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Bilingual lexicon induction is the task of inducing word translations from monolingual corpora
in two languages. In this paper we present the most comprehensive analysis of bilingual lexicon
induction to date. We present experiments on a wide range of languages and data sizes. We exam-
ine translation into English from 25 foreign languages: Albanian, Azeri, Bengali, Bosnian, Bul-
garian, Cebuano, Gujarati, Hindi, Hungarian, Indonesian, Latvian, Nepali, Romanian, Serbian,
Slovak, Somali, Spanish, Swedish, Tamil, Telugu, Turkish, Ukrainian, Uzbek, Vietnamese and
Welsh. We analyze the behavior of bilingual lexicon induction on low frequency words, rather
than testing solely on high frequency words, as previous research has done. Low frequency words
are more relevant to statistical machine translation, where systems typically lack translations of
rare words that fall outside of their training data. We systematically explore a wide range of
features and phenomena that affect the quality of the translations discovered by bilingual lexicon
induction. We give illustrative examples of the highest ranking translations for orthogonal
signals of translation equivalence like contextual similarity and temporal similarity. We analyze
the effects of frequency and burstiness, and the sizes of the seed bilingual dictionaries and the
monolingual training corpora. Additionally, we introduce a novel discriminative approach to
bilingual lexicon induction. Our discriminative model is capable of combining a wide variety
of features, which individually provide only weak indications of translation equivalence. When
feature weights are discriminatively set, these signals produce dramatically higher translation
quality than previous approaches that combined signals in an unsupervised fashion (e.g. using
minimum reciprocal rank). We also directly compare our model’s performance against a sophisti-
cated generative approach, the matching canonical correlation analysis (MCCA) algorithm used
by Haghighi et al. (2008). Our algorithm achieves an accuracy of 42% versus MCCA’s 15%.

1. Introduction

In natural language processing, translations are typically learned from parallel corpora,

which are sentence-aligned bilingual texts (Brown et al. 1990). In contrast, bilingual

lexicon induction is the task of inducing word translations from monolingual corpora in

two languages. These monolingual corpora can range from being completely unrelated

˚ Center for Language and Speech Processing, 3400 N Charles Street Baltimore, MD 21218. E-mail:
annirvine@gmail.com

˚˚ Computer and Information Science Department, 3330 Walnut Street, Philadelphia, PA 19104. E-mail:
ccb@upenn.edu

© 2015 Association for Computational Linguistics



Computational Linguistics Volume 1, Number 1

topics to being comparable corpora that contain related information (like Wikipedia

articles on the same subject, but written independently in two languages), but they are

not translations of each other. Being able to learn translations from monolingual text is

potentially very useful for machine translation (MT). For many language pairs, we often

only have access to small bilingual resources. When a machine translation system has

access to limited parallel corpora and to incomplete bilingual dictionaries, therefore,

there are likely to be many unknown (out-of-vocabulary, or OOV) words in the texts

that we would like it to translate. Being able to mine translations for these OOV words

from monolingual corpora means that we could potentially produce some translation

for every word in our text, achieving perfect model coverage (but not perfect accuracy).

Bilingual lexicon induction uses monolingual or comparable corpora to identify

pairs of translated words. Additionally, a small seed dictionary is also typically as-

sumed. The quality of induced word translations could be evaluated by using the induc-

tion algorithm to expand the coverage of translation models extracted from parallel cor-

pora, by translating OOV words, and then checking whether the induced translations

improved the MT system. However, most prior work in bilingual lexicon induction has

treated it as a standalone task, without actually integrating induced translations into

end-to-end machine translation. Instead, it has been evaluated by holding out a portion

of the bilingual dictionary and evaluating how well the algorithm learns the translations

of the held out words.

To discover translated words across languages, past work has proposed a variety

of monolingual distributional similarity metrics as signals of translation equivalence.

These signals include contextual similarity, temporal similarity, and orthographic sim-

ilarity. Most prior work has used unsupervised methods (like rank combination) to

aggregate these types of orthogonal signals (Schafer and Yarowsky 2002; Klementiev
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and Roth 2006). Surprisingly, no past research has employed supervised approaches to

combine diverse monolingually-derived signals for bilingual lexicon induction. The

field of machine learning has shown repeatedly that supervised models dramatically

outperform unsupervised models, including for closely related problems like statistical

machine translation (Och and Ney 2002). For the bilingual lexicon induction task, a

supervised approach is natural, particularly because computing contextual similarity

typically requires a seed bilingual dictionary (Rapp 1995), and that same dictionary may

be used for estimating the parameters of a model to combine monolingual signals. In

this setting, bilingual lexicon induction is critical for translating source words which do

not appear in the parallel data or dictionary.

We make several contributions with this article.1 First, we present a discriminative

model of bilingual lexicon induction that significantly outperforms previous models.

Our discriminative model is capable of combining a wide variety of features, which

individually provide only weak indications of translation equivalence. When feature

weights are discriminatively set, these signals produce dramatically higher translation

quality than previous approaches that combined signals in an unsupervised fashion

(e.g. using minimum reciprocal rank). We present experiments results showing con-

sistent improvements in translation accuracy for 25 languages. The absolute accuracy

increases over the MRR baseline ranges from 5% to 31%, which correspond to 36% to

216% relative improvements. Moreover, we directly compare our model’s performance

against a sophisticated generative approach, the matching canonical correlation analysis

(MCCA) algorithm used by Haghighi et al. (2008). Our algorithm achieves an accuracy

of 42% versus MCCA’s 15%, again showing the advantages of our discriminative ap-

proach.

1 This article expands research previously published in Irvine and Callison-Burch (2013) and Irvine (2014).
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Second, our experimental settings represent more realistic and more useful settings

than those used by previous work. Previous work in bilingual lexicon induction only

reports results on inducing translations for the most frequent source language words,

completely avoiding any scalability or data sparsity issues. Because those word counts

are not sparse, that task is much easier than inducing translations for a randomly

drawn set of words. We analyze the accuracy of our algorithm in terms of the fre-

quency of words, in order to understand the effects of data sparseness. Previous work

frequently simulates low-resource languages, often focusing on Spanish-English or

German-English translation and limiting the large resources available for those lan-

guages. We present experimental results on a wide variety of languages, for which a

wide variety of monolingual corpora and seed bilingual dictionaries are available. Many

of our languages are genuinely low-resource.

Third, we systematically explore a wide range of features and phenomena that

affect the quality of the translations discovered by bilingual lexicon induction. We give

illustrative examples of the highest ranking translations for orthogonal signals of trans-

lation equivalence, including contextual similarity, temporal similarity, orthographic

similarity, and topical similarity. We analyze the effects of frequency and burstiness,

and the sizes of the seed bilingual dictionaries and the monolingual training corpora.

We calculate the correlation between our different signals of translation equivalence, in

order to quantify how orthogonal they are. We present an analysis of how accurate each

signal is based on the part of speech of the words being translated.

This article represents the most comprehensive investigation into bilingual lexicon

induction to date.
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(projected)
Figure 1: Example of projecting contextual vectors over a seed bilingual lexicon. In
monolingual text, Spanish crecer appears in the context of the words empleo, extranjero,
etc. A context vector is built and projected across a seed dictionary. Context vectors for
English words (policy, expand, etc.) are collected and then compared against the projected
context vector for Spanish crecer (which can be glossed as grow). Words with similar
context vectors are likely to be translations of one another.

2. Monolingual Signals of Translation Equivalence

We frame bilingual lexicon induction as a binary classification problem; for a pair of

source and target language words, we predict whether the two are translations of one

another or not. For a given source language word, we score all target language candi-

dates separately and then rank them. We use a variety of signals derived from source

and target monolingual corpora as features and use supervision to estimate the strength

of each. A diverse range of signals have been used for bilingual lexicon induction in past

work, notably by Rapp (1995); Fung (1995); Schafer and Yarowsky (2002); Klementiev

and Roth (2006); Klementiev et al. (2012), and others. In this section, we detail the signals

of translation equivalence that we use as components in our discriminative model.

2.1 Contextual Similarity

In a similar fashion to how vector space models can be used to compute the similarity

between two words in one language by creating vectors that representing their co-
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occurrence patterns with other words (Turney and Pantel 2010), context vector repre-

sentations can also be used to compare the similarity of words across two languages.

The earliest work in bilingual lexicon induction by Rapp (1995) and Fung (1995) used

the surrounding context of a given word as a clue to its translation.

The key to using contextual similarity as a signal of translation equivalence is to

find a mapping between the vector space of one language and the vector space of

another language. To accomplish this, Rapp (1995) originally proposed creating two

co-occurrence matrices for the source and target languages, where the co-occurrence

between a pair of words is defined as follows:

Ai,j “
pfpi, jqq2

fpiq ¨ fpjq

Where fpi, jq is defined as the number of times words i and j, in the same language,

occur in the same context in a large monolingual corpus (Rapp (1995) uses a context

window of 11 words), and fpiq is the total number of times word i appears in the same

corpus. In this original formulation, no bilingual information was employed to find the

mappings between the vector spaces of the two languages. Instead, after computing the

two co-occurrence matrices for the two languages, Rapp (1995) iteratively randomly

permutes the word order of the matrix for one of the languages and calculates the

similarity between the two matrices. The permutation is optimal when the similarity

between the matrices is maximal, which is when the ordered words in the two matrices

are most likely to be translations of one another. Results are given for a set of 100 English

and German word translation pairs.

