parameter tuning, of the NIST Open MT 2008 Urdu-English task. This is the

same dev section used for translation parameter optimization.

Because averege per-word perplexity as defined in Equation 5.8 is well-defined for only

those sentences e with a non-zero language model probabilty P(e), in all perplexity results

that we present we exclude any sentences with zero language model probability. Ideally, a

language model should provide a non-zero language model probability for all sentences in the

language. In practice, we apply beam pruning (as presented in Section 4.4) during syntactic
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Figure 5.11: Perplexity for out-of-domain test set, at various parser beam sizes from 50–2000.
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Figure 5.12: Perplexity for in-domain test set, at various parser beam sizes from 50–2000.
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In-domain Out-of-domain

LM WSJ 23 ppl ur-en dev ppl

WSJ 1-gram 1973.57 3581.72

WSJ 2-gram 349.18 1312.61

WSJ 3-gram 262.04 1264.47

WSJ 4-gram 244.12 1261.37

WSJ 5-gram 232.08 1261.90

WSJ HHMM 384.66 529.41

Interpolated WSJ

5-gram + HHMM 209.13 225.48

Giga 5-gram 258.35 312.28

Interp. Giga 5-gr

+ WSJ HHMM 222.39 123.10

Interp. Giga 5-gr

+ WSJ 5-gram 174.88 321.05

Figure 5.13: Average per-word perplexity values. HHMM was run with beam size of 2000.

Bold indicates best single-model results for LMs trained on WSJ sections 2-21. Best overall in

italics.

language model parsing. Figures 5.8 and 5.9 depict the percentage of sentences which fail to

parse (resulting in zero probability according to the syntactic language model) for small and

large beam sizes, respectively. When the most extreme level of beam pruning is applied (beam

size of 1), the parse failure rate is 63% for out-of-domain sentences and 81% for in-domain

sentences. At more the more realistic beam sizes shown in Figure 5.9, the parse failure rate

approaches 1% for in-domain sentences and 2% for out-of-domain sentences.

Figure 5.10 presents perplexity results obtained by applying our syntactic language model

to the in-domain and out-of-domain test sets at all parser beam sizes from 1–50. In Figure 5.8

we saw a high rate of parse failure during extreme pruning with very small beam sizes; under

those same conditions, sentences which do parse are assigned relatively low syntactic language
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Figure 5.14: Average per-sentence parse time, measured in seconds, for beam sizes from 1–

2000.

model probabilities, resulting in extremely high perplexity values for both in-domain and out-

of-domain test sets. As beam size in increased, the perplexity values quickly drop for both

in-domain and out-of-domain test sets. Figure 5.11 shows an out-of-domain perplexity value

of 591 at beam size 50, stabilizing to near 530 at beam sizes of 500–2000. A similar result is

shown in Figure 5.12, with a perplexity value of 416 at beam size 50, stabilizing to near 385 at

beam sizes of 500–2000.

The HHMM outperforms the n-gram model in terms of out-of-domain test set perplexity

when trained on the same WSJ data; the best perplexity results for in-domain and out-of-domain

test sets are found by interpolating HHMM and n-gram LMs (Figure 5.13). To show the effects

of training an LM on more data, we also report perplexity results on the 5-gram LM trained for

the GALE Arabic-English task using the English Gigaword corpus. In all cases, including the

HHMM significantly reduces perplexity.
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5.4.2 Speed Results

As the parser beam size is increased, the time required to parse a sentence increases. Figure 5.14

plots the linear increase in average per-sentence parsing time over beam sizes ranging from 1–

2000. When the parser is integrated into phrase-based translation as a syntactic language model,

the beam size setting directly affects the time it takes to translate a source language sentence.

In Figure 5.15, we observe that integration of our syntactic language model into phrase-based

translation comes at a substantial cost to translation speed; in this section, we examine this issue

and present a mechanism for alleviating the problem by distributing translation jobs across a

cluster of parallel computational nodes.

Sentence Moses +HHMM +HHMM

length beam=50 beam=2000

10 0.21 533 1143

20 0.53 1193 2562

30 0.85 1746 3749

40 1.13 2095 4588

Figure 5.15: Mean per-sentence decoding time (in seconds) for dev set using Moses with and

without syntactic language model. HHMM parser beam sizes are indicated for the syntactic

LM.

Ideally, all parts of a document should take the same amount of time to translate. While

naive splitting techniques reduce the time required for each translation iteration by splitting the

work between p computational nodes, in practice some parts may take much longer to complete

than others. This can lead to significant computational slack time. To address this problem, we

develop three novel algorithms for splitting translation tasks in a parallel computing environ-

ment, drawing on research in parallel machine scheduling.

Related Work: Machine Scheduling

While machine translation models could, in theory, condition on previously translated sen-

tences, in practice virtually no widely used models do so. It is therefore very straightforward

to split the data into p parts, and translate each part independently on p computational nodes.
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Scripts implemented in Moses (Koehn et al., 2007) do exactly that, simply splitting the data into

p arbitrary parts such that each part contains the same number of lines (Algorithm 5.1).

Algorithm 5.1 Split input text into n parts such that each part contains the same number of

lines.
function NAIVE-SPLIT(n,input)

`← input.length / n

for p← 0 . . . (n− 1) do
i← `× p
k ←min(i+ `− 1,input.length)

for j ← i . . . k do
output[p].append(input[j])

end for
end for
return output

end function

Research into parallel machine scheduling problems constitutes a wide and well-studied

field, ranging through various disciplines of engineering, manufacturing, and management in

addition to computer science and applied mathematics (Cheng and Sin, 1999), spanning a wide

range of scheduling techniques (Panwalkar and Iskander, 1977).

We now briefly examine the existing research most relevant to our task. Hu (1961) and

Graham (1966, 1969) develop various list scheduling algorithms. This family of algorithms

prioritizes jobs into a queue, then assigns jobs to machines in queue order. This approach

attempts to evenly balance the load on each execution host (De and Morton, 1980; Cheng and

Sin, 1999). Both Algorithm 5.1 and techniques we develop fall into this family of algorithms.

Better Splitting for Faster Results

To observe the effects of splitting algorithms on decoding speed, we translated Urdu-English

data using Moses in a parallel computing cluster, distributing work using the Sun Grid Engine.

We ran two decoding setups: a standard configuration using a 5-gram language model, and a

much slower configuration that also used an incremental syntactic language model. Using Al-

gorithm 5.1, the runtimes of the slowest of n translation jobs in each configuration is illustrated
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(a) Decoding times in seconds for standard decoder configured using a

5-gram language model.
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(b) Decoding times in hours for decoder configured using a syntactic lan-

guage model in addition to a 5-gram language model.

Figure 5.16: Decoding times for the slowest translation job in a translation task split into n de-

coding jobs using various splitting algorithms (NAIVE-SPLIT, HISTOGRAM-SPLIT, WORDS-

SPLIT, and TIMES-SPLIT).
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Split Size NAIVE-SPLIT HISTOGRAM-SPLIT WORDS-SPLIT TIMES-SPLIT

(n) Min Max Min Max Min Max Min Max

2 222.9 224.4 221.5 225.8 219.3 228.0 223.7 223.7

4 109.2 113.7 110.0 114.6 108.7 115.6 111.8 111.8

8 51.4 58.4 52.2 59.0 53.2 58.3 55.9 55.9

16 24.9 32.2 25.0 31.7 25.3 30.0 27.9 28.0

32 11.3 19.1 11.9 17.3 11.7 16.1 14.0 14.0

64 5.4 11.3 5.4 10.6 5.7 9.1 7.0 7.0

128 1.3 8.0 2.2 6.3 2.3 5.2 3.5 3.5

256 0.3 5.3 0.7 4.3 0.8 3.0 1.7 2.5

512 0.0 3.6 0.2 3.1 0.3 2.5 0.6 2.5

(a) Decoding times in seconds for standard decoder configured using a 5-gram language model.

Split Size NAIVE-SPLIT HISTOGRAM-SPLIT WORDS-SPLIT TIMES-SPLIT

(n) Min Max Min Max Min Max Min Max

2 365.7 408.0 376.3 397.5 386.1 387.6 386.9 386.9

4 176.1 214.4 186.8 205.0 184.6 200.9 193.4 193.4

8 84.6 122.8 84.8 107.6 88.4 101.9 96.7 96.7

16 40.8 70.8 40.5 62.0 45.3 55.0 48.4 48.4

32 19.2 38.3 18.8 37.8 20.5 29.2 24.2 24.2

64 9.2 26.1 9.2 25.4 9.4 16.7 12.1 12.1

128 2.7 16.6 4.1 13.0 3.7 9.3 5.9 6.2

256 0.7 10.2 1.3 8.0 1.4 6.6 2.9 4.6

512 0.0 6.9 0.3 6.3 0.6 4.6 1.1 4.6

(b) Decoding times in hours for decoder configured using a syntactic language model in addition to a 5-gram

language model.

Figure 5.17: Decoding times for the fastest (min) and slowest (max) decoding jobs when a

translation task is split into n decoding jobs. Italics indicate balanced task times. Bold indicates

fastest max time at that split.
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(b) Slack CPU-Hours for decoder configured using a syntactic language

model in addition to a 5-gram language model.

Figure 5.18: Cumulative slack CPU time for n processing cores when processing a parallel

translation task split into n jobs using various splitting algorithms. Slack CPU time is caused

when some jobs finish before others. Zero slack time indicates conditions where all jobs com-

plete simultaneously.
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in Figure 5.16 for various values of n. Figure 5.17 shows that in all cases, there is a significant

difference between the fastest and slowest translation job, leading to computational slack time

(Figure 5.18).

In examining these results, we observe that the slack time results primarily from situations

where some jobs are assigned a disproportionate number of short sentences, and thus finish

much faster than jobs that are assigned many longer sentences. To remedy this imbalance, we

propose Algorithm 5.2. This technique examines the word lengths of each sentence prior to

splitting the data into jobs. Sentences are sorted according to length, then assigned in turns to

jobs. This results in the sentence length histograms for each job being approximately equal.

Algorithm 5.2 Split input text into n parts to balance the histograms of line lengths for all parts.

function HISTOGRAM-SPLIT(n,input)

for i← 0 . . . ( input.length −1) do
sentence[i].length← input[i].length

sentence[i].index← i

end for
SORT(sentence) {|x, y| x.length⇔ y.length} . Sort sentences by length

p← 0

for i← 0 . . . (input.length −1) do
output[p].append(input[sentence[i].index])

p← (p+ 1) mod n

end for
return output

end function

Figures 5.16a–5.18a fail to show improvment in speed for a standard Moses configuration

for small values of n. But for values of n > 8, and for all values of n using the slow syntactic

language model (Figures 5.16b–5.18b), Algorithm 5.2 results in significant decreases in total

decoding time over the naive Algorithm 5.1.

While Algorithm 5.2 balances short and long sentences across jobs, we may be able to im-

prove runtimes by balancing the total number of words in each job. In Algorithm 5.3, sentences

are sorted by length into a queue, with longest sentences at the head of the queue. Initially,

no sentences have been assigned to any job. The longest sentence, at the head of the queue, is
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assigned first to a job. As each sentence is assigned to a job, the total number of words assigned

to that job is recorded. Each subsequent sentence is removed from the queue and assigned to

the job with the least work assigned to it, as measured by number of words. Results for Algo-

rithm 5.3 show substantial speedups over Algorithms 5.1 and 5.2 when using the slower decoder

configuration. Similar speedups are seen where n > 8 for the faster configuration.

Algorithm 5.3 Split input text into n parts to balance the number of words for all parts.

function WORDS-SPLIT(n,input)

for i← 0 . . . ( input.length −1) do
sentence[i].length← input[i].length

sentence[i].index← i

end for
SORT(sentence) {|x, y| y.length⇔ x.length}

. Sort sentences by length, in reverse order

for i← 0 . . . ( input.length −1) do
p← LEAST(words) . Find partition with fewest words

output[p].append(input[sentence[i].index])

words[p]←words[p] + sentence[i].length

end for
return output

end function

When assigning sentences to jobs, we would ideally like to know how long each sentence

will take to process. Algorithms 5.2 and 5.3 use the number of words in each sentence as a

proxy for processing time. During MERT, the same set of development sentences are translated

multiple times. Since each decoding process differs only by the λ weights used, it is reasonable

to expect similar runtimes for each run. With this in mind, we record the time required to

translate each sentence during the first iteration of MERT. In subsequent iterations, Algorithm

5.4 uses the time recorded to translate a sentence as an estimate of the time it will take to

translate that sentence again. Algorithm 5.4 differs from Algorithm 5.3 by sorting using these

times instead of sentence length.

The use of Algorithm 5.4 results in speedups under all conditions (Figure 5.17). In nearly

all conditions, the speedup is substantial over the baseline. Slack time is at or near zero in
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Algorithm 5.4 Split input text into n parts to balance the estimated translation time of all parts.

function TIMES-SPLIT(n,input,estimate)

for i← 0 . . . ( input.length −1) do
sentence[i].time← estimate[i]

sentence[i].index← i

end for
SORT(sentence) {|x, y| y.time⇔ x.time}

. Sort sentences by time, in reverse order

for i← 0 . . . ( input.length −1) do
p← LEAST(times) . Find partition with least time

output[p].append(input[sentence[i].index])

times[p]← times[p] + sentence[i].time

end for
return output

end function

all cases where n < 256. Where slack time remains, n = (256, 512), a few jobs were each

assigned a single long sentence that took longer to translate than the other jobs which were

assigned multiple shorter sentences.

5.4.3 Translation Results

We trained a phrase-based translation model on the full NIST Open MT08 Urdu-English trans-

lation model using the full training data. We trained the HHMM and n-gram LMs on the WSJ

data in order to make them as similar as possible. To tune the log-linear feature parameter

weights, we used MERT — Minimum Error Rate Training (Och, 2003). During tuning, Moses

was first configured to use just the n-gram LM, then configured to use both the n-gram LM

and the syntactic HHMM LM. MERT consistently assigned positive weight to the syntactic

LM feature, typically slightly less than the n-gram LM weight. This suggests that the MERT

optimization procedure found our syntactic LM to be a useful feature.

In our integration with Moses, incorporating a syntactic language model dramatically slows

the decoding process. Figure 5.15 illustrates a slowdown around three orders of magnitude.

Although speed remains roughly linear to the size of the source sentence (ruling out exponential
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Moses LM(s) BLEU

n-gram only 18.78

HHMM + n-gram 19.78

Figure 5.19: Results for Ur-En devtest (only sentences with 1-20 words) with HHMM beam

size of 2000 and Moses settings of distortion limit 10, stack size 200, and ttable limit 20. The

n-gram only condition used a dev set constrained to sentences with 1-20 words. The HHMM +

n-gram condition used a dev set constrained to sentences with 1-40 words.3

behavior), it is with an extremely large constant time factor. Due to this slowdown, we tuned

the parameters using a constrained dev set, and tested using a constrained devtest set (only

sentences with 1-20 words). The n-gram only condition used a dev set constrained to sentences

with 1-20 words. The HHMM + n-gram condition used a dev set constrained to sentences with

1-40 words.3

We test our tuned translation systems on a test set of sentences not seen during MERT. Our

test set is the devtest section, set aside in Baker et al. (2009), of the NIST Open MT 2008 Urdu-

English task. In our initial experiment, we restrict our test set to only those sentences 1–20

words in length. For translating the test set, Moses was first configured to use just the n-gram

LM, then configured to use both the n-gram LM and the syntactic HHMM LM. Translation

results, as measured by BLEU, are shown in Figure 5.19.

Figure 5.19 shows a statistically significant improvement to the BLEU score when using the

HHMM and the n-gram LMs together on this reduced test set. Our perplexity results indicated

that the HHMM language model is a good model of the target language. This positive translation

result provides some evidence indicating that the use of our incremental syntactic language

model is indeed serving to guide the translation algorithm towards more fluent target language

translations.

We next examine whether these results hold when we translate a larger section of our test

set, including sentences 1–40 words in length. We re-run MERT, this time constraining the

dev set for both conditions to sentences with 1–20 words. Again during tuning, Moses was

first configured to use just the n-gram LM, then configured to use both the n-gram LM and
3 Schwartz et al. (2011) incorrectly reported that both conditions used a dev set constrained to sentences with

1-20 words.
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Moses LM(s) BLEU

n-gram only 21.43

HHMM + n-gram 21.72

Figure 5.20: Results for Ur-En devtest (only sentences with 1-40 words) with HHMM beam

size of 2000 and Moses settings of distortion limit 10, stack size 200, and ttable limit 20. Both

conditions used a dev set constrained to sentences with 1-20 words.

Moses LM(s)
BLEU

distortion limit=10 distortion limit=20

n-gram only 21.67 21.88

HHMM + n-gram 21.44 21.93

Figure 5.21: Results for Ur-En devtest (only sentences with 1-40 words) with HHMM beam

size of 2000 and Moses settings of distortion limit 10 and 20, stack size 200, and ttable limit

20. Both conditions used a dev set constrained to sentences with 1-40 words.

Figure 5.22: Graphical representation of differences in BLEU scores at the segment-level BLEU

scores. Graph was produced by the iBLEU visualization tool (Madnani, 2011).
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System BLEU

NIST OpenMT System 2 12.13

Systran version 5.05 14.81

NIST OpenMT System 3 21.24

Google 21.36

NIST OpenMT System 1 23.77

Moses, n-gram LM only 24.13

Moses, HHMM + n-gram LMs 24.18

NIST OpenMT System 7 24.86

NIST OpenMT System 6 24.97

NIST OpenMT System 5 25.17

NIST OpenMT System 8 25.92

NIST OpenMT System 4 26.97

Commercially available system with syntactic TM, circa 2010 27.48

SCALE 32.24

NIST OpenMT System 9 32.88

Figure 5.23: Translation results for NIST 2009 Open Machine Translation Urdu-English com-

parison test set of 1220 sentences. The Moses runs used a distortion limit of 20, and an HHMM

beam size of 2000.
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System BLEU

Systran version 5.05 14.69

Google 22.05

Moses, n-gram LM only 23.91

Moses, HHMM + n-gram LMs 24.12

Commercially available system with syntactic TM, circa 2010 27.18

SCALE 32.46

Top System, NIST OpenMT 2009 33.10

Figure 5.24: Translation results for NIST 2009 Open Machine Translation Urdu-English full

test set of 1792 sentences. The Moses runs used a distortion limit of 20, and an HHMM beam

size of 2000.

the syntactic HHMM LM. Translation results for this experimental condition, as measured by

BLEU, are shown in Figure 5.20. Under this condition, we find no significant difference in

translation quality as measured by BLEU between the translation system using the syntactic

LM and the n-gram only system.

For the experimental results shown in Figure 5.20, tuning was performed on a dev set con-

strained to 1–20 words, and testing was performed on a test set constrained to 1–40 words. We

next examine a condition where both dev set and test set were constrained to sentences 1–40

words in length. For this experiment, tuning was again run with Moses was first configured to

use just the n-gram LM, then configured to use both the n-gram LM and the syntactic HHMM

LM. Translation results for this experimental condition, as measured by BLEU, are shown in

Figure 5.21. Under this condition, we find no significant difference in translation quality as

measured by BLEU between the translation system using the syntactic LM and the n-gram

only system.

Using the iBLEU visualization tool (Madnani, 2011), it is possible to examine BLEU score

results at a finer, sentence level of granularity. Figure 5.22 graphically depicts the difference

in component BLEU scores for each sentence in a test set. The translation results shown in

Figure 5.22 are for the condition where dev set and test set were constrained to sentences with

1–40 words, with a distortion limit of 20, as shown in Figure 5.21. In this visualization, vertical



131

lines above the center indicate sentences where the n-gram only condition outperforms the

syntactic LM condition, according to BLEU score components. Likewise, vertical lines below

the center indicate sentences where the syntactic LM condition outperforms the n-gram only

condition, according to BLEU score components. The magnitude of each vertical line depicts

the relative difference in BLEU score components between the two conditions. Figure 5.22

shows an approximately equal number of vertical lines above and below the center; this result

confirms the results shown in Figure 5.20 and Figure 5.21 — namely that BLEU fails to show a

significant difference between the two conditions.

In the statistical machine translation literature, it is standard practice to report changes in

BLEU score as an indicator of whether a new experimental condition produces significantly

better results over a baseline. According to that measure, the experimental results reported in

Figure 5.20 and Figure 5.21 fail to show a significant difference between phrase-based machine

translation results produced with a syntactic LM and those produced with only an n-gram LM.

However, the fact that BLEU scores between two compared conditions are not significantly dif-

ferent does not necessarily mean that the translation quality of the two systems are the same;

Figure 5.25 illustrates this fact with translations of two sentences selected from our test set.

BLEU is an n-gram precision metric, and therefore tends to prefer translations produced by

systems which emphasize high-order n-gram matches. In particular, BLEU has been shown to

be a poor indicator of relative translation quality when comparing translation systems that uti-

lize substantially different methods (Callison-Burch et al., 2007), such as rule-based translation

systems and statistical phrase-based systems. Even worse, BLEU scores have been shown to

correlate poorly with human assessments of translation quality (Callison-Burch et al., 2006). In

recent years, the shared translation task at the annual Workshop on Statistical Machine Trans-

lation has adopted human assessment as the primary metric of translation quality, in preference

over BLEU and other automatic evaluation metrics (Callison-Burch et al., 2007, 2008, 2009,

2010, 2011).

In the translation experiments above, tuning via MERT was performed only once for each

experimental condition. This was due primarily to time constraints; running MERT is a time-

intensive procedure, since each run of MERT involves translating a dev set multiple times.

When decoding is slowed by the use of the syntactic LM, tuning time is obviously affected.

This methodology, running MERT once for each experimental condition, is common practice in

the statistical machine translation literature. However, it is well known in the statistical machine
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Figure 5.25: Translation of segments 103 & 512. BLEU is not always a good judge of transla-

tion quality. In segment 103, the translation from the n-gram only system has a higher trigram

match, and hence a higher BLEU score, but the translation from the HHMM syntactic LM sys-

tem translates more content words. In segment 512, the translations from both systems are very

bad, but the HHMM syntactic LM system receives a much higher score according to BLEU.
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translation community that there is substantial instability in the MERT process. Recent work has

shown that this instability leads not just to a difficulty in exactly replicating prior results, but can

easily lead to substantial random variation in translation quality; Clark et al. (2011) examines

this issue and concludes that experiments should strive to run multiple replications of tuning to

control for optimizer instability. In future work we plan to re-run our above experiments using

multiple optimization runs.

Our initial translation results, shown in Figure 5.19, present a statistically significant im-

provement in translation quality, as measured by BLEU, when our phrase-based translation

utilizes our syntactic language model. Further results, shown in Figure 5.20 and Figure 5.21

fail to show a significant difference between phrase-based machine translation results produced

with a syntactic LM and those produced with only an n-gram LM. All of these experimental

conditions were each performed with only one run of MERT, and it is therefore even more

important to be careful in drawing conclusions from the data.

Ultimately, the most important metric of translation quality is human judgement. To better

examine whether our syntactic language model is impacting translation quality, we perform

Figure 5.26: Translation of segment 561. The translation from the HHMM syntactic LM system

is more syntactically well-formed.
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Figure 5.27: Translation of segments 624 & 744. The translations from the HHMM syntactic

LM system are more syntactically well-formed.
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an informal examination of our translation results. The example translations we highlight are

taken from the experimental condition shown in Figure 5.21, where dev set and test set were

constrained to sentences with 1–40 words, with a distortion limit of 20.

While translation results are nowhere near perfect (recall the bad translations shown in

Figure 5.25), a manual examination of the results shows that in many cases, the translations

produced using the syntactic language model do appear to be more syntactically well-formed

than those produced using only an n-gram language model. Figures 5.26–5.31 show a selection

of sentences translated under each experimental condition. These example sentences were se-

lected using the iBLEU visualization tool (Madnani, 2011); the visualization of these sentences

shown in Figures 5.26–5.31, along with with their machine translation results and reference

translations, are taken from the relevant iBLEU visualizations.

In Figure 5.26, a sample sentence (segment 561) from the test set is shown. Along with

the sentence, there are four human reference translations of the original Urdu sentence. Finally,

Figure 5.28: Translation of segment 158. The translation from the HHMM syntactic LM system

is more syntactically well-formed and represents an slightly better translation.
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Figure 5.29: Translation of segments 100 & 144. The translations from the HHMM syntactic

LM system are more syntactically well-formed and represent overall better translations.
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Figure 5.30: Translation of segments 210 & 481. The translations from the HHMM syntactic

LM system are more syntactically well-formed and represent overall better translations.
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machine translations of the sentence using the HHMM syntactic language model condition

and n-gram only condition are shown. In the translation from the n-gram only condition, we

observe that sequences of words are reasonably fluent within windows of three or four words,

but that the sentence is far from globally coherent. This effect is expected; the n-gram language

model works to ensure fluency within an n-word window, but lacks any mechanism to influence

fluency outside that window.

While the semantic adequacy of the syntactic LM translation in Figure 5.26 may not neces-

sarily be an improvement over the n-gram only translation, the syntactic LM has the ability to

influence fluency over the entire sentence. In this case we do indeed observe that the syntactic

structure of this alternate translation appears to be more fluent. We observe similar results in

test set segments 624 and 744, shown in Figure 5.27. In each of these examples, the seman-

tic adequacy of the syntactic LM translations is not necessarily superior to that of the n-gram

only translations, but the syntactic LM translations are more fluent and more syntactically well-

formed.

Figure 5.31: Translation of segment 323. The translation from the HHMM syntactic LM system

is more syntactically well-formed and represents an overall better translation. Note the trailing

preposition in the translation from the n-gram only system.
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We observe a number of examples in the test set where the use of our syntactic language

model results in translations that are both more syntactically well-formed and also are clearly

more semantically accurate with respect to the reference translations. Test set segment 158,

shown in Figure 5.28, represents an example where the use of our syntactic LM results in a

translation that is more syntactically well-formed; in this example, the resulting translation also

comes somewhat closer to the semantics of the reference translations than does the n-gram only

translation. We observe this effect even more clearly in test set segments 100 and 144, shown

in Figure 5.29. In these examples, the syntactic LM translations are clearly more semantically

accurate with respect to the reference translations, and are also clearly more syntactically well-

formed. This is easy to see in segment 144; here the n-gram only model incorrectly places

the incorrect preposition at the end of the translation, while the syntactic LM model places the

correct preposition at the correct location in the middle of the translation. We observe similar

effects in test set segments 210 and 481, shown in Figure 5.30, and in test set segment 323,

shown in Figure 5.31.

5.5 Conclusion

In this chapter, we have argued that incremental parsers, used as syntactic language models,

provide an appropriate algorithmic match to incremental phrase-based machine translation. We

integrated an incremental syntactic language model directly into the Moses phrase-based trans-

lation decoder. The incremental syntactic language model we use is defined by the HHMM

parsing algorithms described in Chapter 4, using the probabilistic phrase structure grammar in

right-corner form trained on the transformed treebank from Chapter 3. The method we describe

is both novel and general; in principle this method can be used to incorporate any generative

incremental language model into phrase-based machine translation. Our method re-exerts the

role of the language model as a mechanism for encouraging syntactically fluent translations.

The incremental syntactic language model we present is a good model of the English lan-

guage. A standard measure of language model performance is the perplexity metric, which

measures how surprised a model is by new data. We shown, in Section 5.4.1, that our syntac-

tic language model substantially outperfoms traditional n-gram language models in terms of

perplexity on out-of-domain data. When our syntactic language model is interpolated with an
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n-gram language model, we find even better perplexity results, on both in-domain and out-of-

domain data.

Integration of our syntactic language model into phrase-based translation comes with a cost

to translation speed. In Section 5.4.2 we examine this issue and develop mechanisms for allevi-

ating the problem by distributing translation jobs across a cluster of computational nodes.

Ultimately, we hypothesize that our syntactic language model should influence the phrase-

based translation decoder toward translations which are more syntactically well-formed. We

test this hypothesis under several experimental conditions. We find no significant difference

in translation quality as measured by BLEU between the translation system using the syntactic

LM and the n-gram only system. We conclude our experimentation with an informal manual

examination of a number of sentences from our test set translations. Our manual examination

suggests that the use of our incremental syntactic language model is indeed serving to guide the

translation algorithm towards more fluent target language translations.



Chapter 6

Conclusion

Modern machine translation techniques typically incorporate both a translation model, which

guides how individual words and phrases can be translated, and a language model (LM), which

promotes fluency as translated words and phrases are combined into a translated sentence. Most

attempts to inform the translation process with linguistic knowledge have focused on infusing

syntax into translation models. This dissertation presents a novel technique for incorporating

syntactic knowledge as a language model in the context of statistical phrase-based machine

translation (Koehn et al., 2003), one of the most widely used modern translation paradigms.

This dissertation argues that incremental syntactic language models are a straightforward

and appropriate algorithmic fit for incorporating syntax into phrase-based statistical machine

translation, since both process sentences in an incremental left-to-right fashion. This means

incremental syntactic LM scores can be calculated during the decoding process, rather than

waiting until a complete sentence is posited, which is typically necessary in top-down or bottom-

up parsing.

In summary, the major contributions of this work are as follows:

• We present a formal definition of an incremental syntactic language model as a Hierarchi-

cal Hidden Markov Model (HHMM), and detail for the first time exactly how this model

is estimated from a treebank corpus of labelled data (Chapter 3).

• The HHMM syntactic language model has been used in prior work involving parsing,

speech recognition, and semantic role labelling. For the first time, we fully document the

complete algorithmic definition of the HHMM as a language model (Chapter 4).

141
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• We develop a novel and general method for incorporating any generative incremental

language model into phrase-based machine translation (Chapter 5). We integrate our

HHMM incremental syntactic language model into Moses, the prevailing phrase-based

decoder.

• We present empirical results for language model perplexity that show our incremental

syntactic language model, implemented as an HHMM, is a good model of language. We

present empirical results on a constrained Urdu-English translation task that demonstrate

the use of our syntactic LM. We present three novel techniques for effectively speeding

up translation through the use of parallel computational resources.

6.1 Experimental Results

A standard measure of language model quality is average per-word perplexity. We present

empirical results evaluating perplexity of various n-gram language models and our syntactic

language model on both in-domain and out-of-domain test sets. On an in-domain test set, a

traditional 5-gram language model trained on the same data as our syntactic language model

outperforms the syntactic language model in terms of perplexity. We find that interpolating

the 5-gram LM with the syntactic LM results in improved perplexity results, a 10% absolute

reduction in perplexity compared to the 5-gram LM alone.

On an out-of-domain test set, we find that our syntactic LM substantially outperforms all

other LMs trained on the same training data. The syntactic LM demonstrates a 58% absolute

reduction in perplexity over a 5-gram language model trained on the same training data. On this

same out-of-domain test set, we further show that interpolating our syntactic language model

with a large Gigaword-scale 5-gram language model results in the best overall perplexity results

— a 61% absolute reduction in perplexity compared to the Gigaword-scale 5-gram language

model alone, a 76% absolute reduction in perplexity compared to the syntactic LM alone, and a

90% absolute reduction in perplexity compared to the original smaller 5-gram language model.