Later formulations of the problem, including Fung and Yee (1998) and Rapp (1999),

used small seed dictionaries to project word-based context vectors from the vector space

6



Irvine and Callison-Burch A Comprehensive Analysis of Bilingual Lexicon Induction

of one language into the vector space of the other language. That is, each position in

contextual vector v corresponds to a word in the source vocabulary2, and vectors v are

computed for each source word in the test set. Fung and Yee (1998) calculates the ith

position of word w’s context vector, vwi
, as:

vwi
“ TFi,w ¨ IDFi

Where TFi,w is the number of times i and w co-occur (in this case, defined as appearing

in the same sentence), and:

IDFi “ log
maxn

fi
` 1

Where maxn is the maximum frequency of any of the words in the corpus, and fi is

the frequency of word i. Rapp (1999) uses log-likelihood ratios instead of TF ¨ IDF .

Once source and target language contextual vectors are built, each position in the source

language vectors is projected onto the target side using a seed bilingual dictionary.3

Finally, contextual similarities are calculated. That is, each projected vector is compared,

using any vector comparison method, with the context vector of each target word.

Word pairs with high contextual similarity are likely to be translations. This method

of projecting contextual vectors is illustrated in Figure 1. Rapp (1999) uses the same

projection method as Fung and Yee (1998) but uses log-likelihood ratios instead of

TF ¨ IDF .

We use the vector space approach of Rapp (1999) to compute similarity between

word in the source and target languages. More formally, assume that ps1, s2, . . . sN q

and pt1, t2, . . . tM q are (arbitrarily indexed) source and target vocabularies, respectively.

2 In fact, they need only correspond to those source words which have translations in the seed bilingual
dictionary.

3 This is the only time that the bilingual dictionary was used, except for evaluation. In our approach, we
also use the seed bilingual dictionary as supervision for a discriminative model.
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alcanzaron sanitario desarrollos volcánica montana
reached exil advances volcanic arendt
enjoyed rhombohedral developments eruptive montana

contained apt changes coney glasse
contains immune placing rhonde teter

saw circulatory innovations bleaker waddingham
includes nervous use staten daryl
included endocrine changes robben callowhill

hit coordinate making ostrov richings
achieved ucsd addition ellesmere beswick
estates windowing allowing gilligan holgersson

Table 1: Examples of translation candidates ranked using contextual similarity. The
correct English translations, when found, are bolded. English words are ordered by
their contextual similarity scores with the given Spanish word. Here are glosses of
the Spanish words: alcanzaron: reach, sanitario: sanitary, desarrollos: development/growth,
volcánica: volcanic, and montana: montana.

A source word f is represented with an N -dimensional vector and a target word e

is represented with an M -dimensional vector (see Figure 1). The component values

of the vector representing a word correspond to how often each of the words in that

vocabulary appear within a two word window on either side of the given word. These

counts are collected using monolingual corpora. After the values have been computed,

a contextual vector f is projected onto the English vector space using translations in a

given bilingual dictionary to map the component values into their appropriate English

vector positions. This sparse projected vector is compared to the vectors representing all

English words, e. Each word pair is assigned a contextual similarity score cpf, eq based

on the similarity between e and the projection of f .

Various means of computing the component values and vector similarity measures

have been proposed in literature (e.g. Fung and Yee (1998); Rapp (1999)). Following

Fung and Yee (1998), we compute the value of the k-th component of f ’s contextual
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vector, fk, as follows:

fk “ nf,k ˚ plogpn{nkq ` 1q (1)

where nf,k and nk are the number of times sk appears in the context of f and in the entire

corpus, respectively, and n is the maximum number of occurrences of any word in the

data. Intuitively, the more frequently sk appears with fi and the less common it is in the

corpus in general, the higher its component value. After projecting each component of

the source language contextual vectors into the English vector space, we are left with

M -dimensional source word contextual vectors, Fcontext, and correspondingly ordered

M -dimensional target word contextual vectors, Econtext, for all words in the vocabulary

of each language. We use cosine similarity to measure the similarity between each pair

of contextual vectors:

simcontextpFcontext, Econtextq “
Fcontext ¨ Econtext

||Fcontext||||Econtext||
(2)

Table 1 shows example ranked lists using contextual similarity to rank English

words for several Spanish words. For example, contextual similarity ranks the English

words enjoyed, and contained highly as candidate translations of Spanish alcanzaron.

These incorrect English words tend to appear in similar contexts as the correct English

translation, reached.

2.2 Temporal Similarity

Usage of words over time may be another signal of translation equivalence. The in-

tuition is that news stories in different languages will tend to discuss the same world

events on the same day and, correspondingly, we expect that source and target language

words which are translations of one another will appear with similar frequencies over

time in monolingual data. For instance, if the English word tsunami is used frequently
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Figure 2: Temporal histograms of the Spanish word terremoto paired with three En-
glish candidate translations: the correct translation earthquake and the incorrect can-
didates microsoft and strength. The temporal histograms are collected from mono-
lingual texts spanning several years and show the number of occurrences of each
word (on the y-axes) across time. While the correct translation has a good temporal
match (simtemp(terremoto, earthquake) “ 2 ¨ 10´4), the non-translations are less tempo-
rally similar (simtemp(terremoto, microsoft) “ 2 ¨ 10´5, simtemp(terremoto, strength) “
3 ¨ 10´5). In all examples, only dimensions (dates) which are non-zero valued for both signatures
are shown, which results in the signature for terremoto appearing somewhat different across the
three comparisons.
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alcanzaron sanitario desarrollos volcánica montana
travel snowpocalypse occupied wawel dzv
road airport aer volcanic spatz
news dioxide madoff ash centimes

services steinmeier declaration spewed kleve
arts gobbling ponzi eyjafjallajokull reallocate

word investigating affects otunbajewa frostrup
special convicted suspected eruption roze
chief spy fed cloud minc
top offices combat rubell bicyclists

inspired bond arrested dormancy lgbt

Table 2: Examples of translation candidates ranked using temporal similarity. The cor-
rect English translations, when found, are bolded. English words are ordered by their
temporal similarity scores with the given Spanish word.

during a particular time span, the Spanish translation maremoto is likely to also be used

frequently during that time. Figure 2 illustrates how the temporal distribution of Span-

ish terremoto is more similar to its English translation earthquake than to other English

words. Microsoft, one of the non-translations, like earthquake, is very bursty (formal

definition given in Section 2.6). Strength, another non-translation, in contrast, appears

with fairly consistent frequency over time. The temporal histograms for terremoto and

earthquake both show significant peaks in the middle of the series, which correspond

to the major earthquake that occurred in Haiti in January of 2010. Although the two

words have reasonably well matched temporal signature, there are some differences.

For example, a small earthquake in South America might be covered in Spanish news

but not in English news. Other things have periodic temporal signatures, like words

associated with the Olympics, the World Cup or the US presidential election.

To calculate temporal similarity, we collected online monolingual newswire over a

multi-year period and associate each article with a time stamp. Each document in our

web crawls of online news websites has an associated publication date (see Section 3.3).

We gather temporal signatures for each source and target language unigram from our
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time-stamped web crawl data in order to measure temporal similarity, in a similar fash-

ion to Schafer and Yarowsky (2002); Klementiev and Roth (2006); Alfonseca, Ciaramita,

and Hall (2009).

We calculate simtemppFtemp, Etempq, the temporal similarity between a pair of

words, using the method defined by Klementiev and Roth (2006). We generate a tem-

poral signature for each word by sorting the set of (time-stamped) documents in the

monolingual corpus into a sequence of equally sized temporal bins and then counting

the number of word occurrences in each bin. In our experiments, our English web crawl

data is vastly outstrips the other languages, so we restrict the English data that we use in

a particular foreign language experiment to be no more than three times the size of our

source language web crawled data, and only include news articles from those dates for

which we also have source language articles. We again use cosine similarity to compare

the normalized temporal signatures for a pair of words:

simtemppFtemp, Etempq “
Ftemp ¨ Etemp

||Ftemp||||Etemp||
, (3)

where Ftemp and Etemp are source and target language word temporal signatures,

respectively. The k-th component of a word f ’s temporal vector, fk, represents the

frequency of the word f during the k-th date range in the temporal bins created for

the time-stamped monolingual corpora. The size of the two vectors used for temporal

similarity calculation is a function of the number of temporal bins. In our experiments,

we set the temporal bin size to 3 days, so the size of temporal signatures is equal to the

number of days spanned by a monolingual corpus divided by three. We normalize the

temporal signature of each word by dividing all of fk components by the total count

of the word f . In Irvine (2014), we compared the performance of using raw temporal
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signatures and using the Discrete Fourier Transform of those signatures, and found that

raw temporal signatures performed just as well as DFT signatures.

Table 2 shows example ranked lists using temporal similarity to rank English words

for several Spanish words. For example, ash and spewed, as well as the Icelandic volcano

eyjafjallajokull, are all temporally similar to the Spanish word volcánico. Since volcanic

eruptions are dramatic events that are usually written about in newspapers all around

the world when they occur, it is not surprising that this signal is able to produce a correct

translation for volcánico, alongside highly ranking several related words.

2.3 Orthographic Similarity

Words that are spelled similarly are sometimes good translations, since they may be

etymologically related, or borrowed words, or the names of people and places. We

compute the orthographic similarity between a pair of words. We use the edit distance

between the two words, normalized by the average of the lengths of the two words:

simorthpf, eq “
edpf, eq
|e|`|f |

2

where ed is the standard Levenshtein edit distance between the two strings. This is

straightforward for languages which use the same character set, but it is more com-

plicated for languages that are written using different scripts. A variety of prior work

has focused on the problem of learning mappings between character sets (e.g. Yamada

and Knight (1999); Tao et al. (2006); Yoon, Kim, and Sproat (2007); Bergsma and Kondrak

(2007); Li et al. (2009); Snyder, Barzilay, and Knight (2010); Berg-Kirkpatrick and Klein

(2011)).

For non-Roman script languages, we transliterate words into the Roman script

before measuring orthographic similarity with their candidate English translations.

Following prior work (Virga and Khudanpur 2003; Irvine, Callison-Burch, and Klemen-
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alcanzaron sanitario desarrollos volcánica montana
alcantara sanitary ferroalloy volcanic montana
albanian sanitation barrosos volcanism fontana
lazzaroni unitario destroyers voltaic montane

lanaro sanitarium mccarroll vacancy mentana
aleandro sanitation disallows konica montagna
lazaros sagittario disallow dominica montanha
canaro sanitarias scrolls veronica montan
alianza kantaro payrolls monica montano
lazaro sanitorium carroll volcano montani

catanzaro santoro steamrolls vratnica montand

Table 3: Examples of translation candidates ranked using orthographic similarity. The
correct English translations, when found, are bolded. English words are ordered by their
orthographic similarity scores with the given Spanish word.

tiev 2010), we treat transliteration as a monotone character translation task and train

models on the mined pairs of person names in foreign, non-Roman script languages and

English. Our MT-based transliteration system can translate a single character as many

characters, and it can translate multiple input characters into a single output character.

Because transliteration is strictly a monotone operation, we do not allow reordering in

our models. Additionally, unlike in machine translation, our translation and language

models can support very large n-gram sizes because the number of characters in a given

script is small compared to word vocabularies; we use phrase length limits of 10 when

extracting translation grammars and in estimating language models. We use a character-

based language model trained on a list of English names.

In Irvine, Callison-Burch, and Klementiev (2010), we provide a detailed evaluation

of our transliteration technique, and found it to be competitive with the best performing

system in a transliteration shared task (Li et al. 2009). For purposes of bilingual lexicon

induction, we use the top-1 transliteration to compute edit distance.

Table 3 shows example ranked lists using orthographic similarity to rank English

words for several Spanish words. For those Spanish words that have English cognates,

14
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alcanzaron sanitario desarrollos volcánica montana
reached health developments volcanic montana
began transcultural developed eruptions miley

led medical development volcanism hannah
however sanitation used lava beartooth

early patient using plumes cyrus
including deliverables modern eruption crazier

took pharmaceutical based volcano bozeman
remained sewerage important volcanoes chelsom

several healthcare history breakouts absaroka
continued care different volcanically baucus

Table 4: Examples of translation candidates ranked using topic similarity. The correct
English translations, when found, are bolded. English words are ordered by their topic
similarity scores with the given Spanish word.

such as sanitario and volcánica, the orthographic signal ranks correct translations highly.

For Spanish words without English cognates, like desarrollos or alcanzaron, the English

words with the highest orthographic similarity are unrelated to the Spanish words.

2.4 Topic Similarity

Articles that are written about the same topic in two languages, are likely to contain

words and their translations, even if the articles themselves are written independently

and are not translations of one another. If we were able to associate articles about the

same topic across two languages, then we ought to be able to use that to compute a

topic similarity score to help rank potential translations. We Wikipedia articles create

topic signatures for words. Figure 3 illustrates this idea. The figure shows a topic vector

for the English word troops and 3 Russian words. The counts in the vector for troops

are the number of time that it occurred in the Wikipedia article corresponding to that

position in the vector. For instance, the word troops occurred 15 times on the Wikipedia

article about Barack Obama. How can we associate topics across languages? In order to

find a mapping of topics across languages, we use Wikipedia’s interlingual links, in a
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similar fashion that we used the small seed bilingual dictionaries to project across the

vector spaces for two languages when computing contextual similarity.

In order to score how likely a pair of words f and e are to be translations, we

compare their topic signatures F and E, by counting the the words’ occurrences in each

topic, normalize the signatures, and then comparing the resulting vectors. We simply

compute cosine distance between topic signatures.

simtopicpFtopic, Etopicq “
Ftopic ¨ Etopic

||Ftopic||||Etopic||
, (4)

The length of a word’s topic vector is the number of interlingually linked article pairs.

Each component fk of Ftopic is the count of the word f in the foreign article from

the kth linked article pair, normalized by the total occurrences of k For each foreign

language, the number of Wikipedia articles linked to English pages is given in Table 6.

The dimensionality of the topic signatures varies depending on the language pair. The

number of linked articles in Wikipedia range from 84 (between Kashmiri and English)

to over 500 thousand (between French and English).

Table 4 shows examples of English words ranked using topic similarity for several

Spanish words. Using topic similarity, montana, miley, cyrus and hannah are ranked

highly as candidate translations of the Spanish word montana. The TV character Han-

nah Montana is played by actress Miley Cyrus, so the topic similarity between these

words makes sense. Likewise, Bozeman is a large city in Montana, and Max Baucus

represented the state in the US Senate for over 35 years.

2.5 Frequency Similarity

Words that are translations of one another are likely to have similar relative frequencies

in monolingual corpora. We measure the frequency similarity of two words, simfreq , as

the absolute value of the difference between the log of their relative corpus frequencies,
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Barack_Obama Обама,_Барак
Virginia Виргиния

Iraq_War Иракская_война
Ückeritz Иккериц

Otto_von_Bismarck Бисмарк,_Отто_фон
Music Музыка

15
32
10
0
1
4

troops войска

8
15
8
0
0
5

1
0
0
0
0
7 

0
2
0
0
0
0

завтра цветок

Wikipedia

Figure 3: Illustration of how we compute the topical similarity between troops and three
Russian candidate translations. We first collect the topical signatures for each word (e.g.
troops appears in the page about Barack Obama 15 times and in the page about Virginia
32 times.) based on the interlingually linked pages. We can then directly compare each
pair of topical signatures. English glosses for the three Russian words are (from left to
right): troops, tomorrow and flower.

Frequency, f , and IDF Burstiness
number of words, n Top-5 Bottom-5 Top-5 Bottom-5

f “ 50, n “ 802

kratsa contemporaneously straubing-bogen wavering
tebet unrecognizable tebet busing

kagome categorizing cloppenburg unconvinced
khaldūn modern-style autosan redesigning

psittacosaurus crazed gøta oftentimes

f “ 100, n “ 303

subarticle call-ups penedès demoralized
trackmania workable lyrebird misgivings

lyrebird purports azarbaijan precluded
gârbea outnumber padstow workable
biecz unmatched trackmania forestall

Table 5: Examples of highest and lowest ranked English words according to two mea-
sures of burstiness. Empirical estimates were taken from a subset of English Wikipedia
data.

or:

simfreqpe, fq “ |logp
freqpeq

ř

i freqpeiq
q ´ logp

freqpfq
ř

i freqpfiq
q|

This helps prevent high frequency closed class words from being considered viable

translations of less frequent open class words.
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2.6 Burstiness Similarity

Burstiness is a measure of how peaked a word’s usage is over a particular corpus of

documents (Pierrehumbert 2012). Bursty words are topical words that tend to appear

frequently in a document when some topic is discussed, but do not not frequently across

all documents in a collection. For example, earthquake and election are considered bursty.

In contrast, non-bursty words are those that appear more consistently throughout doc-

uments discussing different topics, use and they, for example. Church and Gale (1995,

1999) provide an overview of several ways to measure burstiness empirically. Following

Schafer and Yarowsky (2002), we measure the burstiness of a given word in two ways.

The first is based on Inverse Document Frequency (IDF):

IDFw “ ´log
dfw
|D|

, (5)

where dfw is the number of documents that w appears in, and |D| is the total number

of documents in the collection. The second burstiness measure, similar to that defined

by Church and Gale (1995), is the average frequency of w divided by the percent of

documents in which w appears. We make one modification to the definition provided

by Church and Gale (1995) and use relative frequencies rather than absolute frequencies

to account for varying document lengths.

Bw “

ř

diPD
rfwdi

dfw
, (6)

where, as before, dfw is the number of documents in which w appears and rfwdi
is

the relative frequency of w in document di. Relative frequencies are raw frequencies

normalized by document length. Table 5 shows examples of high and low ranked

bursty words under each measure for two different constant word frequencies. The
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examples show that both measures of burstiness yield rankings that are consistent with

our intuitions, yet they provide different results.

We compare both the IDF and the B scores for pairs of words using ratios:

simIDF pe, fq “ minr
IDFe

IDFf
,
IDFf

IDFe
s

simburstpe, fq “ minr
Be

Bf
,
Bf

Be
s

2.7 Variations and Additional Signals

We perform experiments using variations on the signals listed above. Two variations

are word prefix contextual similarity and word suffix contextual similarity. Prefix con-

textual similarity is calculated in the same way as the contextual similarity score, but

we use source and target word stems, or word prefixes up to five characters long,

instead of full words. That is, the word prefix contextual similarity score for the word

pair (blanco, white) is the same as that of (blanca, white). In this particular example, we

collect only a single contextual vector for blanc{o,a}. In Spanish, this translation of the

English word white appears with either a masculine or feminine ending, depending on

what it modifies. By summing the distributional counts of blanco and blanca, we expect

a contextual vector that is more similar to English white than either alone. We measure

the similarity of a pair of prefixal contextual vectors using cosine similarity, as before.

Suffix contextual similarity measure is similar to the word stem measure, except

instead of using word prefixes, it uses word suffixes of up to five characters long. For

example, the word stem contextual similarity score of the word pair (imposible, possible)

is the same as that of (posible, imposesible). With this signal, we expect to sum over

alternate word prefixes in the same way that the word stem signal sums over alternate

word suffixes. The intuition is that suffix similarity may help to group words with the

same syntactic classes. Again, the similarity between a pair of suffixal contextual vectors
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is measured using cosine similarity. In addition to prefix and suffix contextual similarity,

we also estimate prefix and suffix topic and temporal similarity.

We also use an indicator feature which is positive if the source and target words

are the same string. Of course, this indicator is most useful for languages written in the

same script.