A language model with low perplexity is a theoretically good model of the language; it

is expected that using an LM with low perplexity as a component of a machine translation

system should result in more fluent translations. We present empirical results on a constrained

Urdu-English translation task that demonstrate the use of our syntactic LM, and we perform an

informal manual evaluation of translation results which suggests that the use of our incremental
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syntactic language model is indeed serving to guide the translation algorithm towards more

fluent target language translations.

Integration of our syntactic language model into phrase-based translation comes at a sub-

stantial cost to translation speed. We present three novel techniques for effectively speeding up

translation through the use of parallel computational resources. We show that use of these tech-

niques results in a substantial reduction in slack time, where parallel computational resources

are available but not used. By using the best of these techniques, we found a complete elimina-

tion of slack time in most cases.

6.2 Future Work

We provided a rigorous formal definition of incremental syntactic languages models, and de-

tailed what steps are necessary to incorporate such LMs into phrase-based decoding. The per-

plexity improvements suggest that interpolating between n-gram and syntactic LMs may hold

promise on larger data sets. In future work, we will explore whether the positive results seen on

this constrained task hold when translating longer sentences and other data sets.

In our translation experiments, we chose to use an n-gram model trained only on data from

the Wall Street Journal treebank corpus. This is the same corpus on which our syntactic lan-

guage model was trained. This choice allowed us to directly compare translations performed

with and without the syntactic language model, without having the complicating factor of dif-

ferent respective training corpora for the n-gram and syntactic language models. That said,

we acknowledge that the n-gram language model trained only on WSJ data is a small lan-

guage model. The use of very large n-gram language models is typically a key ingredient in

the best-performing machine translation systems (Brants et al., 2007). Our future work seeks

to incorporate large-scale n-gram language models in conjunction with incremental syntactic

language models.

The added decoding time cost of our syntactic language model is very high. It could be

argued that a phrase-based decoder without a syntactic language model that explored a much

larger search space (and consequently also took much more time to run) might find and select

translations of equal or greater quality than those selected when the syntactic language model

is used. By increasing the beam size and distortion limit of the baseline system (where no

syntactic language model is used), future work may examine whether a baseline system with
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comparable runtimes can achieve comparable translation quality.

A more efficient implementation of the HHMM parser would speed decoding and make

more extensive and conclusive translation experiments possible. Various additional improve-

ments could include caching the HHMM LM calculations, and exploiting properties of the

right-corner transform that limit the number of decisions between successive time steps.

In this dissertation, we integrated our incremental syntactic language model into Moses, the

leading phrase-based translation system. However, Moses is not the only machine translation

system in which target language words are generated incrementally, from left to right. The

methods we developed here could be directly applied to any system in which target language

words are generated incrementally, from left to right. In future work, we may integrate our

incremental syntactic language model into Cunei (Phillips and Brown, 2009), a phrase-based

decoder which draws heavily on ideas from the example-based machine translation literature.

Our method is applicable to other, more divergent MT algorithms as well; Huang and Mi (2010)

present an incremental tree-to-string translation algorithm which could potentially benefit from

the additional target language syntactic information provided by our incremental syntactic lan-

guage model.
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Appendix A

Tree & Model Transformations:
Implementation Details

A.1 Initial Preprocessing

Trees from the WSJ treebank (sections 2-21) are preprocessed. After preprocessing, all training

data has been concatenated into a single file, genmodel/wsjTRAIN.linetrees, contain-

ing one tree per line.

f o r i i n 02 . . 2 1 ; do
p e r l s c r i p t s / t b t r e e s 2 l i n e t r e e s . p l \

< wsj / ${ i } / ∗ . mrg \
> genmodel / wsj$ { i } . l i n e t r e e s

done

In the interest of maximal reproducibility, the script that performs this processing step,

scripts/tbtrees2linetrees.pl, is listed in Appendix B.1.

c a t genmodel / ∗ . l i n e t r e e s \
| p e r l s c r i p t s / a n n o t a t e F i x e s \
> genmodel / wsjTRAIN . l i n e t r e e s

The WSJ treebank contains some annotation errors; the script scripts/annotateFixes.pl,

listed in Appendix B.2, addresses certain of these annotation errors.
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A.2 Binarization

After initial preprocessing (Appendix A.1), trees from the WSJ treebank (sections 2-21) are bi-

narized, and terminal tokens are lowercased. Punctuation is retained. The resulting binary trees

are stored in a single file, genmodel/wsjTRAIN.projtrees. In the interest of maximal

reproducibility, the script that performs this processing step, scripts/ annotateProjs.pl,

is listed in Appendix B.3.

p e r l s c r i p t s / a n n o t a t e P r o j s . p l < genmodel / wsjTRAIN . l i n e t r e e s \
> genmodel / wsjTRAIN . p r o j t r e e s

Binarization rules are documented in the implementing script, where they are implemented

in Perl as regular expression substitution operations. Following Schuler et al. (2010) we list

the most important binarization rules below. These binarization rules are designed to convert

flat constituents into linguistically motivated head projections. In the rules below, vertical bar

|, square brackets [], Kleene star *, and optional marker ? should be read as regular expression

operators.

1. NP: right-binarize basal NPs as much as possible; then left-binarize NPs after left context

reduced to nil:

A0=NP|WHNP

. . .A2=NN[A-Z]*:α2A1=[A-Z]*:α1. . .

⇒

A0

. . .A2

A2:α2A1:α1

. . .

A0=NP

. . .A2=PP|S|VP|WHSBAR:α2A1=NN[A-Z]*|NP:α1

⇒

A0

. . .A1

A2:α2A1:α1

2. VP: left-binarize basal VPs as much as possible; then right-binarize VPs after right con-

text reduced to nil:

A0=VP|SQ

. . .A2=[A-Z]*:α2A1=VB[A-Z]*|BES:α1. . .

⇒

A0

. . .A1

A2:α2A1:α1

. . .
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A0=VP

A2=VB[A-Z]*|VP:α2A1=ADVP|RB[A-Z]*|PP:α1. . .

⇒

A0

A2

A2:α2A1:α1

. . .

3. ADJP: right-binarize basal ADJPs as much as possible; then left-binarize ADJPs after

left context reduced to nil:

A0=ADJP[A-Z]*

. . .A2=JJ[A-Z]*:α2A1=RB[A-Z]*:α1. . .

⇒

A0

. . .A2

A2:α2A1:α1

. . .

A0=ADJP

. . .A2=PP|S:α2A1=JJ[A-Z]*|ADJP:α1

⇒

A0

. . .A1

A2:α2A1:α1

4. ADVP: right-binarize basal ADVPs as much as possible; then left-binarize ADVPs after

left context reduced to nil:

A0=ADVP

. . .A2=RB[A-Z]*:α2A1=RB[A-Z]*:α1. . .

⇒

A0

. . .A2

A2:α2A1:α1

. . .

A0=ADVP

. . .A2=PP|S:α2A1=RB[A-Z]*|ADVP:α1

⇒

A0

. . .A1

A2:α2A1:α1

5. PP: left-binarize PPs as much as possible; then right-binarize PPs after right context re-

duced to nil:

A0=PP|SBAR

. . .A2=[A-Z]*:α2A1=IN|TO:α1. . .

⇒

A0

. . .A1

A2:α2A1:α1

. . .
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A0=PP

A2=PP:α2A1=ADVP|RB|PP:α1. . .

⇒

A0

A2

A2:α2A1:α1

. . .

6. S: group subject NP and predicate VP of a sentence; then group modifiers to right and

left:

A0=S[A-Z]*

. . .A2=VP:α2A1=NP:α1. . .

⇒

A0

. . .S

A2:α2A1:α1

. . .

A0=S[A-Z]*

. . .A2=VB[A-Z]*|VP:α2A1=ADVP|RB[A-Z]*|PP:α1. . .

⇒

A0

. . .A2

A2:α2A1:α1

. . .

A0=S[A-Z]*

. . .A2=A0:α2A1=ADVP|RB[A-Z]*|PP:α1. . .

⇒

A0

. . .A2

A2:α2A1:α1

. . .

A0=S[A-Z]*

. . .A2=ADVP|RB[A-Z]*|PP:α2A1=A0:α1. . .

⇒

A0

. . .A1

A2:α2A1:α1

. . .

A.3 Argument Structure

After binarization (Appendix A.2), trees from the WSJ treebank (sections 2-21) are processed;

argument structure is identified, and subcategorization tags are added. In the interest of maximal

reproducibility, the script that performs this processing step, scripts/ annotateArgs.pl,

is listed in Appendix B.4.

p e r l s c r i p t s / a n n o t a t e A r g s . p l < genmodel / wsjTRAIN . p r o j t r e e s \
> genmodel / wsjTRAIN . a r g t r e e s
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1. Pass existing subcategorization argument (-u) and passive (-v) tags from parent to each

child whose catagory exactly matches the parent’s, or whose category differs from the

parent’s only by the presence or absence of the C- conjunction-marking prefix.

A0=C?Acat-uAsubcat

. . .A1=C?Acat:α1. . .

⇒
A0

. . .A1-uAsubcat:α1. . .

A0=C?Acat-vAsubcat

. . .A1=C?Acat:α1. . .

⇒
A0

. . .A1-vAsubcat:α1. . .

2. Subcategorize the head of an determiner-headed noun phrase with its noun argument type

A0=NP|NN

. . .A2=NNP?S?:α2A1=DT:α1. . .

⇒
A0

. . .A2:α2A1 uA2:α1. . .

3. Subcategorize the noun head of a noun-headed phrase with its argument type

A0=NP|NN

. . .A2=Sproto|Sto|
SBARthat|SC|NP|
AP|ADJP|PPof:α2

A1=NN:α1. . . ⇒
A0

. . .A2:α2A1 uA2:α1. . .

4. Subcategorize the preposition of a prepositional-headed phrase with its argument type

A0=PP|SBAR

. . .A2=Sproto†|Sto†|
Sprovbn†|Sprovbg†|S†|
SC|NP|AP|ADJP:α2

A1=IN:α1. . . ⇒
A0

. . .A2:α2A1 uA2:α1. . .

† Indicates that category may not end in suffix -adv.
‡ Indicates that category may not end in suffix -it.
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5. Subcategorize the verb of a verb-headed phrase with its argument type

A0=Spro|VP‡|VB

. . .A2=Sproto†|Sto†|
SBAR†|SBARthat|
Sprovbn†|Sprovbg†|S†|
SC|NP|AP|ADJP|VP|PRT:α2

A1=VB:α1. . .
⇒

A0

. . .A2:α2A1 uA2:α1. . .

6. Subcategorize the head of an adjective-/adverb-headed phrase with its argument type

A0=AP|ADJP

. . .A2=Sproto†|Sto†|
SBAR†|SBARthat|
Sprovbn†|Sprovbg†|S†|
SC|NP|AP|ADJP|VP|PRT:α2

A1=AP|JJ:α1. . .
⇒

A0

. . .A2:α2A1 uA2:α1. . .

7. In addition to the above rules, temporal markers are passed down from parent to child

A0-tmp

. . .A2=NP|NNP?S?:α2A1:α1. . .

⇒
A0-tmp

. . .A2:α2A1-tmp:α1. . .

A.4 Traces

After argument structure processing (Appendix A.3), trees from the WSJ treebank (sections 2-

21) are further processed to handle traces. In the interest of maximal reproducibility, the script

that performs this processing step, scripts/annotateGaps.pl, is listed in Appendix B.5.

p e r l s c r i p t s / a n n o t a t e G a p s . p l < genmodel / wsjTRAIN . a r g t r e e s \
> genmodel / wsjTRAIN . g a p t r e e s

In the rules below, n=[0-9]+ and the suffix X-g indicates that the subtree headed by the

constituent contains an unfilled gap.
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1. Fold trace corresponding to an empty child node into the parent as an extraction, removing

the empty child from the tree

A0

. . .A1=*NONE*. . .

⇒
A0-empty

. . .. . .

2. Fold child empty category into parent nonterm as extraction.

A0

. . .A1=Acat-empty-n. . .

⇒
A0-gAcat-n

. . .. . .

3. Project any extraction upward in the tree, from child to parent

A0

. . .A1=Acat-gAextr:α1. . .

⇒
A0-gAextr

. . .A1:α1. . .

4. When an extraction is projected onto a WHSBAR, the children match (n in left child

matches right child) and the left child is an empty extraction, eliminate the projection, the

parent and the left child

A0=WHSBAR-gAextr-n

A2=Acat-gAextr-n:α2A1=WHNP-n-empty
⇒ A3=Acat-gAextr:α2

5. When the children match (n in left child matches right child) and the left child is an empty

extraction, eliminate the projection and the left child

A0=Acat0-gAextr-n

A2=Acat2-gAextr-n:α2A1=Acat1-n-empty. . .

⇒
Acat0

A2:α2. . .

6. Undo extraction projection in the parent when n of children indicates the extraction gap

has been filled below this parent



180

A0=Acat-n-gAextr-n

. . .

⇒
Acat

. . .

A0=Acat0-gAextr0-n

A2=Acat2-gAextr0-n:α2A1=Acat1-gAextr1-n:α1. . .

⇒
Acat

A2:α2A1:α1. . .

A0=Acat0-gAextr0-n

A2=Acat2-gAextr2-n:α2A1=Acat1-gAextr0-n:α1. . .

⇒
Acat

A2:α2A1:α1. . .

7. Remove any remaining empty constituents

A0

. . .A1=.*-empty-.*. . .

⇒
A0:α1

. . .. . .

8. Remove the child of any remaining unary subtrees

A0

A1:α1

⇒ A0:α1

A.5 Punctuation

After trace processing (Appendix A.4), trees from the WSJ treebank (sections 2-21) are further

processed to handle punctuation. In the interest of maximal reproducibility, the script that

performs this processing step, scripts/annotateMarks.pl, is listed in Appendix B.6.

p e r l s c r i p t s / a n n o t a t e M a r k s . p l < genmodel / wsjTRAIN . g a p t r e e s \
> genmodel / wsjTRAIN . m a r k t r e e s

In the rules below, suffix X is a variable that indicates the type of punctuation. It can be

bound to value B (bracket or parenthesis)1 2 , C (comma), D (dash)3 , E (end of sentence

punctuation), or S (semicolon).
1 In prior preprocessing, each left bracket and left parenthesis was replaced with the literal string !LRB!
2 In prior preprocessing, each right bracket and right parenthesis was replaced with the literal string !RRB!
3 In prior preprocessing, each dash was replaced with the literal string !dash!
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1. Propogate existing annotation of punctuation following constituent (-n) upward in the

tree, from child to parent

A0

A1-nX:α1. . .

⇒
A0-nX

A1-nX:α1. . .

2. Propogate existing annotation of punctuation preceding constituent (-p) upward in the

tree, from child to parent

A0

A1-pX:α1. . .

⇒
A0-nX

A1-pX:α1. . .

3. Remove any duplicate punctuation tags from parent. In this rule, Aother represents any

other tags with which the parent may be annotated. Aother may be empty

A0=Acat-nXAother-nX

. . .

⇒
A0=AcatAother-nX:α1

. . .

A0=Acat-pXAother-pX

. . .

⇒
A0=AcatAother-pX:α1

. . .

4. Move left punctuation marks up in the tree. Given a node containing a left punctuation

mark, and its parent, the node is moved to become a left sibling of its (now former)

parent. The former parent is annotated with -pX , indicating that it is preceded by a left

punctuation mark of type X .

Agrandparent

A0

. . .A1=!LRB!:α1=!lrb!

⇒

Agrandparent

A0-pB

. . .

A1:α1
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Agrandparent

A0

. . .A1=‘[‘]?:α1=‘[‘]?

⇒

Agrandparent

A0-pQ

. . .

A1:α1

Agrandparent

A0

. . .A1=!dash!:α1=!dash!

⇒

Agrandparent

A0-pD

. . .

A1:α1

Agrandparent

A0

. . .A1=,:α1=,

⇒

Agrandparent

A0-pC

. . .

A1:α1

5. Move right punctuation marks up in the tree. Given a node containing a right punctuation

mark, and its parent, the node is moved to become a right sibling of its (now former)

parent. The former parent is annotated with -nX , indicating that it is followed by a right

punctuation mark of type X .

Agrandparent

A0

A1=!RRB!:α1=!rrb!. . .

⇒

Agrandparent

A1:α1A0-nB

. . .

Agrandparent

A0

A1=’[’]?:α1=’[’]?. . .

⇒

Agrandparent

A1:α1A0-nQ

. . .
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Agrandparent

A0

A1=!dash!:α1=!dash!. . .

⇒

Agrandparent

A1:α1A0-nD

. . .

Agrandparent

A0

A1=,:α1=,. . .

⇒

Agrandparent

A1:α1A0-nC

. . .

Agrandparent

A0

A1=[.!?]:α1=[.!?]. . .

⇒

Agrandparent

A1:α1A0-nE

. . .

6. After any left punctutation mark has been propagated as high in the tree as possible, clean

up by pushing it back down one level in the tree

A0

. . .A2=Acat-pC-Asubcat:α2A1=,:α1=,
⇒

A0

. . .AcatAsubcat

A2:α2A1:α1

A0

. . .A2=Acat-pD-Asubcat:α2A1=!dash!:α1=!dash!
⇒

A0

. . .AcatAsubcat

A2:α2A1:α1

A0

. . .A2=Acat-pQ-Asubcat:α2A1=‘[‘]?:α1=‘[‘]?
⇒

A0

. . .AcatAsubcat

A2:α2A1:α1
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A0

. . .A2=Acat-pB-Asubcat:α2A1=!LRB!:α1=!lrb!
⇒

A0

. . .AcatAsubcat

A2:α2A1:α1

7. After any right punctutation mark has been propagated as high in the tree as possible,

clean up by pushing it back down one level in the tree

A0

. . .A2=,:α2=,A1=Acat-nC-Asubcat:α1

⇒

A0

. . .AcatAsubcat

A2:α2A1:α1

A0

. . .A2=!dash!:α2=!dash!A1=Acat-nD-Asubcat:α1

⇒

A0

. . .AcatAsubcat

A2:α2A1:α1

A0

. . .A2=’[’]?:α2=’[’]?A1=Acat-nQ-Asubcat:α1

⇒

A0

. . .AcatAsubcat

A2:α2A1:α1

A0

. . .A2=!RRB!:α2=!rrb!A1=Acat-nB-Asubcat:α1

⇒

A0

. . .AcatAsubcat

A2:α2A1:α1

A0

. . .A2=[.!?]:α2=[.!?]A1=Acat-nE-Asubcat:α1

⇒

A0

. . .AcatAsubcat

A2:α2A1:α1
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8. Remove the parent of any unary subtrees that remain

A0

A1:α1

⇒ A1:α1

A.6 Normalization

After punctuation processing (Appendix A.5), trees from the WSJ treebank (sections 2-21) are

processed to ensure they are in Chomsky Normal Form. In the interest of maximal repro-

ducibility, the script that performs this processing step, scripts/ensureCnf.pl, is listed

in Appendix B.7.

p e r l s c r i p t s / e n s u r e C n f . p l < genmodel / wsjTRAIN . m a r k t r e e s \
> genmodel / wsjTRAIN . c n f t r e e s

A.7 Depth Bounding

After conversion to Chomsky Normal Form (Appendix A.6), trees from the WSJ treebank (sec-

tions 2-21) are processed to annotate each node with depth and side data. Trees which require

more than 4 memory elements in the HHMM are discarded from training (the grep command

below). In the interest of maximal reproducibility, the script that performs this processing step,

scripts/cnftrees2cedepths.rb, is listed in Appendix B.8.

c a t genmodel / wsjTRAIN . c n f t r e e s \
| ruby s c r i p t s / c n f t r e e s 2 c e d e p t h s . rb \
| g rep −v ‘\ ˆR, 5 ’ \
> genmodel / wsjTRAIN−t d e p t h . c n f t r e e s

A.8 Relative Frequency Estimation

After final preprocessing (Appendix A.7), trees from the WSJ treebank (sections 2-21) are used

in conjunction with Equation 3.1 and Equation 3.2 to estimate a PCFG. In the interest of max-

imal reproducibility, the scripts that perform this step, scripts/trees2rules.pl and
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Z b = 0.15

Z c = 0.23
...

Z : q = 0.01

Figure A.1: ModelBlocks file format for representing prior probability models.

Xy a : b c = 0.27

Xy d : b c = 0.73
...

Xy q : e f = 1.0

Figure A.2: ModelBlocks file format for representing conditional probability models.

scripts/relfreq.pl, are listed in Appendix B.9. A sample of the resulting file is shown

in Figure 4.4.

c a t genmodel / wsjTRAIN−t d e p t h . c n f t r e e s \
| p e r l s c r i p t s / t r e e s 2 r u l e s . p l −p \
| p e r l s c r i p t s / r e l f r e q . p l −f \
> genmodel / wsjTRAIN−t d e p t h . pw−cc . c o u n t s

The preprocessing scripts and HHMM implementation used in this work are all components

of ModelBlocks, an open source probability modelling toolkit originally implemented by the

members of the University of Minnesota Natural Language Processing group.4 ModelBlocks

defines a common file format for representing probability models. This file format is illustrated

in Figures A.1 and A.2.

ModelBlocks files can define both prior probability models and conditional probability

models. A line for a prior probability model consists of M α = p. In the first line of Figure A.1,

the modelled variable is Z, Z=b, and PθZ (b) = 0.15.

Similarly, a line for a conditional probability model consists of Cm α : γ = p. Cm is the

name of the model; by convention this name is based on the conditioning variable C and the

modelled variable M . α is a value for the modelled variable. γ is a value for the conditioning
4 The code for ModelBlocks is hosted at http://www.sourceforge.net/projects/modelblocks

http://www.sourceforge.net/projects/modelblocks
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c a t genmodel / wsjTRAIN−t d e p t h . pw−cc . c o u n t s \

| py thon s c r i p t s / c a l c−cfp−hhmm . py \
| p e r l s c r i p t s / s o r t b y p r o b . p l \
> genmodel / wsjTRAIN−t d e p t h . pwdt−c f p . model

c a t genmodel / wsjTRAIN−t d e p t h . d t . model \
>> genmodel / wsjTRAIN−t d e p t h . pwdt−c f p . model

Figure A.3: Given a model of a PCFG in ModelBlocks file format (with counts instead of

probabilities) as specified in Section 4.2 we transform this model into an equivalent right-

corner model using the model transform of Schuler (2009). In the interest of maximal re-

producibility, the script that performs this step, scripts/calc-cfp-hhmm.py, is listed in

Appendix B.10

variable. p is a number between zero and one, representing PθCM
(m | c). In the first line

of Figure A.2, the conditioning variable is X , the modelled variable is Y , Y =a, X=b c, and

PθXY
(a | bc) = 0.27.

A.9 Part of Speech Model

Given a model of a PCFG in ModelBlocks file format (with counts instead of probabilities) as

specified in Section 4.2 and Appendix A.8, we estimate a part of speech model.

c a t genmodel / wsjTRAIN−t d e p t h . pw−cc . c o u n t s \
| sed ‘ s / \ . 0 ∗ $ / / g ’ \
| g rep ‘ ˆPw . ∗ = [1−5]$ ’ \
| b i n / p o s t r a i n e r \
> genmodel / wsjTRAIN−t d e p t h . d t . model
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A.10 Transformed Component Models

Given a model of a PCFG in ModelBlocks file format (with counts instead of probabilities) as

specified in Section 4.2 (and shown in Figure 4.4) we transform this model into an equivalent

right-corner model using the model transform of Schuler (2009). The command to run this

transform are illustrated in Figure A.3, with the script listed in Appendix B.10.



Appendix B

Syntactic Language Model Training
Scripts

B.1 scripts/tbtrees2linetrees.pl

# ##############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or mo d i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

# ##############################################################################

# ! / u s r / b i n / p e r l

use s t r i c t ;

my $num parens =0;

my $ t r e e = ” ” ;

whi le(<STDIN>){
chomp ;

## Get r i d o f l e a d i n g s p a c e s

s / ˆ\ s ∗ / / ;

i f ( $ eq ” ” ){
next ;

189
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}

# s / PRT\ | / / g ;

# ## Get r i d o f t h e dash i n ∗−UNF c a t e g o r i e s

# s/−UNF/UNF/ g ;

# ## Get r i d o f e v e r y t h i n g a f t e r t h e dash ( eg . VP−PRD b u t n o t −DFL−)

# s / (\ ( [ ˆ −]+)−[ˆ ]+/\1 / g ;

# ## Escape some d i f f i c u l t t e r m i n a l symbo l s t o non−word l e t t e r c o m b i n a t i o n s

# s /\\\] /SUBSTITUTERIGHTBRACKET / g ;

## s /\\\[ /SUBSTITUTELEFTBRACKET / g ;

## s /\\\+/SUBSTITUTEPLUS / g ;

## s /\ .\ ) / SUBSTITUTEDOT ) / g ;

## # E l i m i n a t e empty c a t e g o r i e s ( and t h e unary branch above them ) and change r i g h t−r e c u r s i v e branch above t h a t t o

r e f l e c t d e l e t i o n

## s /\ ( ( [ ˆ ]+) \(\−NONE\− [ ˆ ]+\) \) / / ;

## # E l i m i n a t e a l l r e m a i n i n g empty c a t e g o r i e s ( w i t h o u t unary b r a n c h e s above )

## s /\(\−NONE\− [ ˆ ]+\) / / ;

# ## Remove cues t h a t g i v e away e d i t e d−n e s s

# s /\ (RM \(\−DFL\− \\\[\) \) / / g ;

# s /\ ( IP \(\−DFL\− \\\+\) \) / / g ;

# s /\(−DFL− E S\) / / g ;

# s /\(−DFL− N S\) / / g ;

# s /\ ( RS \(\−DFL\− SUBSTITUTERIGHTBRACKET\) \) / / g ;

# # Remove p u n c t u a t i o n

# s /\ (\ . \ .\ ) / / g ;

# s /\ (\ . \?\) / / g ;

# s /\ ( , ,\ ) / / g ;

# Accumula te t r e e l i n e s u n t i l pa ren s match

$ t r e e . = ” $ ” ;

my @ l e f t p a r e n s = m/ (\ ( ) / g ;

my @ r i g h t p a r e n s = m/ (\ ) ) / g ;

$num parens += ($# l e f t p a r e n s + 1) ;

$num parens −= ($# r i g h t p a r e n s + 1) ;

i f ( $num parens == 0){
## Get r i d o f e x t r a p a r e n t h e s e s around t h e t r e e

$ t r e e =˜ s / ˆ\ s∗\(\ s ∗\ ( ( .∗ )\s∗\)\s∗\)\s∗$ / (\ 1 ) / ;

## p r i n t s u b s t r ( $ t r e e , 2 , l e n g t h ( $ t r e e ) − 4) . ”\n ”; # ” $ t r e e\n ”;

# ## Now t h a t t r e e i s on one l i n e , e l i m i n a t e / push upward many k i n d s o f empty c a t e g o r y c r a p o l a . . .