Finally, we add a final feature indicating the target translation’s monolingual fre-

quency, which serves as a sort of prior probability that the target word is of interest

at all. Specifically, we define this feature as the inverse of the log of the target word’s

frequency.

Although we have limited our experiments to this set of varied signals of translation

equivalence, our basic framework is easily extendible.

3. Experimental Setup

We designed a set of experiments to systematically explore the following research

questions: To what extent are the different signals of translation equivalence orthogonal

to each other? Are certain signals better than others at ranking translations? Does this

vary based on language or part of speech? How accurately do they individually rank

translation candidates for a variety of languages? How can we effectively combine

them in order to rank translation candidates? How much does the performance vary

per language? To what extent does performance depend on the size of the seed bilin-

gual dictionary, and on the size of the monolingual corpora? Does bilingual lexicon

induction make more accurate predictions for words with certain properties like being

highly bursty? How well does our discriminative model compare to the sophisticated

generative model MCCA?

First, we describe our evaluation metric, data, and experimental setup. Then we

present our findings.
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3.1 Evaluation metric

We measure performance using accuracy in the top-k ranked translations. We define

top-k accuracy over some set of ranked lists L as follows:

acck “

ř

lPL Ilk
|L|

(7)

where Ilk is an indicator function that is 1 if and only if a correct item is included in the

top-k elements of list l. That is, top-k accuracy is the proportion of ranked lists in a set

of ranked lists for which a correct item is included anywhere in the highest k ranked

elements. The denominator |L| is the number of words in a test set for a language. The

numerator indicates how many of the words had at least one correct translation in the

top-k translations posited for the word. Top-k accuracy increases as k increases.

A translation counts as correct if it appears in our bilingual dictionary for the

language.

3.2 Bilingual dictionaries

We created bilingual dictionaries using native-language informants on Amazon Me-

chanical Turk (MTurk). In Pavlick et al. (2014), we describe a study of the languages

demographics of workers on MTurk. In that work, we focused on the 100 languages

which have the largest number of Wikipedia articles and posted tasks asking workers

to translate the most frequent 10, 000 words in the most viewed 1, 000 pages for each

source language. All of the source words in the Wikipedia dictionaries are unigrams,

we allowed workers to translate them into multi-word English phrases, but we only

used entries that were translated as single words for the experiments described in

this article. Workers were shown words in the context of three Wikipedia sentences.
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Dict entries Wikipedia interlanguage Web crawl Web crawl
Language (freq >= 10) words links words dates
Albanian 7,314 6,388,669 19,860 9,127,415 598
Azeri 5,668 6,747,026 26,896 3,842,179 176
Bengali 5,368 4,998,454 18,603 8,295,164 467
Bosnian 7,139 7,515,961 19,981 8,647,129 794
Bulgarian 8,587 33,926,577 88,436 34,042,882 1208
Cebuano 899 2,755,209 52,026 1,886,463 121
Gujarati 4,442 3,958,031 3,909 1,084,719 122
Hindi 6,585 16,198,183 25,078 31,123,091 823
Hungarian 2,268 69,695,400 127,406 542,736 119
Indonesian 4,805 26,769,690 83,274 5,067,534 623
Latvian 7,311 9,432,914 33,024 36,156,391 747
Nepali 3,535 1,878,168 5,854 3,489,101 179
Romanian 6,600 34,672,327 135,874 17,608,197 374
Serbian 7,403 37,575,834 131,854 15,194,828 550
Slovak 7,346 23,477,764 107,958 113,163,058 1043
Somali 1,125 267,383 1,470 3,250,014 322
Spanish 7,780 232,437,776 374,651 913,465,084 3718
Swedish 5,534 70,923,386 274,152 11,307,825 122
Tamil 4,735 9,154,660 23,468 3,928,554 157
Telugu 5,136 8,769,259 8,841 3,254,373 120
Turkish 6,139 30,385,844 89,577 14,409,942 1165
Ukrainian 8,469 72,135,536 208,915 21,836,916 1350
Uzbek 969 5,368,879 71,081 8,304,074 333
Vietnamese 1,823 53,471,136 194,374 2,468,179 121
Welsh 4,207 4,414,153 28,066 6,573,628 704
Average 5,247 30,932,729 86,185 51,122,779 635
Median 5,534 9,432,914 52,026 8,304,074 467

Table 6: Statistics about the data used in our experiments.

Additional details on experimental design and quality control mechanisms are given

in Pavlick et al. (2014). As a result of that project, we collected bilingual dictionaries

of about 10, 000 words translated into English. For the experiments in this article, we

filter the dictionaries to include only high quality translations. Specifically, we only use

translations that have a quality score of at least 0.6 under the worker quality metric

given by Pavlick et al. (2014).

3.3 Monolingual Data

We draw monolingual data from two sources: (1) web crawls of online newspapers, and

(2) Wikipedia. Table 6 gives stats about the amount of data that we gathered for each

language.
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3.3.1 Web crawls. Online newspapers are good sources of text for many languages. We

began harvesting such data by crawling several well-known news sources that publish

stories in two or more languages, including Deutsch Welle and Voice of America. In

order to gather more data, particularly for less commonly used languages, we scraped

a list of 44, 892 newspapers and their locations, URLs, and languages from the ABYZ

News Links website.4 The resulting database of newspapers contains links to online

newspapers published in 128 languages, and we set up web crawls to download the

content from each daily.

Because our data is comprised of news stories, each document also has an associated

time stamp, which we use to define a rough document alignment with English news

articles. That is, we treat the set of all foreign language news stories published on a

particular day as roughly comparable to those written in English on the same day. The

degree of comparability between such sets of documents varies greatly.

3.3.2 Wikipedia. We also use Wikipedia as a source of monolingual data. For all lan-

guages, we use Wikipedia’s January 2014 data snapshots. To maximize the degree of

comparability between our source language Wikipedia pages and English Wikipedia,

we only use those pages which have interlingual links with English pages. Unlike our

newspaper web crawls, Wikipedia content has fairly reliable language labels. However,

for some languages, English content is copied from the English Wikipedia without

translation. We use the CLD2 language ID system to identify and remove English

content from other languages’ Wikipedias.

We also use Wikipedia as a source for example transliterations in non-roman script

languages paired with English. In (Irvine, Callison-Burch, and Klementiev 2010), we

4 www.abyznewslinks.com/
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detailed how we mined transliteration training data from Wikipedia page titles for 150

languages. Wikipedia categorizes articles and maintains lists of all of the pages within

each category. In mining transliteration data, we took advantage of a particular set of

categories that list people born in a given year. For example, the Wikipedia category

page ‘1961 births’ includes links to the ‘Barack Obama’ and ‘Michael J. Fox’ pages. We

iterated through birth years and the links to pages about people born in each year and

then followed interlingual links from each English page about a person, compiling a

large list of person names (Wikipedia page titles) in many languages. In Section 2.3,

we use this data to train transliterators and transliterate source language words before

comparing their orthographies with English words.

3.4 Languages

We report performance results for bilingual lexicon induction from 24 foreign languages

into English. The languages in our study are Albanian, Azeri, Bengali, Bosnian, Bulgar-

ian, Cebuano, Gujarati, Hindi, Hungarian, Indonesian, Latvian, Nepali, Romanian, Ser-

bian, Slovak, Somali, Swedish, Tamil, Telugu, Turkish, Ukrainian, Uzbek, Vietnamese

and Welsh. Statistics about the data for each of the languages is given in Table 6.

3.5 Monolingual Signals

In our experiments, we use a total of 18 features to rank English words as potential trans-

lations of the input foreign word. These are estimated from our two sources of compara-

ble monolingual data, web crawls and Wikipedia: (1) Web Crawls Contextual Similarity,

(2) Web Crawls Temporal Similarity, (3) Orthographic Similarity, (4) Wikipedia Contex-

tual Similarity, (5) Wikipedia Topic Similarity, (6) Wikipedia Frequency Similarity, (7)

Wikipedia IDF Similarity, (8) Wikipedia Burstiness Similarity, (9) Web Crawls Prefix

Contextual Similarity, (10) Web Crawls Prefix Temporal Similarity, (11) Web Crawls
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Language Candidates Language Candidates Language Candidates
Albanian 102,998 Hungarian 199,293 Swedish 286,774
Azeri 113,751 Indonesian 157,209 Tamil 89,316
Bengali 76,014 Latvian 115,933 Telugu 54,415
Bosnian 89,871 Nepali 38,895 Turkish 185,906
Bulgarian 181,510 Romanian 203,665 Ukrainian 232,221
Cebuano 59,546 Serbian 188,282 Uzbek 98,191
Gujarati 34,289 Slovak 171,250 Vietnamese 159,240
Hindi 101,777 Somali 43,826 Welsh 97,317

Table 7: Number of candidate English words, by source language. English candidates
appear at least ten times in the monolingual corpora.

Suffix Contextual Similarity, (12) Web Crawls Suffix Temporal Similarity, (13) Wikipedia

Prefix Contextual Similarity, (14) Wikipedia Prefix Topical Similarity, (15) Wikipedia

Suffix Contextual Similarity, (16) Wikipedia Suffix Topical Similarity, (17) String Identity,

and (18) Inverse Log of Target Wikipedia Frequency.

Table 8 shows examples of the values assigned to several English candidate trans-

lations of Romanian words for each of the 18 features.

3.6 Candidate English Translations

Table 7 shows the number of English words that we consider as candidate translations

of the foreign source words for each foreign language. All of these English words are

ranked by the 18 monolingual signals for each of the 24 languages.

4. Analyzing and Combining Signals of Translation Equivalence

In Sections 4.1–4.3 we analyze the strength of our different signals of translation equiv-

alence, and how best to combine them.

4.1 Orthogonality of Signals

The primary goal of this article is to show how a diverse set of weak signals of transla-

tion equivalence can be combined to learn the translations of words from monolingual

texts. The different signals need to be orthogonal in order for a combination to improve
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src trg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

politic

political .127 0 0.25 .165 .139 .722 .644 .134 .359 .891 0 0 .465 .179 0 0 0 .095
offing 0 .879 0.92 0 0 7.414 .391 .027 0 0 0 0 0 0 0 0 0 .402
first 0 0 1.0 0 .130 2.490 .274 .239 0 0 0 0 0 0 0 .133 0 .081
shipbuilding .161 0 0.95 0 0 3.358 .638 .072 0 0 0 0 0 0 0 0 0 .155

curs

course 0 0 0.4 0 .055 .437 .820 .036 0 0 0 0 0 .052 0 0 0 .107
refresher .092 0 1.08 0 0 7.132 .380 .031 0 0 0 0 0 0 0 0 0 .369
meeting .089 0 1.27 0 0 .702 .933 .033 .175 0 0 0 0 0 0 0 0 .110
pirc 0 0 0.75 0 0 7.374 .358 .038 0 0 0 0 0 0 0 0 0 .402

valea

valley 0 .925 0.36 0 0 .036 .693 .184 0 0 0 .919 0 0 0 0 0 .103
geography 0 0 1.14 0 .012 .074 .509 .377 0 0 0 0 0 0 0 0 0 .102
either 0 0 0.91 0 .013 .250 .566 .056 0 0 0 0 0 0 0 0 0 .100
birthday 0 .908 1.08 0 0 1.785 .994 .049 0 0 0 0 0 0 0 0 0 .126

olanda

netherlands .194 0 0.82 .293 0 .218 .805 .247 .349 0 0 0 .315 0 0 0 0 .107
vows .121 0 1.2 0 0 3.396 .691 .065 0 0 0 0 0 0 0 0 0 .163
orava 0 0 0.55 0 0 5.337 .499 .759 0 0 0 0 0 0 0 0 0 .237
kunduz 0 0 0.83 .235 0 5.415 .471 .688 0 0 0 0 .255 0 0 0 0 .241

revista

magazine 0 0 1.07 .208 0 .028 .726 .405 0 0 0 0 .338 .050 .178 .040 0 .105
takwin .603 0 1.08 0 0 8.167 0 0 0 0 .061 0 0 0 0 0 0 10
archeological .065 0 1.0 0 0 2.832 .771 .373 0 0 0 0 0 0 0 0 0 .149
hollie 0 0 1.08 0 .047 7.231 .432 .109 0 0 0 0 0 0 0 0 0 .417

adus

brought .398 0 1.09 .260 .091 .311 .630 .428 .329 0 .378 0 0 .091 0 0 0 .104
centuryfrom .344 0 1.33 0 0 7.982 0 0 .246 .960 0 0 0 0 0 0 0 10
associated 0 0 1.29 0 .059 .170 .681 .536 0 .959 0 0 0 .074 0 .062 0 .105
abuse 0 0 0.44 0 0 1.591 .875 .407 0 0 0 0 0 0 0 0 0 .129

Table 8: Example feature values for Romanian-English word pairs for all 18 features
used in our experiments. The feature numbers correspond to those enumerated in Sec-
tion 3.5. To train our discriminative classifier, we used 1 positive training example and
3 negative training examples. The positive training examples are indicated by English
words in bold (dictionary translations). Non-bolded English words are negative training
examples (randomly selected word). The values for feature 17 are all 0 since none of
the candidate translations are string identical to the input. The values for many other
features often round to 0, because they are too low to be shown with 3 significant digits.

their individual accuracy. Intuitively, the signals that we defined in Section 2 seem to

be orthogonal. That is, they provide very different types of information about how

words are used in language, and we hypothesize that the lists of ranked candidate

translations under each signal are uncorrelated with the exception (and hope!) that

correct translation pairs rank relatively high according to all or most of the signals. In

our first set of experiments, we measure their orthogonality empirically.

In order to empirically measure orthogonality of our signals, we measure pairwise

Spearman rank-order correlation coefficients. Specifically, we first use each signal sep-

arately to rank all translation candidates. Then, we measure the correlation between

all pairs of ranked lists using the Spearman coefficient. A correlation coefficient of 1.0
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crawls-cont
wiki-cont -0.15 wiki-cont
temporal -0.14 -0.19 temporal
orthography -0.28 -0.31 -0.28 orth.
topic -0.15 -0.14 -0.13 -0.30 topic
frequency 0.01 0.13 0.02 -0.18 0.13 freq.
burstiness -0.10 0.06 -0.07 0.06 0.11 0.28 burst.
idf 0.06 0.10 -0.12 -0.01 0.00 0.49 0.14

Table 9: Measure of the correlation (orthogonality) between signals. For each of 24
languages, we randomly select 1, 000 source language words and compute the Spear-
man rank correlation coefficient across pairwise ranked lists of translation candidates
generated by each of eight signals of translation equivalence. We average coefficients
within each language. The results here show the mean of the correlation coefficient
between all pairs of signals across the 24 languages.

indicates perfect positive correlation, -1.0 indicates perfect negative correlation, and

coefficients close to zero indicate that our signals do not correlate.

For each of 24 languages,we randomly select 1, 000 source language words and use

each of our eight basic translation signals to rank all candidate English translations.

For each source language word and each pair of signals, we measure the Spearman

correlation coefficient. We average the pairwise results across the 1, 000 source words

and then average across languages.

Table 9 shows the results. The first thing to note is that the highest average corre-

lation coefficient is between the frequency and the inverse-document frequency (IDF)

signals (0.49). This makes sense because IDF is based on word frequency. The second

highest value corresponds to a negative correlation (-0.31) between orthographic simi-

larity and Wikipedia contextual similarity. These features are based on entirely different

information, and we would not expect them to have a positive correlation. The fact that

they are negatively correlated is surprising, but confirms our intuition that the signals

provide orthogonal information.
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4.2 Relative Strength of Individual Signals

We analyzed the relative strength of the different signals to see if some signals tended

to rank translation candidates more accurately than others. We would expect that

the frequency signal is a weaker predictor than, for example, orthographic similarity,

particularly for closely related language pairs. In our second set of experiments, we

compare the accuracies of each signal and include analyses by language and by part-of-

speech.

4.2.1 By Source Language. We computed how frequently each signal ranks the correct

translation higher than any other signal. That is, we computed how often each signal

is a better predictor of how to translate a given word than all other signals. We use

a set of randomly selected 1, 000 source language words.5 For each, we identify the

rank of the correct English translation under each of the eight basic signals. We then

compare how often each signal ranks the correct translation higher than the other

signals. Table 10 shows the results. The following three signals dominate most often:

Wikipedia contextual similarity, orthographic similarity, and topic similarity.

4.2.2 By Part of Speech. We ask a related question: are some signals particularly in-

formative for certain classes of words? In order to begin to answer this question, we

label each source word with the most probable part-of-speech (POS) tag for its English

translation using the English POS tagger in the Natural Language Toolkit (Bird, Klein,

and Loper 2009) to tag English words in isolation. We use information from English

because POS taggers are not readily accessible for many of our languages of interest.

5 The same randomly selected set of source words that was used in Section 4.1
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Language crawls-cont wiki-cont temporal orth. topic freq. burst. idf
Azeri 3.6 41.0 3.6 11.0 30.3 5.9 4.2 0.4
Bulgarian 5.1 27.0 3.1 17.0 42.2 4.3 0.6 0.8
Bengali 8.7 26.7 0.9 15.4 40.4 4.5 2.3 1.2
Bosnian 8.8 41.2 4.2 16.5 21.8 4.7 2.5 0.4
Cebuano 12.7 22.1 7.3 20.6 25.7 4.6 6.4 0.5
Welsh 11.0 55.6 3.2 9.6 11.1 8.0 1.2 0.4
Gujarati 9.4 33.9 5.3 8.6 31.8 4.3 3.9 2.9
Hindi 4.5 25.5 2.0 10.6 46.7 4.9 2.8 2.9
Hungarian 4.6 36.1 0.0 10.1 25.7 12.5 5.4 5.7
Indonesian 12.3 54.9 4.3 10.8 6.4 7.9 0.5 2.8
Latvian 5.4 41.6 4.8 18.6 23.1 5.0 1.3 0.3
Nepali 11.2 32.0 6.4 12.5 27.6 5.1 4.2 0.8
Romanian 5.7 39.3 1.5 35.0 9.6 5.4 2.7 0.8
Slovak 4.8 42.1 4.2 17.5 22.8 4.3 3.3 1.0
Somali 8.7 28.3 3.4 11.1 18.1 17.4 12.5 0.5
Albanian 7.2 47.8 3.1 21.9 11.0 6.0 3.0 0.1
Serbian 3.8 27.4 1.6 17.5 42.8 4.5 1.6 0.7
Swedish 4.3 45.0 2.1 22.3 10.7 11.1 2.5 2.1
Tamil 7.7 25.2 1.8 4.2 53.7 5.1 1.6 0.8
Telugu 6.6 29.4 5.8 10.2 39.9 3.1 3.4 1.6
Turkish 6.8 43.4 8.7 9.8 15.2 11.4 2.5 2.1
Ukrainian 7.2 35.1 4.0 24.0 17.0 6.9 3.6 2.2
Uzbek 7.4 6.6 0.5 20.1 41.0 15.1 7.4 1.9
Vietnamese 11.0 16.6 9.7 7.7 21.0 16.6 3.3 14.1
Average 7.4 34.3 3.8 15.1 26.5 7.4 3.4 2.0

Table 10: Percent of time when each translation signal ranks a correct translation the
highest out of all of the translation signals. This percentage is calculated for 1, 000
randomly chosen words with dictionary entries for each of the 24 languages.