# $ t r e e =˜ s /\ ( ( [ ˆ ]+) +\ ( ( [ ˆ ]+) +\(\−NONE\− +[ˆ ]+ ∗\) ∗\) /\ (\1 s t a r t i n g w i t h e m p t y \2/ g ;

# $ t r e e =˜ s /\ ( ( [ ˆ ]+) +\(\−NONE\− +[ˆ ]+ ∗\) ∗\) /\ ( empty\1 −NONE−\) / g ;

# $ t r e e =˜ s /\ ( ( [ ˆ ]+) +\(\−NONE\− +[ˆ ]+ ∗\) /\ (\1 s t a r t i n g w i t h e m p t y / g ;

# $ t r e e =˜ s /\ ( ( [ ˆ ]+) s t a r t i n g w i t h e m p t y [ ˆ ]∗ +\( empty [ ˆ ]+ +\−NONE\− ∗\) ∗\) /\ ( empty\1 −NONE−\) / g ;

# $ t r e e =˜ s /\(\−NONE\− [ ˆ ]+ ∗\) /\ ( e m p t y s o m e t h i n g −NONE−\) / g ;

## $ t r e e =˜ s / +\ ( ( [ ˆ ]+) +\(\−NONE\− +[ˆ ]+\) ∗\) / e n d i n g w i t h e m p t y \1/ g ;

p r i n t ” $ t r e e\n ” ;

$ t r e e = ” ” ;

}
# p r i n t $ ;

}
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B.2 scripts/annotateFixes.pl

# ##############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or mo d i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

# ##############################################################################

# c a t ws j 0001 . t r e e s | p e r l s c r i p t s / t r e e s e d . p l

use Ge to p t : : S td ;

g e t o p t s ( ” d ” ) ;

$DEBUG = 0 ;

i f ( $ o p t d ) {
$DEBUG = 1 ;

}

sub debug {
i f ($DEBUG) {

$msg = $ [ 1 ] ;

p r i n t s t d e r r $ [ 0 ] , ” ” , $msg , ”\n ” ;

}
}

# luan : commented o u t t o s i m p l i f y b / c now model r o l e as ’− l ’ t a g

#$SRL = ”\w+\! l d e l i m \ !”;

## f o r each t r e e . . .

whi le ( <> ) {

## t r a c e e r r o r s . . .

# l i n e 1628:

s /\ (WHNP \(WDT which\) \) \(S \(NP−SBJ−1 \(DT t h e \) \( J J S o v i e t \) \(NN l e a d e r \) \) /\ (WHNP−1 \(WDT which\) \) \(S

\(NP−SBJ \(DT t h e \) \( J J S o v i e t \) \(NN l e a d e r \) \) / ;

# l i n e 3642:

s /\ (WHNP \( IN t h a t \) \) \(S \(NP−SBJ−1 \(DT t h e \) \(NNS J a p a n e s e \) \) \(VP \(MD might\) \(VP \(VB want\) \(S

\(NP−SBJ \(−NONE− \∗−1\) \) \(VP \(TO t o \) \(VP \(VB buy\) /\ (WHNP−2 \( IN t h a t \) \) \(S \(NP−SBJ−1 \(DT

t h e \) \(NNS J a p a n e s e \) \) \(VP \(MD might\) \(VP \(VB want\) \(S \(NP−SBJ \(−NONE− \∗−1\) \) \(VP \(TO

t o \) \(VP \(VB buy\) \(NP \(−NONE− \∗T\∗−2\) \) / ;

# l i n e 5642:

s /\ (WHNP−1 \(WDT which\) \) \(S \(NP−SBJ \(NNP Bush\) \) \(VP \(VBD a l l o w e d \) \(S \(NP−SBJ \(−NONE− \∗−1\) /\ (

WHNP−1 \(WDT which\) \) \(S \(NP−SBJ \(NNP Bush\) \) \(VP \(VBD a l l o w e d \) \(S \(NP−SBJ \(−NONE− \∗T
\∗−1\) / ;

# l i n e 7797:

s /\ (NP \(DT The\) \( J J same\) \(NN e v e n i n g \) \) \(SBAR \(WHNP−4 \( IN t h a t \) \) /\ (NP \(DT The\) \( J J same\) \(NN

e v e n i n g \) \) \(SBAR \(WHPP−4 \( IN t h a t \) \) / ;
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# l i n e 17204:

s /\ (WHNP−3 \(WDT which\) \) \(S \(NP−SBJ \( J J many\) \(NNS i n v e s t o r s \) \) \(VP \(VBP say \) \(SBAR \(−NONE− 0\)

\(S \(NP−SBJ−1 \(−NONE− \∗−3\) /\ (WHNP−3 \(WDT which\) \) \(S \(NP−SBJ \( J J many\) \(NNS i n v e s t o r s \) \)

\(VP \(VBP say \) \(SBAR \(−NONE− 0\) \(S \(NP−SBJ−1 \(−NONE− \∗T\∗−3\) / ;

# l i n e 17563:

s /\ (WHNP \(WP what\) \) \(S \(NP−SBJ \( J J o t h e r \) \( J J p r o s e c u t o r i a l \) \(NNS a b u s e s \) \) \(VP \(MD may\) \(VP

\(VB have\) \(VP \(VBN o c c u r r e d \) /\ (WHNP−1 \(WP what\) \( J J o t h e r \) \( J J p r o s e c u t o r i a l \) \(NNS a b u s e s \) \)

\(S \(NP−SBJ \(−NONE− \∗T\∗−1\) \) \(VP \(MD may\) \(VP \(VB have\) \(VP \(VBN o c c u r r e d \) / ;

# l i n e 25018:

s /\ (NP \(NP \(DT a\) \(NN y e a r \) \) \(SBAR \(WHNP−1 \( IN t h a t \) \) /\ (NP \(NP \(DT a\) \(NN y e a r \) \) \(SBAR

\(WHPP−1 \( IN t h a t \) \) / ;

# l i n e 27938:

s /\ (WHNP \(WP what\) \) \(S \(NP−SBJ \(DT some\) \(NNS e c o n o m i s t s \) \) \(VP \(VBP c a l l \) /\ (WHNP−1 \(WP what\)

\) \(S \(NP−SBJ \(DT some\) \(NNS e c o n o m i s t s \) \) \(VP \(VBP c a l l \) \(NP \(−NONE− \∗T\∗−1\) \) / ;

# l i n e 29529:

s /\ (WHNP \(WDT which\) \) \(S \(NP−SBJ \(PRP i t \) \) \(VP \(MD w i l l \) \(VP \(VB occupy\) /\ (WHNP−1 \(WDT which

\) \) \(S \(NP−SBJ \(PRP i t \) \) \(VP \(MD w i l l \) \(VP \(VB occupy\) \(NP \(−NONE− \∗T\∗−1\) \) / ;

# l i n e 36352:

s /\ (WHNP \( IN t h a t \) \) \(S \(NP−SBJ \(DT t h e \) \(NN government\) \) \(VP \(VBD f e a r e d \) \(SBAR \(WHNP−1 \(−
NONE− 0\) \) /\ (WHNP−1 \( IN t h a t \) \) \(S \(NP−SBJ \(DT t h e \) \(NN government\) \) \(VP \(VBD f e a r e d \) \(

SBAR \(WHNP \(−NONE− 0\) \) / ;

# l i n e 36736:

s /\ (WHNP \( IN t h a t \) \) \(S \(NP−SBJ \(PRP he\) \) \(VP \(VBD e s t i m a t e d \) \(SBAR \(WHNP−2 \(−NONE− 0\) \) /\ (

WHNP−2 \( IN t h a t \) \) \(S \(NP−SBJ \(PRP he\) \) \(VP \(VBD e s t i m a t e d \) \(SBAR \(WHNP \(−NONE− 0\) \) / ;

# l i n e 37010:

s /\ (WHNP \( IN t h a t \) \) \(S \(NP−SBJ \(DT some\) \(NNS a n a l y s t s \) \) \(VP \(VBP say \) \(SBAR \(WHNP−1 \(−NONE−
0\) \) /\ (WHNP−1 \( IN t h a t \) \) \(S \(NP−SBJ \(DT some\) \(NNS a n a l y s t s \) \) \(VP \(VBP say \) \(SBAR \(

WHNP \(−NONE− 0\) \) / ;

# l i n e 37777:

s /\ (SBAR \(WHNP−1 \(WDT which\) \) \(S \(NP−SBJ−2 \(−NONE− \∗−1\) \) /\ (SBAR \(WHNP−1 \(WDT which\) \) \(S \(

NP−SBJ−2 \(−NONE− \∗T\∗−1\) \) / ;

# l i n e 39576:

s /\ (WHNP \(WDT which\) \) \(S \(NP−SBJ \(PRP t h e y \) \) \(VP \(VBP s e l l \) /\ (WHNP−1 \(WDT which\) \) \(S \(NP−
SBJ \(PRP t h e y \) \) \(VP \(VBP s e l l \) \(NP \(−NONE− \∗T\∗−1\) \) / ;

## VBN e r r o r s −> VBD . . .

# l i n e 41:

s /\ ( , ,\ ) \(VP \(VBN r e a c h e d \) \(NP \(−NONE− \∗T\∗−/\( , ,\ ) \(VP \(VBD r e a c h e d \) \(NP \(−NONE− \∗T\∗−/;

# l i n e 4257:

s / 2\ ) \) \(VP \(VBN f o r c e d / 2\ ) \) \(VP \(VBN f o r c e d / ;

# l i n e 6124:

s /\ (VP \(VBN suspended \) \(NP \(NN s t o c k−index\) /\ (VP \(VBD suspended \) \(NP \(NN s t o c k−index\) / ;

# l i n e 6815:

s /\ (VP \(VBN i n v o l v e d \) \(NP \( J J c r i t i c a l \) /\ (VP \(VBD i n v o l v e d \) \(NP \( J J c r i t i c a l \) / ;

# l i n e 7676:

s /\ (NN week\) \) \(VP \(VBN s u c c e e d e d \) /\ (NN week\) \) \(VP \(VBD s u c c e e d e d \) / ;

# l i n e 10076:

s /\ (NNS c o m p l e t i o n s \) \) \(VP \(VBN l a g g e d \) /\ (NNS c o m p l e t i o n s \) \) \(VP \(VBD l a g g e d \) / ;

# l i n e 10572:

s /\ (RB ago\) \) \(VBN a c q u i r e d \) /\ (RB ago\) \) \(VBD a c q u i r e d \) / ;

# l i n e 11963:

s /\ ( , ,\ ) \) \(VP \(VBN announced\) /\ ( , ,\ ) \) \(VP \(VBD announced\) / ;

# l i n e 12946:

s / 3\ ) \) \(VP \(VBN g e n e r a t e d / 3\ ) \) \(VP \(VBD g e n e r a t e d / ;

# l i n e 13609:

s /NNS r e s e a r c h e r s \) \) \(VP \(VBN a g r e e d /NNS r e s e a r c h e r s \) \) \(VP \(VBD a g r e e d / ;

# l i n e 15066:

s / 1\ ) \) \(VP \(VBN s t a r t e d / 1\ ) \) \(VP \(VBD s t a r t e d / ;

# l i n e 15591 , 28900:

s / 1\ ) \) \(VP \(VBN changed / 1\ ) \) \(VP \(VBD changed / ;

# l i n e 15961:

s / 1\ ) \) \(VP \(VBN opened / 1\ ) \) \(VP \(VBD opened / ;
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# l i n e 18772:

s /NNP KKR\) \) \(VP \(VBN r e s t r u c t u r e d /NNP KKR\) \) \(VP \(VBD r e s t r u c t u r e d / ;

# l i n e 19265:

s / 1\ ) \) \(VP \(VBN i n c l u d e d / 1\ ) \) \(VP \(VBD i n c l u d e d / ;

# l i n e 19680:

s /VBN become\) \(NP−PRD \( J J o v e r n i g h t /VBD become\) \(NP−PRD \( J J o v e r n i g h t / ;

# l i n e 19748:

s /NN bank\) \) \(VP \(VBN d i s c l o s e d \) /NN bank\) \) \(VP \(VBD d i s c l o s e d \) / ;

# l i n e 21201:

s / NP Goodson\) \) \(VP \(VBN bough t / NP Goodson\) \) \(VP \(VBD bough t / ;

# l i n e 23901:

s / 2\ ) \) \(VP \(VBN opened / 2\ ) \) \(VP \(VBD opened / ;

# l i n e 24689:

s / 1\ ) \) \(VP \(VBN t r a d e d / 1\ ) \) \(VP \(VBD t r a d e d / ;

# l i n e 24700:

s / 3\ ) \) \(VP \(VBN s t r e t c h e d / 3\ ) \) \(VP \(VBD s t r e t c h e d / ;

# l i n e 26286:

s /VBN s e t \) \(NP \(NNS p l a n s /VBD s e t \) \(NP \(NNS p l a n s / ;

# l i n e 28510:

s / 1\ ) \) \(VP \(VBN made / 1\ ) \) \(VP \(VBD made / ;

# l i n e 32752:

s /NNS eggs\) \) \(VP \(VBN come /NNS eggs\) \) \(VP \(VBD come / ;

# l i n e 33883:

s /NNP I I \) \) \(VP \(VBN ended /NNP I I \) \) \(VP \(VBD ended / ;

# l i n e 38619:

s / 1\ ) \) \(VP \(VBN s e t \) \(PRT \(RP o f f / 1\ ) \) \(VP \(VBD s e t \) \(PRT \(RP o f f / ;

# l i n e 38773:

s /NN company\) \) \(VP \(VBN v a l u e d /NN company\) \) \(VP \(VBD v a l u e d / ;

# l i n e 38814:

s / 1\ ) \) \(VP \(VBN i n d u c e d / 1\ ) \) \(VP \(VBD i n d u c e d / ;

# l i n e 39070:

s /NN marke t \) \) \(VP \(VBN s t a b i l i z e d /NN marke t \) \) \(VP \(VBD s t a b i l i z e d / ;

# l i n e 39264:

s / PRP i t \) \) \(VP \(VBN opened / PRP i t \) \) \(VP \(VBD opened / ;

# l i n e 39579:

s /NN a n a l y s t \) \) \(VP \(VBN e s t i m a t e d /NN a n a l y s t \) \) \(VP \(VBD e s t i m a t e d / ;

# l i n e 39619:

s /RB f i n a l l y \) \) \(VP \(VBN opened /RB f i n a l l y \) \) \(VP \(VBD opened / ;

# l i n e 39623:

s /NN marke t \) \) \(VP \(VBN opened /NN marke t \) \) \(VP \(VBD opened / ;

# l i n e 39779:

s /RB n e v e r \) \) \(VBN r e o p e n e d /RB n e v e r \) \) \(VBD r e o p e n e d / ;

# NN e r r o r s −> VB / VBZ

s /\ (VP ∗\(NNS ∗ ( [ ˆ\ ) ]∗ ) \) /\ (VP \(VBZ \1\) / g ;

s /\ (VP ∗\(NN ∗ ( [ ˆ\ ) ]∗ ) \) /\ (VP \(VB \1\) / g ;

# p r o b a b l y f i n e , b u t n o t t h e problem . . .

# s / ( ( ? : be | b e i n g | been | i s | was |VBZ ’ s | are | were | ’ r e ) [ \) ]∗ [ ˆ \) ]∗ )\(VBD [ ˆ ]∗ ed\) /\1\ ( VBNmodif ied [ ˆ ]∗ ed\) /

g ;

# p r o b a b l y f i n e , b u t n o t t h e problem . . .

# s /\ (VBD ( [ ˆ\ ) ]∗ )\) ∗\(NP ∗\(−NONE− \∗\) \) /\ (VBN \1\) \(NP \(−NONE− \∗\) \) / g ;

## t r a n s l a t e t o par en s . . .

s /\ [ /\ ( / g ;

s /\ ] /\ ) / g ;

## f o r each c o n s t i t u e n t . . .

whi le ( $ =˜ /\ ( [ ˆ\ (\ ) ]∗\) / ) {
## c o n v e r t o u t e r par en s t o b r a c e s . . .

s /\ ( ( [ ˆ\ (\ ) ]∗ ) \) /{\1} / ;

# ################### ADD SED RULES HERE: a p p l y r u l e s t o a n g l e s ( c h i l d r e n ) w i t h i n b r a c e s ( c o n s i t u e n t ) . . .
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debug ( $ s t e p ++ , ” $ ” ) ;

# l i n e 24513:

s /{ (SBAR) ∗<(WHNP−1 [ˆ>]∗)> ∗<(S ) ([ ˆ > ]∗ )> <(VP [ˆ>]∗)> ∗}/{\1 <\2> <\3 \4 [\5]>} / ;

# # VBN e r r o r s :

# # any vb [ dgn ] p r o j e c t i o n f o l l o w i n g BE−verb i s AP

# s / ( ( ? : be | b e i n g | been | i s | was |VBZvbz ’ s | are | were | ’ r e ) [ \)>\]]∗)\{(VPvb [ ndg ] |VB[NDG] vb [ ndg ] ) ( .∗ ) \}/\1\{AP

\3\}/;

# # any vb [ dgn ] p r o j e c t i o n pos t−m o d i f y i n g NP

# s /{ (NP.∗ )<(NP) ([ˆ>]∗)> +<(Sprovb [ ndg ] | VPvb [ ndg ] |VB[NDG] vb [ ndg ] ) ([ˆ>]∗) >(.∗)}/{\1<\2\3> <AP\5>\6}/;

# ###################

## c o n v e r t i n n e r a n g l e s ( i f any ) t o b r a c k s . . .

whi le ( s / ({ [ ˆ{} ]∗ )<([ˆ<>]∗)>/\1\[\2\]/ ){}
## c o n v e r t o u t e r b r a c e s t o a n g l e s . . .

s /{ ( .∗ )}/<\1>/;

}

## f i n i s h up . . .

s / < / [ / ;

s / > / ] / ;

## t r a n s l a t e t o par en s aga in . . .

s /\ [ /\ ( / g ;

s /\ ] /\ ) / g ;

## o u t p u t . . .

p r i n t $ ;

}

B.3 scripts/annotateProjs.pl

# ##############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or mo d i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

# ##############################################################################

# c a t ws j 0001 . t r e e s | p e r l s c r i p t s / t r e e s e d . p l

use Ge to p t : : S td ;

g e t o p t s ( ” pd ” ) ;
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$remove punc t = 0 ;

i f ( $ o p t p ){
$remove punc t = 1 ;

}

$DEBUG = 0 ;

i f ( $ o p t d ) {
$DEBUG = 1 ;

}

sub debug {
i f ($DEBUG) {

$msg = $ [ 1 ] ;

p r i n t s t d e r r $ [ 0 ] , ” ” , $msg , ”\n ” ;

}
}

$SRL = ” ! c o l o n ![ˆ>]∗ ” ;

## f o r each t r e e . . .

$lineNum =1;

whi le ( <> ) {
debug ( ”∗∗∗TB∗∗∗ l i n e ” , $lineNum ++) ;

# moved from t b t r e e s 2 l i n e t r e e s . p l

s / PRT\ | / / g ;

## Make p a r e n t h e s e s l o o k s t a n d a r d . . .

s /\ ( ∗ / ( / g ;

s / ∗\) / ) / g ;

## Remove r e p a i r a n n o t a t i o n

s /\ (RM \(\−DFL\− \\\[\) \) / / g ;

s /\ ( IP \(\−DFL\− \\\+\) \) / / g ;

s /\(−DFL− E S\) / / g ;

s /\(−DFL− N S\) / / g ;

s /\ ( RS \(\−DFL\− \\\]\) \) / / g ;

## Somet imes t h a t c r e a t e s empty c a t e g o r i e s ( e s p e c i a l l y i n mis−a n n o t a t e d da ta )

## Remove t h o s e empty c a t e g o r i e s

s /\ ( [ ˆ ] + [ ]+\ ) / / ;

## C o l l a p s e o u t e v e r y t h i n g be tween c a t . and UNF

s / \ ( ( [ ˆ ] + )−[ˆ ]+−UNF/(\1−UNF/ g ;

s /−UNF/UNF/ g ;

# We w i l undo t h i s s h i f t l a t e r , b u t f o r r i g h t now i t ’ s done so INTJ i s n o t

# c o n f u s e d w i t h IN ( I t h i n k 4 u n d e r s c o r e s s h o u l d be enough )

s / INTJ / I N T J / g ;

## t r a n s l a t e t o par en s . . .

s /\ [ /\ ( / g ;

s /\ ] /\ ) / g ;

i f ( $ r emove punc t == 1){
# Remove / change p u n c t u a t i o n . . .

s /\ ( [ ˆ ]+ \ .\ .\ .\ ) / / g ;

s /\ ( [ ˆ ]+ \ .\ ) / / g ;

s /\ ( [ ˆ ]+ \!\) / / g ;

s /\ ( [ ˆ ]+ \?\) / / g ;

s /\ ( [ ˆ ]+ \ ,\) / / g ;

s /\ ( [ ˆ ]+ ∗\ ( [ ˆ ]+ ∗\−\−\) ∗\) / / g ; ## dash i s n e s t e d . . . don ’ t know why

s /\ ( [ ˆ ]+ \−\−\) / / g ;

s /\ ( [ ˆ ]+ \−\) / / g ;
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s /\ ( [ ˆ ]+ \ ;\ ) / / g ;

s /\ ( [ ˆ ]+ \ :\ ) / / g ;

s /\ ( [ ˆ ]+ \ ‘\) / / g ;

s /\ ( [ ˆ ]+ \ ’\) / / g ;

s /\ ( [ ˆ ]+ \ ‘\ ‘\) / / g ;

s /\ ( [ ˆ ]+ \ ’\ ’\) / / g ;

s /\ ( [ ˆ ]+ −L . B−\) / / g ;

s /\ ( [ ˆ ]+ −R . B−\) / / g ;

}

# Get r i d o f t y p o s ( c a t e g o r i e s s t a r t i n g wi th ˆ )

s /\ (\ ˆ /\ ( / g ;

# D i s t i n g u i s h p u n c t u a t i o n . . .

s /\ ( [ ˆ ]+ \ .\ .\ . ( : [ ˆ\ ) ]∗ ) ?\) /\ (\ .\ .\ . \ .\ .\ .\1\ ) / g ;

s /\ ( [ ˆ ]+ \ ? ( : [ ˆ\ ) ]∗ ) ?\) /\ (\? \?\1\) / g ;

s /\ ( [ ˆ ]+ ∗\ ( [ ˆ ]+ ∗\−\−(:[ˆ\) ]∗ ) ?\) ∗\)/\(\−\− \−\−\1\) / g ; ## dash i s n e s t e d . . . don ’ t know why

s /\ ( [ ˆ ]+ \−\−(:[ˆ\) ]∗ ) ?\)/\(\−\− \−\−\1\) / g ;

s /\ ( [ ˆ ]+ \−( :[ˆ\) ]∗ ) ?\)/\(\−\− \−\−\1\) / g ;

s /\ ( [ ˆ ]+ \ : ( : [ ˆ\ ) ]∗ ) ?\) /\ (\ : \:\1\) / g ;

s /\ ( [ ˆ ]+ \ ; ( : [ ˆ\ ) ]∗ ) ?\) /\ (\ ; \;\1\) / g ;

s /\ ( [ ˆ ]+ \ ‘ ( : [ ˆ\ ) ]∗ ) ?\) /\ (\ ‘ \ ‘\1\) / g ;

s /\ ( [ ˆ ]+ \ ’ ( : [ ˆ \ ) ]∗ ) ?\) /\ (\ ’ \ ’\1\) / g ;

########## GLOBAL SYMBOL SHIFT

# s /\ ! /\ ! e x c l a m a t i o n \ ! / g ;

s /\ ˜ /\ ! t i l d e \ ! / g ;

# s /\ ‘\ ‘ /\ ! openquo te \ ! / g ;

# s /\ ‘ /\ ! o p e n s c a r e \ ! / g ;

s /\@/\ ! a t \ ! / g ;

s /\# /\ ! pound \ ! / g ;

# s /\$ /\ ! d o l l a r \ ! / g ;

# s /\%/\! p e r c e n t \ ! / g ;

# s /\ ˆ /\ ! c a r a t \ ! / g ;

s /\&/\! ampersand \ ! / g ;

# s /\∗ /\ ! s t a r \ ! / g ;

s /\−\−/\!dash \ ! / g ;

s /\+/\ ! p l u s \ ! / g ;

# s /\=/\ ! e q u a l s \ ! / g ;

s /\ : /\ ! c o l o n \ ! / g ;

s /\ ; /\ ! semi \ ! / g ;

# s /\ ” /\ ! d b l q u o t e \ ! / g ;

# s /\ ’\ ’ /\ ! c l o s e q u o t e \ ! / g ;

# s /\ ’ /\ ! c l o s e s c a r e \ ! / g ;

# s /\ . /\ ! p e r i o d \ ! / g ;

# s /\ , /\ ! comma\ ! / g ;

# s / ( [ ˆ\∗ ] ) \?/\1\! q u e s t i o n \ ! / g ;

s /\ / /\ ! s l a s h \ ! / g ;

##########

# s u b s t i t u t e −LRB− t o \!LRB\!

s/−L . B−/\!LRB\ ! / g ;

# s u b s t i t u t e −RRB− t o \!RRB\!

s/−R . B−/\!RRB\ ! / g ;

# s u b s t i t u t e −NONE− t o \∗NONE\∗
s/−NONE−/\∗NONE\∗/g ;

# s u b s t i t u t e NP−TMP t o NP−tmp

s / NP [ ˆ ]∗\−TMP/ NP−tmp / g ;

# s u b s t i t u t e S∗−ADV t o S∗−adv

s / ( S [ ˆ ]∗ )\−ADV/\1−adv / g ;

s / ( S [ ˆ ]∗ )\−PRP/\1−adv / g ;

s / ( S [ ˆ ]∗ )\−TMP/\1−adv / g ;
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# s u b s t i t u t e SBAR−NOM, SBAR−PRD t o NP

s /SBAR−NOM/ NP / g ;

s /SBAR−PRD/ NP / g ;

# remove a l l o t h e r dash s p e c i f i c a t i o n s b e g i n n i n g wi th c a p i t a l l e t t e r

s /\−[A−Z ] [ A−Z ]∗ ( [ ˆ \) \ ] ]∗ ) /\1 / g ;

s /\−[A−Z ] [ A−Z ]∗ ( [ ˆ \) \ ] ]∗ ) /\1 / g ;

s /\−[A−Z ] [ A−Z ]∗ ( [ ˆ \) \ ] ]∗ ) /\1 / g ;

## f o r each c o n s t i t u e n t . . .

$ s t e p = 0 ;

w h i l e ( $ =˜ /\ ( [ ˆ\ (\ ) ]∗\) / ) {
## c o n v e r t o u t e r p a r e n s t o b r a c e s . . .

$ =˜ s /\ ( ( [ ˆ\ (\ ) ]∗ ) \) /{\1} / ;

#################### ADD SED RULES HERE: a p p l y r u l e s t o a n g l e s ( c h i l d r e n ) w i t h i n b r a c e s ( c o n s i t u e n t ) . . .

debug (++ $ s t e p , ” $ ” ) ;

#### EOS PUNCT

# k i c k eos p u n c t up o u t o f c o n s t i t ( s h o u l d have been a n n o t a t e d t h i s way ! )

s /{ ( ? ! [ ˆ ]∗−mE) ( [ ˆ ]∗ ) + ( .∗ ) +(<[\ .\!\?] [\ .\!\?]>) } (?=.∗\ ) ) /{\1 \2} \3 / ;

# k i c k eos p u n c t + r i g h t q u o t e up o u t o f c o n s t i t ( s h o u l d have been a n n o t a t e d t h i s way −− q u o t e d e l i m i t s can be

o b t a i n e d from l e f t , b u t p u n c t i s needed a t r o o t )

s /{ ( ? ! [ ˆ ]∗−mE) ( ? ! [ ˆ ]∗−nQ ) ( [ ˆ ]∗ ) + ( .∗ ) (< ‘ ‘? ‘ ‘?>) ( .∗ ) +(<[\ .\!\?] [\ .\!\?]> +<’ ’ ? ’ ’?>)} (?=.∗\ ) ) /{\1−nQ−mQ

\2\3\4} \5 / ;

# k i c k eos p u n c t + r i g h t q u o t e up o u t o f c o n s t i t ( s h o u l d have been a n n o t a t e d t h i s way −− q u o t e d e l i m i t s can be

o b t a i n e d from l e f t , b u t p u n c t i s needed a t r o o t )

s /{ ( ? ! [ ˆ ]∗−mE) ( ? ! [ ˆ ]∗−nQ ) ( [ ˆ ]∗ ) + ( .∗ ) +(<[\ .\!\?] [\ .\!\?]> +<’ ’ ? ’ ’?>)} (?=.∗\ ) ) /{\1−nQ \2} \3 / ;

# i s o l a t e q u o t e + . . . + p e r i o d + q u o t e ( a l l o w s o t h e r junk a f t e r , l i k e r e s t o f l i n e i n c a s e o f embedded q u o t e )

s /{ ( ? ! [ ˆ ]∗−mE) ( [ ˆ ]∗ ) +(< ‘ ‘? ‘ ‘?>) +(<.∗) +(<[\ .\!\?] [ˆ>]∗>) +(< ’ ’ ? ’ ’ ?>.∗)}/\(\1−mE−mQ \(\1−nQ−mE−mQ \2 \{\1

\3\} \4\) \5\) / ;

# i s o l a t e . . . + p e r i o d + q u o t e ( a l l o w s o t h e r junk a f t e r , l i k e r e s t o f l i n e i n c a s e o f embedded q u o t e )

s /{ ( ? ! [ ˆ ]∗−mE) ( [ ˆ ]∗ ) +(<.∗) +(<[\ .\!\?] [ˆ>]∗>) +(< ’ ’ ? ’ ’ ?>.∗)}/\(\1−mE \(\1−nQ−mE \{\1 \2\} \3\) \4\) / ;

# i s o l a t e p e r i o d a f t e r S ( a l l o w s o t h e r junk a f t e r p e r i o d , l i k e q u o t e s o r r e s t o f l i n e i n c a s e o f embedded q u o t e

)

s /{ ( ? ! [ ˆ ]∗−mE) ( [ ˆ ]∗ ) +(<.∗) +(<[\ .\!\?] [ˆ>]∗>) ( .∗ ) }/\(\1−mE \{\1 \2\} \3\4\) / ;

#### EMPTY CATEGORIES

# d e l e t e ICH ( moved −− n o t j u s t r a i s e d −− m o d i f i e r ) and U ( t r a n s p o s e d c u r r e n c y symbol ) t r a c e s ; t o o ha rd t o

r e c o n s t r u c t

s /{\∗NONE\∗ .∗ ICH .∗} / / ;

s /{\∗NONE\∗ ∗\∗U\∗(! c o l o n ! .∗ ) ? ∗} / / ;

# e l i m i n a t e e x p l e t i v e i t c l e f t ( a shame , b u t s e n t i s t o o d e e p l y a t t a c h e d )

# s/<NP [ ˆ ]∗ +\ [ (NP [ ˆ ]∗ ) \] \ [ [ ˆ ]∗−expl−([0−9]∗) 0> \ ( (VP [ ˆ ]∗ ) ( .∗ ) \{ ( [ ˆ ]∗ )−\2 ( .∗ ) \}([ \) ]∗ ) \)/<\1> \(\3−
aIT \4\7\) \{\5\6\}/;

# s /{ ( .∗ )<NP [ ˆ ]∗ +\ [ (NP[ˆ>]∗)\] +\[S [ ˆ ]∗−empty−([0−9]∗) 0\]>(.∗)\[}/{\1<\2>\3

# s /{NP [ ˆ ]∗ +<(NP[ˆ>]∗)> +<S [ ˆ ]∗−empty 0 ( $SRL )?> ∗} /{\1} / ;

# d e l e t e una ry p r o j e c t i o n s o f d e l e t e d empty c o n s t i t u e n t s

s /{ [ ˆ ]∗ ∗} / / ;

# f o l d empty c a t e g o r y f o r c u r r e n c y i n t o nonterm

s /{QP ( [ ˆ ]∗ ) +(.∗<\! pound \ ! .∗ ) }/{NP−c u r r u n i t \1 \2} / ;

s /{QP ( [ ˆ ]∗ ) +(.∗<\$ .∗ ) }/{NP−c u r r u n i t \1 \2} / ;

s /{QP ( [ ˆ ]∗ ) +(.∗<\%.∗)}/{NP−c u r r u n i t \1 \2} / ;

s /{ (NP [ ˆ ]∗|ADJP [ ˆ ]∗ ) ( .∗ )<NP−c u r r u n i t [ ˆ ]∗ ( [ ˆ > ]∗ )> ∗<\∗NONE\∗ [ˆ>]∗>([ˆ}]∗)}/{\1 \2 \3\4} / ; ## p r o b a b l y

r e d u n d a n t now wi th ∗U∗ removed

# f o l d empty X c a t e g o r i e s i n t o X−empty nonterm

s /{ ( [ ˆ ]∗ ) +<\∗NONE\∗ +\∗T\∗\−([0−9]+) ( $SRL )?> ∗}/{\1−empty−\2 0\3} / ;

debug ( $ s t e p , ” / $ ” ) ;

s /{ ( [ ˆ ]∗ ) +<\∗NONE\∗ +\∗EXP\∗\−([0−9]+) ( $SRL )?> ∗}/{\1−expl−\2 0\3} / ;

s /{ ( [ ˆ ]∗ ) +<\∗NONE\∗ +\∗RNR\∗\−([0−9]+) ( $SRL )?> ∗}/{\1−empty−\2 0\3} / ;

s /{ ( [ ˆ ]∗ ) +<\∗NONE\∗ +\∗($SRL )?> ∗}/{\1−empty−c t r l 0\2} / ;

i f ( $ =˜ /\ ! c o l o n \ ! (REL| r e l ) / ) { # use t h i s t o check i f i n p u t i s s r l t r e e

s /{ ( [ ˆ ]∗ ) +<\∗NONE\∗ +[ˆ>]∗($SRL )> ∗}/{\1−empty 0\2} / ;
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} e l s e {
s /{ ( [ ˆ ]∗ ) +<\∗NONE\∗ +[ˆ>]∗> ∗}/{\1−empty 0} / ;

}
# f o l d NP t r a c e i n VP i n t o p a s s i v e VP nonterm

s /{ (VP [ ˆ ]∗|VBN[ ˆ ]∗|VBD[ ˆ ]∗ ) + ( .∗ )<(VB[ND ] ( ? ! [ ˆ ]∗−v ) [ ˆ ]∗ ) +([ˆ >]∗)> ∗<NP [ ˆ ]∗−empty(− c t r l ) ? 0 ( $SRL ) ?>(.∗)