As before, we examine the relative performance of each signal, but breaking down

the results by POS tag instead of by language. Table 11 shows the results. For clarity,

we collapse some POS classes. For example, we mark both noun and plural nouns as

simply ‘Noun.’ Because there are so few word types, we also collapse all closed class

categories, including conjunctions, determiners, and prepositions into a single ‘Closed’

category. The final row is identical to that in Table 10. Because most (65%) words are

nouns, the summary statistics are dominated by them.

The results in Table 11 are very consistent across word classes with one notable

exception. The orthographic feature makes very good translation predictions for nouns

and adjectives but not for the other word classes. The higher performance for ortho-

graphic similarity on nouns makes sense; we would expect orthographic similarity to be
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POS Class % Words crawls-cont wiki-cont temporal orth. topic freq. burst. idf
Verb 10.9 8.9 34.0 4.6 7.3 31.1 9.1 2.9 2.1
Noun 64.8 7.0 36.7 3.5 17.4 23.7 7.0 2.9 1.9
Adverb 3.9 10.5 35.3 6.6 5.1 29.0 7.3 3.5 2.6
Adjective 13.3 6.2 34.4 3.1 19.0 27.3 5.5 3.1 1.4
Closed 7.1 9.4 28.4 5.3 6.6 36.8 5.4 7.0 1.1
Average 7.4 34.3 3.8 15.1 26.5 7.4 3.4 2.0

Table 11: Analysis of Signals by Part-of-Speech tag. This table shows the percent of
time when each translation signal ranks a correct translation highest out of all of the
translation signals. The results are subdivided based on part of speech. The average
row is identical to the average per-language result given in Table 10.

informative for borrowed and transliterated words, which tend to be proper nouns. The

overall consistency suggests that there is likely little to gain from training word class-

specific models for making translation predictions. In Section 4.3.1, we define a baseline

method for combining the orthogonal features to make a single translation prediction,

and in Section 4.3.2 we learn models for combining features.

4.3 Accuracy of Features and their Combination

Schafer (2006) showed that combining diverse signals of translation equivalence could

improve performance on bilingual lexicon induction. Here we do a more systematic

analysis. We extend their observations and more systematically explore the space of

possibilities by (1) experimenting with a wider variety of features, (2) analyzing a larger

number of languages, and (3) introducing a discriminative model to set the weights of

each feature to optimize translation quality.

4.3.1 Baseline Combination Technique: MRR. As our baseline combination, we use the

mean reciprocal rank (MRR) across all monolingual signals, H ,

MRRe “

ř

hPH
1

rhpeq

|H|
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where rhpeq is the rank of English word e under the monolingual similarity measure h.

This unsupervised approach to rank aggregation assumes no prior knowledge of which

signals are likely to be the most informative.

4.3.2 Discriminative Combination of Monolingual Signals. We introduce a novel

supervised approach to combining the monolingual signals enumerated above. For each

language, we choose up to 10, 000 source language words among those that occur in

each of our comparable corpora (web crawls and Wikipedia) at least ten times and

that have at least one translation in our gold standard dictionaries. Because some

monolingual datasets and some dictionaries are small, the source word samples are

smaller than 10, 000 for some languages. For example, although our MTurk dictionary

contains translations for 9, 977 Gujarati words, only 4, 442 of those words appear at least

ten times in both of our monolingual corpora. We randomly divide the source language

words into three equally sized sets for training, development, and testing.

We train binary classifiers to predict whether a pair of words are translations of one

another or not. The translations in our training data serve as positive training examples.

The negative training examples are constructed by randomly pairing source language

words in the training data with English words.6 We use our development data to set

the number of negative examples per positive example. Using three negative examples

for each positive example optimized performance on the development set. At test time,

after scoring all source language words in the test set paired with all English words

in our candidate set,7 we rank the English candidates by their classification scores and

evaluate accuracy in the top-k translations.

6 Among those that appear at least ten times in our monolingual data, consistent with our candidate set.
7 All English words appearing at least ten times in our monolingual data. In practice, we further limit the

set to those that occur in the top-1000 ranked list according to at least one of our signals. Because words
outside of these top-1000 lists are extremely unlikely to end up with a relatively high prediction score,
doing so does not impact our performance but speeds up the prediction step.
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We use the Vowpal Wabbit package (Agarwal et al. 2014) to estimate the parameters

of our classifiers. VW uses a gradient descent-based algorithm for learning binary

predictors, and we perform 100 learning passes over the training data. We used the

following parameters: a logistic loss function, no regularization, linear regression, and

an adaptive learning rate for each feature. These choices were kept the same across all

languages. Our data and software will be made available upon publication, so that other

researchers may re-run our experiments and try their own models.

We train classifiers separately for each source language on a held-out development

set to learn the weights of each of the 18 features. The weights vary based on, for

example, corpora size and the relatedness of the source language and English (i.e. the

number of cognates). Although the scale of feature values varies somewhat, making it

difficult to interpret feature weights, we compared feature weights and found that the

highest weighted feature for 19 languages is the Wikipedia topic similarity feature, and

the highest for 5 languages is the Wikipedia context feature. These results are consistent

with what we saw comparing the performance of individual features in Figure 4.

4.3.3 Per-Feature Results. Figure 4 shows the performance of each of the monolingual

similarity measures alone, as well as the baseline and discriminative combinations. Each

box-and-whisker plot shows the top-10 accuracy range, quartiles, and median across a

set of 24 diverse languages (listed in Figure 6). The Wikipedia topic and context fea-

tures using whole words and word prefixes are the highest performing single features.

Using the simple MRR method of combining signals is more effective than using any

single feature. Our discriminative approach learn a much better way to combine the

orthogonal signals, and outputs much more accurate translations.
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Figure 4: Performance using each of the 18 features separately to rank translation can-
didates, plus the MRR baseline for combining them and our discriminative model. Box
and whisker plots depict the distribution of performance across a set of 24 languages.
The three lines in each box illustrate the first, second (median), and third quartiles.
Outliers (defined as being more than 1.5 times the interquartile range away from
either quartile) are shown with circles. The whiskers show non-outlier minimum and
maximum values.

4.3.4 Per-Language Results. For each source language, we use our trained models to

induce translations for each source language word in our test sets, and we do evaluation

against our gold standard bilingual dictionaries. We rank English translations by their

translation classification score and measure percent accuracy in the top-k. This mea-

sure is somewhat conservative since the dictionaries aren’t expected to be exhaustive,

meaning that some target language translations for a given source language word won’t

appear in the dictionary and the system won’t be given credit for ranking these target

items high in its translation list. This is particularly true here because we have used

the MTurk dictionaries, which are somewhat noisy. However, in these experiments, we

only evaluate on words that do appear in our bilingual dictionary. It’s possible that such
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Figure 5: Top-10 bilingual lexicon induction accuracy of the baseline MRR approach to
combining signals and our proposed supervised approach for each of 24 languages.

words are easier to translate than, say, a given OOV word in some sentence which we

wish to translate. The results presented in this section are on the held-out blind test sets

described above.

Table 12 compares the performance of the MRR baseline and our discriminative

combination for each of the 24 languages. Figure 5 shows the same top-10 accuracies

graphically. It’s clear that the supervised method outperforms the baseline by a large

margin for all 24 languages. Results using the supervised models vary from 11% accu-

racy on Uzbek to 57% accuracy on Bulgarian. The average accuracy across languages

using the MRR baseline is 15.8% and using a supervised approach is 34.2%, or greater

than twice the average baseline accuracy.

5. Determinants of Success

In Sections 5.1–5.3 we analyze what factors cause words to be translated accurately

or inaccurately using our monolingually-derived features. We examine the amounts of

monolingual and bilingual data, and the effects of word frequency and burstiness.
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MRR Supervised Absolute % Relative
Language Baseline Model Improvement Improvement
Vietnamese 2.5 7.9 5.4 216.0
Uzbek 4.3 10.8 6.5 151.2
Somali 9.1 18.1 9.0 98.9
Turkish 9.0 22.5 13.5 150.0
Hungarian 8.1 22.6 14.5 179.0
Nepali 11.0 22.8 11.8 107.3
Azeri 10.7 25.6 14.9 139.3
Cebuano 12.3 28.3 16.0 130.1
Indonesian 17.4 32.0 14.6 83.9
Swedish 15.4 32.6 17.2 111.7
Slovak 13.6 36.6 23.0 169.1
Bengali 19.6 37.4 17.8 90.8
Ukrainian 13.6 37.7 24.1 177.2
Tamil 17.1 37.9 20.8 121.6
Latvian 16.6 38.5 21.9 131.9
Albanian 19.4 39.6 20.2 104.1
Telugu 25.7 41.0 15.3 59.5
Bosnian 19.0 43.1 24.1 126.8
Hindi 25.9 43.4 17.5 67.6
Welsh 14.5 44.4 29.9 206.2
Gujarati 33.3 45.3 12.0 36.0
Serbian 18.8 47.2 28.4 151.1
Romanian 17.3 47.6 30.3 175.1
Bulgarian 26.0 56.9 30.9 118.8
Average 15.8 34.2 18.3 129.7

Table 12: Top-10 Accuracy on test set. Performance increases for all languages moving
from the baseline (MRR Baseline) to discriminative training (Supervised Model). The aver-
age accuracy across languages using the MRR baseline is 15.8 and using our supervised
approach is 34.2.

5.1 Learning Curve Analyses

Here we examine how accuracy changes as a function of the number of bilingual

dictionary entries used to train the discriminative model, and as a function of the size of

the monolingual corpora used to estimate the similarity scores that are used as features

in the model.