}/{\1 \2<\3−v \4> \7} / ;

# s e t p a s s i v e f o r VBN f o l l o w i n g BE−ve rb

s / ( ( ? : be | b e i n g | been | i s | was |VBZvbz ’ s | a r e | were | ’ r e ) [ \) >\]]∗[ˆ\)>\]]∗) <((?:VB[ND] |VPvb [ nd ] ) ( ? ! [ ˆ ]∗−v ) [ ˆ

]∗ ) ( [ ˆ ]∗ ) ∗>([ˆ\{]∗\})/\1<\2−v \3>\4/;

## s /{ ( .∗ ( ? : be | b e i n g | been | i s |was | a r e |were ) [ \) >\]]∗[ˆ\)>\]]∗)<(VB[ND ] ( ? ! [ ˆ ]∗−v ) [ ˆ ]∗ ) ( [ ˆ ]∗ ) ∗>(.∗)}/{\1<\2−
v \3>\4}/;

# s e t p a s s i v e f o r VBN f o l l o w i n g BE−ve rb + a dv e r b

s / ( ( ? : be | b e i n g | been | i s | was |VBZvbz ’ s | a r e | were | ’ r e ) [ \) >\]]∗[ˆ\)>\]]∗<ADVP[ ˆ ]∗ +[ˆ>]∗>[ \) >\]]∗[ˆ\)

>\]]∗) <((?:VB[ND] |VPvb [ nd ] ) ( ? ! [ ˆ ]∗−v ) [ ˆ ]∗ ) ( [ ˆ ]∗ ) ∗>([ˆ\{]∗\})/\1<\2−v \3>\4/;

## s /{ ( .∗ ( ? : be | b e i n g | been | i s |was | a r e |were ) [ \) >\]]∗[ˆ\)>\]]∗<ADVP[ ˆ ]∗ +[ˆ>]∗>[ \) >\]]∗[ˆ\)>\]]∗)<(VB[ND ] ( ? ! [ ˆ

]∗−v ) [ ˆ ]∗ ) ( [ ˆ ]∗ ) ∗>(.∗)}/{\1<\2−v \3>\4}/;

# s e t p a s s i v e f o r VBN a d j e c t i v e s

s /{ (N.∗ )<(VB[ND ] ( ? ! [ ˆ ]∗−v ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +<(NN[ ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/{\1<\2−v\3> <\4\5>\6}/;

# s e t p a s s i v e f o r VBN a d j e c t i v e s

s /{ ( ADJP .∗ )<(RB [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +<(VB[ND ] ( ? ! [ ˆ ]∗−v ) [ ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/{\1<\2\3> <\4−v\5>\6}/;

# s e t p a s s i v e f o r VBN a d v e r b i a l c l a u s e s

s / (\ ( S [ ˆ ]∗−adv [ ˆ ]∗ +<NP[ˆ>]∗−empty[ˆ>]∗> +\{VP [ ˆ ]∗ +)<(VB[ND ] ( ? ! [ ˆ ]∗−v ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )>/\1<\2−v\3>/;

# s h i f t p a s s i v e down i f n o t a t l e a f

s /{ ( [ ˆ ]∗ )−v +<(VB[ND] [ ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/{\1 <\2−v \3>\4}/;

# p r o p a g a t e p a s s i v e t a g up unary

s /{ ( [ ˆ ]∗ ) +<([ˆ ]∗ )−v ( [ ˆ ]∗ )> ∗}/{\2−v \3} / ;

# f o l d empty NP i n S wi th VPvb |VPvbp i n t o S i m p e r a t i v e

s /{ ( S [ ˆ ]∗|PRN [ ˆ ]∗ ) + ( .∗ ) <[ˆ ]∗NP [ ˆ ]∗−empty−c t r l 0 ( $SRL )?> ∗<(VPvbp |VPvb ) ( [ ˆ a−z ][ˆ > ]∗ ) >(.∗)} / (\1 \2\{Simp

\5\}\6) / ;

# f o l d empty NP i n S wi th VPvbg i n t o S pro p r o g r e s s i v e / p a s s i v e / i n f i n i t i v e

s /{ ( S [ ˆ ]∗ ) + ( .∗ ) <[ˆ ]∗NP [ ˆ ]∗−empty(− c t r l ) ? 0 ( $SRL )?> ∗<VP( vbg | vbn | prd | vbd | vb | t o ) ( [ ˆ > ]∗ ) >(.∗)} / (\1 \2\{Spro

\5\6\}\7) / ;

# f o l d empty NP i n S wi th VPto i n t o S pro s t a t i v e

s /{ ( S [ ˆ ]∗ ) + ( .∗ ) <[ˆ ]∗NP [ ˆ ]∗−empty(− c t r l ) ? 0 ( $SRL )?> ∗ ( .∗ )<(ADJP|NP|PP ) ([ˆ > ]∗ ) >(.∗)} / (\1 \2\5\{Sproprd\7\}\8)

/ ;

# f o l d NP t r a c e i n SBAR i n t o S nonterm

s /{SBAR [ ˆ \ ˆ ]∗ ( [ ˆ ]∗ ) +<\∗NONE\∗ [ˆ>]∗> ∗<S ( [ ˆ \ ˆ ]∗ ) [ ˆ \−]∗([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗}/{S\2\1\3 \4} / ;

s /{SBAR [ ˆ \ ˆ ]∗ ( [ ˆ ]∗ ) +<[ˆ ]∗−empty−([0−9]∗) 0 ( $SRL )?> ∗<S ( [ ˆ \ ˆ ]∗ ) [ ˆ \−]∗([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗}/{S\2\1\5−\4 \6} / ;

# r edo SBAR as WHSBAR

s /{ (SBAR [ ˆ ]∗ ) +(<WH.∗ ) +(<S .∗ ) }/{WH\1 \2 \3} / ;

# t u r n NN i n VP i n t o VBG−− wei rd way t o a n n o t a t e g e r u n d s

s /{ (VP [ ˆ ]∗ ) <NN[ ˆ \ ˆ ]∗ ( [ ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)} / (\1 \{VBGvbg\2 \3\}\4) / ;

#### TERMINALS

# g i v e t e r m i n a l symbols lower c a s e and add l o w e r c a s e pos t o c a t e g o r y

i f ( $ =˜ /{ (VB[A−Z]∗|MD|TO|BES|HVS) [ a−z ]∗ ( [ ˆ ]∗ ) ∗ ( [ ˆ \ / ]∗ ) ∗} / ) { $c=$1 ; $u=$2 ; $p= l c ( $1 ) ; $w=$3 ; s /{ .∗} /{
$c$p$u $w} / ; }

# i f ( $ =˜ /{ (VB[A−Z]∗|MD|TO|BES|HVS) [ a−z ]∗ ( [ ˆ ]∗ ) ∗ ( [ ˆ \ / ]∗ ) ∗} / ) { $c=$1 ; $u=$2 ; $p= l c ( $1 ) ; $w= l c ( $3 ) ; s

/{ .∗} /{ $c$p$u $w} / ; }
# g i v e t e r m i n a l symbols lower c a s e

i f ( $ =˜ /{ ( [A−Z\$ ]∗ ) ( [ ˆ ]∗ ) ∗ ( [ ˆ \ / ]∗ ) ∗} / ) { $c =” $1$2 ” ; $w=$3 ; s /{ .∗} /{ $c $w} / ; }
# i f ( $ =˜ /{ ( [A−Z\$ ]∗ ) ( [ ˆ ]∗ ) ∗ ( [ ˆ \ / ]∗ ) ∗} / ) { $c =” $1$2 ” ; $w= l c ( $3 ) ; s /{ .∗} /{ $c $w} / ; }
# g i v e t e r m i n a l symbols lower c a s e and add word t o c a t e g o r y

# i f ( $ =˜ /{ ( PRT) [ a−z ]∗ ( [ ˆ ]∗ ) ∗ ( [ ˆ \ / ]∗ ) ∗} / ) { $c=$1 ; $u=$2 ; $p= l c ( $1 ) ; $w= l c ( $3 ) ; s /{ .∗} /{ $c$w$u $w} / ; }
s /{PRT([ˆ >\ ] ]∗ ) ( [ a−z ] + ) ([ ˆ <\ [ ]∗ )}/{PRT\2\1 \2\3} / ;

$CONJABLE = ” [ ˆ ]∗ ” ;

$STRICTCONJABLE = ”S[ˆ− ]∗|NP[ˆ− ]∗|VP[ˆ− ]∗|PP[ˆ− ]∗|ADJP[ˆ− ]∗|ADVP[ˆ− ]∗|CD[ˆ− ]∗ ” ;

#### CONJUNCTION

# XP CC XP −> XP CXP

s /{ ( [ ˆ ]∗ ) + ( .∗ )<($CONJABLE) ([ˆ > ]∗ )> ∗<(CC [ˆ>]∗)> ∗<(\3[ˆ>]∗)>(.∗)}/\(\1 \2<\3 \4> \{C\3 <\5> <\6>\}\7\) / ;
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# XP XP CXP −> XP CXP

s /{ ( [ ˆ ]∗ ) + ( .∗ )<($CONJABLE) ([ˆ > ]∗ )> ∗<(\3[ˆ>]∗)> ∗<(C\3[ˆ>]∗) >(.∗)}/\(\1 \2<\3 \4> \{C\3 <\5> <\6>\}\7\) / ;

# XP XP XP −> XP CXP a t end of c o n s t i t

s /{ ( [ ˆ ]∗ ) + ( .∗ )<($STRICTCONJABLE ) ([ˆ > ]∗ )> ∗<(\3[ˆ>]∗)> ∗<(\3[ˆ>]∗)>( ∗)}/\(\1 \2<\3 \4> \{C\3 <\5> <\6>\}\7\)
/ ;

# ; CC XP −> ; CSXP−pS

s /{ ( [ ˆ ]∗ ) + ( .∗ ) <(\! semi\![ˆ>]∗)> ∗<(CC [ˆ>]∗)> ∗<([ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\(\1 \2<\3> \{CS\5−pS <\4> <\5
\6>\}\7\) / ;

# ; XP CSXP −> ; CSXP−pS

s /{ ( [ ˆ ]∗ ) + ( .∗ ) <(\! semi\![ˆ>]∗)> ∗<($CONJABLE) ([ˆ > ]∗ )> ∗<(CS?\4[ˆ>]∗) >(.∗)}/\(\1 \2<\3> \{CS\4−pS <\4 \5>
<\6>\}\7\) / ;

# XP ; CSXP−ps −> XP CSXP

s /{ ( [ ˆ ]∗ ) + ( .∗ )<($CONJABLE) ([ˆ > ]∗ )> ∗<(\! semi \![ˆ>]∗)> ∗<(CS\3−pS [ˆ>]∗) >(.∗)}/\(\1 \2<\3 \4> \{CS\3 <\5>
<\6>\}\7\) / ;

# ; XP ; XP −> ; XP CSXP a t end of c o n s t i t

s /{ ( [ ˆ ]∗ ) + ( .∗ ) <(\! semi\![ˆ>]∗)> ∗<($CONJABLE) ([ˆ > ]∗ )> ∗<(\! semi \![ˆ>]∗)> ∗<(\4[ˆ>]∗)>( ∗)}/\(\1 \2<\3> <\4
\5> \{CS\4 <\6> <\7>\}\8\) / ;

# , CC XP −> , CCXP−pC

s /{ ( [ ˆ ]∗ ) + ( .∗ ) <( ,[ˆ>]∗)> ∗<(CC [ˆ>]∗)> ∗<([ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\(\1 \2<\3> \{CC\5−pC <\4> <\5\6>\}\7\) / ;

# , XP CCXP −> , CCXP−pC

s /{ ( [ ˆ ]∗ ) + ( .∗ ) <( ,[ˆ>]∗)> ∗<($CONJABLE) ([ˆ > ]∗ )> ∗<(CC?\4[ˆ>]∗) >(.∗)}/\(\1 \2<\3> \{CC\4−pC <\4 \5> <\6>\}\7\)
/ ;

# XP , CCXP−ps −> XP CCXP

s /{ ( [ ˆ ]∗ ) + ( .∗ )<($CONJABLE) ([ˆ > ]∗ )> ∗<( ,[ˆ>]∗)> ∗<(CC\3−pC[ˆ>]∗) >(.∗)}/\(\1 \2<\3 \4> \{CC\3 <\5> <\6>\}\7\)
/ ;

# , XP , XP −> , XP CCXP a t end of c o n s t i t

s /{ ( [ ˆ ]∗ ) + ( .∗ ) <( ,[ˆ>]∗)> ∗<($CONJABLE) ([ˆ > ]∗ )> ∗<( ,[ˆ>]∗)> ∗<(\4[ˆ>]∗)>( ∗)}/\(\1 \2<\3> <\4 \5> \{CC\4 <\6>
<\7>\}\8\) / ;

# X CX −> X ( f i n a l i z e )

s /{ ( ? ! C) ( [ ˆ ]∗ ) + ( .∗ ) <([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<(C[CS]?\3 ) ([ˆ > ]∗ ) >(.∗)}/\(\1 \2\{\3 <\3 \4> <\5 \6>\}\7\) / ;

# X CC X −> X ####( do g e n e r i c c o n j f i r s t , a s more s p e c i f i c one w i l l a p p e a r b e s i d e i t and u l t i m a t e l y

r e p l a c e i t v i a ” undo una ry i d e n t i t y p r o j e c t i o n ” )

s /{ ( [ ˆ ]∗ ) + ( .∗ ) <([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<(CC) ([ˆ > ]∗ )> ∗<\3 ([ˆ > ]∗ ) >(.∗)}/\(\1 \2\{\3 <\3 \4> <C\3 [\5\6] [\3

\7]>\}\8\) / ;

# # XP CC XP −> XP

# s /{ ( [ ˆ ]∗ ) + ( .∗ ) <([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<(C\3[ˆ>]∗) >(.∗)}/\(\1 \2\{CC\3 <\3 \4> <\5>\}\6\) / ;

# # g rab XP ; c o n j XP as LISTXP−semi

# s /{ ( [ ˆ ]∗ ) + ( .∗ )<(S[ˆ− ]∗|NP[ˆ− ]∗|VP[ˆ− ]∗|PP[ˆ− ]∗|ADJP[ˆ− ]∗|ADVP[ˆ− ]∗|CD[ˆ− ]∗ ) ( [ ˆ > ]∗ )> ∗<(\! semi

\![ˆ>]∗)> ∗<(CC[ˆ>]∗)> ∗<\3([ˆ>]∗)>(.∗)}/\(\1 \2\{LIST\3−semi <\3\4> <\5> <\6> <\3\7>\}\8\) / ;

# # g rab XP ; XP ; XP as LISTXP−semi a t end of c o n s t i t

# s /{ ( [ ˆ ]∗ ) + ( .∗ )<(NP[ˆ− ]∗ ) ( [ ˆ > ]∗ )> ∗<(\! semi \![ˆ>]∗)> ∗<\3([ˆ>]∗)> ∗<(\! semi \![ˆ>]∗)> ∗<\3([ˆ>]∗)>( ∗)}/\(\1

\2\{LIST\3−semi <\3\4> <\5> <LIST\3−semi \[\3\6\] \[\7\] \[\3\8\]>\}\9\) / ;

# # g rab XP ; LISTXP−semi as LISTXP−semi

# s /{ ( ? ! LIST ) ( [ ˆ ]∗ ) + ( .∗ )<(S[ˆ− ]∗|NP[ˆ− ]∗|VP[ˆ− ]∗|PP[ˆ− ]∗|ADJP[ˆ− ]∗|ADVP[ˆ− ]∗|CD[ˆ− ]∗ ) ( [ ˆ > ]∗ )> ∗<(\!

semi\![ˆ>]∗)> ∗<LIST\3−semi ([ ˆ > ]∗ ) >(.∗)}/\(\1 \2\{LIST\3−semi <\3\4> <\5> <LIST\3−semi\6>\}\7\) / ;

# # g rab XP , c o n j XP as LISTXP

# s /{ ( [ ˆ ]∗ ) + ( .∗ )<(S[ˆ− ]∗|NP[ˆ− ]∗|VP[ˆ− ]∗|PP[ˆ− ]∗|ADJP[ˆ− ]∗|ADVP[ˆ− ]∗|CD[ˆ− ]∗ ) ( [ ˆ > ]∗ )> ∗<( ,[ˆ>]∗)> ∗<(

CC[ˆ>]∗)> ∗<\3([ˆ>]∗)>(.∗)}/\(\1 \2\{LIST\3 <\3\4> <\5> <\6> <\3\7>\}\8\) / ;

# # g rab XP , XP c o n j XP as LISTXP

# s /{ ( [ ˆ ]∗ ) + ( .∗ )<(S[ˆ− ]∗|NP[ˆ− ]∗|VP[ˆ− ]∗|PP[ˆ− ]∗|ADJP[ˆ− ]∗|ADVP[ˆ− ]∗|CD[ˆ− ]∗ ) ( [ ˆ > ]∗ )> ∗<( ,[ˆ>]∗)>

∗<\3([ˆ>]∗)> ∗<(CC[ˆ>]∗)> ∗<\3([ˆ>]∗)>(.∗)}/\(\1 \2<\3\4> <\5> \{LIST\3 <\3\6> <\7> <\3\8>\}\9\) / ;

# # g rab XP , XP , XP as LISTXP a t end of c o n s t i t

# s /{ ( [ ˆ ]∗ ) + ( .∗ )<(NP[ˆ− ]∗ ) ( [ ˆ > ]∗ )> ∗<( ,[ˆ>]∗)> ∗<\3([ˆ>]∗)> ∗<( ,[ˆ>]∗)> ∗<\3([ˆ>]∗)>( ∗)}/\(\1 \2\{LIST\3

<\3\4> <\5> <LIST\3 \[\3\6\] \[\7\] \[\3\8\]>\}\9\) / ;

# # g rab XP , LISTXP as LISTXP

# s /{ ( ? ! LIST ) ( [ ˆ ]∗ ) + ( .∗ )<(S[ˆ− ]∗|NP[ˆ− ]∗|VP[ˆ− ]∗|PP[ˆ− ]∗|ADJP[ˆ− ]∗|ADVP[ˆ− ]∗|CD[ˆ− ]∗ ) ( [ ˆ > ]∗ )>

∗<( ,[ˆ>]∗)> ∗<LIST\3([ˆ>]∗) >(.∗)}/\(\1 \2\{LIST\3 <\3\4> <\5> <LIST\3\6>\}\7\) / ;

# # g rab XP XP c o n j XP as XP LISTXP

# s /{ (SBAR|SQ|SINV |S |NP|VP|PP |ADJP|ADVP|CD) ( [ ˆ ]∗ ) + ( .∗ ) <\1([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<\1\4 ([ˆ > ]∗ )> ∗<(CC[ˆ>]∗)> ∗<\1\4
([ˆ > ]∗ ) >(.∗)}/\(\1\4 \3<\1\4 \5> \{LIST\1\4 <\1\4 \6> <\7> <\1\4 \8>\}\9\) / ;

# # g rab XP XP XP as LISTXP a t end of c o n s t i t
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# s /{ ( [ ˆ ]∗ ) + ( .∗ )<(NP [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<\3 ([ˆ > ]∗ )> ∗<\3 ([ˆ > ]∗ )>( ∗)}/\(\1 \2<\3 \4> \{LIST\3 <\3 \5> <\3
\6>\}\7\) / ;

# # g rab XP XP LISTXP as XP LISTXP

# s /{ ( ? ! LIST ) ( [ ˆ ]∗ ) + ( .∗ )<(S [ ˆ ]∗|NP [ ˆ ]∗|VP [ ˆ ]∗|PP [ ˆ ]∗|ADJP [ ˆ ]∗|ADVP[ ˆ ]∗|CD[ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<\3([ˆ>]∗)> ∗<
LIST\3([ˆ>]∗) >(.∗)}/\(\1 \2<\3\4> \{LIST\3 <\3\5> <LIST\3\6>\}\7\) / ;

# # g rab X c o n j X as X ####( do g e n e r i c c o n j f i r s t , a s more s p e c i f i c one w i l l a p p e a r b e s i d e i t and u l t i m a t e l y

r e p l a c e i t v i a ” undo una ry i d e n t i t y p r o j e c t i o n ” )

# s /{ ( [ ˆ ]∗ ) + ( .∗ ) <([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<(CC) ([ˆ > ]∗ )> ∗<\3 ([ˆ > ]∗ ) >(.∗)}/\(\1 \2\{\3 <\3 \4> <\5\6> <\3 \7>\}\8\)

/ ;

$LEXTPU= ” [ , ‘ ’ \\ !\\ .\\?ˆ][ \\)>\\]]∗[ˆ\\) >\\]]∗|ˆ[ˆ\\)>\\]]∗” ;

$REXTPU=” [ \\)>\\]]∗[ˆ\\) >\\]]∗[ , ‘ ’\\!\\ .\\?]”;

#### NOUN PHRASES

# r i g h t−b i n a r i z e ( b a s a l ) NPs as much as p o s s i b l e

s /{ (NP|WHNP) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ ) <(?![− , ‘ ’ \ ! ] ) ( ? ! ‘ ) ( [ A−Z]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(NN[A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)

}/\(\1\2 \3\{\6 <\4\5> <\6\7\8>\}\9\) / ;

# l e f t−b i n a r i z e NP g e n i t i v e marker i f l e f t and r i g h t c o n t e x t r educed t o n i l

s /{ (NP|WHNP) [ a−z ]∗ ( [ ˆ ]∗ ) +( ∗)<(NN[A−Z]∗|NP) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(POS) ( [ ˆ ]∗ [ˆ>]∗)>( ∗)}/\{\1 pos <\4\5\6>
<\7\8>\}/;

# # grab NN|NP + comma + mod + i n t e r n a l comma as NP

# s /{ (NP) [ a−z ]∗ ( [ ˆ ]∗ ) +<(NN[A−Z]∗|NP) n?n ? ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<, ,> ∗<((?=ADVP|PP| S |VP|WHSBAR|ADJP|NP) ( ? ! [ ˆ

]∗−nC ) [ ˆ ]∗ ) ([ˆ>]∗)>( ∗<, ,>.∗)}/\(\1\2 \{\3 <\3nn\4\5> <\6−nC−mC [ , , ] [\6\7]>\}\8\) / ;

# # grab NN|NP + comma + mod + e x t e r n a l p u n c t as NP

# s /{ (NP) [ a−z ]∗ ( [ ˆ ]∗ ) +<(NN[A−Z]∗|NP) n?n ? ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<, ,> ∗<((?=ADVP|PP| S |VP|WHSBAR|ADJP|NP) ( ? ! [ ˆ

]∗−nC ) [ ˆ ]∗ ) ([ˆ>]∗)> ∗}($REXTPU ) /\(\1\2 \{\3 <\3nn\4\5> <\6−nC−mC [ , , ] [\6\7]>\}\)\8 / ;

# # grab mod t o r i g h t o f NN or NP , i f l e f t c o n t e x t reduced t o n i l

# s /{ (NP) [ a−z ]∗ ( [ ˆ ]∗ ) +( ∗)<(NN[A−Z]∗|NP) n?n ? ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(ADVP|PP| S |VP|WHSBAR|ADJP|NP) ( [ ˆ ]∗
[ˆ>]∗) >(.∗)}/\(\1\2 \3\{\4 <\4nn\5\6> <\7\8>\}\9\) / ; ##>( ∗<.∗)}

# grab NN|NP + comma + mod + i n t e r n a l comma as NP

s /{ (NP) [ a−z ]∗ ( [ ˆ ]∗ ) +<(NN[A−Z]∗|NP) n ? n ? ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<, ,> ∗<((?=ADVP|PP |S |VP|WHSBAR|ADJP|NP) ( ? ! [ ˆ

]∗−nC ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )>( ∗<, ,>.∗)}/\(\1\2 \{\3 <\3\4\5> <\6−nC−mC [ , , ] [\6\7]>\}\8\) / ;

# grab NN|NP + comma + mod + e x t e r n a l p u n c t as NP

s /{ (NP) [ a−z ]∗ ( [ ˆ ]∗ ) +<(NN[A−Z]∗|NP) n ? n ? ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<, ,> ∗<((?=ADVP|PP |S |VP|WHSBAR|ADJP|NP) ( ? ! [ ˆ

]∗−nC ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗}($REXTPU) /\(\1\2 \{\3 <\3\4\5> <\6−nC−mC [ , , ] [\6\7]>\}\)\8 / ;

# grab mod t o r i g h t o f NN or NP , i f l e f t c o n t e x t reduced t o n i l

s /{ (NP) [ a−z ]∗ ( [ ˆ ]∗ ) +( ∗)<(NN[A−Z]∗|NP) n ? n ? ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(ADVP|PP |S |VP|WHSBAR|ADJP|NP) ( [ ˆ ]∗ [ˆ>]∗)

>(.∗)}/\(\1\2 \3\{\4 <\4\5\6> <\7\8>\}\9\) / ; ##>( ∗<.∗)}
# undo l a s t unary N bar p r o j e c t i o n , c a r r y i n g empty up

s /\ ( ( NP) [ a−z ]∗ ( [ ˆ ]∗ ) +\{(NP|NN[A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ empty [ ˆ ]∗ ) + ( .∗ )\} ∗\) /{\1\2\5 \6} / ; ## +(\[

# undo l a s t unary N bar p r o j e c t i o n

s /\ ( ( NP) [ a−z ]∗ ( [ ˆ ]∗ ) +\{(NP|NN[A−Z]∗ ) ( [ a−z ]∗ ) ( ? ! [ ˆ ]∗ empty ) ( [ ˆ ]∗ ) + ( .∗ )\} ∗\) /{\1\2 \6} / ; ## +(\[

debug ( $ s t e p , ” \\ $ ” ) ;

#### TIME NPS

# s u b s t i t u t e NP−tmp

s /{NP−[ˆ ]∗ tmp [ ˆ \−\=]∗[ˆ ]∗ ( .∗ ) } /\ (PP−tmp \{NP \1\}\) / g ;

#### VERB PHRASES

# grab i n t e r n a l comma + S−adv |ADVP|RB|PP + comma + VB|VP as VP

s /{ (VP|VB[A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) (.∗< , ,>) ∗<((?=S−adv |ADVP|RB|PP ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<, ,> ∗<(VB[A−Z]∗|VP) ( [ a−z ]∗ ) ( [ ˆ

]∗ ) ( [ ˆ > ]∗ )>( ∗| ∗<[ˆA−Z ] .∗ ) }/\(\1\7\2\3 \{\6\7\8 <\4−pC−mC [\4\5] [ , ,]> <\6\7\8\9>\}$10\) / ;

# grab e x t e r n a l p u n c t + S−adv |ADVP|RB|PP + comma + VB|VP as VP

s / ( $LEXTPU) {(VP|VB[A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) ∗<((?=S−adv |ADVP|RB|PP ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<, ,> ∗<(VB[A−Z]∗|VP) ( [ a−z ]∗ ) ( [ ˆ

]∗ ) ( [ ˆ > ]∗ )>( ∗| ∗<[ˆA−Z ] .∗ ) }/\1\(\2\7\3 \{\6\7\8 <\4−pC−mC [\4\5] [ , ,]> <\6\7\8\9>\}$10\) / ;

# r i g h t−b i n a r i z e VPs a f t e r r i g h t c o n t e x t r educed t o n i l or p u n c t c o n s t i t u e n t

s /{ (VP|VB[A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(S−adv |ADVP|RB|PP ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(VB[A−Z]∗|VP) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)>( ∗|
∗<[ˆA−Z ] .∗ ) }/\(\1\7\2 \3\{\6\7 <\4\5> <\6\7\8>\}\9\) / ; ##(<.∗)<

# l e f t−b i n a r i z e VPs headed by VB or BES as much as p o s s i b l e

s /{ (VP|VB[A−Z]∗|SQ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(VB[A−Z]∗|BES) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(?!CC) ( [ A−Z ] + ) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)

}/\(\1\5\2 \3\{\4\5 <\4\5\6> <\7\8>\}\9\) / ;
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# l e f t−b i n a r i z e VPs headed by TO or MD as much as p o s s i b l e

s /{ (VP|VB[A−Z]∗|SQ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(TO|MD) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(VP|VB) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)}/\(\1\5\2 \3\{
VP\5 <\4\5\6> <\7\8>\}\9\) / ;

# grab VP|VB + comma + mod + i n t e r n a l comma as VP

s /{ (VP|VB[A−Z]∗|SQ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(VP[ a−z ]∗|VB[A−Za−z ]∗ ) ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<, ,> ∗<((?=PP |VP|SBAR| Spro |S [ ˆ

]∗−adv |PRN) [ ˆ ]∗ ) ( [ ˆ > ]∗ )>( ∗<, ,>.∗)}/\(\1\5\2 \3\{\4 <\4\5\6> <\7−nC−mC [ , , ] [\7\8]>\}\9\) / ;

# grab VP|VB + comma + mod + e x t e r n a l p u n c t as VP

s /{ (VP|VB[A−Z]∗|SQ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(VP[ a−z ]∗|VB[A−Za−z ]∗ ) ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<, ,> ∗<((?=PP |VP|SBAR| Spro |S [ ˆ

]∗−adv |PRN) [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗}($REXTPU) /\(\1\5\2 \3\{\4 <\4\5\6> <\7−nC−mC [ , , ] [\7\8]>\}\)\9 / ;

# l e f t−b i n a r i z e VPs headed by VP as much as p o s s i b l e

s /{ (VP|VB[A−Z]∗|SQ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(VP) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(PP |VP) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)}/\(\1\5\2

\3\{\4\5 <\4\5\6> <\7\8>\}\9\) / ;

# p e r c o l a t e i t−c l e f t up u n t i l u n c l e o f e x p l

s /(− expl−([0−9]+) .∗ ) \{([A−Z]∗ ) ( .∗ ) <([ˆ ]∗ ) [−=]\2([ˆ>]∗)> ∗\}/\1\{\3 i t \4 <\5\6>\}/;

# s /(− exp l−([0−9]+) .∗ ) \{ ( .∗ ) <([ˆ ]∗[−=]\2[ˆ>]∗)> ∗\}/\1\{\3\} <\4>/; ### r a i s e

# # s /(− exp l−([0−9]∗) .∗ ) \{[ˆ ]∗ +<([ˆ<]∗)> +<([ˆ ]∗−\2[ˆ>]∗)> ∗\}/\1\{\3\} <\4>/;

s /{ ( .∗ )<NP [ ˆ ]∗ +\[NP[ a−z ]∗ ( [ ˆ > ]∗ )\] +\ [ [ ˆ ]∗−expl−[0−9]+ 0\]> <([A−Z]∗ i t [ˆ>]∗) >(.∗)}/{\1<IT\2> <\3>\4}/;

s /{ ( .∗ )<NP [ ˆ ]∗ +\[NP[ a−z ]∗ ( [ ˆ > ]∗ )\] +\ [ [ ˆ ]∗−expl−[0−9]+ 0\]> <([A−Z]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/{\1<IT\2> <\3 i t \4>\5}/;

s /{ ( .∗ )<NP [ ˆ ]∗ +\[NP[ a−z ]∗ ( [ ˆ > ]∗ )\] +\ [ [ ˆ ]∗−expl−[0−9]+ 0\]>(.∗)}/{\1<IT\2>\3}/;