5.1.1 Varying the Number of Translated Word Pairs. Figure 6 (at the end of the article)

shows learning curves over the number of positive training instances for each source
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language. In all cases, the number of randomly generated negative training instances is

three times the number of positive. For all languages, performance is stable after about

300 correct translations are used for training. This shows that our supervised method

for combining signals requires only a small training dictionary. In most cases, for a new

language, a dictionary of this size could be mined from the Internet or created using

crowdsourcing (Irvine and Klementiev 2010; Pavlick et al. 2014).

5.1.2 Varying the Amount of Monolingual Data. How much monolingual data would

we need to ensure high quality induced bilingual lexicons? Do our experiments show

any signs of bilingual lexicon induction performance leveling off after a certain amount

of monolingual data is available? If so, any further performance gains would have to

be made by improving our underlying model, instead of taking the easier route of

expanding our web crawls to additional websites. These are important considerations

as we move to integrating induced translations into end-to-end SMT.

Figure 7 shows bilingual lexicon induction learning curves for four languages,

Gujarati, Albanian, Azeri, and Tamil. Top 1, top 10, and top 100 accuracies are plotted on

the y-axis for each language, and the x-axis shows the amount of monolingual data used

to score and rank translation candidates. We generated the learning curves by sampling

the web crawl and Wikipedia monolingual corpora at the same rate. The total amount

of monolingual data available for Gujarati is about 5 million words, and it is about 11

million for Azeri, 13 million for Tamil, and 15 million for Albanian.

Performance levels off after about one third of the Albanian data are used. This

corresponds to about 5 million words. For Gujarati, performance increases rapidly up to

the full amount of 5 million monolingual words. For Tamil and Azeri, the performance

continues to increase albeit at a lower rate than for Gujarati. These results indicate that

we need several million words of comparable corpora to start to achieve reasonable

36



Irvine and Callison-Burch A Comprehensive Analysis of Bilingual Lexicon Induction

performance, and possibly that increasing the amount of monolingual data exhibits the

logarithmic improvements observed in other NLP problems like language.

5.2 Analysis by Word Frequency

Previous work on bilingual lexicon induction typically focused only on discovering

translations for the most frequent words in a language. This was done for practical pur-

poses, since the context-vector representations for high frequency words are much less

sparse than for low frequency word. However, it is not a particularly realistic scenario,

since for applications like SMT, the words that we would like to induce translations for

are typically rare words that do not occur in our bilingual training data.

Figure 8 presents an analysis of the accuracy of our discriminative model. It bins

source language words by their Wikipedia corpus frequency. We binned the words in

each evaluation test set by frequency, and each bin contains 100 source language words.

That is, the most frequent 100 source language words were put in the first bin, and

the least frequent were put into the last bin. The x-axis in each figure plots the average

corpus frequency of the words in a given bin versus the percent of those source language

words that have a correct translation in the top-k ranked list of translations.

The results in Figure 8 are presented starting with the language with the least

amount of Wikipedia data (Somali) and ending with the language with the largest

amount (Swedish), among those languages for which results are presented. Corpus

frequencies for even the most frequent words in the first few source languages are very

small. For example, the average frequency of the 100 most frequent Somali words is

only 13.

Prior work on bilingual lexicon induction has focused on identifying translations

for frequent words. In general, our monolingual signals are stronger for those words

that appear frequently in monolingual corpora than for those words that appear less

37



Computational Linguistics Volume 1, Number 1

frequently and have sparse context and temporal counts. Therefore, we hypothesized

that translation accuracy would be higher for frequent words than for less frequent

words, resulting in accuracies that go up from left to right, or from lower frequency to

higher frequency, in the figures. Figure 8 shows that this effect holds true, but it is not

as strong as we expected.

To quantify the effects of frequency, we compute the Spearman rank-order correla-

tion coefficient between the frequency rank of a given source word and the rank of its

correct translation.8 Across all languages, we find a slightly positive average correlation

of 0.08, indicating that, as we expected, more frequency words tend to have higher

ranked correct translations. This effect is significant to a p-value of 0.01 for 14 of the 24

languages,9 however the correlation is not as large as we expected. In the next section

we conduct a similar analysis based on burstiness.

5.3 Analysis by Word Burstiness

Figure 9 presents results again on the same set of experiments but bins source language

words by their Wikipedia corpus burstiness. We use the burstiness definition (Bw, not

IDFw) given in Section 2.6. As we did for the word frequency analysis, we bin the words

in each evaluation set by burstiness, with each bin containing 100 source words. That is,

the 100 most bursty source language words were put in the first bin, and the least bursty

were put into the last bin. The horizontal axis in each figure plots the average burstiness

of the words in a given bin versus the percent of those source language words that have

a correct translation in the top-k ranked list of translations.

8 Although we have integer-valued frequency information, our comparison variable only contains ranks,
so we convert frequency to an ordinal variable by ranking the words in each test set by their Wikipedia
monolingual frequencies, from highest to lowest.

9 Bosnian, Cebuano, Somali, Nepali, Gujarati, Bengali, Latvian, Indonesian, Welsh, Tamil, Turkish, Telugu,
Hungarian, Swedish
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We hypothesized that it may be easier to induce translations for bursty words than

for non-bursty words because their temporal and topic signatures are very peaked. The

results in Figure 9 confirm this. Again, without binning by burstiness, we compute

the Spearman rank-order correlation coefficient between the rank of a given word’s

burstiness and the rank of its correct translation. Across all languages, we find a positive

average correlation of 0.25, indicating that, as we expected, we tend to rank correct

translations higher for more bursty words. This effect is significant to a p-value of 0.01

for all 24 languages. Comparing our results here with those in Section 5.2, we see that

burstiness is a better predictor of ranking performance on a given word than frequency.

6. Comparison with a Sophisticated Generative Model

We compare our discriminative bilingual lexicon induction approach with the popular

generative model developed by Haghighi et al. (2008). Haghighi et al. (2008) presents a

canonical correlation analysis (CCA) based approach to inducing bilingual lexicons. The

generative model presented in that work first generates a set of one-to-one matchings,

M , between pairs of source and target words. Then, a feature vector is generated for

each matched word type, si and tj , from a ‘language-independent concept,’ zi,j . Similar

to our work, source and target words are represented by feature vectors characterizing

their orthographies and their contexts in monolingual corpora. However, unlike our

work, the generative model proposed in Haghighi et al. (2008) allows neither source nor

target word types to have multiple translations. Inference is done through boostrapped

EM; the best CCA parameters, θ, are computed in the M-step, and the maximum

weighted bipartite matching is found in the E-step using the Hungarian algorithm.

In the first iteration, an initial lexicon is used to seed the E-step, and in additional

EM iterations, an increasing number of high-confidence matchings are included until
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a complete bipartite matching is identified. The approach is referred to as matching

canonical correlation analysis (MCCA).

Haghighi et al. (2008) presents results on three language pairs (English-Spanish,

English-Chinese, and English-Arabic). However, evaluation is only done over nouns,

which is a bursty word class, and lexicons are limited to high-frequency words. As we

showed in Sections 5.2 and 5.3, frequent and bursty words tend to be the easiest to

translate accurately.

We did the following to ensure that our comparison with MCCA is as fair as

possible. We used Aria Haghighi’s code to compute the translations for MCCA. We

present experiments on Spanish-English, which was the best performing language pair

in the MCCA paper. We use identical data sets for MCCA and our discriminative model,

taking monolingual corpora from our Wikipedia collection and bilingual lexicons from

our MTurk dictionary. We down-sample our data to about 6, 000 randomly selected

Wikipedia page pairs ( 5 million words of text in both languages), to make the data

set comparable in size to Haghighi et al. (2008)’s experiments. We identify a bilingual

dictionary of 1, 100 word translation pairs in the MTurk dictionary for which both the

source and target lexicons are unique and all words appear in monolingual corpora

greater than ten times. We use the learning parameters in Haghighi’s MCCA code,

which include ten iterations of bootstrapped EM and a context window of size four.

We perform an experiment where our discriminative model is limited to use only the

two features that the MCCA model uses (orthographic features and contextual features

estimated over the Wikipedia monolingual corpora). We use MCCA to compute a full

bipartite matching and measure accuracy over the complete test set of 1, 000 translation

pairs.
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Model Accuracy (%)
MCCA 15.1
Discriminative Model w/ Context and Orth. Features Only 24.3
Discriminative Model w/ All Features 42.3

Table 13: Comparison of bilingual lexicon induction accuracies using (1) matching
canonical correlation analysis (MCCA), (2) our supervised discriminative model using
only contextual and orthographic features, and (3) our supervised discriminative model
using our complete feature set. Accuracy is measured as the percent of test set transla-
tions that are correctly matched by each model’s full bipartite matching.

We randomly select 100 word pairs to serve as a seed lexicon in the MCCA approach

and as training data in our discriminative approach, and we use the remaining 1, 000

word pairs as an evaluation set. We use MCCA to compute a full bipartite matching

and measure accuracy over the complete test set of 1, 000 translation pairs.

We use the seed lexicon of 100 word pairs to train our supervised discriminative

model. As before, we randomly select three times as many negative examples for

training. We then use the learned model to score all words in the source test lexicon

paired with all words in the target test lexicon. In order to make our results comparable,

we follow Haghighi et al. (2008) and use the Hungarian algorithm (Kuhn 1955) to find

the best set of one-to-one bipartite matchings across the source and target lexicons,

maximizing the total score across all matchings. We first measure the performance of our

discriminative model using the orthographic and contextual features used by MCCA.

Then, we also measure performance when we add our topic, frequency, and burstiness

similarity features to the model.

Table 13 shows the performance of each bilingual lexicon induction model. The

MCCA approach correctly matches 15% of the 1, 000 test set pairs. Our discriminative

approach using only orthographic and contextual similarity features correctly matches

24%. When we add our full feature set, our model achieves 42% accuracy. These results

demonstrate that our discriminative model needs no more training data than is needed
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to seed a generative model like the one presented in Haghighi et al. (2008). This is con-

sistent with our results in Section 5.1.1, where we showed that our models can achieve

higher accuracies on the bilingual lexicon induction task using only small amounts of

supervision.