# s /{ ( .∗ )<NP [ ˆ ]∗ +\[NP[ a−z ]∗([ˆ>]∗)\] +\[[ˆ ]∗−exp l−([0−9]+) 0\]> <([ˆ ]∗ ) ([ˆ>]∗)> <([ˆ ]∗ )−\3([ˆ>]∗)>(.∗)

}/\(\1< IT\2> \{\4−aIT <\4\5> <\6\7>\}\8\) / ;

# undo l a s t unary V bar p r o j e c t i o n

s /\ ( ( VP|VB[A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) +\{(VP|VB[A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ ) + ( .∗ )\} ∗\) /{\1\4\2 \6} / ; ## +(\[

#### SENTENTIAL PROJECTIONS

# r i g h t−b i n a r i z e NP−SBJ VP as S

s /{ ( S [A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(NP| IT ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(VP) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)}/\(\1\2 \3\{S <\4\5>
<\6\7\8>\}\9\) / ;

# under SINV : r i g h t−b i n a r i z e MOD VP as VP

s /{ ( SINV ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(S−adv |ADVP|RB[A−Z]∗|PP ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(VP|VB[A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\(\1\2

\3\{\6\7 <\4\5> <\6\7\8>\}\9\) / ;

# under SINV : combine VB NP as SINV−uS

s /{ ( SINV.∗<S .∗ )<(VP[ˆ>]∗S−empty [ˆ>]∗)> ∗<(NP[ˆ>]∗) >(.∗)}/(\1\{SINV <\2> <\3>\}\4) / ; ## NOTE: lower SINV

w i l l become SINV−gS

# under S : S−# , S −> ( S−# S−nC , ) S ( t o p i c a l i z a t i o n w i t h comma )

s /{ ( S .∗ ) <([ˆ ]∗ ) (−[0−9]+) ([ ˆ > ]∗ )> ∗<(, , )> ∗<(S [ a−z ]∗[ˆ>]∗ empty\3[ˆ>]∗) >(.∗)}/\(\1\{\2\3 <\2−nC \4> <\5>\}
<\6>\7\) / ;

# under S : grab i n t e r n a l comma + S−adv |ADVP|RB|PP + comma + VB|VP as VP

s /{ ( S [A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) (.∗< , ,>) ∗<((?=S [ a−z]∗−adv |ADVP|RB|PP ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<, ,> ∗<(VB[A−Z]∗|VP) ( [ a−z ]∗ )

( [ ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\(\1\7\2\3 \{\6\7\8 <\4−pC−mC [\4\5] [ , ,]> <\6\7\8\9>\}$10\) / ;

# under S : grab e x t e r n a l p u n c t + S−adv |ADVP|RB|PP + comma + VB|VP as VP

s / ( $LEXTPU) {(S [A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) ∗<((?=S [ a−z]∗−adv |ADVP|RB|PP ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<, ,> ∗<(VB[A−Z]∗|VP) ( [ a−z ]∗ )

( [ ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\1\(\2\7\3 \{\6\7\8 <\4−pC−mC [\4\5] [ , ,]> <\6\7\8\9>\}$10\) / ;

# under S : r i g h t−b i n a r i z e MOD VP as VP

s /{ ( S [A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) +(<.∗)<(S−adv |ADVP|RB[A−Z]∗|PP ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(VP|VB[A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ > ]∗ ) >(.∗)

}/\(\1\2 \3\{\6\7 <\4\5> <\6\7\8>\}\9\) / ;

# under S : grab i n t e r n a l comma + S−adv |ADVP|RB|PP + comma + S as S

s /{ ( S [A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) (.∗< , ,>) ∗<((?=PRN|SBAR|S[ˆ−]∗−adv |ADVP|RB|PP ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<, ,> ∗<(\1) ( [ a−z ]∗ ) ( [ ˆ

]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\(\1\7\2\3 \{\6\7\8 <\4−pC−mC [\4\5] [ , ,]> <\6\7\8\9>\}$10\) / ;

# under S : grab e x t e r n a l p u n c t + S−adv |ADVP|RB|PP + comma + S as S

s / ( $LEXTPU) {(S [A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) ∗<((?=PRN|SBAR|S[ˆ−]∗−adv |ADVP|RB|PP ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<, ,> ∗<(\2) ( [ a−z ]∗ ) ( [ ˆ

]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\1\(\2\7\3 \{\6\7\8 <\4−pC−mC [\4\5] [ , ,]> <\6\7\8\9>\}$10\) / ;

# r e c o v e r from f o r g o t t e n comma b e f o r e pre−s e n t e n c e m o d i f i e r

s /{ ( S [A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) ( .∗ ) ∗<((?=PRN|SBAR|S[ˆ−]∗−adv |ADVP|RB|PP ) [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<, ,> ∗<(\1) ( [ a−z ]∗ ) ( [ ˆ ]∗ )

( [ ˆ > ]∗ ) >(.∗)}/\(\1\7\2\3 \{\6\7\8 <\4−mC [\4\5] [ , ,]> <\6\7\8\9>\}$10\) / ;

# grab comma between NP and VP

s /{ ( S .∗ )<(NP .∗ )> +<(, , )> +<(VP [ ˆ ]∗ ) ( .∗ ) >(.∗)}/(\1<\2> \{\4 <\3> <\4 \5>\}\6) / ;

# under S : r i g h t−b i n a r i z e MOD + S as S

s /{ ( S [A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(PRN|S−adv |ADVP|RB[A−Z]∗|PP ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(\1) ( [ a−z ]∗ ) ( [ˆ>]∗) >(.∗)

}/\(\1\7\2 \3\{\6\7 <\4\5> <\6\7\8>\}\9\) / ;

# l e f t−b i n a r i z e SINV
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s /{ ( SINV ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ ) <(\1) ( [ ˆ ]∗ ) ( [ˆ>]∗)> ∗<(PRN|ADVP|RB[A−Z]∗|PP ) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)}/\(\1\5\2 \3\{\4\5

<\4\5\6> <\7\8>\}\9\) / ;

# l e f t−b i n a r i z e S

s /{ ( S [A−Z]∗ ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ ) <(\1) ( [ a−z ]∗ ) ( [ˆ>]∗)> ∗<(PRN|ADVP|RB[A−Z]∗|PP ) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)}/\(\1\5\2

\3\{\4\5 <\4\5\6> <\7\8>\}\9\) / ;

# redo S t o

s /{ ( S ) +(<NP.∗ ) +(<VPto .∗ ) }/{\1 t o \2 \3} / ;

# undo l a s t unary S bar p r o j e c t i o n

s /\ ( ( S ) [ a−z ]∗ ( [ ˆ ]∗ ) +\{(S ) ( [ a−z ]∗ ) ( [ ˆ ]∗ ) + ( .∗ )\} ∗\) /{\1\4\2 \6} / ; ## +(\[

# i d e n t i f y s m a l l c l a u s e

s /{S ( [ ˆ ]∗ ) +<(NP[ˆ>]∗| IT [ˆ>]∗)> +<(VPvbn |VBNvbn|VPvbg |VBGvbg|ADJP|PP ) ([ˆ > ]∗ )> ∗}/{SC\1 <\2> <\3\4>}/;

#### ADJECTIVAL / ADVERBIAL PHRASES

# r i g h t−b i n a r i z e ADJPs as much as p o s s i b l e

s /{ ( ADJP ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(RB[A−Z]∗|ADVP) ( [ ˆ ]∗ [ˆ>]∗)> ∗<( J J [A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)}/\(\1\2

\3\{\6 <\4\5> <\6\7\8>\}\9\) / ;

# l e f t−b i n a r i z e ADJPs a f t e r l e f t c o n t e x t r educed t o n i l

s /{ ( ADJP ) [ a−z ]∗ ( [ ˆ ]∗ ) +( ∗)<( J J [A−Z]∗|ADJP ) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(PRN|PP |S ) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)}/\(\1\2

\3\{\4 <\4\5\6> <\7\8>\}\9\) / ; ##>( ∗<.∗)}
# undo l a s t unary A bar p r o j e c t i o n

s /\ ( ( ADJP ) [ a−z ]∗ ( [ ˆ ]∗ ) +\{( J J [A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ ) + ( .∗ )\} ∗\) /{\1\2 \6} / ; ## +(\[

# r i g h t−b i n a r i z e ADVPs as much as p o s s i b l e

s /{ (ADVP) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(RB[A−Z]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(RB[A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)}/\(\1\2 \3\{\6

<\4\5> <\6\7\8>\}\9\) / ;

# l e f t−b i n a r i z e ADVPs a f t e r l e f t c o n t e x t r educed t o n i l

s /{ (ADVP) [ a−z ]∗ ( [ ˆ ]∗ ) +( ∗)<(RB[A−Z]∗|ADVP) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(PRN|PP |S ) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)}/\(\1\2

\3\{\4 <\4\5\6> <\7\8>\}\9\) / ; ##>( ∗<.∗)}
# undo l a s t unary Ad bar p r o j e c t i o n

s /\ ( (ADVP) [ a−z ]∗ ( [ ˆ ]∗ ) +\{(RB[A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ ) + ( .∗ )\} ∗\) /{\1\2 \6} / ; ## +(\[

# a n n o t a t e unary rb

s /{ (ADVP[ ˆ ]∗ ) ∗<(RB [ ˆ ]∗ ) ( [ ˆ >]∗)> ∗}/{\1 <\2−una ry \3>}/;

#### PREPOSITIONAL PHRASES

# a n n o t a t e p r e p o s i t i o n s w i t h word i n s t e a d o f pos

s /{ ( IN ) [ a−z ]∗ ( [ ˆ ]∗ ) ∗( o f | t h a t ) (\ ! c o l o n \ ! .∗ ) ?}/{\1\3\2 \3\4} / ;

# s /{ ( PP|SBAR ) [ a−z ]∗ ( [ ˆ ]∗ ) ∗<(IN |TO) ( o f | t h a t | t o ) ( [ ˆ ]∗ .∗ )}/{\1\4 <\3\4\5}/;

# l e f t−b i n a r i z e PPs / SBARs headed by IN or TO as much as p o s s i b l e

s /{ ( PP |SBAR) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(IN |TO) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<([A−Z ] + ) ( [ ˆ ]∗ [ˆ>]∗) >(.∗)}/\(\1\5\2 \3\{\1\5\2

<\4\5\6> <\7\8>\}\9\) / ;

# r i g h t−b i n a r i z e PPs a f t e r r i g h t c o n t e x t r educed t o n i l

s /{ ( PP ) [ a−z ]∗ ( [ ˆ ]∗ ) + ( .∗ )<(ADVP|RB|PP ) ( [ ˆ ]∗ [ˆ>]∗)> ∗<(PP ) ( [ a−z ]∗ ) ( [ ˆ ]∗ [ˆ>]∗)>( ∗)}/\(\1\7\2 \3\{\6\7

<\4\5> <\6\7\8>\}\9\) / ; ##(<.∗)<

# undo l a s t unary P bar p r o j e c t i o n

s /\ ( ( PP |SBAR) [ a−z ]∗ ( [ ˆ ]∗ ) +\{(\1) ( [ a−z ]∗ ) ( [ ˆ ]∗ ) + ( .∗ )\} ∗\) /{\1\4\2 \6} / ; ## +(\[

#### TERMINAL SYMBOLS

# p r o p a g a t e unary head pos a t t e r m i n a l

s /{ (NP) [ a−z ]∗ ( [ ˆ ]∗ ) +<(NN[A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ ) +([ˆ<>]∗)> ∗}/{\1\2 <\3\5 \6>}/;

# p r o p a g a t e unary head pos a t t e r m i n a l

s /{ (VP) [ a−z ]∗ ( [ ˆ ]∗ ) +<(VB[A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ ) +([ˆ<>]∗)> ∗}/{\1\4\2 <\3\4\5 \6>}/;

# p r o p a g a t e unary head pos a t t e r m i n a l

s /{ ( ADJP ) [ a−z ]∗ ( [ ˆ ]∗ ) +<( J J [A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ ) +([ˆ<>]∗)> ∗}/{\1\2 <\3\5 \6>}/;

# p r o p a g a t e unary head pos a t t e r m i n a l

s /{ (ADVP) [ a−z ]∗ ( [ ˆ ]∗ ) +<(RB[A−Z]∗ ) ( [ a−z ]∗ ) ( [ ˆ ]∗ ) +([ˆ<>]∗)> ∗}/{\1\2 <\3\5 \6>}/;

# undo unary i d e n t i t y p r o j e c t i o n

s /{ ( [ ˆ ]∗ ) +<\1([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗}/{\1\2 \3} / ;

s /{ ( .∗ )<(CD [ˆ>]∗)> ∗<(CD [ˆ>]∗) >(.∗)}/\(\1\{CD <\2> <\3>\4\}\) / ;

s /{ ( .∗ )<(RB [ˆ>]∗)> ∗<(QP [ˆ>]∗) >(.∗)}/\(\1\{QP <\2> <\3>\4\}\) / ;

#### BRACKETS / PARENS

# 1a . i n t r o d u c e , from matched b r a c k e t s / pa ren s a t edges o f c o n s t i t u e n t , d e l i m i t e d t a g
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s /{ ( ? ! [ ˆ ]∗−mB) ( [ ˆ ]∗ ) +(<\!LRB\! \! l r b\!> .∗ <\!RRB\! \! r r b\!>) ∗}/{\1−mB \2} / ;

# 1b . i n t r o d u c e , from matched b r a c k e t s / pa ren s i n s i d e c o n s t i t u e n t , d e l i m i t e d t a g on new c o n s t i t u e n t

s /{ ( ? ! [ ˆ ]∗−mB) ( .∗ ) (<\!LRB\! \! l r b \!>) +<(?! ’ ) ( [ ˆ ]∗? ) (−[pn ]B) ? ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +(<\!RRB\! \! r r b\!>) ( .∗ ) }/\(\1

\{\3\5−mB \2 <\3\4\5 \6> \7\}\8\) / ;

# 2 a . i n t r o d u c e , from b e g i n n i n g of s e n t e n c e t o b r a c k e t / p a r e n a t end of c o n s t i t u e n t , d e l i m i t e d t a g

s / ˆ ( [ ˆ \ ) >\]]∗) { ( ? ! [ ˆ ]∗−mB) ( [ ˆ ]∗ ) +( < (? ! [ ˆ ]∗−nB ) ( ? ! ’ ) [ˆ>]∗> +<\!RRB\! \! r r b\!>) ∗}/\1\{\2−pB−mB \3\} / ;

# 2b . i n t r o d u c e , from b e g i n n i n g o f s e n t e n c e t o b r a c k e t / paren a t end o f c o n s t i t u e n t , d e l i m i t e d t a g on new

c o n s t i t u e n t

s / ˆ ( [ ˆ \ ) >\]]∗) { ( ? ! [ ˆ ]∗−mB) ( [ ˆ ]∗ ) + <(?![ˆ ]∗−nB ) ( ? ! ’ ) ( ? ! NP) ( [ ˆ ]∗? )(−pB ) ? ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +(<\!RRB\! \! r r b\!>)

( .∗ ) }/\1\(\2 \{\3\5−pB−mB <\3\4\5 \6> \7\}\8\) / ;

# 3 a . i n t r o d u c e , from e x t e r n a l p u n c t t o b r a c k e t / p a r e n a t end of c o n s t i t u e n t , d e l i m i t e d t a g

s / ( [ , ‘ ’ \ !\ .\? ] [ \) >\]]+[ˆ\)>\]]∗) { ( ? ! [ ˆ ]∗−mB) ( [ ˆ ]∗ ) +( < (? ! [ ˆ ]∗−nB ) ( ? ! ’ ) [ˆ>]∗> +<\!RRB\! \! r r b\!>) ∗}/\1\{\2−
pB−mB \3\} / ;

# 3b . i n t r o d u c e , from e x t e r n a l p u n c t t o b r a c k e t / p a r e n a t end of c o n s t i t u e n t , d e l i m i t e d t a g on new c o n s t i t u e n t

s / ( [ , ‘ ’ \ !\ .\? ] [ \) >\]]+[ˆ\)>\]]∗) { ( ? ! [ ˆ ]∗−mB) ( [ ˆ ]∗ ) + <(?![ˆ ]∗−nB ) ( ? ! ’ ) ( ? ! NP) ( [ ˆ ]∗? )(−pB ) ? ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )>

+(<\!RRB\! \! r r b\!>) ( .∗ ) }/\1\(\2 \{\3\5−pB−mB <\3\4\5 \6> \7\}\8\) / ;

# 4 a . i n t r o d u c e , from b r a c k e t / p a r e n a t edge o f c o n s t i t u e n t t o e x t e r n a l punc t , d e l i m i t e d t a g

s /{ ( ? ! [ ˆ ]∗−mB) ( [ ˆ ]∗ ) +(<\!LRB\! \! l r b\!> + <(?![ˆ ]∗−pB ) ( ? ! ’ ) [ˆ>]∗>) ∗}([ \) >\]]∗[ˆ\) >\]]∗[ , ‘ ’ \ !\ .\? ] ) /\{\1−nB

−mB \2\}\3/;

# 4b . i n t r o d u c e , from b r a c k e t / p a r e n w i t h i n t h e c o n s t i t u e n t t o e x t e r n a l punc t , d e l i m i t e d t a g on new

c o n s t i t u e n t

s /{ ( ? ! [ ˆ ]∗−mB) ( .∗ ) +(<\!LRB\! \! l r b \!>) + <(?![ˆ ]∗−pB ) ( ? ! ’ ) ( [ ˆ ]∗? )(−nB ) ? ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗}([ \) >\]]∗[ˆ\)

>\]]∗[ , ‘ ’ \ !\ .\? ] ) /\ (\1 \{\3\5−nB−mB \2 <\3\4\5 \6>\}\)\7 / ;

#### QUOTES

# grab c o m p l e t e q u o t e

s /{ ( ? ! [ ˆ ]∗−mQ) ( .∗ ) (< ‘ ‘? ‘ ‘?>) + <(?![ˆ ]∗−mQ) ( [ ˆ ]∗? ) (−[pn ]Q) ? ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +((< , ,> +)?< ’ ’ ? ’ ’?>) ( .∗ )

}/\(\1 \{\3\5−mQ \2 <\3\4\5 \6> \7\}\9\) / ;

# g rab i n c o m p l e t e q u o t e : ‘ ‘ + X as X−nQ−nC−mQ

s /{ ( [ ˆ ]∗ ) ( .∗ ) (< ‘ ‘ ‘ ‘>) +<([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗}/\(\1 \2\{\4−nQ−nC−mQ \3 <\4 \5\>\}\) / ;

# t a g i n c o m p l e t e q u o t e : . . . + ‘ ‘ + . . . a s −nQ−nC

s /{ ( ? ! [ ˆ ]∗−mQ) ( [ ˆ ]∗ ) (.∗< ‘ ‘ ‘ ‘ > ( (?! ’ ’ ’ ’ ) . ) ∗)}/{\1−nQ−nC \2} / ;

# g rab i n c o m p l e t e q u o t e : X + ’ ’ a s X−pQ−mQ

s /{ ( [ ˆ ]∗ ) +<([ˆ , ]∗ ) ( [ ˆ > ]∗ )> (< ’ ’ ’ ’>) ( .∗ ) ∗}/\(\1 \{\2−pQ−mQ <\2 \3> \4\}\5\) / ;

# t a g i n c o m p l e t e q u o t e : . . . + ’ ’ + . . . a s −pQ

s /{ ( ? ! [ ˆ ]∗−mQ) ( [ ˆ ]∗ ) ( ( ( ? ! ‘ ‘ ‘ ‘ ) . )∗<’ ’ ’ ’>.∗)}/{\1−pQ \2} / ;

#### DASHES

# 1 a . i n t r o d u c e , from matched d a s h e s a t edges o f c o n s t i t u e n t , d e l i m i t e d t a g

s /{ ( ? ! [ ˆ ]∗−mD) ( [ ˆ ]∗ ) +(<\! dash\! \! dash\!> .∗ <\!dash\! \! dash\!>) ∗}/{\1−mD \2} / ;

# 1b . i n t r o d u c e , from matched d a s h e s i n s i d e c o n s t i t u e n t , d e l i m i t e d t a g on new c o n s t i t u e n t

s /{ ( ? ! [ ˆ ]∗−mD) ( .∗ ) (<\! dash\! \! dash\!>) +<(?! ’ ) ( [ ˆ ]∗? ) (−[pn ]D) ? ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +(<\! dash\! \! dash\!>) ( .∗ )

}/\(\1 \{\3\5−mD \2 <\3\4\5 \6> \7\}\8\) / ;

# 2a . i n t r o d u c e , from b e g i n n i n g o f s e n t e n c e t o dash a t end o f c o n s t i t u e n t , d e l i m i t e d t a g

s / ˆ ( [ ˆ \ ) >\]]∗) { ( ? ! [ ˆ ]∗−mD) ( [ ˆ ]∗ ) +( < (? ! [ ˆ ]∗−nD ) ( ? ! ’ ) [ˆ>]∗> +<\!dash\! \! dash\!>) ∗}/\1\{\2−pD−mD \3\} / ;

# 2b . i n t r o d u c e , from b e g i n n i n g of s e n t e n c e t o dash a t end of c o n s t i t u e n t , d e l i m i t e d t a g on new c o n s t i t u e n t

s / ˆ ( [ ˆ \ ) >\]]∗) { ( ? ! [ ˆ ]∗−mD) ( [ ˆ ]∗ ) + <(?![ˆ ]∗−nD ) ( ? ! ’ ) ( ? ! NP) ( [ ˆ ]∗? )(−pD ) ? ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +(<\! dash\! \! dash

\!>) ( .∗ ) }/\1\(\2 \{\3\5−pD−mD <\3\4\5 \6> \7\}\8\) / ;

# 3a . i n t r o d u c e , from e x t e r n a l p u n c t t o dash a t end o f c o n s t i t u e n t , d e l i m i t e d t a g

s / ( [ , ‘ ’ \ !\ .\? ] [ \) >\]]+[ˆ\)>\]]∗) { ( ? ! [ ˆ ]∗−mD) ( [ ˆ ]∗ ) +( < (? ! [ ˆ ]∗−nD ) ( ? ! ’ ) [ˆ>]∗> +<\!dash\! \! dash\!>)

∗}/\1\{\2−pD−mD \3\} / ;

# 3b . i n t r o d u c e , from e x t e r n a l p u n c t t o dash a t end o f c o n s t i t u e n t , d e l i m i t e d t a g on new c o n s t i t u e n t

s / ( [ , ‘ ’ \ !\ .\? ] [ \) >\]]+[ˆ\)>\]]∗) { ( ? ! [ ˆ ]∗−mD) ( [ ˆ ]∗ ) + <(?![ˆ ]∗−nD ) ( ? ! ’ ) ( ? ! NP) ( [ ˆ ]∗? )(−pD ) ? ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )>

+(<\! dash\! \! dash\!>) ( .∗ ) }/\1\(\2 \{\3\5−pD−mD <\3\4\5 \6> \7\}\8\) / ;

# 4a . i n t r o d u c e , from dash a t edge o f c o n s t i t u e n t t o e x t e r n a l punct , d e l i m i t e d t a g

s /{ ( ? ! [ ˆ ]∗−mD) ( [ ˆ ]∗ ) +(<\! dash\! \! dash\!> + <(?![ˆ ]∗−pD ) ( ? ! ’ ) [ˆ>]∗>) ∗}([ \) >\]]∗[ˆ\) >\]]∗[ , ‘ ’ \ !\ .\? ] ) /\{\1−
nD−mD \2\}\3/;

# 4b . i n t r o d u c e , from dash w i t h i n t h e c o n s t i t u e n t t o e x t e r n a l punct , d e l i m i t e d t a g on new c o n s t i t u e n t

s /{ ( ? ! [ ˆ ]∗−mD) ( .∗ ) +(<\! dash\! \! dash\!>) + <(?![ˆ ]∗−pD ) ( ? ! ’ ) ( [ ˆ ]∗? )(−nD ) ? ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗}([ \) >\]]∗[ˆ\)

>\]]∗[ , ‘ ’ \ !\ .\? ] ) /\ (\1 \{\3\5−nD−mD \2 <\3\4\5 \6>\}\)\7 / ;

#### COMMAS
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# 1a . i n t r o d u c e , from matched da she s a t edges o f c o n s t i t u e n t , d e l i m i t e d t a g

s /{ ( ? ! [ ˆ ]∗−mC) ( [ ˆ ]∗ ) +(< , ,> .∗ <, ,>) ∗}/{\1−mC \2} / ;

# make s u r e p u n c t t a g s p r e c e d e e v e r y t h i n g e l s e

whi le ( s /{ ( [ ˆ ]∗ ) (?!−[ pn ] [ a−z ] ) (−[ˆ− ] + ) (−[pn ] [ a−z ] ) /{\1\3\2/ g ){}
# w h i l e ( s / < ([ˆ ]∗ ) (?!−[ pn ] [ a−z ] ) (−[ˆ− ]+) (−[pn ] [ a−z ] ) /<\1\3\2/g ){}
# d e l e t e r e d u n d a n t t a g s

# w h i l e ( s /{ ( [ ˆ ]∗ ) (?!−[ pn ] [ a−z ] ) (−[ˆ− ]+) (−[pn ] [ a−z ] ) /{\1\3\2/ g ){}
whi le ( s / < ( [ ˆ ]∗ ) (−[ˆ− ] + ) ( [ ˆ ]∗ )\1/<\1\2\3/g ){}

# p r i n t s t d e r r ” : : : $ \n ”;

# ###################

## c o n v e r t i n n e r a n g l e s ( i f any ) t o b r a c k s . . .

whi le ( s /{ ( .∗ ) <([ˆ>]∗) >(.∗)}/{\1\[\2\]\3}/ ){}
## c o n v e r t o u t e r b r a c e s t o a n g l e s . . .

$ =˜ s /{ ( .∗ )}/<\1>/;

}
## f i n i s h up . . .

$ =˜ s / < / [ / ;

$ =˜ s / > / ] / ;

## t r a n s l a t e t o par en s aga in . . .

$ =˜ s /\ [ /\ ( / g ;

$ =˜ s /\ ] /\ ) / g ;

$ =˜ s / I N T J / INTJ / g ;

p r i n t $ ;

}

B.4 scripts/annotateArgs.pl

# ##############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or mo d i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

# ##############################################################################

use Ge to p t : : S td ;

g e t o p t s ( ” d ” ) ;
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$DEBUG = 0 ;

i f ( $ o p t d ) {
$DEBUG = 1 ;

}

sub debug {
i f ($DEBUG) {

$msg = $ [ 1 ] ;

p r i n t s t d e r r $ [ 0 ] , ” ” , $msg , ”\n ” ;

}
}

## f o r each t r e e . . .

whi le ( <> ) {

# t h i s i s n o t r e a l l y t h e p l a c e f o r i t , b u t s h o u l d be done somewhere

s / + / / g ;

## mark top−l e v e l c o n s t i t u e n t as c u r r e n t . . .

s / ˆ ∗\ ( ( .∗ ) \) ∗$ /{\1} / ;

## mark a l l o t h e r c o n s t i t u e n t s as i n t e r n a l . . .

s /\ ( /\ [ / g ;

s /\ ) /\ ] / g ;

## f o r each c o n s t i t u e n t . . .

whi le ( $ =˜ /{ / ) {
## mark a l l c h i l d r e n o f c u r r e n t . . .

f o r ( $ i = index ( $ , ’{ ’ ) , $d =0; $i<index ( $ , ’} ’ ) ; $ i ++ ) {
i f ( s u b s t r ( $ , $ i , 1 ) eq ’ [ ’ ) { i f ( $d ==0){s u b s t r ( $ , $ i , 1 ) = ’<’ ;} $d ++; }
i f ( s u b s t r ( $ , $ i , 1 ) eq ’ ] ’ ) { $d−−; i f ( $d ==0){s u b s t r ( $ , $ i , 1 ) = ’>’ ;} }

}
# ################### ADD SED RULES HERE: a p p l y r u l e s t o a n g l e s ( c h i l d r e n ) w i t h i n b r a c e s ( c o n s i t u e n t ) . . .

debug (++ $ s t e p , ” $ ” ) ;

# pass t ime−np t a g s down t o each head

whi le ( s /{ ( [ ˆ ]∗ ) (−tmp ) ( .∗ ) < (?! [ ˆ ]∗−tmp ) (NP[ a−z ]∗|NNP?S ? [ a−z ]∗ ) ( .∗ )>( ∗)}/{\1\2\3<\4\2\5>\6}/ ) {}

# pass s u b c a t t a g s down t o each i d e n t i c a l c h i l d ( modulo o p t i o n a l c o n j u n c t i o n p r e f i x )

whi le ( s /{ (C? ) ( ( (?!− v|−u ) [ ˆ ] ) ∗) ((−v|−u[ˆ− ] + ) +) ( .∗ ) < (?! [ ˆ ]∗−v | [ ˆ ]∗−u ) (C?\2) ([− ] .∗ ) >(.∗)

}/{\1\2\4\6<\7\4\8>\9}/ ) {}

# i d e n t i f y arguments and add s u b c a t t a g s

s /{ (NP|NN) ([ˆ < ]∗ )<(DT [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<(NNP?S ? | JJR ?S ? ) ([− ] [ ˆ > ]∗ )> ∗}/{\1\2<\3−u\5\4> <\5\6>}/;

s /{ (NP|NN) ( .∗ )<(NN[ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<(S p r o t o | Sto | SBARthat |SC|NP|AP|ADJP| PPof ) ([− ] [ ˆ > ]∗ )> ∗}/{\1\2<\3−u\5\4>
<\5\6>}/;

s /{ ( PP |SBAR) ( .∗ )<(IN [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<(S p r o t o ( ? ! [ ˆ ]∗−adv ) | Sto ( ? ! [ ˆ ]∗−adv ) | Sprovbn ( ? ! [ ˆ ]∗−adv ) | Sprovbg ( ? ! [ ˆ

]∗−adv ) |S ( ? ! [ ˆ ]∗−adv ) |SC|NP|AP|ADJP ) ([− ] [ ˆ > ]∗ )> ∗}/{\1\2<\3−u\5\4> <\5\6>}/;

s /{ ( Spro |VP ( ? ! i t ) |VB) ( .∗ )<(VB[ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<(S p r o t o ( ? ! [ ˆ ]∗−adv ) | Sto ( ? ! [ ˆ ]∗−adv ) |SBAR ( ? ! [ ˆ ]∗−adv ) | SBARthat |
Sprovbn ( ? ! [ ˆ ]∗−adv ) | Sprovbg ( ? ! [ ˆ ]∗−adv ) |S ( ? ! [ ˆ ]∗−adv ) |SC|NP|AP|ADJP|VP[ a−z ]∗|PRT[ a−z ]∗ ) ([− ] [ ˆ > ]∗ )>

∗}/{\1\2<\3−u\5\4> <\5\6>}/;

s /{ (AP|ADJP ) ( .∗ )<(AP| J J [ ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<(S p r o t o ( ? ! [ ˆ ]∗−adv ) | Sto ( ? ! [ ˆ ]∗−adv ) |SBAR ( ? ! [ ˆ ]∗−adv ) | SBARthat |
Sprovbn ( ? ! [ ˆ ]∗−adv ) | Sprovbg ( ? ! [ ˆ ]∗−adv ) |S ( ? ! [ ˆ ]∗−adv ) |SC|NP|AP|ADJP|VP[ a−z ]∗|PRT[ a−z ]∗ ) ([− ] [ ˆ > ]∗ )>

∗}/{\1\2<\3−u\5\4> <\5\6>}/;

# s /{ ( VP|VB ) ( .∗ )<(VB [ ˆ ]∗ ) ([ˆ>]∗)> ∗<(S p r o t o ( ? ! [ ˆ ]∗−adv ) | S t o ( ? ! [ ˆ ]∗−adv ) |SBAR ( ? ! [ ˆ ]∗−adv ) | SBARthat | Sprovbn

( ? ! [ ˆ ]∗−adv ) | Sprovbg ( ? ! [ ˆ ]∗−adv ) | S ( ? ! [ ˆ ]∗−adv ) |NP|AP|ADJP|VP[ a−z ]∗|PRT[ a−z ]∗ ) ([− ][ˆ>]∗)> ∗}/{\1\2<\3−
u\5\4> <\5\6>}/;

# ###################

## mark c u r r e n t as e x t e r n a l . . .

s /{ ( .∗ ? ) } /\(\1\) / ;

## mark f i r s t unexpanded c h i l d as c u r r e n t . . .

s / < ( .∗?) >/{\1}/;
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}
# o u t p u t

p r i n t $ ;

}

B.5 scripts/annotateGaps.pl

# ##############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or mo d i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

# ##############################################################################

# c a t ws j 0001 . t r e e s | p e r l s c r i p t s / t r e e s e d . p l

use Ge to p t : : S td ;

g e t o p t s ( ” d ” ) ;

$DEBUG = 0 ;

i f ( $ o p t d ) {
$DEBUG = 1 ;

}

sub debug {
i f ($DEBUG) {

$msg = $ [ 1 ] ;

p r i n t s t d e r r $ [ 0 ] , ” ” , $msg , ”\n ” ;

}
}

# luan : commented o u t t o s i m p l i f y b / c now model r o l e as ’− l ’ t a g

#$SRL = ”\w+\! l d e l i m \ !”;

## f o r each t r e e . . .

whi le ( <> ) {
## t r a n s l a t e t o par en s . . .

s /\ [ /\ ( / g ;

s /\ ] /\ ) / g ;

## f o r each c o n s t i t u e n t . . .

whi le ( $ =˜ /\ ( [ ˆ\ (\ ) ]∗\) / ) {
## c o n v e r t o u t e r par en s t o b r a c e s . . .