In addition to our discriminative model outperforming the MCCA generative

model on the matching task, it has the added advantage of not being restricted to pre-

dicting 1:1 word translations. This is critical as, even for closely related language pairs,

many words do not have a one-to-one correspondence across languages. One example

from the domain adaptation setting is the French word enceinte. In medical contexts, it

translates as pregnant in English, but in government contexts it translates as place, house,

or chamber and in scientific contexts is translates most frequently as enclosures. We would

not want to restrict models of bilingual lexicon induction to choosing only one sense,

or one translation, for French enceinte. That is, the polysemy of words varies across

languages and it is important to be able to account for this in any model of bilingual

lexicon induction.

7. Related Work

7.1 Diverse Monolingual Similarity Metrics

Schafer and Yarowsky (2002) exploit the idea that word translations tend to co-occur in

time across languages, and Schafer (2006) uses this and a diverse set of other similarity

measures to bootstrap a small seed bilingual dictionary and induce full dictionaries

for low resource languages. Schafer (2006) combines the different signals, and weights

their contribution in an ad hoc manual fashion, rather than setting them empirically

by applying machine learning algorithms. Klementiev and Roth (2006) also use the

temporal cue to train a phonetic similarity model for associating Named Entities across

languages. Koehn and Knight (2002) use similarity in spelling as another kind of cue that
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a pair of words may be translations of one another. Other work has used dependency

relations in place of adjacent words to define context (Garera, Callison-Burch, and

Yarowsky 2009; Andrade, Matsuzaki, and Tsujii 2012).

Recent work has used graph-based models to induce translations. Mausam et al.

(2010) uses freely available online dictionaries and inference over translation graphs to

compile a very large, multilingual dictionary. Laws et al. (2010) use graph-based models

to represent linguistic relations and induce translations. Tamura, Watanabe, and Sumita

(2012) employ the classic notions of co-occurrence and contextual similarity but use

graph-based label propagation to induce translations.

7.2 Other Approaches to Learning Translation of OOVs

Approaching the problem from an information retrieval perspective, Zhang, Huang,

and Vogel (2005) use a system based on cross-lingual query expansion to identify

translations for OOV words.

A new line of research has tried to use decipherment techniques (Knight 2013) to

learn translations from monolingual corpora (Ravi and Knight 2011; Nuhn, Mauser,

and Ney 2012; Dou and Knight 2012, 2013). This research line draws on previous

decipherment work for solving simpler substitution/transposition ciphers, while rec-

ognizing that thinking of the foreign language as a “code” also requires customizing the

decipherment algorithms so that they can deal with highly non-deterministic mappings

and very large substitution tables.

7.3 Integration with machine translation

Any bilingual lexicon induction and dictionary expansion methods could be used to

supplement parallel data used for estimating word alignments and scored phrase tables.

The most obvious way to integrate lexicon induction output into the SMT pipeline
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would be to induce translations for out-of-vocabulary and rare words. That is, if a

word in our test set does not have a translation in the phrase table, we could induce

one for it. Although most work on bilingual lexicon induction is motivated by the

idea that outputs could be integrated into end-to-end SMT, until recently such an ex-

trinsic evaluation was rarely performed. Daumé and Jagarlamudi (2011) use canonical

correlation analysis (CCA) and both contextual and orthographic features to induce

translations. Razmara et al. (2013) construct a graph using source language monolingual

text and identify translations for source language OOV words by pivoting through para-

phrases. In Irvine, Quirk, and Daumé (2013), we presented a method for expanding an

initial translation dictionary estimated from old-domain parallel corpora by matching

marginal probabilities over new-domain comparable corpora. Daumé and Jagarlamudi

(2011), Razmara et al. (2013), and our prior work in Irvine, Quirk, and Daumé (2013)

integrate translations into an SMT model to improve performance in domain adaptation

settings.

In Klementiev et al. (2012), we described a framework for estimating the parameters

of machine translation without bilingual parallel corpora. Many of the monolingually-

estimated features that we used in that framework are the same as the features used here

for bilingual lexicon induction. In that work, we performed oracle experiments where

the translations were given by an existing phrase-table, and simply re-scored using the

monolingually-estimated signals of translation equivalence.

7.4 Extracting Parallel Data from Comparable Corpora

Resnik and Smith (2003), Munteanu and Marcu (2005), Abdul-Rauf and Schwenk

(2009a), Abdul-Rauf and Schwenk (2009b), and Smith, Quirk, and Toutanova (2010)

identify parallel sentences in comparable corpora. Munteanu and Marcu (2006) iden-

tifies parallel sub-sentential fragments, using a probabilistic lexicon and information
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retrieval methods to identify similar document pairs and then uses the same word

translation probabilities to detect parallel fragments within the document pairs. They

supplement exiting parallel data with the new sentence and fragment pairs evaluate

end-to-end SMT systems trained on the augmented parallel datasets. Quirk, Udupa, and

Menezes (2007) also seek to identify phrase translation pairs from comparable corpora,

but that method requires a first pass identification of promising comparable pairs of

sentences from paired comparable documents. It then uses a generative model to extract

fragment translation pairs. Similarly, Hewavitharana and Vogel (2011) seek to identify

phrase translation pairs from comparable corpora but require a first pass to identify a

set of comparable sentences and then a second pass through the data to find the best

phrasal alignment within each sentence pair. These efforts at using comparable corpora

to expand parallel corpora are orthogonal to the approaches that we propose in this

article.

8. Conclusions

We have performed the most systematic analysis of bilingual lexicon induction to date.

We analyze a set of 18 monolingually-derived signals of translation equivalence, includ-

ing signals based on contextual similarity, temporal similarity, orthographic similarity,

topic similarity, and features that compare the frequency and burstiness of words across

languages. Analyzing the behavior of bilingual lexicon induction across two dozen

languages, we find several striking conclusions.

All of the individual signals signals of translation equivalence are weak indicators

by themselves. The best median performance of an individual signal reaching a mere

ă20% at ranking a translation within its top-10 prediction. The majority of signals

have !10% top-10 accuracy. Like Schafer and Yarowsky (2002), we find that combin-

ing diverse signals increases the translation accuracy. We can observe improvements
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even using a simple baseline combination method like mean reciprocal rank, although

MRR performs only modestly better than the best individual signal. Our discriminative

approach to combining the signals achieves dramatically improved performance. Our

model outperforms the MRR baseline for all 24 languages that we experimented with,

with the average top-10 accuracy more than doubling from 16% to 34%.

Although small seed dictionaries have been an essential element in bilingual lexicon

induction since early work by Rapp (1995) and Fung (1995), and although much of the

past research has employed multiple signals of translation equivalence, surprisingly no

one has used the seed dictionary to empirically weight the contributions of the different

signals.

A popular contemporary generative model, MCCA, proposed by Haghighi et al.

(2008) also substantially underperforms our discriminative approach. Only a relatively

small amount of bilingual data is needed to set the weights of the discriminative

model. Our experiments show that having as little as 300 dictionary entries is sufficient.

Moreover, we show that using a different language to set the weights for a language

without a bilingual dictionary may be a successful strategy.

Our model performs well, even using relatively simple similarity estimators, like

cosine distance without applying any dimensionality reduction techniques, and despite

being a simple linear model. Future work could investigate additional gains from

using more sophisticated models like decision trees, random forests, kernel machines

or neural networks.

Additionally we present a nuanced analysis of the experiments: We quantify how

diverse/orthogonal the signals of translation equivalence are by measuring the correla-

tion of how the different signals rank the translations of 1000 words in each language.

We show that the strongest individual signals (contextual similarity and topical sim-
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ilarity) are consistent across all languages. This is possibly due to the fact that both

signals were computed using data derived from Wikipedia. This data is larger and

more comparable than our other newswire data sets, and it has a higher coverage of

our test words, which were themselves drawn from Wikipedia. We show that most

signals are consistent across part-of-speech, except for orthographic similarity, which

performs better for nouns and adjectives. We show that bilingual lexicon induction

is more accurate for words that occur more frequently in monolingual corpora, and

for words that exhibit more bursty behavior. We show that top-k translation accuracy

can be increased by straightforwardly increasing the amount of monolingual data used

to estimate the signals of translation equivalence, but that the increase appears to be

log-linear or worse, requiring substantial increases in monolingual data for continued

incremental gains.

Our experiments are more thorough than previous work in bilingual lexicon in-

duction, and provide useful guidance for researchers who wish to use the techniques

for applications translating out of vocabulary items for statistical machine translation.

Although we focus primarily on low resource languages in this study, the techniques

may also serve as potentially useful for high resource languages, which still have

problems with out of vocabulary items even with there is ample bilingual training data

for statistical machine translation systems.
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Figure 6: Learning curves over number of positive training instances, up to 1,000. For
some languages, 1,000 positive training instances are not available. In all cases, the
number of negative training instances is three times the number of positive. For all
languages, performance is fairly stable after about 300 positive training instances.
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Figure 7: Bilingual lexicon induction learning curves over varying comparable corpora
sizes for (a) Gujarati, (b) Albanian, (c) Azeri, and (d) Tamil. The x-axis is shown on a log
scale.
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Figure 8: Bilingual lexicon induction as a function of source word frequency in
Wikipedia monolingual data. Frequency is plotted along the x-axis. Among the lan-
guages shown, we have the least monolingual data for Somali and the most for Swedish.
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Figure 9: Bilingual lexicon induction as a function of source word burstiness in
Wikipedia monolingual data. Burstiness is plotted on the x-axis. It is calculated accord-
ing to Equation 2.6.
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