$ =˜ s /\ ( ( [ ˆ\ (\ ) ]∗ ) \) /{\1} / ;

# ################### ADD SED RULES HERE: a p p l y r u l e s t o a n g l e s ( c h i l d r e n ) w i t h i n b r a c e s ( c o n s i t u e n t ) . . .
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debug ( $ s t e p ++ , ” $ ” ) ;

#### d e l e t e unhand led t r a c e s

# f o l d c h i l d t r a c e i n t o p a r e n t nonterm as e x t r a c t i o n

s /{ ( [ ˆ ]∗ ) +<\∗NONE\∗[ˆ>]∗> ∗}/{\1−empty } / ;

# s /{ ( [ ˆ ]∗ ) +<($SRL ) ?\∗NONE\∗[ˆ>]∗> ∗}/{\1−empty } / ;

# f o l d c h i l d t r a c e i n t o p a r e n t nonterm as e x t r a c t i o n

s /{ ( [ ˆ ]∗ ) +( ∗)<\∗NONE\∗[ˆ>]∗>(.∗<.∗)} /\3 / ;

# s /{ ( [ ˆ ]∗ ) +( ∗)<($SRL ) ?\∗NONE\∗[ˆ>]∗>(.∗<.∗)} /\4 / ;

# f o l d c h i l d t r a c e i n t o p a r e n t nonterm as e x t r a c t i o n

s /{ ( [ ˆ ]∗ ) +(.∗< .∗)<\∗NONE\∗[ˆ>]∗>( ∗) } /\2 / ;

# s /{ ( [ ˆ ]∗ ) +(.∗<.∗)<($SRL ) ?\∗NONE\∗[ˆ>]∗>( ∗) } /\2 / ;

# f o l d c h i l d t r a c e i n t o p a r e n t nonterm as e x t r a c t i o n

s /{ ( [ ˆ ]∗ ) + ( .∗ )<\∗NONE\∗[ˆ>]∗>(.∗)} /\2\3 / ;

# s /{ ( [ ˆ ]∗ ) + ( .∗ )<($SRL ) ?\∗NONE\∗[ˆ>]∗>(.∗)} /\2\4/ ;

# f o l d c h i l d empty c a t e g o r y i n t o p a r e n t nonterm as e x t r a c t i o n ( t r a c e c h a i n )

s /{ ( [ ˆ ]∗ ) + ( .∗ ) <([ˆ \ ˆ ]∗ ) [ ˆ ]∗−([0−9]+)−empty−([0−9]+) ∗0 ∗>(.∗<[ˆ ]∗−g [ ˆ ]∗−\4.∗)}/{\1−g\3−\5 \2\6} / ;

# s /{ ( [ ˆ ]∗ ) + ( .∗ )<($SRL ) ? ( [ ˆ \ ˆ ]∗ ) [ ˆ ]∗−([0−9]+)−empty−([0−9]+) ∗0 ∗>(.∗<[ˆ ]∗−g [ ˆ ]∗−\5.∗)}/{\1−g\4−\6 \2\7} /;

# f o l d c h i l d empty c a t e g o r y i n t o p a r e n t nonterm as e x t r a c t i o n

s /{ ( [ ˆ ]∗ ) + ( .∗ ) <([ˆ \ˆ\−]∗) [ ˆ ]∗−empty−([0−9]+) ∗0 ∗>(.∗)}/{\1−g\3−\4 \2\5} / ;

# s /{ ( [ ˆ ]∗ ) + ( .∗ )<($SRL ) ? ( [ ˆ \ˆ\−]∗) [ ˆ ]∗−empty−([0−9]+) ∗0 ∗>(.∗)}/{\1−g\4−\5 \2\6} /;

# p r o j e c t e x t r a c t i o n up

s /{ ( [ ˆ ]∗ ) +(.∗<[ˆ ]∗ )−g ( [ ˆ ] + ) +(.∗> .∗)}/{\1−g\3 \2−g\3 \4} / ;

# debug ( $ s t e p ++, ” > $ ”) ;

# # remove WHSBAR d o m i n a t i n g j u s t S−gNP

# s /{WHSBAR[ ˆ ]∗ <> <(S [ ˆ ]∗−gNP [ ˆ ]∗ ) ([ˆ>]∗)> ∗}/{\1 \3} / ;

# undo e x t r p r o j e c t i o n and nuke WHSBAR i f ’−[0−9]’ numbers o f s i b l i n g s match ( l e f t c h i l d i s empty e x t r : e . g . ”

t h e car I saw ”)

s /{ (WHSBAR[ ˆ ]∗ )−g ( [ ˆ ]∗ )−([0−9]+) +(.∗<WHNP[ ˆ ]∗−\3−empty ∗0 ∗)> +<([ˆ ]∗−g\2−\3[ˆ0−9][ˆ>]∗)> ∗}/{ERASEME

<\5>}/;

# undo e x t r p r o j e c t i o n i f ’−[0−9]’ numbers o f s i b l i n g s match + f o l d c h i l d empty c a t e g o r y i n t o p a r e n t ( t r a c e

c h a i n en d i ng i n pro )

s /{ ( [ ˆ ]∗ )−g ( [ ˆ ]∗ )−([0−9]+) + ( .∗ ) <[ˆ \ ˆ ]∗ [ ˆ ]∗−\3−empty ∗0 ∗>(.∗<[ˆ ]∗−g [ ˆ ]∗−\3.∗)}/{\1 \4\5} / ;

# undo e x t r p r o j e c t i o n i f ’−[0−9]’ numbers o f s i b l i n g s match ( p a r e n t i s e x t r )

s /{ ( [ ˆ ]∗ )−([0−9]+)−g [ ˆ ]∗−\2 +(.∗< .∗)}/{\1 \3} / ;

# undo e x t r p r o j e c t i o n i f ’−[0−9]’ numbers o f s i b l i n g s match ( l e f t c h i l d i s e x t r )

s /{ ( [ ˆ ]∗ )−g ( [ ˆ ]∗ )−([0−9]+) +( .∗< ( ? ! [ ˆ ]∗−g ) [ ˆ ]∗−\3[ˆ0−9].∗) +(<[ˆ ]∗−g\2−\3[ˆ0−9].∗)}/{\1 \4 \5} / ;

# undo e x t r p r o j e c t i o n i f ’−[0−9]’ numbers o f s i b l i n g s match ( r i g h t c h i l d i s e x t r )

s /{ ( [ ˆ ]∗ )−g ( [ ˆ ]∗ )−([0−9]+) +(.∗<[ˆ ]∗−g\2−\3[ˆ0−9].∗) +( < (? ! [ ˆ ]∗−g ) [ ˆ ]∗−\3[ˆ0−9].∗)}/{\1 \4 \5} / ;

# l a s t r e s o r t : nuke a l l r e m a i n i n g empty c o n s t i t u e n t s w / o t r a c e

s /{ ( [ ˆ ]∗ ) +<[ˆ >]∗−empty[ˆ>]∗> ∗<[ˆ >]∗ ( [ ˆ > ]∗ )> ∗}/{\1 \2} / ;

s /{ ( [ ˆ ]∗ ) +<[ˆ >]∗ ( [ ˆ > ]∗ )> +<[ˆ >]∗−empty[ˆ>]∗> ∗}/{\1 \2} / ;

s /{ ( [ ˆ ]∗ ) ( .∗ ) <[ˆ >]∗−empty [ˆ>]∗>(.∗)}/{\1 \2\3} / ;

# remove c h i l d o f unary c o n s t i t u e n t s t h a t remain

s /{ ( ( ? !ERASEME) [ ˆ ]∗ ) +<([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗}/{\1 \3} / ;

# l e a v e gap f o r empty−e x t r r e l c l a u s e

s /{ ( .∗ ) <ERASEME ([ˆ > ]∗ ) >(.∗)}/{\1 \2\3} / ;

# ###################

## c o n v e r t i n n e r a n g l e s ( i f any ) t o b r a c k s . . .

whi le ( s / ({ [ ˆ{} ]∗ )<([ˆ<>]∗)>/\1\[\2\]/ ){}
## c o n v e r t o u t e r b r a c e s t o a n g l e s . . .

$ =˜ s /{ ( .∗ )}/<\1>/;

}

# ################### FINALLY : d e l e t e numbers . . .

s / [−=][0−9]+([ˆ \) \ ] ]∗ ) /\1 / g ;
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s / [−=][0−9]+([ˆ \) \ ] ]∗ ) /\1 / g ;

s / [−=][0−9]+([ˆ \) \ ] ]∗ ) /\1 / g ;

## f i n i s h up . . .

$ =˜ s / < / [ / ;

$ =˜ s / > / ] / ;

## t r a n s l a t e t o par en s aga in . . .

$ =˜ s /\ [ /\ ( / g ;

$ =˜ s /\ ] /\ ) / g ;

## o u t p u t . . .

p r i n t $ ;

}

B.6 scripts/annotateMarks.pl

# ##############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or mo d i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

# ##############################################################################

use Ge to p t : : S td ;

g e t o p t s ( ” d ” ) ;

$DEBUG = 0 ;

i f ( $ o p t d ) {
$DEBUG = 1 ;

}

sub debug {
i f ($DEBUG) {

$msg = $ [ 1 ] ;

p r i n t s t d e r r $ [ 0 ] , ” ” , $msg , ”\n ” ;

}
}

## f o r each t r e e . . .

whi le ( <> ) {

## t r a n s l a t e t o par en s . . .

s /\ [ /\ ( / g ;

s /\ ] /\ ) / g ;

## f o r each c o n s t i t u e n t . . .
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whi le ( $ =˜ /\ ( [ ˆ\ (\ ) ]∗\) / ) {
## c o n v e r t o u t e r par en s t o b r a c e s . . .

$ =˜ s /\ ( ( [ ˆ\ (\ ) ]∗ ) \) /{\1} / ;

# ################### ADD SED RULES HERE: a p p l y r u l e s t o a n g l e s ( c h i l d r e n ) w i t h i n b r a c e s ( c o n s i t u e n t ) . . .

debug (++ $ s t e p , ” $ ” ) ;

# p r o p a g a t e r i g h t p u n c t

s /{([ˆ− ]∗ ) ( [ ˆ ]∗ ) ( .∗ ) <([ˆ ]∗? ) ((−n . ) +) ([ ˆ > ]∗ )> ∗}/{\1\5\2\3<\4\5\7>}/;

# p r o p a g a t e l e f t p u n c t

s /{([ˆ− ]∗ ) ( [ ˆ ]∗ ∗) <([ˆ ]∗? ) ((−p . ) +) ([ ˆ > ]∗ ) >(.∗)}/{\1\4\2<\3\4\6>\7}/;

# undo d u p l i c a t e s

whi le ( s /{ ( [ ˆ ]∗ ) (−[pn ] . ) ( [ ˆ ]∗ ) \2/{\1\3\2/ ) {}

#### PUNCT

# k i c k r i g h t eos p u n c t o u t o f c o n s t i t

s /{ ( ? ! [ ˆ ]∗−nE ) ( [ ˆ ]∗ ) + ( .∗ ) +<([\ .\!\?] [\ .\ !\ ? ] ) >}(?=.∗\) ) /{\1−nE \2} <\3>/;

#### BRACKETS / PARENS

# k i c k l e f t b rack / paren up o u t o f c o n s t i t

s /{ ( ? ! [ ˆ ]∗−pB ) ( [ ˆ ]∗ ) +<(\!LRB\! \! l r b \ ! )> + ( .∗ ) } (?=.∗\ ) )/<\2> {\1−pB \3} / ;

# k i c k r i g h t brack / paren up o u t o f c o n s t i t

s /{ ( ? ! [ ˆ ]∗−nB ) ( [ ˆ ]∗ ) + ( .∗ ) +<(\!RRB\! \! r r b \ ! ) >}(?=.∗\) ) /{\1−nB \2} <\3>/;

#### QUOTES

# k i c k l e f t q u o t e up o u t o f c o n s t i t

s /{ ( ? ! [ ˆ ]∗−pQ ) ( [ ˆ ]∗ ) +<( ‘ ‘? ‘ ‘ ? )> + ( .∗ ) } (?=.∗\ ) )/<\2> {\1−pQ \3} / ;

# k i c k r i g h t q u o t e up o u t o f c o n s t i t

s /{ ( ? ! [ ˆ ]∗−nQ ) ( [ ˆ ]∗ ) + ( .∗ ) +<( ’ ’ ? ’ ’ ? ) >}(?=.∗\) ) /{\1−nQ \2} <\3>/;

#### DASHES

# k i c k l e f t dash up o u t o f c o n s t i t

s /{ ( ? ! [ ˆ ]∗−pD ) ( [ ˆ ]∗ ) +<(\! dash\! \! dash \ ! )> + ( .∗ ) } (?=.∗\ ) )/<\2> {\1−pD \3} / ;

# k i c k r i g h t dash up o u t o f c o n s t i t

s /{ ( ? ! [ ˆ ]∗−nD ) ( [ ˆ ]∗ ) + ( .∗ ) +<(\! dash\! \! dash \ ! ) >}(?=.∗\) ) /{\1−nD \2} <\3>/;

#### COMMAS

# k i c k l e f t comma o u t o f c o n s t i t

s /{ ( ? ! [ ˆ ]∗−pC ) ( [ ˆ ]∗ ) +<(, , )> + ( .∗ ) } (?=.∗\ ) )/<\2> {\1−pC \3} / ;

# k i c k r i g h t comma o u t o f c o n s t i t

s /{ ( ? ! [ ˆ ]∗−nC ) ( [ ˆ ]∗ ) + ( .∗ ) +<(, , ) >}(?=.∗\) ) /{\1−nC \2} <\3>/;

# ###################

## c o n v e r t i n n e r a n g l e s ( i f any ) t o b r a c k s . . .

whi le ( s / ({ [ ˆ{} ]∗ )<([ˆ<>]∗)>/\1\[\2\]/ ){}
## c o n v e r t o u t e r b r a c e s t o a n g l e s . . .

$ =˜ s /{ ( .∗ )}/<\1>/;

}
## f i n i s h up . . .

$ =˜ s / < / [ / ;

$ =˜ s / > / ] / ;

## t r a n s l a t e t o par en s aga in . . .

$ =˜ s /\ [ /\ ( / g ;

$ =˜ s /\ ] /\ ) / g ;

## f o r each c o n s t i t u e n t . . .

whi le ( $ =˜ /\ ( [ ˆ\ (\ ) ]∗\) / ) {
## c o n v e r t o u t e r par en s t o b r a c e s . . .

$ =˜ s /\ ( ( [ ˆ\ (\ ) ]∗ ) \) /{\1} / ;

# ################### ADD SED RULES HERE: a p p l y r u l e s t o a n g l e s ( c h i l d r e n ) w i t h i n b r a c e s ( c o n s i t u e n t ) . . .
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debug (++ $ s t e p , ” $ ” ) ;

# p u t back any r e m a i n i n g l e f t comma

s /{ ( .∗ ) (< , ,>) +<([ˆ ]∗ )−pC ( [ ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\(\1\{\3\4 \2 <\3−pC\4 \5>\}\6\) / ;

# p u t back any r e m a i n i n g r i g h t comma

s /{ ( .∗ ) <([ˆ ]∗ )−nC ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +(< , ,>) ( .∗ ) }/\(\1\{\2\3 <\2−nC\3 \4> \5\}\6\) / ;

# p u t back any r e m a i n i n g l e f t dash

s /{ ( .∗ ) (<\! dash\! \! dash\!>) +<([ˆ ]∗ )−pD ( [ ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\(\1\{\3\4 \2 <\3−pD\4 \5>\}\6\) / ;

# p u t back any r e m a i n i n g r i g h t dash

s /{ ( .∗ ) <([ˆ ]∗ )−nD ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +(<\! dash\! \! dash\!>) ( .∗ ) }/\(\1\{\2\3 <\2−nD\3 \4> \5\}\6\) / ;

# p u t back any r e m a i n i n g l e f t q u o t e

s /{ ( .∗ ) (< ‘ ‘? ‘ ‘?>) +<([ˆ ]∗ )−pQ ( [ ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\(\1\{\3\4 \2 <\3−pQ\4 \5>\}\6\) / ;

# p u t back any r e m a i n i n g r i g h t q u o t e

s /{ ( .∗ ) <([ˆ ]∗ )−nQ ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +(< ’ ’ ? ’ ’?>) ( .∗ ) }/\(\1\{\2\3 <\2−nQ\3 \4> \5\}\6\) / ;

# p u t back any r e m a i n i n g l e f t b rack / paren

s /{ ( .∗ ) (<\!LRB\! \! l r b \!>) +<([ˆ ]∗ )−pB ( [ ˆ ]∗ ) ( [ ˆ > ]∗ ) >(.∗)}/\(\1\{\3\4 \2 <\3−pB\4 \5>\}\6\) / ;

# p u t back any r e m a i n i n g r i g h t brack / paren

s /{ ( .∗ ) <([ˆ ]∗ )−nB ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +(<\!RRB\! \! r r b\!>) ( .∗ ) }/\(\1\{\2\3 <\2−nB\3 \4> \5\}\6\) / ;

# p u t back any r e m a i n i n g r i g h t p u n c t

s /{ ( .∗ ) <([ˆ ]∗ )−nE ( [ ˆ ]∗ ) ( [ ˆ > ]∗ )> +(<[\ .\!\?] [\ .\!\?]>) ( .∗ ) }/\(\1\{\2\3 <\2−nE\3 \4> \5\}\6\) / ;

# ###################

## c o n v e r t i n n e r a n g l e s ( i f any ) t o b r a c k s . . .

whi le ( s / ({ [ ˆ{} ]∗ )<([ˆ<>]∗)>/\1\[\2\]/ ){}
## c o n v e r t o u t e r b r a c e s t o a n g l e s . . .

$ =˜ s /{ ( .∗ )}/<\1>/;

}
## f i n i s h up . . .

$ =˜ s / < / [ / ;

$ =˜ s / > / ] / ;

## t r a n s l a t e t o par en s aga in . . .

$ =˜ s /\ [ /\ ( / g ;

$ =˜ s /\ ] /\ ) / g ;

## f o r each c o n s t i t u e n t . . .

whi le ( $ =˜ /\ ( [ ˆ\ (\ ) ]∗\) / ) {
## c o n v e r t o u t e r par en s t o b r a c e s . . .

$ =˜ s /\ ( ( [ ˆ\ (\ ) ]∗ ) \) /{\1} / ;

# ################### ADD SED RULES HERE: a p p l y r u l e s t o a n g l e s ( c h i l d r e n ) w i t h i n b r a c e s ( c o n s i t u e n t ) . . .

debug (++ $ s t e p , ” $ ” ) ;

# remove p a r e n t o f ( n o n t e r m i n a l ? ) unary c o n s t i t u e n t s t h a t remain

# s /{ [ ˆ ]∗ +<([ˆ ]∗ [ˆ>]∗\[[ˆ>]∗)> ∗}/{\1}/;

s /{ [ ˆ ]∗ +<([ˆ ]∗ [ˆ>]∗)> ∗} /{\1} / ;

# s /{ ( [ ˆ ]∗ ) (−. d l t |−p.|−n . ) + +<\1 ([ˆ>]∗)> ∗}/{\1 \3} / ;

# ###################

## c o n v e r t i n n e r a n g l e s ( i f any ) t o b r a c k s . . .

whi le ( s / ({ [ ˆ{} ]∗ )<([ˆ<>]∗)>/\1\[\2\]/ ){}
## c o n v e r t o u t e r b r a c e s t o a n g l e s . . .

$ =˜ s /{ ( .∗ )}/<\1>/;

}
## f i n i s h up . . .

$ =˜ s / < / [ / ;

$ =˜ s / > / ] / ;

## t r a n s l a t e t o par en s aga in . . .

$ =˜ s /\ [ /\ ( / g ;

$ =˜ s /\ ] /\ ) / g ;

#### NOTE ! ! ! ! ! !
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s /−[mnp ]Q / / g ;

p r i n t $ ;

}

B.7 scripts/ensureCnf.pl

# ##############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or mo d i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

# ##############################################################################

use Ge to p t : : S td ;

g e t o p t s ( ” dn ” ) ;

$DEBUG = ( $ o p t d ) ? 1 : 0 ;

$PRINT POS = ( $ o p t n ) ? 0 : 1 ;

sub debug {
i f ($DEBUG) {

p r i n t s t d e r r $ [ 0 ] , ” ” , $ [ 1 ] , ”\n ” ;

}
}

## f o r each t r e e . . .

whi le ( <> ) {

## t r a n s l a t e t o par en s . . .

s /\ [ /\ ( / g ;

s /\ ] /\ ) / g ;

## f o r each c o n s t i t u e n t . . .

whi le ( $ =˜ /\ ( [ ˆ\ (\ ) ]∗\) / ) {

## c o n v e r t o u t e r par en s t o b r a c e s . . .

$ =˜ s /\ ( ( [ ˆ\ (\ ) ]∗ ) \) /{\1} / ;

# ################### ADD SED RULES HERE: a p p l y r u l e s t o a n g l e s ( c h i l d r e n ) w i t h i n b r a c e s ( c o n s i t u e n t ) . . .

debug ( $ s t e p ++ , ” $ ” ) ;
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# c r e a t e u n d e r s c o r e c a t s

i f ( s /{ ( [ ˆ ]∗ ) ∗(<.∗) ∗<([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗<([ˆ ]∗ ) ( [ ˆ > ]∗ )> ∗}/\(\1 \2 {\3\ \5 <\3\4> <\5\6>}\) / ) {

# c l e a n up −l t a g s i n new u n d e r s c o r e c a t . . .

s /{ ( [ ˆ \ ]∗ )−l [ˆ− \ ] + ( [ ˆ ]∗ )−l [ˆ− \ ] + ( [ ˆ \ ]∗ ) ( .∗ )}/{\1\2\3− l I \4} / ;

# c l e a n up −p t a g s i n f i r s t o f new u n d e r s c o r e c a t . . .

whi le ( s /{ ( [ ˆ \ ]∗ ) (−p[ˆ− \ ] + ) ( [ ˆ ]∗ ) ( .∗ ) }/{\1\3\2 \4}/ ) {}
# c l e a n up −p t a g s i n r e s t o f new u n d e r s c o r e c a t . . .

whi le ( s /{ ( [ ˆ ]∗ ) (−p[ˆ− \ ] + ) ( [ ˆ \ ]∗ ) ( .∗ ) }/{\1\3 \4}/ ) {}
# c l e a n up −n t a g s i n f i r s t o f new u n d e r s c o r e c a t . . .

whi le ( s /{ ( [ ˆ \ ]∗ ) (−n[ˆ− \ ] + ) ( [ ˆ ]∗ ) ( .∗ ) }/{\1\3 \4}/ ) {}
# # c l e a n up −n t a g s i n r e s t o f new u n d e r s c o r e c a t . . .

# w h i l e ( s /{ ( [ ˆ ]∗ )(−n[ˆ− \ ]+) ( [ ˆ \ ]∗ ) ( .∗ ) }/{\1\3\2 \4}/ ) {}

# c l e a n up −u t a g s i n f i r s t o f new u n d e r s c o r e c a t . . .

whi le ( s /{ ( [ ˆ \ ]∗ ) (−u[ˆ− \ ] + ) ( [ ˆ ]∗ ) ( .∗ ) }/{\1\3 \4}/ ) {}
# # c l e a n up −u t a g s i n r e s t o f new u n d e r s c o r e c a t . . .

# w h i l e ( s /{ ( [ ˆ ]∗ )(−u[ˆ− \ ]+) ( [ ˆ \ ]∗ ) ( .∗ ) }/{\1\3\2 \4}/ ) {}

# c l e a n up −g t a g s i n f i r s t o f new u n d e r s c o r e c a t . . .

whi le ( s /{ ( [ ˆ \ ]∗ ) (−g[ˆ− \ ] + ) ( [ ˆ ]∗ ) ( .∗ ) }/{\1\3\2 \4}/ ) {}
# # c l e a n up −g t a g s i n r e s t o f new u n d e r s c o r e c a t . . .

# w h i l e ( s /{ ( [ ˆ ]∗ )(−g[ˆ− \ ]+) ( [ ˆ \ ]∗ ) ( .∗ ) }/{\1\3\2 \4}/ ) {}
}

i f ( $PRINT POS ) {
# c r e a t e pos t a g s a t l e a v e s

s / \ ( ( [ ˆ ]∗ ) ∗\{([ˆ ]∗ ) ([ˆ>\[\# ]∗ )\}\) /{\1 \1\#\3}/;

s /{ ( [ ˆ ]∗ ) ( [ ˆ \[\# ]∗ )}/{\1 \1\#\2}/;

}
# ###################

## c o n v e r t i n n e r a n g l e s ( i f any ) t o b r a c k s . . .

whi le ( s / ({ [ ˆ{} ]∗ )<([ˆ<>]∗)>/\1\[\2\]/ ){}

## c o n v e r t o u t e r b r a c e s t o a n g l e s . . .

$ =˜ s /{ ( .∗ )}/<\1>/;

}

# ? ? ! !

# #################### FINALLY : d e l e t e numbers . . .

# s /[−=][0−9]+([ˆ \)\]]∗ ) /\1 / g ;

# s /[−=][0−9]+([ˆ \)\]]∗ ) /\1 / g ;

# s /[−=][0−9]+([ˆ \)\]]∗ ) /\1 / g ;

## f i n i s h up . . .

$ =˜ s / < / [ / ;

$ =˜ s / > / ] / ;

## t r a n s l a t e t o par en s aga in . . .

$ =˜ s /\ [ /\ ( / g ;

$ =˜ s /\ ] /\ ) / g ;

p r i n t $ ;

}
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B.8 scripts/cnftrees2cedepths.rb

## #############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or m od i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d wa r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

## #############################################################################

# ! / u s r / b i n / ruby

## ###################################################################

# c n f t r e e s 2 c e d e p t h s . rb

# l o o k s f o r and a n n o t a t e s c e n t e r−embedding d e p t h s and L e f t−R i g h t

# c o n s t i t u e n c y

# o n l y works on b inary−b r a n c h i n g t r e e s

#

## ####################################################################

r e q u i r e ” s c r i p t s / umnlp . rb ”

c l a s s Tree

def propDown

i f @head =˜ / .∗\ ˆ ( [ LR ] ) , ( [0−9]+) /

d e p t h = $2 . t o i

s i d e = $1

e l s e
d e p t h = 1

s i d e = ”L”

@head += ” ˆ#{ s i d e } ,#{ d e p t h}”

end

i f @chi ld ren . s i z e ( ) <= 1

re turn
end
i f s i d e ==”R”

l d e p t h = d e p t h +1

e l s e
l d e p t h = d e p t h

end
@chi ld ren [ 0 ] . head += ” ˆ L,#{ l d e p t h}”

@chi ld ren [ 0 ] . propDown

i f @chi ld ren . s i z e ( ) <= 1

re turn
end
# d e p t h += 1

@chi ld ren [ 1 ] . head += ” ˆR,#{ d e p t h}”
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@chi ld ren [ 1 ] . propDown

end
end

whi le ( l i n e = g e t s )

t = Tree . new ( l i n e )

t . propDown

i f t . p rob == n i l
p r i n t t . t o s + ”\n ”

e l s e
p u t s ”#{ t . t o s} : #{ t . p rob}”

end
end

B.8.1 scripts/umnlp.rb

## #############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or m od i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d wa r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

## #############################################################################

## ##########################################

## A Tree o b j e c t c o n s i s t s o f a s t r i n g ”head” ( e . g . NP , S , JJ ) ,

## a Tree o b j e c t which i s i t s p a r e n t ( p o s s i b l y n i l )

## and an a r r a y o f c h i l d r e n t h a t are Tree o b j e c t s

## You i n i t i a l i z e a t r e e by p a s s i n g i t a s t r i n g

## c o n t a i n i n g p a r e n t h e s e s d e l i m i t e d t r e e s t r u c t u r e .

## For f i l e s c o n t a i n i n g m u l t i−l i n e t r e e s ( l i k e t r e e b a n k )

## you need t o use t h e t r e e s l u r p e r c l a s s

##

## #########################################

$ d i s a l l o w e d = {”−NONE−” => 1 , ”−DFL−” => 1 , ”DISFL” => 1 , ”XX” => 1 ,

”N S” => 1 , ” E S ” => 1}

c l a s s Tree

a t t r r e a d e r : s t r , : head , : c h i l d r e n , : num ru les , : p a r e n t , : p rob

a t t r w r i t e r : s t r , : head , : c h i l d r e n , : num ru les , : p a r e n t , : p rob

def i n i t i a l i z e ( s t r =” ” , p a r e n t = n i l )

@str = s t r

@ch i ld ren = Array . new

@parent = p a r e n t

@num rules = 0
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@prob = n i l
i f s t r != ” ”

## Check i f t h e s t u p i d u s e r pa s s ed i n a s t u p i d s t r i n g w i t h

## s t u p i d b r a c k e t s i n s t e a d o f p a r e n t h e s e s

i f ( s t r . l e n g t h − s t r . gsub ( /\ ) / , ” ” ) . l e n g t h ) < ( s t r . l e n g t h − s t r . gsub ( /\ ] / , ” ” ) . l e n g t h )

s t r . gsub ! ( / \ [ / , ” ( ” )

s t r . gsub ! ( / \ ] / , ” ) ” )

end
i f s t r =˜ / : ( [0−9\ . ]+) $ /

@prob = $1

end
begin

b u i l d S t r u c t u r e ( @str )

r e s cu e
r a i s e ” Caught e x c e p t i o n when t r e e #{@str} was p a s s e d i n . . . \ n E r r o r message :\n #{$ !} ”

end
e l s e

head = ” ”

end
i f s t r == ” ”

s t r = t o s

end
@num rules = getNumRules #+= @chi ldren [ i ] . n u m r u l e s

end

def b u i l d S t r u c t u r e ( s t r )

i f s t r == ” ”

@head = ” ”

re turn ” ”

e l s e
## F i r s t l e t ’ s check i f i t s one o f t h o s e we i rd s w i t c h b o a r d

## t r e e s t h a t s t a r t w i t h 2 open pa re ns : ( ( S

i f s t r =˜ / ˆ ∗\( ∗\ ( ( .∗ ) \) ∗$ /

s t r = ” ( ” + $1

end

# Pluck o f f t h e head i f i t ’ s t h e r e

i f s t r =˜ / ˆ ∗\( ∗ ( [ ˆ ( ) ] + ) /

## S t a r t o f a r u l e

@head = $1

s t r = $ ’ # ’

whi le t rue
i f s t r =˜ / ˆ ∗\ ( /

c h i l d = Tree . new ( ” ” , s e l f )

begin
s t r = c h i l d . b u i l d S t r u c t u r e ( s t r )

r e s cu e
## C a t c h i ng downstream e x c e p t i o n we ’ l l pas s i t up . . .

# $ s t d e r r . p u t s ” Error ca ug h t and b e i n g pa s s ed upwards”

r a i s e $ !

end
@chi ld ren << c h i l d

e l s i f s t r =˜ / ˆ ∗ ( [ ˆ ( ) ] + ) ∗\) /

## we ’ ve reached a l e a f − i . e . a word and i t s c l o s e paren

c h i l d = Tree . new ( ” ” , s e l f )

c h i l d . head = $1 # . downcase

c h i l d . n u m r u l e s = 1

@chi ld ren << c h i l d

s t r = $ ’ # ’

re turn s t r

e l s i f s t r =˜ / ˆ ∗\) /

## End o f a t r e e
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s t r = $ ’ # ’

re turn s t r

e l s e
r a i s e ” E r r o n e o u s e p a r t o f t r e e : #{ s t r } . ”

end
end

end
end

end

## Conver t a chomsky normal form ( c n f ) t r e e t o a r i g h t−c o r n e r ( rc ) t r e e

def c n f 2 r c

i f getNumLeafs ( ) == 1

re turn s e l f
end
i f @chi ld ren [ 0 ] . c l a s s == Tree and @chi ld ren . s i z e ( ) == 1

# p u t s ”∗∗Tree ” + t o s + ” . . . has o n l y one c h i l d , b u t many l e a v e s ”

@chi ld ren [ 0 ] = @chi ld ren [ 0 ] . c n f 2 r c

re turn s e l f
end
c u r T r e e = n i l
n e x t r c = n i l
r c = n i l

## Outer loop over a l l r i g h t c h i l d r e n

whi le t rue
i f getNumLeafs ( ) == 1

break
end

i f n e x t r c != n i l
r c = n e x t r c

n e x t r c = r c . p a r e n t

e l s e
## I n n e r loop t o f i n d c u r r e n t r i g h t c o r n e r

r c = s e l f
whi l e t rue

i f r c . getNumLeafs ( ) == 1

break
end
r c = r c . c h i l d r e n . l a s t

end
n e x t r c = r c . p a r e n t

end

i f r c == s e l f
@chi ld ren [ 0 ] = @chi ld ren [ 0 ] . c n f 2 r c

break
end

## Okay , now we have t h e ” r i g h t c o r n e r ”

## Get i t s paren t , remove i t , and add i t t o new c h i l d r e n l i s t

t e m p P a r e n t = r c . p a r e n t

i f t e m p P a r e n t != n i l
t e m p P a r e n t . c h i l d r e n . pop ( )

end

newBigTree = Tree . new

newBigTree . head = S t r i n g . new ( @head )

newBigTree . p repend ( r c . c n f 2 r c )

# rc . c n f 2 r c

newBigTree . p repend ( s e l f )



217

i f c u r T r e e != n i l
c u r T r e e . c h i l d r e n [ 0 ] = newBigTree

newBigTree . p a r e n t = c u r T r e e

end
c u r T r e e = newBigTree

## Find o u t what we ’ re ” m i s s i n g ” by r e l o c a t i n g t h e r i g h t c o r n e r

i f r c . head =˜ / ( . ∗ ) \ / ( .∗ ) /

newHead = $1

e l s e
newHead = S t r i n g . new ( r c . head )

end

# p u t s ”newHead = ” + newHead

# p u t s ”My t r e e ( p r e l i m ) i s : ” + t o s

# p u t s ” C u r t r e e p a r e n t ( p r e l i m ) i s : ” + c u r T r e e . p a r e n t . t o s

## Now a d j u s t t h e l a b e l s i n t h e t r e e t o r e f l e c t t h e m i s s i n g i t e m

temp = s e l f
whi l e temp != n i l

i f temp . head =˜ / .∗\ / .∗ /

temp . head . gsub ! ( / ( . ∗ ) \ / ( .∗ ) / , ’\1/ ’ + newHead )

e l s e
temp . head += ” / ” + newHead

end
i f temp . c h i l d r e n . s i z e ( ) < 2

break
end
temp = temp . c h i l d r e n . l a s t

end

# p u t s ”My t r e e i s : ” + t o s

# p u t s ” Nex t rc i s : ” + n e x t r c . t o s

# p u t s ” C u r t r e e i s : ” + c u r T r e e . t o s

# p u t s ” C u r t r e e p a r e n t i s : ” + c u r T r e e . p a r e n t . t o s

end

#@head = c u r T r e e . head

# @chi ldren = c u r T r e e . c h i l d r e n

whi le c u r T r e e . p a r e n t != n i l
c u r T r e e = c u r T r e e . p a r e n t

end
return c u r T r e e

end

def r c 2 c n f

i f getNumLeafs == 1

re turn s e l f # @chi ldren [ 0 ]

end
# b e g i n

# p u t s ” r c 2 c n f c a l l e d w i t h :”

# p u t s t o s + ”\n\n”

r s u b = s e l f . c h i l d r e n [ 1 ]

c u r t r e e = s e l f . c h i l d r e n [ 0 ]

whi le t rue
i f c u r t r e e . getNumLeafs == 1

newTree = Tree . new

newTree . head = @head

newTree . c h i l d r e n << c u r t r e e . c h i l d r e n [ 0 ]
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newTree . c h i l d r e n << r s u b

re turn newTree

end

i f c u r t r e e . c h i l d r e n . s i z e ( ) == 1

# $ s t d e r r . p u t s ” I ’m i n here and c u r t r e e = ” + c u r t r e e . t o s

# $ s t d e r r . p u t s ”and r s u b = ” + r s u b . t o s

newTree = Tree . new

newTree . head = c u r t r e e . head . gsub ( / ( . ∗ ) \ / ( .∗ ) / , ’\1 ’ )

newTree . c h i l d r e n << c u r t r e e . c h i l d r e n [ 0 ] . r c 2 c n f

# $ s t d e r r . p u t s ” I ’ ve r e t u r n e d from r c 2 c n f on my c h i l d ”

newTree . c h i l d r e n << r s u b

re turn newTree

# c u r t r e e = c u r t r e e . c h i l d r e n [ 0 ]

e l s e
c u r t r e e . c h i l d r e n [ 1 ] . p a r e n t = n i l
newTree = Tree . new

newTree . head = c u r t r e e . c h i l d r e n [ 0 ] . head . gsub ( / ( . ∗ ) \ / ( .∗ ) / , ’\2 ’ )

newTree . c h i l d r e n << c u r t r e e . c h i l d r e n [ 1 ]

newTree . c h i l d r e n << r s u b

c u r t r e e . c h i l d r e n [ 1 ] . p a r e n t = newTree

r s u b . p a r e n t = newTree

r s u b = newTree

c u r t r e e . c h i l d r e n . pop ( )

i f r s u b . c h i l d r e n [ 0 ] . c l a s s == Tree

r s u b . c h i l d r e n [ 0 ] = r s u b . c h i l d r e n [ 0 ] . r c 2 c n f

end
c u r t r e e = c u r t r e e . c h i l d r e n [ 0 ]

end
end
return c u r t r e e

# r e s c u e

# p u t s ” I ’ ve been r e s c u e d : c u r t r e e : ” + c u r t r e e . t o s

# p u t s ” and r s u b : ” + r s u b . t o s

# r e t u r n n i l

# end

end

def n o m i n a l B i n a r i z e ! ( )

r a = Array . new

c a t s = Array . new

i f @chi ld ren . s i z e > 2

@chi ld ren . each{ | c h i l d |
i f not $ d i s a l l o w e d . h a s k e y ? ( c h i l d . head )

r a << c h i l d

c a t s << c h i l d . head

end
}

end

i f r a . s i z e > 2

n t = Tree . new

n t . head = c a t s [ 1 . .−1 ] . j o i n ( ” ” )

n t . c h i l d r e n = r a [1 . .−1]

@ch i ld ren [ 1 ] = n t

@ch i ld ren . s l i c e ! ( 2 . .−1 )

end
@chi ld ren . each{ | c h i l d |

c h i l d . n o m i n a l B i n a r i z e !

}
end
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def n o m i n a l U n b i n a r i z e ! ( )

i f @chi ld ren [ 0 ] == n i l
re turn

e l s i f @chi ld ren [ 0 ] . head =˜ / /

l e f t c h i l d r e n = @chi ld ren [ 0 ] . c h i l d r e n

e l s e
l e f t c h i l d r e n = @chi ld ren [ 0 ]

end

i f @chi ld ren [ 1 ] == n i l
r i g h t c h i l d r e n = n i l

e l s i f @chi ld ren [ 1 ] . head =˜ / /

r i g h t c h i l d r e n = @chi ld ren [ 1 ] . c h i l d r e n

e l s e
r i g h t c h i l d r e n = @chi ld ren [ 1 ]

end
i f r i g h t c h i l d r e n != n i l

@chi ld ren = [ l e f t c h i l d r e n , r i g h t c h i l d r e n ] . f l a t t e n

e l s e
@chi ld ren = [ l e f t c h i l d r e n ] . f l a t t e n

end
@chi ld ren . each{ | c h i l d |

c h i l d . n o m i n a l U n b i n a r i z e !

}
end
## ###################################

# u n b i n a r i z e

# Takes a t r e e b a n k t r e e t h a t has been b i n a r i z e d w i t h t h e magerman head

# r u l e s and u n b i n a r i z e s them f o r easy compar i son t o t r e e b a n k go ld s t a n d a r d

#

## ###################################

def u n b i n a r i z e

i f getNumLeafs == 1

re turn
end
@chi ld ren . e a c h i n d e x { | i |

@chi ld ren [ i ] . u n b i n a r i z e

i f @chi ld ren [ i ] . head =˜ /−b i n /

movin on up = @chi ld ren [ i ] . c h i l d r e n

@chi ld ren . d e l e t e a t ( i )

@ch i ld ren . i n s e r t ( i , movin on up )

end
}

end

def t o s

i f @chi ld ren . l e n g t h == 0

re turn ”#{head}”

e l s e

s = ” (#{@head} ”

@chi ld ren . each{ | c h i l d |
s += c h i l d . t o s

# p r i n t ”#{ c h i l d . head}”

# s += ” ”

}
s += ” ) ”

end
return s . gsub ( /\ ) \ ( / , ” ) ( ” )

end
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def prepend ( t )

@ch i ld ren . u n s h i f t ( t )

end

## getNumRules

## Computes t h e t o t a l number o f r u l e s i n t h i s t r e e

## I f t h i s t r e e i s t h e go ld s tandard , i t i s t h e denomina to r

## i n t h e r e c a l l c a l c u l a t i o n .

## I f t h i s t r e e i s t h e h y p o t h e s i s , i t i s t h e denomina to r

## i n t h e p r e c i s i o n c a l c u l a t i o n .

def getNumRules ( )

i f @chi ld ren . s i z e ( ) > 1

@num rules = 1

# e l s i f @chi ldren . s i z e ( ) == 1 and @chi ldren [ 0 ] . c h i l d r e n . s i z e > 0

# @num rules = 1

e l s e
@num rules = 0

end
@chi ld ren . e a c h i n d e x{ | i |

@num rules += @chi ld ren [ i ] . getNumRules

}
re turn @num rules

end

## ge tNumCorrec t − T h i s method t r e a t s t h e t r e e i t b e l o n g s

## t o as a go ld s tandard , t a k e s i n a t r e e argument as a

## h y p o t h e s i s , and r e t u r n s t h e number c o r r e c t , as t h e

## numera tor f o r t h e l a b e l e d p r e c i s i o n / r e c a l l c a l c u l a t i o n

def ge tNumCorrec t ( t )

c o u n t = 0

g o l d r u l e s = g e t R u l e s H a s h

h y p o t h r u l e s = t . g e t R u l e s A r r a y ( 0 )

h y p o t h r u l e s . each{ | v |
i f ( v . j − v . i ) > 1 && g o l d r u l e s . h a s k e y ? ( v . hash )

# i f v . f i r s t != ”” && ( n o t v . f i r s t =˜ / [ a−z ] / ) && g o l d r u l e s . h a s k e y ? ( v . hash )

c o u n t += 1

end
}
re turn c o u n t

end

def g e t R u l e s H a s h

r u l e s = g e t R u l e s A r r a y ( 0 )

r u l e s h a s h = Hash . new

r u l e s . each{ | v |
r u l e s h a s h [ v . hash ] = v

}
re turn r u l e s h a s h

end

def g e t R u l e s A r r a y ( s t a r t i n d )

r u l e s = Array . new

i n d = s t a r t i n d

i f ( @ch i ld ren . s i z e > 0)

@ch i ld ren . e a c h i n d e x{ | i |
i r u l e s = @chi ld ren [ i ] . g e t R u l e s A r r a y ( i n d )

i f i r u l e s . s i z e > 0

r u l e s << i r u l e s

r u l e s . f l a t t e n !

i n d = r u l e s . l a s t . j

end
}
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e l s e
## Don ’ t i n c r e m e n t c o u n t f o r 0 , ∗T∗−1, and word f r a g m e n t s

i f not @head =˜ / ˆ [\∗\ d ] / and not @head =˜ /\−$ /

# i f @chi ldren . s i z e ( ) > 1

# r u l e s << Rule . new ( @head , s t a r t i n d , s t a r t i n d +1 , @chi ldren [ 0 ] . head )

# e l s e

r u l e s << Rule . new ( @head , s t a r t i n d , s t a r t i n d +1)

# end

# p u t s ” Crea ted new r u l e ” + r u l e s . l a s t . t o s

end
return r u l e s

end
i f r u l e s . s i z e > 0

e n d i n d = r u l e s . l a s t . j

e l s e
e n d i n d = s t a r t i n d

end
# r u l e s . d e l e t e i f{ | r u l e | ( r u l e . j − r u l e . i ) < 2}
i f ( @ch i ld ren . s i z e ( ) > 1)

r u l e s << Rule . new ( @head , s t a r t i n d , end ind , @ch i ld ren [ 0 ] . head )

end
# p u t s ” Crea ted new r u l e ” + r u l e s . l a s t . t o s

re turn r u l e s

end

def g e t P r e c i s i o n ( t )

re turn t . ge tNumCorrec t / t . getNumRules

end

def g e t R e c a l l ( t )

re turn t . ge tNumCorrec t / s e l f . getNumRules

end

def g e t W o r d S t r i n g

begin
i f @chi ld ren . s i z e == 0

re turn @head

end
s t r = ” ”

@chi ld ren . each{ | c h i l d |
s t r += c h i l d . g e t W o r d S t r i n g + ” ”

}
s t r . gsub ! ( / + / , ” ” )

s t r . gsub ! ( / $ / , ” ” )

re turn s t r

r e s cu e E x c e p t i o n

$ s t d e r r . p u t s ” E x c e p t i o n c a u g h t when s t r = #{ s t r } : ” + $ !

end
end

def getNumLeafs

i f @chi ld ren . s i z e ( ) == 0

re turn 1

end
r e t = 0

@chi ld ren . each{ | c h i l d |
r e t += c h i l d . getNumLeafs

}
re turn r e t

end

# g e t t h e d e p t h o f t h e c u r r e n t t r e e
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def g e t D e p t h

i f @chi ld ren . s i z e == 0

re turn 1

e l s e
r e t = 0 ;

@ch i ld ren . each{ | c h i l d |
i f c h i l d . g e t D e p t h > r e t

r e t = c h i l d . g e t D e p t h

end
}
re turn 1 + r e t

end
end

# r e t u r n s t r u e i f t h e t r e e i n c l u d e s t h e g i v e n word

def i n c l u d e ? ( s t r )

i f ( head . i n c l u d e ? ( ” # ” ) and head . s p l i t ( ” # ” ) [ 1 ] == s t r )

re turn true
e l s e

@chi ld ren . each { | c h i l d |
i f ( c h i l d . i n c l u d e ? ( s t r ) )

re turn true
end

}
re turn f a l s e

end
end

# r e t u r n s t r u e i f t h e t r e e i n c l u d e s t h e g i v e n POS

def p o s i n c l u d e ? ( s t r )

i f ( head . i n c l u d e ? ( ” # ” ) and ( head . s p l i t ( ” # ” ) [ 0 ] ) . i n c l u d e ? ( s t r ) )

re turn true
e l s e

@chi ld ren . each { | c h i l d |
i f ( c h i l d . p o s i n c l u d e ? ( s t r ) )

re turn true
end

}
re turn f a l s e

end
end

def f i n d ( s t r )

r A r r a y = Array . new

i f ( head =˜ / ##{ s t r}$ / or head =˜ / ˆ\ S∗#{ s t r}\S∗# / ) t h e n

# p u t s head

r A r r a y . push ( s e l f )

re turn r A r r a y

e l s i f ( @ch i ld ren . s i z e == 0)

re turn n i l
e l s e

@chi ld ren . each { | c h i l d |
tmp = c h i l d . f i n d ( s t r )

i f ( tmp != n i l ) then
i f ( tmp . c l a s s == Array ) then

r A r r a y += tmp

e l s e
r A r r a y . push ( tmp )

end
end

}
i f ( r A r r a y . s i z e == 0) then
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re turn n i l
e l s e

re turn r A r r a y

end
end

end

# g e t s t h e words i n t h i s t r e e t h a t are c o n t a i n e d i n t h e g i v e n pos

def getWords ( pos )

a r r = Array . new

i f ( head . i n c l u d e ? ( ” # ” ) and ( head . s p l i t ( ” # ” ) [ 0 ] ) . i n c l u d e ? ( pos ) ) then
a r r [ 0 ] = head . s p l i t ( ” # ” ) [ 1 ]

re turn a r r

e l s e
@chi ld ren . each { | c h i l d |

a r r += c h i l d . getWords ( pos )

}
end
return a r r

end

# g e t t h e d e p t h o f t h e s t a c k i f i t were i n t e r p r e t e d as a r i g h t−c o r n e r t r e e

def getRCStackDepth ( s t r = ” ” )

i f s t r != ” ” then
i f head . i n c l u d e ? ( ” # ” + s t r + ” ) ” ) or head . i n c l u d e ? ( s t r + ” # ” ) then

return s e l f . ge tRCStackDepth

e l s i f @chi ld ren . s i z e == 0

re turn −1

e l s e
max = 0 ;

@ch i ld ren . e a c h i n d e x{ | x |
d e p t h = @chi ld ren [ x ] . ge tRCStackDepth ( s t r )

i f x != 0 then
d e p t h += 1

end
i f d e p t h > max and ( @ch i ld ren [ x ] . i n c l u d e ? ( s t r ) or @chi ld ren [ x ] . p o s i n c l u d e ? (

s t r ) ) then
max = d e p t h

end
}
re turn max

end
e l s i f @chi ld ren . s i z e == 0

re turn 0

e l s e
max = 0 ;

@ch i ld ren . e a c h i n d e x { | x |
d e p t h = @chi ld ren [ x ] . ge tRCStackDepth

i f x != 0 then
d e p t h += 1

end
i f d e p t h > max then

max = d e p t h

end
}
re turn max

end
end

# g e t s t h e d e p t h o f t h e s t a c k f o r t h e pa th from r o o t t o l e a f c o n t a i n i n g t h e g i v e n s t r

# d e f ge tRCStackDep th ( s t r )

# i f head . i n c l u d e ?(”#” + s t r + ” ) ”)
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# r e t u r n s e l f . ge tRCStackDep th

# e l s i f @chi ldren . s i z e == 0

# r e t u r n −1

# e l s e

# max = 0

# @chi ldren . e a c h i n d e x { | x |
# d e p t h = @chi ldren [ x ] . ge tRCStackDep th

# i f x != 0

# d e p t h += 1

# end

# i f d e p t h > max t h e n

# max = d e p t h

# end

# }
# r e t u r n max

# end

# end

def getOps

end

def ge tNumEdi tedLeaf s

i f not @head =˜ /\ / EDITED / and @head =˜ / EDITED /

## We have a EDITED l a b e l

re turn getNumLeafs

e l s e
c o u n t = 0

@chi ld ren . each{ | c h i l d |
c o u n t += c h i l d . ge tNumEdi tedLeaf s

}
re turn c o u n t

end
end

def g e t E d i t e d A r r a y

i f not @head =˜ /\ / EDITED / and @head =˜ / EDITED /

## We have a EDITED l a b e l

re turn Array . new ( getNumLeafs , 1 )

e l s e
a = Array . new

i f @chi ld ren . s i z e == 0

a [ 0 ] = 0

e l s e
@chi ld ren . each{ | c h i l d |

a << c h i l d . g e t E d i t e d A r r a y

}
end
return a . f l a t t e n

end
end

def g e t N u m E d i t e d C o r r e c t ( t 2 )

c o u n t = 0

go ld = g e t E d i t e d A r r a y

hypo th = t 2 . g e t E d i t e d A r r a y

hypo th . e a c h i n d e x{ | i |
i f hypo th [ i ] == 1 and go ld [ i ] == 1

c o u n t += 1

end
}
re turn c o u n t

end
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end

## ################################

## T r e e S l u r p e r

## T h i s c l a s s i s used t o read i n f i l e s

## c o n t a i n i n g t r e e s s p a n n i n g m u l t i p l e

## l i n e s . g e t N e x t r e a d s j u s t t o t h e n e x t

## t r e e and r e t u r n s a Tree o b j e c t .

## g e t A l l r e t u r n s an a r r a y c o n t a i n i n g a l l

## t r e e s i n t h e f i l e . T h i s may be p r o h i b i t i v e l y

## l a r g e f o r c e r t a i n l a r g e corpora .

##

## #################################

c l a s s T r e e S l u r p e r

def i n i t i a l i z e ( f i l e n a m e )

@fi le name = f i l e n a m e

@f i l e = F i l e . open ( @fi le name )

end

def g e t N e x t

## Get t h e n e x t t r e e

num parens = 0

s t r = ” ”

whi le ( l i n e = ( @f i l e . g e t s ) ) != n i l
l i n e . chomp !

s t r += l i n e

n u m l e f t p a r e n s = l i n e . l e n g t h − l i n e . gsub ( /\ ( / , ’ ’ ) . l e n g t h

n u m r i g h t p a r e n s = l i n e . l e n g t h − l i n e . gsub ( /\ ) / , ’ ’ ) . l e n g t h

num parens += ( n u m l e f t p a r e n s − n u m r i g h t p a r e n s )

i f num parens == 0 && l i n e != ” ”

break
end

end
i f s t r != ” ”

re turn Tree . new ( s t r )

e l s e
re turn n i l

end
end

def g e t A l l

## Get a l l t r e e s

r a = Array . new

whi le ( t = g e t N e x t ) != n i l
r a << t

end
return r a

end

def c l o s e

F i l e . c l o s e ( @fi le name )

end

end

c l a s s Rule

a t t r r e a d e r : head , : i , : j , : f i r s t

def i n i t i a l i z e ( name , i , j , f i r s t =” ” )

@head = name

@i = i
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@j = j

@ f i r s t = f i r s t

end

def t o s

s = i . t o s + ” ” + @head + ” ” + j . t o s + ” ” + @ f i r s t

end

def hash

re turn @i . t o s + @head + @j . t o s

end
end

## ######################

# c l a s s HypothPath

#

# R e p r e s e n t s t h e o u t p u t o f a DBN v i t e r b i t r a c e , a l l t h e

# o p e r a t i o n s a t each s t a c k d e p t h and t i m e s t e p .

# T h i s i s most i m p o r t a n t l y used f o r r e c r e a t i n g a rc t r e e

# t h a t one can compare t o a go ld s t a n d a r d f o r comput ing

# a c c u r a c y r e s u l t s

#

## ########################

c l a s s HypothPath

a t t r r e a d e r : S , : R , : F

def i n i t i a l i z e ( h y p o t h f i l e )

@S = Array . new

@R = Array . new

@F = Array . new

t = −1

@f i l e = F i l e . open ( h y p o t h f i l e , ” r ” )

# o l d l i n e = ””

whi le ( l i n e = @f i l e . g e t s ) != n i l
l i n e . chomp !

# i f l i n e == o l d l i n e

## d idn ’ t r e c o g n i z e c o r r e c t l y

i f l i n e =˜ / no most l i k e l y s e q u e n c e /

i f t > −1

break
e l s e

@R[ 0 ] = n i l
@F[ 0 ] = n i l
@S[ 0 ] = n i l
break

end
end

# end

i f ( l i n e =˜ /HYPOTH (\d +)> R : ( [ ˆ ] + ) ∗F : ( [ ˆ ] + ) ∗S : ( [ ˆ ] + ) / )

r s = $2

f s = $3

s s = $4

t = $1 . t o i

@R[ t ] = r s . s p l i t ( ” ; ” )

@F[ t ] = f s . s p l i t ( ” ; ” )

@F[ t ] << 1 ## Add a 1 t o t h e end

@S[ t ] = s s . s p l i t ( ” ; ” ) # S a l r e a d y has t h e LX a t t h e end

i f l i n e =˜ / S : n u l l /

break
end

end
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# o l d l i n e = l i n e

end
end

def n e x t T r e e

t r e e S o F a r = n i l # Tree . new

subTree = n i l
s u b s u b T r e e = n i l
## I t e r a t e over t i m e s t e p s

@R. e a c h i n d e x { | t |
i f @R[ 0 ] == n i l

t r e e S o F a r = Tree . new

break
end
i f t == 0

next
end
## T h i s i s t h e 011 case or 111 case − t h e l a t t e r j u s t b e i n g a s p e c i a l

## case o f t h e fo rm er f o r t h e end o f u t t e r a n c e

i f @F[ t ] [ 1 ] . t o i == 1

## Cr ea t e a new t r e e a t d e p t h 0 w i t h t h e o l d s u b t r e e as t h e l e f t and t h e new s t u f f as t h e r i g h t

newBigTree = Tree . new

newBigTree . head = @R[ t ] [ 0 ]

## Add t h e t r e e so f a r as t h e l e f t c h i l d , i f i t e x i s t s

i f t r e e S o F a r != n i l
newBigTree . c h i l d r e n << t r e e S o F a r

end

## Cr ea t e a new t r e e a t d e p t h 1 t h a t w i l l be t h e r i g h t c h i l d o f t h e newBigTree

newSmal lTree = Tree . new

newSmal lTree . head = @R[ t ] [ 1 ] # Tree . new ( ” ( #{@R[ t ][1]} ) ”)

## I f we ’ ve j u s t f i n i s h e d a bunch o f s t u f f a t l e v e l 1 , add i t as t h e l e f t c h i l d

i f subTree != n i l
## FIXME? ( t h i s i s a t e s t f i x . . . n o t s u r e i t ’ s r i g h t )

i f s u b s u b T r e e != n i l
s u p e r S u b T r e e = Tree . new

s u p e r S u b T r e e . head = @R[ t −1][1]

s u p e r S u b T r e e . c h i l d r e n << subTree

s u p e r S u b T r e e . c h i l d r e n << s u b s u b T r e e

subTree = s u p e r S u b T r e e

end
newSmal lTree . c h i l d r e n << subTree

end

## I f t h e r e i s any non−t r i v i a l t h i n g go ing on be tween l e v e l s 1 and 2 i n R , make a

## a t r e e o u t o f i t ( t r i v i a l case i s a word go ing t o t h e same word ) , and add t h a t

## t r e e t o t h e

## Non−t r i v i a l case i s NT go ing t o a n o t h e r NT , or NT / word go ing t o word b a s i c a l l y

i f @R[ t ] [ 1 ] =˜ / [ A−Z ] / | | @R[ t ] [ 1 ] != @R[ t ] [ 2 ]

newSmal lTree . c h i l d r e n << Tree . new ( ” ( #{@R[ t ] [ 2 ]} ) ” )

i f @R[ t ] [ 2 ] != @S[ t −1][3]

newSmal lTree . c h i l d r e n . l a s t . c h i l d r e n << Tree . new ( ” ( #{@S[ t −1][3]} ) ” )

end
end
## Append t h e r i g h t hand ( s m a l l ) t r e e t o t h e new b i g t r e e , and make t h e

## t r e e S o F a r p o i n t a t i t

newBigTree . c h i l d r e n << newSmal lTree

i f not @R[ t ] [ 0 ] . e q l ? (@S[ t ] [ 0 ] ) and @F[ t ] [ 0 ] . t o i == 0

temp = Tree . new

temp . head = @S[ t ] [ 0 ]

temp . c h i l d r e n << newBigTree

newBigTree = temp
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end
subTree = n i l
s u b s u b T r e e = n i l
t r e e S o F a r = newBigTree

e l s i f @F[ t ] [ 2 ] . t o i == 1 ## Here we have 0 0 1

i f subTree == n i l
## J u s t s t a r t i n g a new s u b t r e e o f f t h e main t r e e

subTree = Tree . new

subTree . head = @R[ t ] [ 1 ]

subTree . c h i l d r e n << Tree . new ( ” ( #{@R[ t ] [ 2 ]} ) ” )

i f @S[ t −1][3] != @R[ t ] [ 2 ]

subTree . c h i l d r e n [ 0 ] . c h i l d r e n << Tree . new ( ” ( #{@S[ t −1][3]} ) ” )

end
e l s i f s u b s u b T r e e == n i l

## C o n t i n u i n g a s u b t r e e

newSubTree = Tree . new

newSubTree . head = @R[ t ] [ 1 ]

newSubTree . c h i l d r e n << subTree

newSubTree . c h i l d r e n << Tree . new ( ” ( #{@R[ t ] [ 2 ]} ) ” )

i f @S[ t −1][3] != @R[ t ] [ 2 ]

newSubTree . c h i l d r e n [ 1 ] . c h i l d r e n << Tree . new ( ” ( #{@S[ t −1][3]} ) ” )

end
subTree = newSubTree

e l s e ## We have t o d e a l w i t h a s u b s u b t r e e

newSubTree = Tree . new

newSubTree . head = @R[ t ] [ 1 ]

newSubTree . c h i l d r e n << subTree

newSubTree . c h i l d r e n << Tree . new ( ” ( #{@R[ t ] [ 2 ]} ) ” )

newSubTree . c h i l d r e n [ 1 ] . c h i l d r e n << s u b s u b T r e e

n e w s u b s t r = ” ( ” + @S[ t −1] [2 ] . gsub ( / ˆ [ ˆ \ / ] + \ / ( . ∗ ) $ / , ’\1 ’ ) + ” ” + @S[ t −1][3] + ” ) ”

newSubTree . c h i l d r e n [ 1 ] . c h i l d r e n << Tree . new ( n e w s u b s t r )

subTree = newSubTree

end
i f not @R[ t ] [ 1 ] . e q l ? (@S[ t ] [ 1 ] )

temp = Tree . new

temp . head = @S[ t ] [ 1 ]

temp . c h i l d r e n << subTree

subTree = temp

end
s u b s u b T r e e = n i l

e l s e ## Here we have 0 0 0 f o r t h e F nodes

i f s u b s u b T r e e == n i l
s u b s u b T r e e = Tree . new

s u b s u b T r e e . head = @R[ t ] [ 2 ]

s u b s u b T r e e . c h i l d r e n << Tree . new ( ” ( #{@S[ t −1][3]} ) ” )

e l s e
newsubsubTree = Tree . new

newsubsubTree . head = @R[ t ] [ 2 ]

newsubsubTree . c h i l d r e n << s u b s u b T r e e ;

newsubsubTree . c h i l d r e n << Tree . new ( ” ( #{@S[ t −1][3]} ) ” )

s u b s u b T r e e = newsubsubTree

end
i f not @R[ t ] [ 2 ] . e q l ? (@S[ t ] [ 2 ] )

temp = Tree . new

temp . head = @S[ t ] [ 2 ]

temp . c h i l d r e n << s u b s u b T r e e

s u b s u b T r e e = temp

end
end

}
@R = Array . new

@S = Array . new
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@F = Array . new

t = −1

## Advance t o t h e n e x t t r e e

whi le ( l i n e = @f i l e . g e t s ) != n i l
l i n e . chomp !

i f l i n e =˜ / no most l i k e l y s e q u e n c e /

i f t > −1

break
e l s e

@R[ 0 ] = n i l
@F[ 0 ] = n i l
@S[ 0 ] = n i l
break

end
# break

end
i f ( l i n e =˜ /HYPOTH (\d +)> R : ( [ ˆ ] + ) ∗F : ( [ ˆ ] + ) ∗S : ( [ ˆ ] + ) / )

r s = $2

f s = $3

s s = $4

t = $1 . t o i

@R[ t ] = r s . s p l i t ( ” ; ” )

@F[ t ] = f s . s p l i t ( ” ; ” )

@F[ t ] << 1 ## Add a 1 t o t h e end

@S[ t ] = s s . s p l i t ( ” ; ” ) # S a l r e a d y has t h e LX a t t h e end

i f l i n e =˜ / S : n u l l /

break
end

end
end
return t r e e S o F a r

end
end

c l a s s ValueProb

a t t r w r i t e r : va lue , : p rob

a t t r r e a d e r : va lue , : p rob

def i n i t i a l i z e ( v , p )

@value = v

@prob = p

end
end

c l a s s CounterHash < Hash

def [ ] ( key )

i f not h a s k e y ? ( key )

s t o r e ( key , 0 )

end
super

end
end

c l a s s ArrayHash < Hash

def i n i t i a l i z e

super
@max val = 0

end

def [ ] ( key )

i f not h a s k e y ? ( key )
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@max val += 1

s t o r e ( key , @max val )

end
super

end
end

B.9 scripts/trees2rules.pl

# ##############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or mo d i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

# ##############################################################################

use Ge to p t : : S td ;

g e t o p t s ( ” p ” ) ;

$PWDT = 0 ;

i f ( $ o p t p ){
$PWDT = 1 ;

}

# ######### FOR TREES IN GENERAL . . .

# p r i n t ”GG ROOT : S eos\n ”;

# #########

## f o r each t r e e . . .

whi le ( <> ) {

# ######### FOR TREES IN GENERAL . . .

p r i n t ”C : ROOT\n ” ;

# #########

## t r a n s l a t e t o par en s . . .

s /\ [ /\ ( / g ;

s /\ ] /\ ) / g ;

## f o r each c o n s t i t u e n t . . .

whi le ( $ =˜ /\ ( [ ˆ\ (\ ) ]∗\) / ) {

## c o n v e r t o u t e r par en s t o b r a c e s . . .
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$ =˜ s /\ ( ( [ ˆ\ (\ ) ]∗ ) \) /{\1} / ;

# ######### ADD SED RULES HERE: a p p l y r u l e s t o a n g l e s ( c h i l d r e n ) w i t h i n b r a c e s ( c o n s i t u e n t ) . . .

# p r i n t s t d e r r ”A== $ ”;

## i f t e r m i n a l branch . . .

i f ( ( $c , $p , $w ) = ( $ =˜ /{ ( [ ˆ ] + ) + ( [ ˆ ] + )\# ( [ ˆ ]+) ∗} / ) ) {
# $c=l c ( $c ) ;

s /{ ( [ ˆ ]∗ ) + ( [ ˆ <]∗\# [ ˆ <}]∗)}/{$c $p\#$w} / ;

p r i n t ”C : $c\n ” ;

p r i n t ”CC $c : −−\n ” ;

i f ($PWDT) {
p r i n t ” Pc $c : $p\n ” ;

p r i n t ”Pw $w : $p\n ” ;

p r i n t ”P : $p\n ” ;

# p r i n t ”W : $w\n ”;

# p r i n t ”PW $p : $c\#$w\n ”;

} e l s e {
p r i n t ”X $c : $w\n ” ;

}
}
## f o r v e r s i o n w i t h o u t pos ’ s ( so w i t h o u t # symbol ) . . .

e l s i f ( ( $c , $w ) = ( $ =˜ /{ ( [ ˆ ] + ) + ( [ ˆ ] + ) ∗} / ) ) {
$p = $c ;

s /{ ( [ ˆ ]∗ ) + ( [ ˆ <}]∗)}/{$c $p\#$w} / ;

p r i n t ”C : $c\n ” ;

p r i n t ”CC $c : −−\n ” ;

i f ($PWDT) {
p r i n t ” Pc $c : $p\n ” ;

p r i n t ”Pw $w : $p\n ” ;

p r i n t ”P : $p\n ” ;

} e l s e {
p r i n t ”X $c : $w\n ” ;

}
}
## i f n o n t e r m i n a l branch . . .

i f ( ( $c , $cc ) = ( $ =˜ /{ ( [ ˆ ]∗ ) ( .∗<[ˆ ]∗ ) [ˆ <]∗} / ) ) {
# p r i n t ”$p$cc\n ”;

p r i n t ”C : $c\n ” ;

@A = s p l i t ( / [ˆ<]∗</ , $cc ) ;

p r i n t ”CC $c :@A\n ” ;

}
# #########

## c o n v e r t i n n e r a n g l e s ( i f any ) t o b r a c k s . . .

whi le ( $ =˜ /{[ˆ{}]∗< / ) {
$ =˜ s / ({ [ ˆ{} ]∗ )<([ˆ<>]∗)> /\1\[\2\]/;

}

## c o n v e r t o u t e r b r a c e s t o a n g l e s . . .

$ =˜ s /{ ( .∗ )}/<\1>/;

}

i f ( ( $c ) = ( $ =˜ / < ( [ ˆ ]∗ ) / ) ) {
p r i n t ” Cr : $c\n ” ;

}

## f i n i s h up . . .

$ =˜ s / < / [ / ;

$ =˜ s / > / ] / ;

## t r a n s l a t e t o par en s aga in . . .

# $ =˜ s /\ [ /\ ( / g ;
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# $ =˜ s /\ ] /\ ) / g ;

# p r i n t $ ;

}

B.9.1 scripts/relfreq.pl

# ##############################################################################

## ##

## T h i s f i l e i s p a r t o f Mode lBlocks . C o p y r i g h t 2009 , Mode lBlocks d e v e l o p e r s . ##

## ##

## ModelBlocks i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / or mo d i f y ##

## i t under t h e t e r m s o f t h e GNU Genera l P u b l i c L i c e n s e as p u b l i s h e d by ##

## t h e Free S o f t w a r e Foundat ion , e i t h e r v e r s i o n 3 o f t h e L i c e n s e , or ##

## ( a t your o p t i o n ) any l a t e r v e r s i o n . ##

## ##

## ModelBlocks i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l , ##

## b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f ##

## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e ##

## GNU Genera l P u b l i c L i c e n s e f o r more d e t a i l s . ##

## ##

## You s h o u l d have r e c e i v e d a copy o f t h e GNU Genera l P u b l i c L i c e n s e ##

## a long w i t h Mode lBlocks . I f not , s e e <h t t p : / / www. gnu . org / l i c e n s e s />. ##

## ##

# ##############################################################################

use Ge to p t : : S td ;

g e t o p t s ( ’ c : l f r : ’ ) ;

i f ( d e f i n e d ( $ o p t c ) ) {
$mincount = $ o p t c ;

} e l s e {
$mincount = 0 . 0 ;

}
i f ( d e f i n e d ( $ o p t l ) ) {

$ l o n g o u t = $ o p t l ;

} e l s e {
$ l o n g o u t = 0 ;

}
i f ( d e f i n e d ( $ o p t f ) ) {

$ r a w f r e q = $ o p t f ;

} e l s e {
$ r a w f r e q = 0 ;

}
i f ( d e f i n e d ( $ o p t r ) ) { # don ’ t do b l i n d c u t o f f s ; r e p l a c e w / symb

$ r e p l a c e = $ o p t r ;

$ n e w c u t o f f = 1 ;

} e l s e {
$ n e w c u t o f f = 0 ;

}

p r i n t s t d e r r ” mincount = $mincount\n ” ;

# f o r t h e r e p l a c e v e r s i o n

sub r e p l a c e {
@args = @ ;

$ l ow c t = $ a r g s [ 0 ] ;
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# g e t t h e s u b s t i t u t e s t r i n g ready

@parts = s p l i t ( / [ : ;\{\}\ / , ˜\ (\ )\<\>\[\]]+/, $ l owc t ) ;

@delims = $ l ow c t =˜ / ( [ : ;\{\}\ / , ˜\ (\ )\<\>\[\]]+) / g ;

@ r e p l a c e r s = ( ( $ r e p l a c e ) x ($# p a r t s +1) ) ;

@combined = map { $ r e p l a c e r s [ $ ] , $ d e l i m s [ $ ] }
0 . . ($# r e p l a c e r s > $# d e l i m s ? $# r e p l a c e r s : $# d e l i m s ) ;

$ r = j o i n ( ” ” , @combined ) ;

re turn $r ;

}

whi le ( <> ) {
chomp ;

i f ( $ =˜ / ( . ∗ ) : ( .∗ ) = ( .∗ ) / ) {
i f ( ! e x i s t s ( $Cond{$1}) ) {

$Cond{$1} = 0 . 0 ;

}
i f ( ! e x i s t s ( $Genv{$2}) ) {

$Genv{$2} = 0 . 0 ;

}
i f ( ! e x i s t s ( $Val{$1}{$2}) ) {

$Val{$1}{$2} = 0 . 0 ;

}
$Cond{$1} += $3 ;

@targs = s p l i t ( / + / , $2 ) ;

foreach $ t ( @targs ) {
$Genv{$ t} += $3 ;

}
$Val{$1}{$2} += $3 ;

} e l s i f ( $ =˜ / ( . ∗ ) : ( .∗ ) / ) {
$Cond{$1}++;

@targs = s p l i t ( / + / , $2 ) ;

foreach $ t ( @targs ) {
$Genv{$ t }++;

}
$Val{$1}{$2}++;

# p r i n t ”$1 | $2 |\n ”;

}
}

# don ’ t r e p l a c e , do b l i n d c u t o f f s

i f ( $ n e w c u t o f f ==0) {

## S p e c i a l case f o r p r i o r d i s t r i b u t i o n :

foreach $c ( keys %Cond ) {
i f ( n o t ( $c =˜ / ˆ [ ˆ ] $ / ) ) {

next ;

}
foreach $v ( keys %{$Val{$c}}) {

i f ( $Val{$c}{$v} < $mincount ) {
$Cond{$c} −= $Val{$c}{$v} ;

d e l e t e $Val{$c}{$v} ;

}
}
}

}

# r e p l a c e whole low c o u n t s

e l s e {

# make a pas s t o r e p l a c e low c o u n t s
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i f ( $mincount >0) {

foreach $ l h s ( s o r t keys %Val ) {

# check on l h s f o r r e p l a c e a b l e s

my @newlwords ;

@lwords = s p l i t ( / + / , $ l h s ) ;

my $ c t r =0 ; my $ l f l a g ;

foreach $lword ( @lwords ) {
i f ( ( $Genv{$lword}<$mincount ) && ( $lword ne r e p l a c e ( $ lword ) ) && $ c t r ! = 0 ) {

$ l f l a g = 1 ;

push ( @newlwords , r e p l a c e ( $ lword ) ) ;

} e l s e {
push ( @newlwords , $ lword ) ;

}
$ c t r ++;

}
$newlhs = j o i n ( ’ ’ , @newlwords ) ;

# check on r h s

foreach $ r h s ( s o r t keys %{$Val{$ l h s }}) {
my @newrwords ; my $ r f l a g ;

@rwords = s p l i t ( / + / , $ r h s ) ;

foreach $rword ( @rwords ) {
i f ( $Genv{$rword}<$mincount && $rword ne r e p l a c e ( $rword ) ) {

$ r f l a g = 1 ;

push ( @newrwords , r e p l a c e ( $rword ) ) ;

$Genv{$ r h s}
} e l s e {

push ( @newrwords , $rword ) ;

}
}
$newrhs = j o i n ( ’ ’ , @newrwords ) ;

# r e p l a c e r h s t a r g e t s

i f ( $ l f l a g && $ r f l a g ) {
$Val{$newlhs}{$newrhs} += $Val{$ l h s}{$ r h s } ;

$Cond{$newlhs} += $Val{$ l h s}{$ r h s } ;

d e l e t e $Val{$ l h s}{$ r h s } ;

} e l s i f ( $ r f l a g ) {
# p r i n t ” newrhs $newrhs from $ l h s −> $ rhs\n ”;

$Val{$newlhs}{$newrhs} += $Val{$ l h s}{$ r h s } ;

d e l e t e $Val{$ l h s}{$ r h s } ;

} e l s i f ( $ l f l a g ) {
# p r i n t ” newlhs $newlhs from $ l h s\n ”;

$Val{$newlhs}{$ r h s} += $Val{$ l h s}{$ r h s } ;

$Cond{$newlhs} += $Val{$ l h s}{$ r h s } ;

d e l e t e $Val{$ l h s}{$ r h s } ;

}
}
}
}

}

foreach $c ( s o r t keys %Cond ) {
i f ( $Cond{$c} >= $mincount ) {

foreach $v ( s o r t keys %{$Val{$c}}) {
# p r i n t STDERR ” c o u n t = $Cond{$c}\n ”;
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i f ( $Cond{$c} == 0 . 0 ) {
p r i n t STDERR ” Di v i de by z e r o e n c o u n t e r e d wi th :\n cond=$c\n ” ;

l a s t ;

}
p r i n t ” $c : $v = ” ;

my $ v a l t o p r i n t = $ r a w f r e q ? $Val{$c}{$v} : $Val{$c}{$v} / $Cond{$c} ;

i f ( d e f i n e d ( $ o p t l ) ) {
p r i n t f ( ” %.12 f\n ” , $ v a l t o p r i n t ) ;

} e l s i f ( ! d e f i n e d ( $ o p t f ) ) {
p r i n t f ( ” %.8 f\n ” , $ v a l t o p r i n t ) ;

} e l s e {
p r i n t ” $ v a l t o p r i n t\n ” ;

}
}
}
}

B.10 scripts/calc-cfp-hhmm.py

import r e

import s y s

# from copy i m p o r t deepcopy

from model import Model , CondModel

# #######################################

#

# main

#

# #######################################

# ######### read r u l e c o u n t s

# i n i t r e l e v a n t models

Pc = CondModel ( ’ Pc ’ )

Pw = CondModel ( ’Pw ’ )

P = Model ( ’P ’ )

W = Model ( ’W’ )

Ch0 giv BL D Ch = CondModel ( ’ C0 L ’ )

Ch0 giv BR D Ch = CondModel ( ’ C0 R ’ )

Ch1 giv BL D Ch = CondModel ( ’ C1 L ’ )

Ch1 giv BR D Ch = CondModel ( ’ C1 R ’ )

Ch0 Ch1 giv BL D Ch = CondModel ( ’CC L ’ )

Ch0 Ch1 giv BR D Ch = CondModel ( ’CC R ’ )

# read i n CC model and o b t a i n r e l e v a n t models

f o r s in s y s . s t d i n :

m = r e . s e a r c h ( ’P [ gc ] ( .∗ ) \ ˆ . , . : ( .∗ ) = ( .∗ ) ’ , s )

i f m i s not None :

Pc [m. group ( 1 ) ] [m. group ( 2 ) ] = f l o a t (m. group ( 3 ) )

m = r e . s e a r c h ( ’Pw ( .∗ ) : ( .∗ ) = ( .∗ ) ’ , s )

i f m i s not None :

Pw[m. group ( 1 ) ] [m. group ( 2 ) ] = f l o a t (m. group ( 3 ) )

P [m. group ( 2 ) ] += f l o a t (m. group ( 3 ) )

#W[m. group ( 1 ) ] += f l o a t (m. group ( 3 ) )

W. r e a d ( s )

s = r e . sub ( ’ ˆ Cr : ( .∗\ ˆ [ Ll ] , 1 ) = ’ , ’CC RESTˆR, 0 : \\1 RESTˆR, 0 = ’ , s )
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s = r e . sub ( ’ −− ’ , ’ − ˆ . , . − ˆ . , . ’ , s )

m = r e . s e a r c h ( ’CC ( .∗ ) \ ˆ ( . ) , ( . ) : ( .∗ ) \ ˆ . , . ( .∗ ) \ ˆ . , . = ( .∗ ) ’ , s )

i f m i s not None :

( ch , b , sd , ch0 , ch1 , c t ) = m. g rou ps ( )

d = i n t ( sd )

i f b== ’L ’ or b== ’ l ’ :

Ch0 giv BL D Ch [ d , ch ] [ ch0 ] += f l o a t ( c t )

Ch1 giv BL D Ch [ d , ch ] [ ch1 ] += f l o a t ( c t )

Ch0 Ch1 giv BL D Ch [ d , ch ] [ ch0 , ch1 ] += f l o a t ( c t )

e l s e :

Ch0 giv BR D Ch [ d +1 , ch ] [ ch0 ] += f l o a t ( c t )

Ch1 giv BR D Ch [ d , ch ] [ ch1 ] += f l o a t ( c t )

Ch0 Ch1 giv BR D Ch [ d , ch ] [ ch0 , ch1 ] += f l o a t ( c t )

# n o r m a l i z e models

Ch0 giv BL D Ch . n o r m a l i z e ( )

Ch0 giv BR D Ch . n o r m a l i z e ( )

Ch1 giv BL D Ch . n o r m a l i z e ( )

Ch1 giv BR D Ch . n o r m a l i z e ( )

Ch0 Ch1 giv BL D Ch . n o r m a l i z e ( )

Ch0 Ch1 giv BR D Ch . n o r m a l i z e ( )

Pc . n o r m a l i z e ( )

Pw . n o r m a l i z e ( )

P . n o r m a l i z e ( )

W. n o r m a l i z e ( )

Pc . w r i t e ( )

Pw . w r i t e ( )

P . w r i t e ( )

W. w r i t e ( )

Pc . c l e a r ( )

Pw . c l e a r ( )

P . c l e a r ( )

W. c l e a r ( )

s y s . s t d e r r . w r i t e ( ’1\n ’ )

# ######### o b t a i n i n t e r m e d i a t e models

# d e f i n e i t e r a t i o n c o n s t a n t

K=20

# o b t a i n e x p e c t e d c o u n t s f o r unbounded l e f t d e s c e n d a n t s

C h i g i v D C h z e r o = Ch0 giv BR D Ch

C h i g i v D C h c u r r = C h i g i v D C h z e r o

C h i g i v D C h s t a r = CondModel ( ’ C r l∗ ’ )

# add z e r o i t e r a t i o n t o s t a r model

f o r d , ch in C h i g i v D C h z e r o :

f o r c h i in C h i g i v D C h z e r o [ d , ch ] :

C h i g i v D C h s t a r [ d , ch ] [ c h i ] = C h i g i v D C h z e r o [ d , ch ] [ c h i ]

# add s u b s e q u e n t i t e r a t i o n s t o s t a r model

f o r k in r a n g e ( 1 ,K+1) :

s y s . s t d e r r . w r i t e ( ’ k= ’+ s t r ( k ) + ’ / ’+ s t r (K) + ’\n ’ )

C h i g i v D C h p r e v = C h i g i v D C h c u r r

C h i g i v D C h c u r r = CondModel ( ’ C r l∗ k ’ )

f o r d , ch in C h i g i v D C h z e r o :

f o r c h i in C h i g i v D C h p r e v [ d , ch ] :

f o r c h i 0 in Ch0 giv BL D Ch [ d , c h i ] :

p r = C h i g i v D C h p r e v [ d , ch ] [ c h i ] ∗ Ch0 giv BL D Ch [ d , c h i ] [ c h i 0 ]

C h i g i v D C h c u r r [ d , ch ] [ c h i 0 ] += pr
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C h i g i v D C h s t a r [ d , ch ] [ c h i 0 ] += pr

s y s . s t d e r r . w r i t e ( ’2\n ’ )

# ######### o b t a i n hhmm models

# o b t a i n e x p a n s i o n model

Ce = CondModel ( ’Ce ’ )

f o r d , ch in C h i g i v D C h s t a r :

p r = Ch0 giv BR D Ch [ d , ch ] . g e t ( ’−’ )

i f pr > 0 . 0 :

Ce [ d , ch ] [ ch ] += pr

f o r c h i in C h i g i v D C h s t a r [ d , ch ] :

p r = C h i g i v D C h s t a r [ d , ch ] [ c h i ] ∗ Ch0 giv BL D Ch [ d , c h i ] . g e t ( ’−’ )

i f pr > 0 . 0 :

Ce [ d , ch ] [ c h i ] += pr

Ce . n o r m a l i z e ( )

Ce . w r i t e ( )

Ce . c l e a r ( )

s y s . s t d e r r . w r i t e ( ’3\n ’ )

# o b t a i n r e d u c t i o n model

Fr = CondModel ( ’F ’ )

f o r d , ch in C h i g i v D C h s t a r :

p r = Ch0 giv BR D Ch [ d , ch ] . g e t ( ’−’ )

i f pr > 0 . 0 :

Fr [ d , ch , ’ ’ , ch ] [ ’ 1 , ’ ] += pr

f o r c h i in C h i g i v D C h s t a r [ d , ch ] :

prL = Ch0 giv BL D Ch [ d , c h i ] . g e t ( ’−’ )

p r = C h i g i v D C h z e r o [ d , ch ] [ c h i ]

i f pr > 0 . 0 :

Fr [ d , ch , ch i , ’ ’ ] [ ’ 1 , ’+ c h i ] += pr

i f prL > 0 . 0 :

Fr [ d , ch , ’ ’ , c h i ] [ ’ 1 , ’+ c h i ] += pr ∗ prL

pr = ( C h i g i v D C h s t a r [ d , ch ] [ c h i ] − C h i g i v D C h z e r o [ d , ch ] [ c h i ] )

i f pr > 0 . 0 :

Fr [ d , ch , ch i , ’ ’ ] [ ’ 0 , ’+ c h i ] += pr

i f prL > 0 . 0 :

Fr [ d , ch , ’ ’ , c h i ] [ ’ 0 , ’+ c h i ] += pr ∗ prL

Fr . n o r m a l i z e ( )

Fr . w r i t e ( )

Fr . c l e a r ( )

s y s . s t d e r r . w r i t e ( ’4\n ’ )

# o b t a i n a c t i v e t r a n s i t i o n models

Chi g iv D Ch Chi0 = CondModel ( ’ Ctaa ’ )

C h i 1 g i v D C h i C h i 0 = CondModel ( ’ Ctaw ’ )

f o r d , ch in C h i g i v D C h s t a r :

f o r c h i in C h i g i v D C h s t a r [ d , ch ] :

f o r ch i0 , c h i 1 in Ch0 Ch1 giv BL D Ch [ d , c h i ] :

i f c h i 0 != ’−’ :

p r = C h i g i v D C h s t a r [ d , ch ] [ c h i ] ∗ Ch0 Ch1 giv BL D Ch [ d , c h i ] [ ch i0 , c h i 1 ]

i f pr > 0 . 0 :

Ch i g iv D Ch Chi0 [ d , ch , c h i 0 ] [ c h i ] += pr

C h i 1 g i v D C h i C h i 0 [ d , ch i , c h i 0 ] [ c h i 1 ] += pr
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Chi g iv D Ch Chi0 . n o r m a l i z e ( )

Ch i g iv D Ch Chi0 . w r i t e ( )

C h i 1 g i v D C h i C h i 0 . n o r m a l i z e ( )

C h i 1 g i v D C h i C h i 0 . w r i t e ( )

Ch i g iv D Ch Chi0 . c l e a r ( )

C h i 1 g i v D C h i C h i 0 . c l e a r ( )

s y s . s t d e r r . w r i t e ( ’5\n ’ )

# o b t a i n a w a i t e d t r a n s i t i o n models

Chim1 giv D Chim Chim0 = CondModel ( ’Ctww ’ )

f o r d , chim in Ch0 Ch1 giv BR D Ch :

i f d>0:

f o r chim0 , chim1 in Ch0 Ch1 giv BR D Ch [ d , chim ] :

i f chim0 != ’−’ :

p r = Ch0 Ch1 giv BR D Ch [ d , chim ] [ chim0 , chim1 ]

i f pr > 0 . 0 :

Chim1 giv D Chim Chim0 [ d , chim , chim0 ] [ chim1 ] += pr

Chim1 giv D Chim Chim0 . n o r m a l i z e ( )

Chim1 giv D Chim Chim0 . w r i t e ( )


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Disclaimer
	Introduction
	Main Contributions
	Outline
	Related Publications

	Literature Review: Syntax in Machine Translation
	History
	Statistical Translation Models
	Noisy Channel Framework
	N-gram language models
	Maximum Entropy Framework
	Phrase-Based Translation

	Incorporating Syntax into Statistical Machine Translation
	Syntax through Reranking
	Syntax in the Translation Model
	Syntax in the Language Model
	Syntax in Other Models

	Conclusion

	Learning an Incremental Parsing Model from Phrase Structure Trees
	Notation
	Tree Transformations
	Binarization
	Argument Structure
	Traces
	Punctuation
	Normalization
	Depth Annotation and Depth Bounding
	Right Corner Transform

	Estimating Model Parameters from Transformed Trees
	Formal Definition: Probabilistic Context-Free Grammar
	Reformulation as Component Probability Models
	Part of Speech Model

	An Incremental Parsing Model

	Algorithms for Parsing with an Incremental Syntactic Language Model
	Hidden Markov Model
	Hierarchical Hidden Markov Model

	Right-Corner Model Transform
	Left progeny
	Transformed Component Models

	Parsing with an HHMM
	Belief Propagation through Message Passing
	HHMM Parsing as a Search Problem
	Syntactic Language Model Score

	Faster Parsing
	Beam Pruning
	Parallel Processing
	A* and Uniform Cost Search
	Inexact Estimation of Syntactic Language Model Scores
	From Cube Pruning to Lazy Queue Expansion

	Conclusion

	Applying Incremental Syntactic Language Models to Phrase-based Translation
	Parser as Syntactic Language Model in Phrase-based Translation
	Incremental Syntactic Language Model
	Decoding in Phrase-based Translation
	Incorporating a Syntactic Language Model

	Incremental Bounded-Memory Parsing with a Time Series Model
	Phrase-based Translation with an Incremental Syntactic Language Model
	Results
	Perplexity Results
	Speed Results
	Translation Results

	Conclusion

	Conclusion
	Experimental Results
	Future Work

	References
	 Appendix A.  Tree & Model Transformations: Implementation Details
	Initial Preprocessing
	Binarization
	Argument Structure
	Traces
	Punctuation
	Normalization
	Depth Bounding
	Relative Frequency Estimation
	Part of Speech Model
	Transformed Component Models

	 Appendix B.  Syntactic Language Model Training Scripts
	scripts/tbtrees2linetrees.pl
	scripts/annotateFixes.pl
	scripts/annotateProjs.pl
	scripts/annotateArgs.pl
	scripts/annotateGaps.pl
	scripts/annotateMarks.pl
	scripts/ensureCnf.pl
	scripts/cnftrees2cedepths.rb
	scripts/umnlp.rb

	scripts/trees2rules.pl
	scripts/relfreq.pl

	scripts/calc-cfp-hhmm.py


